1
|
Dhakal S, Wolfe BW, Pantha S, Vijayakumar S. Sex Differences during Influenza A Virus Infection and Vaccination and Comparison of Cytokine and Antibody Responses between Plasma and Serum Samples. Pathogens 2024; 13:468. [PMID: 38921766 PMCID: PMC11206404 DOI: 10.3390/pathogens13060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
In this study, we evaluated sex differences during infection with mouse-adapted H1N1 and H3N2 influenza A viruses (IAVs) in the C57BL/6J mouse model and compared the cytokine and antibody responses between plasma and serum samples during IAV infection and vaccination. Lethal doses for both H1N1 and H3N2 IAVs were lower for adult females and they suffered with greater morbidity than adult males when infected with sublethal doses. In influenza virus-infected mice, cytokine responses differed between plasma and serum samples. After inactivated influenza virus vaccination and drift variant challenge, adult female mice had greater antibody responses and were better protected. In influenza-vaccinated and challenged mice, binding antibodies were unaffected between paired plasma or serum samples. However, functional antibody assays, including hemagglutination inhibition, microneutralization, and antibody-dependent cellular cytotoxicity assays, were affected by the use of plasma and serum sample types. Our results indicate that careful consideration is required while selecting plasma versus serum samples to measure cytokine and antibody responses during IAV infection and vaccination.
Collapse
Affiliation(s)
- Santosh Dhakal
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA; (B.W.W.); (S.P.); (S.V.)
| | | | | | | |
Collapse
|
2
|
Rio P, Caldarelli M, Chiantore M, Ocarino F, Candelli M, Gasbarrini A, Gambassi G, Cianci R. Immune Cells, Gut Microbiota, and Vaccines: A Gender Perspective. Cells 2024; 13:526. [PMID: 38534370 PMCID: PMC10969451 DOI: 10.3390/cells13060526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The development of preventive and therapeutic vaccines has played a crucial role in preventing infections and treating chronic and non-communicable diseases, respectively. For a long time, the influence of sex differences on modifying health and disease has not been addressed in clinical and preclinical studies. The interaction of genetic, epigenetic, and hormonal factors plays a role in the sex-related differences in the epidemiology of diseases, clinical manifestations, and the response to treatment. Moreover, sex is one of the leading factors influencing the gut microbiota composition, which could further explain the different predisposition to diseases in men and women. In the same way, differences between sexes occur also in the immune response to vaccines. This narrative review aims to highlight these differences, focusing on the immune response to vaccines. Comparative data about immune responses, vaccine effectiveness, and side effects are reviewed. Hence, the intricate interplay between sex, immunity, and the gut microbiota will be discussed for its potential role in the response to vaccination. Embracing a sex-oriented perspective in research may improve the efficacy of the immune response and allow the design of tailored vaccine schedules.
Collapse
Affiliation(s)
- Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Monica Chiantore
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Francesca Ocarino
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| |
Collapse
|
3
|
Dunn SE, Perry WA, Klein SL. Mechanisms and consequences of sex differences in immune responses. Nat Rev Nephrol 2024; 20:37-55. [PMID: 37993681 DOI: 10.1038/s41581-023-00787-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Biological sex differences refer to differences between males and females caused by the sex chromosome complement (that is, XY or XX), reproductive tissues (that is, the presence of testes or ovaries), and concentrations of sex steroids (that is, testosterone or oestrogens and progesterone). Although these sex differences are binary for most human individuals and mice, transgender individuals receiving hormone therapy, individuals with genetic syndromes (for example, Klinefelter and Turner syndromes) and people with disorders of sexual development reflect the diversity in sex-based biology. The broad distribution of sex steroid hormone receptors across diverse cell types and the differential expression of X-linked and autosomal genes means that sex is a biological variable that can affect the function of all physiological systems, including the immune system. Sex differences in immune cell function and immune responses to foreign and self antigens affect the development and outcome of diverse diseases and immune responses.
Collapse
Affiliation(s)
- Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Whitney A Perry
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
4
|
Metcalf C, Klein SL, Read JM, Riley S, Cummings D, Guan Y, Kwok KO, Huachen Z, Jiang CQ, Lam TH, Lessler J. Survival at older ages: are greater influenza antibody titers protective? Med Hypotheses 2023; 178:111135. [PMID: 37744025 PMCID: PMC10512879 DOI: 10.1016/j.mehy.2023.111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Antibodies are a core element of the immune system's defense against infectious diseases. We hypothesize that antibody titres might therefore be an important predictor of survival in older individuals. This is important because biomarkers that robustly measure survival have proved elusive, despite their potential utility in health care settings. We present evidence supporting the hypothesis that influenza antibody titres are associated with overall survival of older individuals, and indicate a role for biological sex in modulating this association. Since antibody titres can be modulated by vaccination, these results have important implications for public health policy on influenza control in aging populations.
Collapse
Affiliation(s)
- Cje Metcalf
- Dept of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - S L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - J M Read
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, UK
| | - S Riley
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Dat Cummings
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Yi Guan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Guangzhou No. 12 Hospital, Guangzhou, Guangdong, China
| | - K O Kwok
- School of Public Health, University of Hong Kong, Hong Kong, China
| | - Z Huachen
- School of Public Health, University of Hong Kong, Hong Kong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - C Q Jiang
- Guangzhou No. 12 Hospital, Guangzhou, Guangdong, China
| | - Tai Hing Lam
- School of Public Health, University of Hong Kong, Hong Kong, China
| | - J Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
5
|
Dong Y, Li X, Li Z, Zhu Y, Wei Z, He J, Cheng H, Yang A, Chen F. Effects of inactivated SARS-CoV-2 vaccination on male fertility: A retrospective cohort study. J Med Virol 2023; 95:e28329. [PMID: 36415120 DOI: 10.1002/jmv.28329] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
Numerous studies have revealed severe damage to male fertility from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, raising concerns about the potential adverse impact on reproductive function of the coronavirus disease 2019 (COVID-19) vaccine developed based on the virus. Interestingly, there are several researchers who have studied the impact of the COVID-19 mRNA vaccine since then but have come up with conflicting results. As a near-ideal candidate for mass immunization programs, inactivated SARS-CoV-2 vaccine has been widely used in many countries, particularly in less wealthy nations. However, little is known about its effect on male fertility. Here, we conducted a retrospective cohort study at a single large center for reproductive medicine in China between December 2021 and August 2022. Five hundred and nineteen fertile men with no history of laboratory-confirmed COVID-19 were included and categorized into four groups based on their vaccination status: unvaccinated group (n = 168), one-dose vaccinated group (n = 8), fully vaccinated group (n = 183), and booster group (n = 160). All of them underwent a semen analysis and most had serum sex hormone levels tested. There were no significant differences in all semen parameters and sex hormone levels between the unvaccinated group and either vaccinated group. To account for possible vaccination-to-test interval-specific changes, sub-analyses were performed for two interval groups: ≤90 and >90 days. As expected, most of the semen parameters and sex hormone levels remained unchanged between the control and vaccinated groups. However, participants in vaccinated group (≤90 days) have decreased total sperm motility and increased follicle-stimulating hormone level compared with the ones in unvaccinated group. Moreover, some trends similar to those found during COVID-19 infection and recovery were observed in our study. Fortunately, all values are within the normal range. In addition, vaccinated participants reported few adverse reactions. No special medical intervention was required, and no serious adverse reactions happened. Our study suggests that inactivated SARS-CoV-2 vaccination does not impair male fertility, possibly due to the low frequency of adverse effects. This information reassures young male population who got this vaccine worldwide, and helps guide future vaccination efforts.
Collapse
Affiliation(s)
- Yehao Dong
- Center for Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xiaoyun Li
- Center for Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Zewu Li
- Center for Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yunting Zhu
- Department of Physiology, Jining Medical University, Jining, China
| | - Zichun Wei
- Department of Physiology, Jining Medical University, Jining, China
| | - Jiarui He
- Department of Physiology, Jining Medical University, Jining, China
| | - Hongju Cheng
- Department of Physiology, Jining Medical University, Jining, China
| | - Aijun Yang
- Center for Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Fei Chen
- Department of Physiology, Jining Medical University, Jining, China
| |
Collapse
|
6
|
Ursin RL, Dhakal S, Liu H, Jayaraman S, Park HS, Powell HR, Sherer ML, Littlefield KE, Fink AL, Ma Z, Mueller AL, Chen AP, Seddu K, Woldetsadik YA, Gearhart PJ, Larman HB, Maul RW, Pekosz A, Klein SL. Greater Breadth of Vaccine-Induced Immunity in Females than Males Is Mediated by Increased Antibody Diversity in Germinal Center B Cells. mBio 2022; 13:e0183922. [PMID: 35856618 PMCID: PMC9426573 DOI: 10.1128/mbio.01839-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
Inactivated influenza vaccines induce greater antibody responses in females than males among both humans and mice. To test the breadth of protection, we used recombinant mouse-adapted A/California/2009 (maA/Cal/09) H1N1 viruses containing mutations at one (1M), two (2M), or three (3M) antigenic sites, in addition to a virus containing the 1M mutation and a substitution of the Ca2 antigenic site (Sub) with one derived from an H5 hemagglutinin (HA) to challenge mice of both sexes. Following maA/Cal/09 vaccination, females produced greater virus-specific, class-switched total IgG and IgG2c antibodies against the vaccine and all mutant viruses, and antibodies from females recognized a greater number of unique, linear HA epitopes than did antibodies from males. While females had greater neutralizing antibody titers against the vaccine virus, both sexes showed a lower neutralization capacity against mutant viruses. After virus challenge, vaccinated females had lower pulmonary virus titers and reduced morbidity than males for the 1M and 2M viruses, but not the Sub virus. Females generated greater numbers of germinal center (GC) B cells containing superior somatic hypermutation (SHM) frequencies than vaccinated males. Deletion of activation-induced cytidine deaminase (Aicda) eliminated female-biased immunity and protection against the 2M virus. Harnessing methods to improve GC B cell responses and frequencies of SHM, especially in males, should be considered in the development of universal influenza vaccines. IMPORTANCE Adult females develop greater antibody responses to influenza vaccines than males. We hypothesized that female-biased immunity and protection would be dependent on the extent of virus diversity as well as molecular mechanisms in B cells which constrain the breadth of epitope recognition. We developed a panel of mouse-adapted (ma) A/Cal/09 viruses that had mutations in the immunodominant hemagglutinin. Following vaccination against maA/Cal/09, females were better able to neutralize maA/Cal/09 than males, but neutralization of mutant maA/Cal/09 viruses was equally poor in both sexes, despite vaccinated females being better protected against these viruses. Vaccinated females benefited from the greater production of class-switched, somatically hypermutated antibodies generated in germinal center B cells, which increased recognition of more diverse maA/Cal/09 hemagglutinin antigen epitopes. Female-biased protection against influenza infection and disease after vaccination is driven by differential mechanisms in males versus females and should be considered in the design of novel vaccine platforms.
Collapse
Affiliation(s)
- Rebecca L. Ursin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sahana Jayaraman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Harrison R. Powell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Morgan L. Sherer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kirsten E. Littlefield
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ashley L. Fink
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Zexu Ma
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Alice L. Mueller
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Allison P. Chen
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kumba Seddu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yishak A. Woldetsadik
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Patricia J. Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Robert W. Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L. Klein
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Dhakal S, Deshpande S, McMahon M, Strohmeier S, Krammer F, Klein SL. Female-biased effects of aging on a chimeric hemagglutinin stalk-based universal influenza virus vaccine in mice. Vaccine 2022; 40:1624-1633. [PMID: 33293159 PMCID: PMC8178415 DOI: 10.1016/j.vaccine.2020.11.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Abstract
To determine if biological sex and age intersect to affect universal influenza vaccine-induced immunity, adult and aged male and female C57BL/6 mice were sequentially immunized with a chimeric-hemagglutinin (cHA) stalk-based H1 vaccine. Adult mice developed greater quantity and quality of H1-stalk antibodies, that were more cross-reactive with other group 1, but not group 2, influenza viruses, than aged mice. The vaccine did not induce neutralizing or hemagglutination inhibition antibodies, but rather antibody-dependent cellular cytotoxicity, which was greater in adult than aged mice. Vaccinated adult mice were better protected than aged mice after challenge with 2009 H1N1 virus, experiencing less morbidity and having lower pulmonary virus titers. The age-associated decline in immunity and protection was consistently greater among females than males, with the reduction in immunity and protection for aged as compared with adult females often being the sole comparison driving the overall age-associated significant differences. The age-associated reduction in stalk-based immunity in females was not, however, associated with changes in estradiol. To determine if the better antibodies in adults could be utilized to protect aged mice, serum was passively transferred from vaccinated adult mice into naïve sex-matched aged mice. Even with transferred serum from young adult mice, aged females still suffered greater morbidity than aged males. These data suggest there are sex-dependent effects of aging on cHA-based universal influenza virus vaccine-induced immunity that cannot be reversed through transfer of serum from young animals. The lack of consideration of sex-specific effects of aging on immunity could hinder efforts toward universal vaccines.
Collapse
Affiliation(s)
- Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Sharvari Deshpande
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Review of Influenza Virus Vaccines: The Qualitative Nature of Immune Responses to Infection and Vaccination Is a Critical Consideration. Vaccines (Basel) 2021; 9:vaccines9090979. [PMID: 34579216 PMCID: PMC8471734 DOI: 10.3390/vaccines9090979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023] Open
Abstract
Influenza viruses have affected the world for over a century, causing multiple pandemics. Throughout the years, many prophylactic vaccines have been developed for influenza; however, these viruses are still a global issue and take many lives. In this paper, we review influenza viruses, associated immunological mechanisms, current influenza vaccine platforms, and influenza infection, in the context of immunocompromised populations. This review focuses on the qualitative nature of immune responses against influenza viruses, with an emphasis on trained immunity and an assessment of the characteristics of the host–pathogen that compromise the effectiveness of immunization. We also highlight innovative immunological concepts that are important considerations for the development of the next generation of vaccines against influenza viruses.
Collapse
|
9
|
Lin X, Lin F, Liang T, Ducatez MF, Zanin M, Wong SS. Antibody Responsiveness to Influenza: What Drives It? Viruses 2021; 13:v13071400. [PMID: 34372607 PMCID: PMC8310379 DOI: 10.3390/v13071400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023] Open
Abstract
The induction of a specific antibody response has long been accepted as a serological hallmark of recent infection or antigen exposure. Much of our understanding of the influenza antibody response has been derived from studying antibodies that target the hemagglutinin (HA) protein. However, growing evidence points to limitations associated with this approach. In this review, we aim to highlight the issue of antibody non-responsiveness after influenza virus infection and vaccination. We will then provide an overview of the major factors known to influence antibody responsiveness to influenza after infection and vaccination. We discuss the biological factors such as age, sex, influence of prior immunity, genetics, and some chronic infections that may affect the induction of influenza antibody responses. We also discuss the technical factors, such as assay choices, strain variations, and viral properties that may influence the sensitivity of the assays used to measure influenza antibodies. Understanding these factors will hopefully provide a more comprehensive picture of what influenza immunogenicity and protection means, which will be important in our effort to improve influenza vaccines.
Collapse
Affiliation(s)
- Xia Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Fangmei Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Tingting Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | | | - Mark Zanin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Sook-San Wong
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +86-178-2584-6078
| |
Collapse
|
10
|
Abstract
Biological sex affects the outcome of diverse respiratory viral infections. The pathogenesis of respiratory infections caused by viruses ranging from respiratory syncytial virus to influenza viruses and severe acute respiratory syndrome coronavirus 2 differs between the sexes across the life course. Generally, males are more susceptible to severe outcomes from respiratory viral infections at younger and older ages. During reproductive years (i.e., after puberty and prior to menopause), females are often at greater risk than males for severe outcomes. Pregnancy and biological sex affect the pathogenesis of respiratory viral infections. In addition to sex differences in the pathogenesis of disease, there are consistent sex differences in responses to treatments, with females often developing greater immune responses but experiencing more adverse reactions than males. Animal models provide mechanistic insights into the causes of sex differences in respiratory virus pathogenesis and treatment outcomes, where available. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Rebecca L Ursin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA 21205;
| | - Sabra L Klein
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA 21205; .,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Maryland, USA 21205
| |
Collapse
|
11
|
Abstract
The poor uptake and limited effectiveness of seasonal influenza vaccines mean that influenza continues to create a significant burden of disease. It has been hypothesized that sex differences are present in responses to seasonal influenza vaccines, and that these differences may contribute to this poor vaccine success. This has led to the suggestion that vaccines should be tailored to an individual's biological sex. However, studies in this field are often low quality. Comprehensive analysis of the available literature reveals that there is insufficient evidence to support sex differences in vaccine immunogenicity, effectiveness, or efficacy. Nonetheless, differences in vaccine safety are consistently observed, with females reporting adverse events following immunization more frequently than males. Bias introduced by gender differences in passive reporting of adverse effects may underlie this phenomenon. Highly controlled studies are required in future before any conclusions can be made about potential sex differences in response to seasonal influenza vaccines.
Collapse
Affiliation(s)
- Lucy Denly
- Medical Sciences Division, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Mauvais-Jarvis F, Berthold HK, Campesi I, Carrero JJ, Dakal S, Franconi F, Gouni-Berthold I, Heiman ML, Kautzky-Willer A, Klein SL, Murphy A, Regitz-Zagrosek V, Reue K, Rubin JB. Sex- and Gender-Based Pharmacological Response to Drugs. Pharmacol Rev 2021; 73:730-762. [PMID: 33653873 PMCID: PMC7938661 DOI: 10.1124/pharmrev.120.000206] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In humans, the combination of all sex-specific genetic, epigenetic, and hormonal influences of biologic sex produces different in vivo environments for male and female cells. We dissect how these influences of sex modify the pharmacokinetics and pharmacodynamics of multiple drugs and provide examples for common drugs acting on specific organ systems. We also discuss how gender of physicians and patients may influence the therapeutic response to drugs. We aim to highlight sex as a genetic modifier of the pharmacological response to drugs, which should be considered as a necessary step toward precision medicine that will benefit men and women. SIGNIFICANCE STATEMENT: This study discusses the influences of biologic sex on the pharmacokinetics and pharmacodynamics of drugs and provides examples for common drugs acting on specific organ systems. This study also discusses how gender of physicians and patients influence the therapeutic response to drugs.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Heiner K Berthold
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Ilaria Campesi
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Juan-Jesus Carrero
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Santosh Dakal
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Flavia Franconi
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Ioanna Gouni-Berthold
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Mark L Heiman
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Alexandra Kautzky-Willer
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Sabra L Klein
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Anne Murphy
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Vera Regitz-Zagrosek
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Karen Reue
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Joshua B Rubin
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| |
Collapse
|
13
|
Ku MW, Anna F, Souque P, Petres S, Prot M, Simon-Loriere E, Charneau P, Bourgine M. A Single Dose of NILV-Based Vaccine Provides Rapid and Durable Protection against Zika Virus. Mol Ther 2020; 28:1772-1782. [PMID: 32485138 PMCID: PMC7403329 DOI: 10.1016/j.ymthe.2020.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
Zika virus, a member of the Flaviviridae family, is primarily transmitted by infected Aedes species mosquitoes. In 2016, Zika infection emerged as a global health emergency for its explosive spread and the remarkable neurological defects in the developing fetus. Development of a safe and effective Zika vaccine remains a high priority owing to the risk of re-emergence and limited understanding of Zika virus epidemiology. We engineered a non-integrating lentiviralvector(NILV)-based Zika vaccine encoding the consensus pre-membrane and envelope glycoprotein of circulating Zika virus strains. We further evaluated the immunogenicity and protective efficacy of this vaccine in both immunocompromised and immunocompetent mouse models. A single immunization in both mouse models elicited a robust neutralizing antibody titer and afforded full protection against Zika challenge as early as 7 days post-immunization. This NILV-based vaccine also induced a long-lasting immunity when immunized mice were challenged 6 months after immunization. Altogether, our NILV Zika vaccine provides a rapid yet durable protection through a single dose of immunization without extra adjuvant formulation. Our data suggest a promising Zika vaccine candidate for an emergency situation, and demonstrate the capacity of lentiviral vector as an efficient vaccine delivery platform.
Collapse
Affiliation(s)
- Min Wen Ku
- Unité de Virologie Moléculaire et Vaccinologie, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, 75005 Paris, France; Ecole Doctorale Frontières du Vivant (FdV), 26 Rue de l'Étoile, 75017 Paris, France
| | - François Anna
- Unité de Virologie Moléculaire et Vaccinologie, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Philippe Souque
- Unité de Virologie Moléculaire et Vaccinologie, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Stéphane Petres
- Plateforme Technologique Production et Purification de Protéines Recombinantes, Centre de Ressources et Recherches Technologiques, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Matthieu Prot
- Génomique Évolutive des Virus à ARN, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Etienne Simon-Loriere
- Génomique Évolutive des Virus à ARN, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Pierre Charneau
- Unité de Virologie Moléculaire et Vaccinologie, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France; Laboratoire commun Institut Pasteur-Theravectys, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France.
| | - Maryline Bourgine
- Unité de Virologie Moléculaire et Vaccinologie, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France; Laboratoire commun Institut Pasteur-Theravectys, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
14
|
Aaby P, Benn CS, Flanagan KL, Klein SL, Kollmann TR, Lynn DJ, Shann F. The non-specific and sex-differential effects of vaccines. Nat Rev Immunol 2020; 20:464-470. [PMID: 32461674 PMCID: PMC7252419 DOI: 10.1038/s41577-020-0338-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2020] [Indexed: 12/27/2022]
Abstract
The textbook view of vaccination is that it functions to induce immune memory of the specific pathogen components of the vaccine, leading to a quantitatively and qualitatively better response if the host is exposed to infection with the same pathogen. However, evidence accumulated over the past few decades increasingly suggests that vaccines can also have non-specific effects on unrelated infections and diseases, with important implications for childhood mortality particularly in low-income settings. Furthermore, many of these non-specific effects, as well as the pathogen-specific effects, of vaccines show differences between the sexes. Here, members of the Optimmunize consortium discuss the evidence for and potential mechanisms of non-specific and sex-differential effects of vaccines, as well as their potential policy implications. Given that the non-specific effects of some vaccines are now being tested for their ability to protect against COVID-19, the authors also comment on the broader implications of these trials. In this Viewpoint article, members of the Optimmunize consortium discuss the evidence for non-specific and sex-differential effects of vaccines and how this information might inform vaccine design and policy, including in relation to the COVID-19 pandemic. Peter Aaby was trained as an anthropologist but has built a large health surveillance system in Guinea-Bissau since 1978, focusing on the high levels of child mortality there. Crowding and intensive exposure to measles were key determinants of child mortality. This led to vaccine research and the discovery of the non-specific effects of measles vaccine. Christine Stabell Benn is a professor in global health at the University of Southern Denmark. She conducts epidemiological and immunological studies of vaccines and vitamin A, with a focus on their real-life effects on overall health in Africa and Denmark. She formulated the hypothesis that these health interventions with immunomodulatory effects interact, often in a sex-differential manner. Katie L. Flanagan is Director of Infectious Diseases for north/north-west Tasmania, an adjunct professor at the University of Tasmania and RMIT University and an adjunct associate professor at Monash University. She is Honorary Secretary of the Australasian Society for Infectious Diseases (ASID), Chair of the ASID Vaccination Special Interest Group and a member of the Australian Technical Advisory Group on Immunisation. Her current research focuses on using systems vaccinology to study the sex-differential and non-targeted effects of vaccines. Sabra L. Klein is a professor of molecular microbiology and immunology at the Johns Hopkins Bloomberg School of Public Health, Baltimore, USA. She is an expert on sex and gender differences in immune responses and susceptibility to infection. She is the immediate past president of the Organization for the Study of Sex Differences, a principal investigator of the Johns Hopkins Specialized Center for Research Excellence in sex and age differences in immunity to influenza and a co-director of the Johns Hopkins Center for Women’s Health, Sex, and Gender Research. Tobias R. Kollmann is a paediatric infectious disease clinician and systems vaccinologist at Telethon Kids Institute and Perth Children’s Hospital in Perth, Australia. His expertise centres on newborn infectious diseases, immune ontogeny and early-life vaccine responses, using cutting-edge technology and analytics to extract the most information out of the typically small biological samples obtainable in early life. David J. Lynn is Director of the Computational and Systems Biology Program and an EMBL Australia group leader at the South Australian Health and Medical Research Institute. He is also a professor at the Flinders University College of Medicine and Public Health. He leads a research programme in systems immunology, investigating how pathogenic and commensal microorganisms modulate the immune system in different contexts, including vaccination. Frank Shann worked as a paediatrician in Papua New Guinea and then for 20 years was Director of Intensive Care at the Royal Children’s Hospital in Melbourne, Australia. He is a professorial fellow in the Department of Paediatrics, University of Melbourne, engaged in research on the non-specific effects of vaccines.
Collapse
Affiliation(s)
- Peter Aaby
- Bandim Health Project, Bissau, Guinea-Bissau.
| | - Christine Stabell Benn
- Bandim Health Project, OPEN, Department of Clinical Research, Odense University Hospital, Odense, Denmark. .,Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark.
| | - Katie L Flanagan
- University of Tasmania, Hobart, TAS, Australia. .,RMIT University, Melbourne, VIC, Australia. .,Monash University, Melbourne, VIC, Australia.
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | | | - David J Lynn
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia. .,Flinders University, Adelaide, SA, Australia.
| | - Frank Shann
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Dhakal S, Klein SL. Host Factors Impact Vaccine Efficacy: Implications for Seasonal and Universal Influenza Vaccine Programs. J Virol 2019; 93:e00797-19. [PMID: 31391269 PMCID: PMC6803252 DOI: 10.1128/jvi.00797-19] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Influenza is a global public health problem. Current seasonal influenza vaccines have highly variable efficacy, and thus attempts to develop broadly protective universal influenza vaccines with durable protection are under way. While much attention is given to the virus-related factors contributing to inconsistent vaccine responses, host-associated factors are often neglected. Growing evidences suggest that host factors including age, biological sex, pregnancy, and immune history play important roles as modifiers of influenza virus vaccine efficacy. We hypothesize that host genetics, the hormonal milieu, and gut microbiota contribute to host-related differences in influenza virus vaccine efficacy. This review highlights the current insights and future perspectives into host-specific factors that impact influenza vaccine-induced immunity and protection. Consideration of the host factors that affect influenza vaccine-induced immunity might improve influenza vaccines by providing empirical evidence for optimizing or even personalizing vaccine type, dose, and use of adjuvants for current seasonal and future universal influenza vaccines.
Collapse
Affiliation(s)
- Santosh Dhakal
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L Klein
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Host Factors Impact Vaccine Efficacy: Implications for Seasonal and Universal Influenza Vaccine Programs. J Virol 2019. [PMID: 31391269 DOI: 10.1128/jvi.00797‐19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Influenza is a global public health problem. Current seasonal influenza vaccines have highly variable efficacy, and thus attempts to develop broadly protective universal influenza vaccines with durable protection are under way. While much attention is given to the virus-related factors contributing to inconsistent vaccine responses, host-associated factors are often neglected. Growing evidences suggest that host factors including age, biological sex, pregnancy, and immune history play important roles as modifiers of influenza virus vaccine efficacy. We hypothesize that host genetics, the hormonal milieu, and gut microbiota contribute to host-related differences in influenza virus vaccine efficacy. This review highlights the current insights and future perspectives into host-specific factors that impact influenza vaccine-induced immunity and protection. Consideration of the host factors that affect influenza vaccine-induced immunity might improve influenza vaccines by providing empirical evidence for optimizing or even personalizing vaccine type, dose, and use of adjuvants for current seasonal and future universal influenza vaccines.
Collapse
|
17
|
Age-associated changes in the impact of sex steroids on influenza vaccine responses in males and females. NPJ Vaccines 2019; 4:29. [PMID: 31312529 PMCID: PMC6626024 DOI: 10.1038/s41541-019-0124-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Vaccine-induced immunity declines with age, which may differ between males and females. Using human sera collected before and 21 days after receipt of the monovalent A/Cal/09 H1N1 vaccine, we evaluated cytokine and antibody responses in adult (18-45 years) and aged (65+ years) individuals. After vaccination, adult females developed greater IL-6 and antibody responses than either adult males or aged females, with female antibody responses being positively associated with concentrations of estradiol. To test whether protection against influenza virus challenge was greater in females than males, we primed and boosted adult (8-10 weeks) and aged (68-70 weeks) male and female mice with an inactivated A/Cal/09 H1N1 vaccine or no vaccine and challenged with a drift variant A/Cal/09 virus. As compared with unvaccinated mice, vaccinated adult, but not aged, mice experienced less morbidity and better pulmonary viral clearance following challenge, regardless of sex. Vaccinated adult female mice developed antibody responses that were of greater quantity and quality and more protective than vaccinated adult males. Sex differences in vaccine efficacy diminished with age in mice. To determine the role of sex steroids in vaccine-induced immune responses, adult mice were gonadectomized and hormones (estradiol in females and testosterone in males) were replaced in subsets of animals before vaccination. Vaccine-induced antibody responses were increased in females by estradiol and decreased in males by testosterone. The benefit of elevated estradiol on antibody responses and protection against influenza in females is diminished with age in both mice and humans.
Collapse
|
18
|
Laffont S, Guéry JC. Deconstructing the sex bias in allergy and autoimmunity: From sex hormones and beyond. Adv Immunol 2019; 142:35-64. [PMID: 31296302 DOI: 10.1016/bs.ai.2019.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Men and women differ in their susceptibility to develop autoimmunity and allergy but also in their capacity to cope with infections. Mechanisms responsible for this sexual dimorphism are still poorly documented and probably multifactorial. This review discusses the recent development in our understanding of the cell-intrinsic actions of biological factors linked to sex, sex hormones and sex chromosome complement, on immune cells, which may account for the sex differences in the enhanced susceptibility of women to develop immunological disorders, such as allergic asthma or systemic lupus erythematosus (SLE). We choose to more specifically discuss the impact of sex hormones on the development and function of immune cell populations directly involved in type-2 immunity, and the role of the X-linked Toll like receptor 7 (TLR7) in anti-viral immunity and in SLE. We will also elaborate on the recent evidence demonstrating that TLR7 escapes from X chromosome inactivation in the immune cells of women, and how this may contribute to endow woman immune system with enhanced responsiveness to RNA-virus and susceptibility to SLE.
Collapse
Affiliation(s)
- Sophie Laffont
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Jean-Charles Guéry
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France.
| |
Collapse
|
19
|
Morgan R, Klein SL. The intersection of sex and gender in the treatment of influenza. Curr Opin Virol 2019; 35:35-41. [PMID: 30901632 DOI: 10.1016/j.coviro.2019.02.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022]
Abstract
Males/men and females/women differ in the outcome of influenza A virus (IAV) infections, vaccination, and antiviral treatments. Both sex (i.e. biological factors) and gender (i.e. sociocultural factors) can impact exposure and severity of IAV infections as well as responses and outcomes of treatments for IAV. Greater consideration of the combined effects of sex and gender in epidemiological, clinical, and animal studies of influenza pathogenesis is needed.
Collapse
Affiliation(s)
- Rosemary Morgan
- Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
20
|
Fischinger S, Boudreau CM, Butler AL, Streeck H, Alter G. Sex differences in vaccine-induced humoral immunity. Semin Immunopathol 2018; 41:239-249. [PMID: 30547182 PMCID: PMC6373179 DOI: 10.1007/s00281-018-0726-5] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
Abstract
Vaccines are among the most impactful public health interventions, preventing millions of new infections and deaths annually worldwide. However, emerging data suggest that vaccines may not protect all populations equally. Specifically, studies analyzing variation in vaccine-induced immunity have pointed to the critical impact of genetics, the environment, nutrition, the microbiome, and sex in influencing vaccine responsiveness. The significant contribution of sex to modulating vaccine-induced immunity has gained attention over the last years. Specifically, females typically develop higher antibody responses and experience more adverse events following vaccination than males. This enhanced immune reactogenicity among females is thought to render females more resistant to infectious diseases, but conversely also contribute to higher incidence of autoimmunity among women. Dissection of mechanisms which underlie sex differences in vaccine-induced immunity has implicated hormonal, genetic, and microbiota differences across males and females. This review will highlight the importance of sex-dependent differences in vaccine-induced immunity and specifically will address the role of sex as a modulator of humoral immunity, key to long-term pathogen-specific protection.
Collapse
Affiliation(s)
- Stephanie Fischinger
- Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA, 02139, USA.,Institut für HIV Forschung, Universität Duisburg-Essen, Duisburg, Germany
| | - Carolyn M Boudreau
- Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Audrey L Butler
- Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Hendrik Streeck
- Institut für HIV Forschung, Universität Duisburg-Essen, Duisburg, Germany
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
21
|
Biological sex affects vaccine efficacy and protection against influenza in mice. Proc Natl Acad Sci U S A 2018; 115:12477-12482. [PMID: 30455317 DOI: 10.1073/pnas.1805268115] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Biological sex affects adaptive immune responses, which could impact influenza infection and vaccine efficacy. Infection of mice with 2009 H1N1 induced antibody responses, CD4+ T cell and CD8+ T cell memory responses that were greater in females than males; both sexes, however, were equally protected against secondary challenge with an H1N1 drift variant virus. To test whether greater antibody in females is sufficient for protection against influenza, males and females were immunized with an inactivated H1N1 vaccine that induced predominantly antibody-mediated immunity. Following vaccination, females had greater antibody responses and protection against challenge with an H1N1 drift variant virus than males. Antibody derived from vaccinated females was better at protecting both naïve males and females than antibody from males, and this protection was associated with increased antibody specificity and avidity to the H1N1 virus. The expression of Tlr7 was greater in B cells from vaccinated females than males and was associated with reduced DNA methylation in the Tlr7 promoter region, higher neutralizing antibody, class switch recombination, and antibody avidity in females. Deletion of Tlr7 reduced sex differences in vaccine-induced antibody responses and protection following challenge and had a greater impact on responses in females than males. Taken together, these data illustrate that greater TLR7 activation and antibody production in females improves the efficacy of vaccination against influenza.
Collapse
|
22
|
Petrović R, Bufan B, Arsenović-Ranin N, Živković I, Minić R, Radojević K, Leposavić G. Mouse strain and sex as determinants of immune response to trivalent influenza vaccine. Life Sci 2018; 207:117-126. [PMID: 29859986 DOI: 10.1016/j.lfs.2018.05.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/21/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
AIMS The study examined the influence of sex and mouse strain on germinal center (GC) reaction and antibody responses to seasonal split trivalent influenza vaccine (TIV). MAIN METHODS C57BL/6 and BALB/c mice of both sexes were immunized with TIV and examined for specific antibody response by ELISA. Splenic T follicular regulatory (Tfr), T follicular helper (Tfh) and GC B cells are detected by flow cytometry. The proliferative response of splenocytes, and concentrations of IFN-γ and IL-4 upon restimulation with vaccine antigens were examined by 7-AAD staining and ELISA, respectively. KEY FINDINGS BALB/c mice developed more robust IgG responses to vaccine type A antigens than their sex-matched C57BL/6 counterparts, while that to B antigen did not differ between strains. In both strains IgG responses against type A vaccine antigens were greater in females than in males. The greater IgG responses correlated with lower splenic Tfr/Tfh and Tfr/GC B cell ratios and greater vaccine antigen-specific proliferative responses of CD4+ and B cells in splenocyte cultures. In both mouse strains IgG2a(c)/IgG1 ratios were comparable between sexes, but lower in BALB/c than in C57BL/6 mice indicating a shift in Th1/Th2 balance towards Th2 response in BALB/c ones. Consistently, splenocytes from BALB/c mice produced more IL-4 and less IFN-γ than those from C57BL/6 mice. SIGNIFICANCE The study indicated that magnitude of humoral response to influenza type A haemagglutinins depends on mouse strain and sex, and thereby set background for the vaccination strategies taking into account biological sex, and in a longterm perspective individual differences in immune reactivity.
Collapse
Affiliation(s)
- Raisa Petrović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Irena Živković
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Rajna Minić
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Katarina Radojević
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
23
|
Ćuruvija I, Stanojević S, Arsenović-Ranin N, Blagojević V, Dimitrijević M, Vidić-Danković B, Vujić V. Sex Differences in Macrophage Functions in Middle-Aged Rats: Relevance of Estradiol Level and Macrophage Estrogen Receptor Expression. Inflammation 2018; 40:1087-1101. [PMID: 28353029 DOI: 10.1007/s10753-017-0551-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this study was to examine the influence of sex on age-related changes in phenotype and functional capacity of rat macrophages. The potential role of estradiol as a contributing factor to a sex difference in macrophage function with age was also examined. Thioglycollate-elicited peritoneal macrophages derived from the young (2 months old) and the naturally senescent intact middle-aged (16 months old) male and female rats were tested for cytokine secretion and antimicrobial activity (NO and H2O2 production and myeloperoxidase activity). Serum concentration of estradiol and the expression of estrogen receptor (ER)α and ERβ on freshly isolated peritoneal macrophages were also examined. Decreased secretion of IL-1β and IL-6 by macrophages from middle-aged compared to the young females was accompanied with the lesser density of macrophage ERα expression and the lower systemic level of estradiol, whereas the opposite was true for middle-aged male rats. Macrophages in the middle-aged females, even with the diminished circulating estradiol levels, produce increased amount of IL-6, and comparable amounts of IL-1β, TNF-α, and NO to that measured in macrophages from the middle-aged males. Age-related changes in macrophage phenotype and the antimicrobial activity were independent of macrophage ERα/ERβ expression and estradiol level in both male and female rats. Although our study suggests that the sex difference in the level of circulating estradiol may to some extent contribute to sex difference in macrophage function of middle-aged rats, it also points to more complex hormonal regulation of peritoneal macrophage activity in females.
Collapse
Affiliation(s)
- Ivana Ćuruvija
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe 458, Belgrade, 11221, Serbia
| | - Stanislava Stanojević
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe 458, Belgrade, 11221, Serbia.
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Veljko Blagojević
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe 458, Belgrade, 11221, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Biljana Vidić-Danković
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe 458, Belgrade, 11221, Serbia
| | - Vesna Vujić
- Department of Chemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
24
|
Živković I, Petrović R, Arsenović-Ranin N, Petrušić V, Minić R, Bufan B, Popović O, Leposavić G. Sex bias in mouse humoral immune response to influenza vaccine depends on the vaccine type. Biologicals 2018; 52:18-24. [PMID: 29426673 DOI: 10.1016/j.biologicals.2018.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022] Open
Abstract
The study explored influence of biological sex on development of humoral immune response to seasonal trivalent whole inactivated virus (WIV) and split virus (SV) influenza vaccines in outbred Swiss mouse model. To this end, mice of both sexes were immunized with WIV (WIV mice) and SV vaccines (SV mice) and examined for specific antibody response. Irrespective of sex, total IgG and neutralizing antibody responses to distinct virus strains were weaker in SV than in WIV mice. In WIV mice of both sexes, irrespective of strain specificity, IgG isotype response was dominated by IgG2a antibodies, while in SV mice nearly equal representation of IgG2a and IgG1 antibodies was found. The analyses of sex differences showed higher titers of H1N1-specific and both H1N1- and H3N2-specific total IgG and neutralizing antibodies in female WIV and SV mice, respectively. Additionally, sexual dimorphism in IgG subclass profile depended on vaccine type. Specifically, compared with males, in females WIV shifted IgG2a/IgG1 antibody ratio towards IgG2a isotype on the account of weaker IgG1 response, whereas in SV mice, irrespective of virus strain, IgG2a and IgG1 isotypes were equally represented in both sexes. These findings indicate the vaccine type-dependent sex bias in antibody response to inactivated influenza vaccines.
Collapse
Affiliation(s)
- Irena Živković
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Raisa Petrović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Vladimir Petrušić
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Rajna Minić
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Olga Popović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|