1
|
Chi F, Zhang X, Zhang D, Zhu A, Zhuang Z, Zhang Z, Zhang Z, Quan C, Nie K, Li J, Yin C, Tong J, Li Y. A nucleoside-modified mRNA vaccine prevents enterovirus A71 infection in mouse model. Front Immunol 2025; 16:1535758. [PMID: 40013142 PMCID: PMC11861539 DOI: 10.3389/fimmu.2025.1535758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025] Open
Abstract
Introduction Human Enterovirus A71 (EV-A71) is the primary pathogen responsible for severe hand, foot, and mouth disease (HFMD). Vaccination plays a crucial role in controlling its spread. Although inactivated vaccines have been approved, there is growing interest in developing new candidates using advanced platforms. mRNA vaccines, widely used for enveloped viruses, are less studied for non-enveloped viruses like EV-A71. This study investigates the potential of an mRNA vaccine targeting the EV-A71 VP1 protein. Methods A nucleoside-modified mRNA vaccine encoding the VP1 protein of EV-A71, encapsulated in lipid nanoparticles (LNPs), was developed. Immunogenicity and protective efficacy were evaluated in BALB/c and neonatal A129 mice, respectively. Immune responses were assessed by ELISA, micro-neutralization assays, ELISpot, and intracellular cytokine staining (ICS). Passive protection was tested by transferring immune sera to neonatal mice challenged with EV-A71. Results The VP1 mRNA-LNP vaccine elicited robust humoral and cellular immunity, including high levels of VP1-specific IgG, neutralizing antibodies, and a Th1-biased T-cell response. Notably, the mRNA vaccine outperformed the inactivated vaccine in eliciting cellular immunity. Immune sera provided complete protection against lethal EV-A71 challenge, significantly reducing viral load and pathology. Discussion This study demonstrates that the mRNA vaccine exhibits significant potential for combating non-enveloped viruses. These findings highlight the promising role of mRNA platforms in advancing vaccine development against non-enveloped viral pathogens, offering new avenues for future research and clinical applications.
Collapse
MESH Headings
- Animals
- Enterovirus A, Human/immunology
- Mice
- Disease Models, Animal
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Mice, Inbred BALB C
- Viral Vaccines/immunology
- Enterovirus Infections/prevention & control
- Enterovirus Infections/immunology
- Enterovirus Infections/virology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- mRNA Vaccines/immunology
- Humans
- Female
- Hand, Foot and Mouth Disease/prevention & control
- Hand, Foot and Mouth Disease/immunology
- Immunity, Cellular
- Capsid Proteins/immunology
- Capsid Proteins/genetics
- Nanoparticles/chemistry
- Liposomes
Collapse
Affiliation(s)
- Fengyu Chi
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Xu Zhang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Dong Zhang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenjie Zhang
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Chuansong Quan
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Kaixiao Nie
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Juan Li
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Chunhong Yin
- Infectious Disease Control Institute, Shandong Center for Disease Control and Prevention, Ji’nan, China
| | - Jie Tong
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yuming Li
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
- Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Ji’nan, China
| |
Collapse
|
2
|
Mao R, Zhu Z, Yang F, Sun D, Zhou X, Cao W, Qin X, Dang W, Liu H, Tian H, Zhang K, Wu Q, Liu X, Zheng H. Picornavirus VP3 protein induces autophagy through the TP53-BAD-BAX axis to promote viral replication. Autophagy 2024; 20:1928-1947. [PMID: 38752369 PMCID: PMC11346532 DOI: 10.1080/15548627.2024.2350270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/28/2024] Open
Abstract
Macroautophagy/autophagy and apoptosis are pivotal interconnected host cell responses to viral infection, including picornaviruses. Here, the VP3 proteins of picornaviruses were determined to trigger autophagy, with the autophagic flux being triggered by the TP53-BAD-BAX axis. Using foot-and-mouth disease virus (FMDV) as a model system, we unraveled a novel mechanism of how picornavirus hijacks autophagy to bolster viral replication and enhance pathogenesis. FMDV infection induced both autophagy and apoptosis in vivo and in vitro. FMDV VP3 protein facilitated the phosphorylation and translocation of TP53 from the nucleus into the mitochondria, resulting in BAD-mediated apoptosis and BECN1-mediated autophagy. The amino acid Gly129 in VP3 is essential for its interaction with TP53, and crucial for induction of autophagy and apoptosis. VP3-induced autophagy and apoptosis are both essential for FMDV replication, while, autophagy plays a more important role in VP3-mediated pathogenesis. Mutation of Gly129 to Ala129 in VP3 abrogated the autophagic regulatory function of VP3, which significantly decreased the viral replication and pathogenesis of FMDV. This suggested that VP3-induced autophagy benefits viral replication and pathogenesis. Importantly, this Gly is conserved and showed a common function in various picornaviruses. This study provides insight for developing broad-spectrum antivirals and genetic engineering attenuated vaccines against picornaviruses.Abbreviations: 3-MA, 3-methyladenine; ATG, autophagy related; BAD, BCL2 associated agonist of cell death; BAK1, BCL2 antagonist/killer 1; BAX, BCL2 associated X, apoptosis regulator; BBC3/PUMA, BCL2 binding component 3; BCL2, BCL2 apoptosis regulator; BID, BH3 interacting domain death agonist; BIP-V5, BAX inhibitor peptide V5; CFLAR/FLIP, CASP8 and FADD like apoptosis regulator; CPE, cytopathic effects; CQ, chloroquine; CV, coxsackievirus; DAPK, death associated protein kinase; DRAM, DNA damage regulated autophagy modulator; EV71, enterovirus 71; FMDV, foot-and-mouth disease virus; HAV, hepatitis A virus; KD, knockdown; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MOI, multiplicity of infection; MTOR, mechanistic target of rapamycin kinase; PML, promyelocytic leukemia; PV, poliovirus; SVA, Seneca Valley virus; TCID50, 50% tissue culture infectious doses; TOR, target of rapamycin. TP53/p53, tumor protein p53; WCL, whole-cell lysate.
Collapse
Affiliation(s)
- Ruoqing Mao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dehui Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoli Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaodong Qin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen Dang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huanan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Keshan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qingfeng Wu
- Analysis and Test Group, Center for Technical Development and Analysis Service, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
3
|
Sobczak JM, Barkovska I, Balke I, Rothen DA, Mohsen MO, Skrastina D, Ogrina A, Martina B, Jansons J, Bogans J, Vogel M, Bachmann MF, Zeltins A. Identifying Key Drivers of Efficient B Cell Responses: On the Role of T Help, Antigen-Organization, and Toll-like Receptor Stimulation for Generating a Neutralizing Anti-Dengue Virus Response. Vaccines (Basel) 2024; 12:661. [PMID: 38932390 PMCID: PMC11209419 DOI: 10.3390/vaccines12060661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
T help (Th), stimulation of toll-like receptors (pathogen-associated molecular patterns, PAMPs), and antigen organization and repetitiveness (pathogen-associated structural patterns, PASPs) were shown numerous times to be important in driving B-cell and antibody responses. In this study, we dissected the individual contributions of these parameters using newly developed "Immune-tag" technology. As model antigens, we used eGFP and the third domain of the dengue virus 1 envelope protein (DV1 EDIII), the major target of virus-neutralizing antibodies. The respective proteins were expressed alone or genetically fused to the N-terminal fragment of the cucumber mosaic virus (CMV) capsid protein-nCMV, rendering the antigens oligomeric. In a step-by-step manner, RNA was attached as a PAMP, and/or a universal Th-cell epitope was genetically added for additional Th. Finally, a PASP was added to the constructs by displaying the antigens highly organized and repetitively on the surface of CMV-derived virus-like particles (CuMV VLPs). Sera from immunized mice demonstrated that each component contributed stepwise to the immunogenicity of both proteins. All components combined in the CuMV VLP platform induced by far the highest antibody responses. In addition, the DV1 EDIII induced high levels of DENV-1-neutralizing antibodies only if displayed on VLPs. Thus, combining multiple cues typically associated with viruses results in optimal antibody responses.
Collapse
Affiliation(s)
- Jan M. Sobczak
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Irena Barkovska
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Ina Balke
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Dominik A. Rothen
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Mona O. Mohsen
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Dace Skrastina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Anete Ogrina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Byron Martina
- Artemis Bioservices, 2629 JD Delft, The Netherlands;
- Protinhi Therapeutics, 6534 AT Nijmegen, The Netherlands
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Monique Vogel
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Martin F. Bachmann
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Andris Zeltins
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| |
Collapse
|
4
|
Kheirvari M, Liu H, Tumban E. Virus-like Particle Vaccines and Platforms for Vaccine Development. Viruses 2023; 15:1109. [PMID: 37243195 PMCID: PMC10223759 DOI: 10.3390/v15051109] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Virus-like particles (VLPs) have gained a lot of interest within the past two decades. The use of VLP-based vaccines to protect against three infectious agents-hepatitis B virus, human papillomavirus, and hepatitis E virus-has been approved; they are very efficacious and offer long-lasting immune responses. Besides these, VLPs from other viral infectious agents (that infect humans, animals, plants, and bacteria) are under development. These VLPs, especially those from human and animal viruses, serve as stand-alone vaccines to protect against viruses from which the VLPs were derived. Additionally, VLPs, including those derived from plant and bacterial viruses, serve as platforms upon which to display foreign peptide antigens from other infectious agents or metabolic diseases such as cancer, i.e., they can be used to develop chimeric VLPs. The goal of chimeric VLPs is to enhance the immunogenicity of foreign peptides displayed on VLPs and not necessarily the platforms. This review provides a summary of VLP vaccines for human and veterinary use that have been approved and those that are under development. Furthermore, this review summarizes chimeric VLP vaccines that have been developed and tested in pre-clinical studies. Finally, the review concludes with a snapshot of the advantages of VLP-based vaccines such as hybrid/mosaic VLPs over conventional vaccine approaches such as live-attenuated and inactivated vaccines.
Collapse
Affiliation(s)
| | | | - Ebenezer Tumban
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
5
|
Nie J, Wang Q, Jin S, Yao X, Xu L, Chang Y, Ding F, Li Z, Sun L, Shi Y, Shan Y. Self-assembled multiepitope nanovaccine based on NoV P particles induces effective and lasting protection against H3N2 influenza virus. NANO RESEARCH 2023; 16:7337-7346. [PMID: 36820263 PMCID: PMC9933037 DOI: 10.1007/s12274-023-5395-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 05/24/2023]
Abstract
Current seasonal influenza vaccines confer only limited coverage of virus strains due to the frequent genetic and antigenic variability of influenza virus (IV). Epitope vaccines that accurately target conserved domains provide a promising approach to increase the breadth of protection; however, poor immunogenicity greatly hinders their application. The protruding (P) domain of the norovirus (NoV), which can self-assemble into a 24-mer particle called the NoV P particle, offers an ideal antigen presentation platform. In this study, a multiepitope nanovaccine displaying influenza epitopes (HMN-PP) was constructed based on the NoV P particle nanoplatform. Large amounts of HMN-PP were easily expressed in Escherichia coli in soluble form. Animal experiments showed that the adjuvanted HMN-PP nanovaccine induced epitope-specific antibodies and haemagglutinin (HA)-specific neutralizing antibodies, and the antibodies could persist for at least three months after the last immunization. Furthermore, HMN-PP induced matrix protein 2 extracellular domain (M2e)-specific antibody-dependent cell-mediated cytotoxicity, CD4+ and CD8+ T-cell responses, and a nucleoprotein (NP)-specific cytotoxic T lymphocyte (CTL) response. These results indicated that the combination of a multiepitope vaccine and self-assembled NoV P particles may be an ideal and effective vaccine strategy for highly variable viruses such as IV and SARS-CoV-2. Electronic Supplementary Material Supplementary material is available in the online version of this article at 10.1007/s12274-023-5395-6.
Collapse
Affiliation(s)
- Jiaojiao Nie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Jilin, 130012 China
| | - Qingyu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Jilin, 130012 China
| | - Shenghui Jin
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Jilin, 130012 China
| | - Xin Yao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Jilin, 130012 China
| | - Lipeng Xu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Jilin, 130012 China
| | - Yaotian Chang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Jilin, 130012 China
| | - Fan Ding
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Jilin, 130012 China
| | - Zeyu Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Jilin, 130012 China
| | - Lulu Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Jilin, 130012 China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Jilin, 130012 China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Jilin, 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Jilin, 130012 China
| |
Collapse
|
6
|
Schneider CG, Fey J, Zou X, Gerbasi V, Savransky T, Batt C, Bergmann-Leitner E, Angov E. Norovirus-VLPs expressing pre-erythrocytic malaria antigens induce functional immunity against sporozoite infection. Vaccine 2022; 40:4270-4280. [PMID: 35697572 DOI: 10.1016/j.vaccine.2022.05.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
Despite the development of prophylactic anti-malarial drugs and practices to prevent infection, malaria remains a health concern. Preclinical testing of novel malaria vaccine strategies achieved through rational antigen selection and novel particle-based delivery platforms is yielding encouraging results. One such platform, self-assembling virus-like particles (VLP) is safer than attenuated live viruses, and has been approved as a vaccination tool by the FDA. We explore the use of Norovirus sub-viral particles lacking the natural shell (S) domain forming the interior shell but that retain the protruding (P) structures of the native virus as a vaccine vector. Epitope selection and their surface display has the potential to focus antigen specific immune responses to crucial epitopes. Recombinant P-particles displaying epitopes from two malaria antigens, Plasmodium falciparum (Pf) CelTOS and Plasmodium falciparum (Pf) CSP, were evaluated for immunogenicity and their ability to confer protection in a murine challenge model. Immune responses induced in mice resulted either in sterile protection (displaying PfCelTOS epitopes) or in antibodies with functional activity against sporozoites (displaying PfCSP epitopes) in an in vitro liver-stage development assay (ILSDA). These results are encouraging and support further evaluation of this platform as a vaccine delivery system.
Collapse
Affiliation(s)
- Cosette G Schneider
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA.
| | - Julien Fey
- Agave BioSystems, Ithaca, NY 14850, USA.
| | - Xiaoyan Zou
- Naval Medical Research Center, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Vince Gerbasi
- Naval Medical Research Center, Silver Spring, MD 20910, USA.
| | - Tatyana Savransky
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; General Dynamics Information Technology, Falls Church, VA 22042, USA.
| | - Carl Batt
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Elke Bergmann-Leitner
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | - Evelina Angov
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
7
|
Novikov DV, Melentev DA. [Enteroviral (Picornaviridae: Enterovirus) (nonpolio) vaccines]. Vopr Virusol 2022; 67:185-192. [PMID: 35831961 DOI: 10.36233/0507-4088-111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Non-polio enteroviruses (NPEVs) are ubiquitous and are one of the main causative agents of viral infections in children. NPEVs most commonly infect newborns and young children, due to their lack of antibodies. In children, clinical manifestations can range from acute febrile illness to severe complications that require hospitalization and lead in some cases to disability or death. NPEV infections can have severe consequences, such as polio-like diseases, serous meningitis, meningoencephalitis, myocarditis, etc. The most promising strategy for preventing such diseases is vaccination. No less than 53 types of NPEVs have been found to circulate in Russia. However, of epidemic importance are the causative agents of exanthemic forms of the disease, aseptic meningitis and myocarditis. At the same time, the frequency of NPEV detection in the constituent entities of the Russian Federation is characterized by uneven distribution and seasonal upsurges. The review discusses the epidemic significance of different types of enteroviruses, including those relevant to the Russian Federation, as well as current technologies used to create enterovirus vaccines for the prevention of serious diseases.
Collapse
Affiliation(s)
- D V Novikov
- 1Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
| | - D A Melentev
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology; N.I. Lobachevsky State University of Nizhny Novgorod
| |
Collapse
|
8
|
Swain SK, Gadnayak A, Mohanty JN, Sarangi R, Das J. Does enterovirus 71 urge for effective vaccine control strategies? Challenges and current opinion. Rev Med Virol 2022; 32:e2322. [PMID: 34997684 DOI: 10.1002/rmv.2322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
Abstract
Enterovirus 71 (EV71) is an infectious virus affecting all age groups of people around the world. It is one of the major aetiologic agents for HFMD (hand, foot and mouth disease) identified globally. It has led to many outbreaks and epidemics in Asian countries. Infection caused by this virus that can lead to serious psychological problems, heart diseases and respiratory issues in children younger than 10 years of age. Many studies are being carried out on the pathogenesis of the virus, but little is known. The host immune response and other molecular responses against the virus are also not clearly determined. This review deals with the interaction between the host and the EV71 virus. We discuss how the virus makes use of its proteins to affect the host's immunity and how the viral proteins help their replication. Additionally, we describe other useful resources that enable the virus to evade the host's immune responses. The knowledge of the viral structure and its interactions with host cells has led to the discovery of various drug targets for the treatment of the virus. Additionally, this review focusses on the antiviral drugs and vaccines developed by targeting various viral surface molecules during their infectious period. Furthermore, it is asserted that the improvement of prevailing vaccines will be the simplest method to manage EV71 infection swiftly. Therefore, we summarise numerous vaccines candidate for the EV71, such as the use of an inactivated complete virus, recombinant VP1 protein, artificial peptides, VLPs (viral-like particles) and live attenuated vaccines for combating the viral outbreaks promptly.
Collapse
Affiliation(s)
- Subrat Kumar Swain
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Ayushman Gadnayak
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Jatindra Nath Mohanty
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Rachita Sarangi
- Department of Pediatrics, IMS and SUM Hospital, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, India
| | - Jayashankar Das
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
9
|
Heinimäki S, Lampinen V, Tamminen K, Hankaniemi MM, Malm M, Hytönen VP, Blazevic V. Antigenicity and immunogenicity of HA2 and M2e influenza virus antigens conjugated to norovirus-like, VP1 capsid-based particles by the SpyTag/SpyCatcher technology. Virology 2021; 566:89-97. [PMID: 34894525 DOI: 10.1016/j.virol.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
Virus-like particles (VLPs) modified through different molecular technologies are employed as delivery vehicles or platforms for heterologous antigen display. We have recently created a norovirus (NoV) VLP platform, where two influenza antigens, the extracellular domain of matrix protein M2 (M2e) or the stem domain of the major envelope glycoprotein hemagglutinin (HA2) are displayed on the surface of the NoV VLPs by SpyTag/SpyCatcher conjugation. To demonstrate the feasibility of the platform to deliver foreign antigens, this study examined potential interference of the conjugation with induction of antibodies against conjugated M2e peptide, HA2, and NoV VLP carrier. High antibody response was induced by HA2 but not M2e decorated VLPs. Furthermore, HA2-elicited antibodies did not neutralize the homologous influenza virus in vitro. Conjugated NoV VLPs retained intact receptor binding capacity and self-immunogenicity. The results demonstrate that NoV VLPs could be simultaneously used as a platform to deliver foreign antigens and a NoV vaccine.
Collapse
Affiliation(s)
- Suvi Heinimäki
- Vaccine Development and Immunology/Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Vili Lampinen
- Protein Dynamics Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kirsi Tamminen
- Vaccine Development and Immunology/Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Minna M Hankaniemi
- Protein Dynamics Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maria Malm
- Vaccine Development and Immunology/Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa P Hytönen
- Protein Dynamics Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Laboratories, Tampere, Finland
| | - Vesna Blazevic
- Vaccine Development and Immunology/Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
10
|
Mathematical Modeling and Optimal Control of the Hand Foot Mouth Disease Affected by Regional Residency in Thailand. MATHEMATICS 2021. [DOI: 10.3390/math9222863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hand, foot and mouth disease (HFMD) is a virulent disease most commonly found in East and Southeast Asia. Symptoms include ulcers or sores, inside or around the mouth. In this research, we formulate the dynamic model of HFMD by using the SEIQR model. We separated the infection episodes where there is a higher outbreak and a lower outbreak of the disease associated with regional residency, with the higher level of outbreak occurring in the urban region, and a lower outbreak level occurring in the rural region. We developed two different optimal control programs for the types of outbreaks. Optimal Control Policy 1 (OPC1) is limited to the use of treatment only, whereas Optimal Control Policy 2 (OPC2) includes vaccination along with the treatment. The Pontryagin’s maximum principle is used to establish the necessary and optimal conditions for the two policies. Numerical solutions are presented along with numerical sensitivity analyses of the required control efforts needed as the control parameters are changed. Results show that the time tmax required for the optimal control effort to stay at the maximum amount umax exhibits an intrinsic logarithmic relationship with respect to the control parameters.
Collapse
|
11
|
Wei N, Ge J, Tan C, Song Y, Wang S, Bao M, Li J. Epidemiology and evolution of Norovirus in China. Hum Vaccin Immunother 2021; 17:4553-4566. [PMID: 34495811 DOI: 10.1080/21645515.2021.1961465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Norovirus (NoV) has been recognized as a leading cause of gastroenteritis worldwide. This review estimates the prevalence and genotype distribution of NoV in China to provide a sound reference for vaccine development. Studies were searched up to October 2020 from CNKI database and inclusion criteria were study duration of at least one calendar year and population size of >100. The mean overall NoV prevalence in individuals with sporadic diarrhea/gastroenteritis was 16.68% (20796/124649, 95% CI 16.63-16.72), and the detection rate of NoV was the highest among children. Non-GII.4 strains have replaced GII.4 as the predominant caused multiple outbreaks since 2014. Especially the recombinant GII.P16-GII.2 increased sharply, and virologic data show that the polymerase GII.P16 rather than VP1 triggers pandemic. Due to genetic diversity and rapid evolution, predominant genotypes might change unexpectedly, which has become major obstacle for the development of effective NoV vaccines.
Collapse
Affiliation(s)
- Na Wei
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| | - Jun Ge
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| | - Changyao Tan
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| | - Yunlong Song
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| | - Shiwei Wang
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| | - Mengru Bao
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| | - Jianqiang Li
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| |
Collapse
|
12
|
Analysis of the Complete Genomes of Enterovirus 71 Subtypes in China. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2021; 2021:5564099. [PMID: 34484496 PMCID: PMC8416384 DOI: 10.1155/2021/5564099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022]
Abstract
Enterovirus 71 (EV-A71) is one of the most pathogens to hand, foot, and mouth disease (HFMD) as well as neurological complications in young children. Molecular characteristic of EV-A71 is important to prevent the virus outbreak. Here, the complete genomes of EV-A71 from China between 1998 and 2019 were downloaded from GenBank. The phylogenetic trees were developed by MEGA7.0 software, and the complete genetic epidemiological characteristics and amino acid mutations of EV-A71 from China were also analysed. The results showed that major epidemic EV-A71 subtype was C4b before 2004, while it turned to C4a after 2004 in mainland China, and C4 and B5 were major subtypes in Taiwan. VP1, VP4, 2C, 3C, 3D, and complete genome sequence can be used for virus genotyping, and VP1, VP4, and complete genomes have obvious advantages over other segments. There were many significant mutations in the viral complete genome sequence. This study indicated that the major C4 and B5 subtypes will contribute to the development of vaccines and drugs of EV-A71 for prevention and monitoring of EV-A71-associated HFMD in China.
Collapse
|
13
|
Tang J, Zhang Z, Zhang Z, Huang H, Du T, Wang X, Yan L, Rao Q, Yang J, Wang M, Shen R, Sun Q, Jiang H. Two cases of hand, foot and mouth disease caused by enterovirus A71 after vaccination. Int J Infect Dis 2021; 108:190-197. [PMID: 33737136 DOI: 10.1016/j.ijid.2021.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Enterovirus A71 (EVA71) is one of the main pathogens causing hand, foot and mouth disease (HFMD). In China, the proportion of cases of HFMD caused by EVA71 is known to be significantly lower following EVA71 vaccination; however, infection with EVA71 can still occur after vaccination. METHODS The complete genomic sequences of EVA71-KM18A and KM18B (from two rare cases of EVA71 infection following vaccination) were obtained. Phylogenetic analysis, nucleotide mutation analysis, recombinant analysis and comparative analysis of amino acid mutations were performed. RESULTS Phylogenetic analysis determined that the EVA71 strains belonged to the C4a subgenotype. The KM18A and KM18B strains were highly similar to the vaccine strains. For the KM18B strain, there were some obvious homologous recombination signals in the 5'non-coding region, region 2A, region 2C and region 3D. Amino acid mutations were observed in the SP55 (position 729) and 71-6 (position 500) conformational neutralizing epitopes of the KM18A and KM18B strains. CONCLUSIONS These amino acid mutations may affect the SP55 and 71-6 conformational neutralizing epitopes and change their spatial conformation, thereby weakening vaccine effectiveness.
Collapse
Affiliation(s)
- Jiaolian Tang
- Institute of Paediatrics, The Kunming Children's Hospital of Kunming Medical University, Kunming, PR China; Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Zhilei Zhang
- Institute of Paediatrics, The Kunming Children's Hospital of Kunming Medical University, Kunming, PR China
| | - Zhen Zhang
- Institute of Paediatrics, The Kunming Children's Hospital of Kunming Medical University, Kunming, PR China; Yunnan Key Laboratory of Children's Major Disease Research, Kunming, PR China
| | - Hailing Huang
- Department of Laboratory, The Kunming Children's Hospital, Kunming, PR China
| | - Tingyi Du
- Department of Laboratory, The Kunming Children's Hospital, Kunming, PR China
| | - Xiaodan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, PR China
| | - Lingmei Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, PR China
| | - Qin Rao
- Institute of Paediatrics, The Kunming Children's Hospital of Kunming Medical University, Kunming, PR China
| | - Jinghui Yang
- Department of Paediatrics, The First People's Hospital of Yunnan Province, Kunming, PR China
| | - Meifeng Wang
- Institute of Paediatrics, The Kunming Children's Hospital of Kunming Medical University, Kunming, PR China
| | - Ru Shen
- Department of Laboratory, The Kunming Children's Hospital, Kunming, PR China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, PR China.
| | - Hongchao Jiang
- Institute of Paediatrics, The Kunming Children's Hospital of Kunming Medical University, Kunming, PR China; Yunnan Key Laboratory of Children's Major Disease Research, Kunming, PR China.
| |
Collapse
|
14
|
Li ML, Shih SR, Tolbert BS, Brewer G. Enterovirus A71 Vaccines. Vaccines (Basel) 2021; 9:vaccines9030199. [PMID: 33673595 PMCID: PMC7997495 DOI: 10.3390/vaccines9030199] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Enterovirus A71 (EV-A71) is a major causative agent of hand, foot, and mouth disease (HFMD) and herpangina. Moreover, EV-A71 infection can lead to neurological complications and death. Vaccination is the most efficient way to control virus infection. There are currently three inactivated, whole EV-A71 vaccines licensed by the China NMPA (National Medical Products Administration). Several other types of vaccines, such as virus-like particles and recombinant VP1 (capsid protein), are also under development. In this review, we discuss recent advances in the development of EV-A71 vaccines.
Collapse
Affiliation(s)
- Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
- Correspondence:
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Blanton S. Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
15
|
Kim YG, Lee Y, Kim JH, Chang SY, Jung JW, Chung WJ, Jin HE. Self-Assembled Multi-Epitope Peptide Amphiphiles Enhance the Immune Response against Enterovirus 71. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2342. [PMID: 33255791 PMCID: PMC7760352 DOI: 10.3390/nano10122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022]
Abstract
Subunit vaccines consist of non-genetic material, such as peptides or proteins. They are considered safe because they have fewer side effects; however, they have low immunogenicity when used alone. We aimed to enhance the immune response of peptide-based vaccines by using self-assembled multimeric peptide amphiphiles (PAs). We designed two epitope PAs by conjugating epitope peptides from Enterovirus 71 (EV71) virus particle (VP) 1 and VP3 capsid proteins with different fatty acid chain lengths (VP1PA and VP3PA). These PAs self-assembled into supramolecular structures at a physiological pH, and the resulting structures were characterized using atomic force microscopy. Multi-epitope PAs (m-PAs) consisted of a 1:1 mixture of VP1PA and VP3PA solutions. To evaluate immunogenicity, m-PA constructs were injected with adjuvant subcutaneously into female Balb/c mice. Levels of antigen-specific immunoglobulin G (IgG) and IgG1 in m-PA-injected mice serum samples were analyzed using ELISA and Western blotting. Additionally, cytokine production stimulated by each antigen was measured in splenocytes cultured from immunized mice groups. We found that m-PA showed improved humoral and cellular immune responses compared to the control and peptide groups. The sera from m-PA immunized mice group could neutralize EV71 infection and protect host cells. Thus, self-assembled m-PAs can promote a protective immune response and can be developed as a potential platform technology to produce peptide vaccines against infectious viral diseases.
Collapse
Affiliation(s)
- Yu-Gyeong Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
| | - Yunsu Lee
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
| | - Joo Hee Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
| | - Sun-Young Chang
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
| | - Jong-Wha Jung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Hyo-Eon Jin
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
- Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Korea
| |
Collapse
|
16
|
From Monovalent to Multivalent Vaccines, the Exploration for Potential Preventive Strategies Against Hand, Foot, and Mouth Disease (HFMD). Virol Sin 2020; 36:167-175. [PMID: 32997323 PMCID: PMC7525078 DOI: 10.1007/s12250-020-00294-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) recently emerged as a global public threat. The licensure of inactivated enterovirus A71 (EV-A71) vaccine was the first step in using a vaccine to control HFMD. New challenges arise from changes in the pathogen spectrum while vaccines directed against other common serotypes are in the preclinical stage. The mission of a broad-spectrum prevention strategy clearly favors multivalent vaccines. The development of multivalent vaccines was attempted via the simple combination of potent monovalent vaccines or the construction of chimeric vaccines comprised of epitopes derived from different virus serotypes. The present review summarizes recent advances in HFMD vaccine development and discusses the next steps toward a safe and effective HFMD vaccine that is capable of establishing a cross-protective antibody response.
Collapse
|
17
|
Antiviral Activity of a Llama-Derived Single-Domain Antibody against Enterovirus A71. Antimicrob Agents Chemother 2020; 64:AAC.01922-19. [PMID: 32152074 DOI: 10.1128/aac.01922-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/19/2020] [Indexed: 12/28/2022] Open
Abstract
In the past few decades, enterovirus A71 (EVA71) has caused devastating outbreaks in the Asia-Pacific region, resulting in serious sequelae in infected young children. No preventive or therapeutic interventions are currently available for curing EVA71 infection, highlighting a great unmet medical need for this disease. Here, we showed that one novel single-domain antibody (sdAb), F1, isolated from an immunized llama, could alleviate EVA71 infection both in vitro and in vivo We also confirmed that the sdAb clone F1 recognizes EVA71 through a novel conformational epitope comprising the highly conserved region of VP3 capsid protein by using competitive-binding and overlapping-peptide enzyme-linked immunosorbent assays (ELISAs). Because of the virion's icosahedral structure, we reasoned that adjacent epitopes must be clustered within molecular ranges that may be simultaneously bound by an engineered antibody with multiple valency. Therefore, two single-domain binding modules (F1) were fused to generate an sdAb-in-tandem design so that the capture of viral antigens could be further increased by valency effects. We showed that the tetravalent construct F1×F1-hFc, containing two sdAb-in-tandem on a fragment crystallizable (Fc) scaffold, exhibits more potent neutralization activity against EVA71 than does the bivalent sdAb F1-hFc by at least 5.8-fold. We also demonstrated that, using a human scavenger receptor class B member 2 (hSCARB2) transgenic mouse model, a half dose of the F1×F1-hFc provided better protection against EVA71 infection than did the F1-hFc. Thus, our study furnishes important insights into multivalent sdAb engineering against viral infection and provides a novel strategic deployment approach for preparedness of emerging infectious diseases such as EVA71.
Collapse
|
18
|
Tan M, Jiang X. Norovirus Capsid Protein-Derived Nanoparticles and Polymers as Versatile Platforms for Antigen Presentation and Vaccine Development. Pharmaceutics 2019; 11:pharmaceutics11090472. [PMID: 31547456 PMCID: PMC6781506 DOI: 10.3390/pharmaceutics11090472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Major viral structural proteins interact homotypically and/or heterotypically, self-assembling into polyvalent viral capsids that usually elicit strong host immune responses. By taking advantage of such intrinsic features of norovirus capsids, two subviral nanoparticles, 60-valent S60 and 24-valent P24 nanoparticles, as well as various polymers, have been generated through bioengineering norovirus capsid shell (S) and protruding (P) domains, respectively. These nanoparticles and polymers are easily produced, highly stable, and extremely immunogenic, making them ideal vaccine candidates against noroviruses. In addition, they serve as multifunctional platforms to display foreign antigens, self-assembling into chimeric nanoparticles or polymers as vaccines against different pathogens and illnesses. Several chimeric S60 and P24 nanoparticles, as well as P domain-derived polymers, carrying different foreign antigens, have been created and demonstrated to be promising vaccine candidates against corresponding pathogens in preclinical animal studies, warranting their further development into useful vaccines.
Collapse
Affiliation(s)
- Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
19
|
Lin JY, Kung YA, Shih SR. Antivirals and vaccines for Enterovirus A71. J Biomed Sci 2019; 26:65. [PMID: 31481071 PMCID: PMC6720414 DOI: 10.1186/s12929-019-0560-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/23/2019] [Indexed: 01/23/2023] Open
Abstract
Enterovirus A71 (EV-A71) is an important emerging virus posing a threat to children under five years old. EV-A71 infection in infants or young children can cause hand-foot-and-mouth disease, herpangina, or severe neurological complications. However, there are still no effective antivirals for treatment of these infections. In this review, we summarize the antiviral compounds developed to date based on various targets of the EV-A71 life cycle. Moreover, development of a vaccine would be the most effective approach to prevent EV-A71 infection. Therefore, we also summarize the development and clinical progress of various candidate EV-A71 vaccines, including inactivated whole virus, recombinant VP1 protein, synthetic peptides, viral-like particles, and live attenuated vaccines.
Collapse
Affiliation(s)
- Jing-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Yu-An Kung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
20
|
Coxsackievirus A10 atomic structure facilitating the discovery of a broad-spectrum inhibitor against human enteroviruses. Cell Discov 2019; 5:4. [PMID: 30652025 PMCID: PMC6331555 DOI: 10.1038/s41421-018-0073-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 01/21/2023] Open
Abstract
Coxsackievirus A10 (CV-A10) belongs to the Enterovirus species A and is a causative agent of hand, foot, and mouth disease. Here we present cryo-EM structures of CV-A10 mature virion and native empty particle (NEP) at 2.84 and 3.12 Å, respectively. Our CV-A10 mature virion structure reveals a density corresponding to a lipidic pocket factor of 18 carbon atoms in the hydrophobic pocket formed within viral protein 1. By structure-guided high-throughput drug screening and subsequent verification in cell-based infection-inhibition assays, we identified four compounds that inhibited CV-A10 infection in vitro. These compounds represent a new class of anti-enteroviral drug leads. Notably, one of the compounds, ICA135, also exerted broad-spectrum inhibitory effects on a number of representative viruses from all four species (A–D) of human enteroviruses. Our findings should facilitate the development of broadly effective drugs and vaccines for enterovirus infections.
Collapse
|
21
|
Fang CY, Liu CC. Recent development of enterovirus A vaccine candidates for the prevention of hand, foot, and mouth disease. Expert Rev Vaccines 2018; 17:819-831. [PMID: 30095317 DOI: 10.1080/14760584.2018.1510326] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Hand, foot, and mouth disease (HFMD) is a childhood illness commonly caused by enterovirus A. Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are the most commonly identified viruses associated with HFMD. Recently, outbreaks caused by different enterovirus A including CV-A6 and CV-A10 are increasing. Being available now to protect against EV-A71 infection, inactivated EV-A71 vaccines cannot prevent coxsackievirus infections, thus limiting their general application in controlling HFMD. Multivalent HFMD vaccines are suggested to have broad cross-neutralizing responses against these emerging enteroviruses. AREAS COVERED We discuss the recent development of enterovirus A vaccines including the inactivated whole-virion vaccine and virus-like particle vaccine candidates and review the information of neutralization epitopes of these viruses. EXPERT COMMENTARY Evaluation of the efficacy and safety of the coxsackievirus vaccine and the multivalent HFMD vaccine candidates in clinical trials is urgently required. Epitopic analysis showed that common immunodominant sites exist across these enteroviruses. However, variations of amino acid residues in these regions limit the induction of cross-neutralization antibodies, and therefore, a multivalent HFMD vaccine is required for broad protection against HFMD. With the inclusion of major circulating viruses in the development of multivalent HFMD vaccines, an increase in the success in HFMD control is anticipated.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- a Department of Pathology, Wan Fang Hospital , Taipei Medical University , Taipei , Taiwan
| | - Chia-Chyi Liu
- b National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan Town , Taiwan
| |
Collapse
|
22
|
NikNadia NMN, Tan CW, Ong KC, Sam IC, Chan YF. Identification and characterization of neutralization epitopes at VP2 and VP1 of enterovirus A71. J Med Virol 2018; 90:1164-1167. [DOI: 10.1002/jmv.25061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/12/2018] [Indexed: 11/06/2022]
Affiliation(s)
- NMN NikNadia
- Faculty of Medicine; Department of Medical Microbiology; University of Malaya; Kuala Lumpur Malaysia
| | - Chee Wah Tan
- Faculty of Medicine; Department of Medical Microbiology; University of Malaya; Kuala Lumpur Malaysia
| | - Kien Chai Ong
- Faculty of Medicine; Department of Biomedical Science; University of Malaya; Kuala Lumpur Malaysia
| | - I-Ching Sam
- Faculty of Medicine; Department of Medical Microbiology; University of Malaya; Kuala Lumpur Malaysia
| | - Yoke Fun Chan
- Faculty of Medicine; Department of Medical Microbiology; University of Malaya; Kuala Lumpur Malaysia
| |
Collapse
|
23
|
Enterovirus D68 virus-like particles expressed in Pichia pastoris potently induce neutralizing antibody responses and confer protection against lethal viral infection in mice. Emerg Microbes Infect 2018; 7:3. [PMID: 29323105 PMCID: PMC5837163 DOI: 10.1038/s41426-017-0005-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/24/2017] [Accepted: 11/12/2017] [Indexed: 12/17/2022]
Abstract
Enterovirus D68 (EV-D68) has been increasingly associated with severe respiratory illness and neurological complications in children worldwide. However, no vaccine is currently available to prevent EV-D68 infection. In the present study, we investigated the possibility of developing a virus-like particle (VLP)-based EV-D68 vaccine. We found that co-expression of the P1 precursor and 3CD protease of EV-D68 in Pichia pastoris yeast resulted in the generation of EV-D68 VLPs, which were composed of processed VP0, VP1, and VP3 capsid proteins and were visualized as ~30 nm spherical particles. Mice immunized with these VLPs produced serum antibodies capable of specifically neutralizing EV-D68 infections in vitro. The in vivo protective efficacy of the EV-D68 VLP candidate vaccine was assessed in two challenge experiments. The first challenge experiment showed that neonatal mice born to the VLP-immunized dams were fully protected from lethal EV-D68 infection, whereas in the second experiment, passive transfer of anti-VLP sera was found to confer complete protection in the recipient mice. Collectively, these results demonstrate the proof-of-concept for VLP-based broadly effective EV-D68 vaccines.
Collapse
|
24
|
A 3.0-Angstrom Resolution Cryo-Electron Microscopy Structure and Antigenic Sites of Coxsackievirus A6-Like Particles. J Virol 2018; 92:JVI.01257-17. [PMID: 29093091 DOI: 10.1128/jvi.01257-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023] Open
Abstract
Coxsackievirus A6 (CVA6) has recently emerged as one of the predominant causative agents of hand, foot, and mouth disease (HFMD). The structure of the CVA6 mature viral particle has not been solved thus far. Our previous work shows that recombinant virus-like particles (VLPs) of CVA6 represent a promising CVA6 vaccine candidate. Here, we report the first cryo-electron microscopy (cryo-EM) structure of the CVA6 VLP at 3.0-Å resolution. The CVA6 VLP exhibits the characteristic features of enteroviruses but presents an open channel at the 2-fold axis and an empty, collapsed VP1 pocket, which is broadly similar to the structures of the enterovirus 71 (EV71) VLP and coxsackievirus A16 (CVA16) 135S expanded particle, indicating that the CVA6 VLP is in an expanded conformation. Structural comparisons reveal that two common salt bridges within protomers are maintained in the CVA6 VLP and other viruses of the Enterovirus genus, implying that these salt bridges may play a critical role in enteroviral protomer assembly. However, there are apparent structural differences among the CVA6 VLP, EV71 VLP, and CVA16 135S particle in the surface-exposed loops and C termini of subunit proteins, which are often antigenic sites for enteroviruses. By immunological assays, we identified two CVA6-specific linear B-cell epitopes (designated P42 and P59) located at the GH loop and the C-terminal region of VP1, respectively, in agreement with the structure-based prediction of antigenic sites. Our findings elucidate the structural basis and important antigenic sites of the CVA6 VLP as a strong vaccine candidate and also provide insight into enteroviral protomer assembly.IMPORTANCE Coxsackievirus A6 (CVA6) is becoming one of the major pathogens causing hand, foot, and mouth disease (HFMD), leading to significant morbidity and mortality in children and adults. However, no vaccine is currently available to prevent CVA6 infection. Our previous work shows that recombinant virus-like particles (VLPs) of CVA6 are a promising CVA6 vaccine candidate. Here, we present a 3.0-Å structure of the CVA6 VLP determined by cryo-electron microscopy. The overall architecture of the CVA6 VLP is similar to those of the expanded structures of enterovirus 71 (EV71) and coxsackievirus A16 (CVA16), but careful structural comparisons reveal significant differences in the surface-exposed loops and C termini of each capsid protein of these particles. In addition, we identified two CVA6-specific linear B-cell epitopes and mapped them to the GH loop and the C-terminal region of VP1, respectively. Collectively, our findings provide a structural basis and important antigenic information for CVA6 VLP vaccine development.
Collapse
|
25
|
Abstract
Viral structural proteins share a common nature of homotypic interactions that drive viral capsid formation. This natural process has been mimicked in vitro through recombinant technology to generate various virus-like particles (VLPs) and small subviral particles that exhibit similar structural and antigenic properties of their authentic viruses. Therefore, such self-assembled, polyvalent, and highly immunogenic VLPs and small subviral particles are excellent subunit vaccines against individual viruses, such as the VLP vaccines against the hepatitis B virus, human papilloma virus, and hepatitis E virus, which have already been in the markets. In addition, various antigens and epitopes can be fused with VLPs, small subviral particles, or protein polymers, forming chimeric mono-, bi-, or trivalent vaccines. Owing to their easy-production, un-infectiousness, and polyvalence, the recombinant, chimeric vaccines offer a new approach for development of safe, low-cost, and high efficient subunit vaccines against a single or more pathogens or diseases. While the first VLP-based combination vaccine against malaria has been approved for human use, many others are under development with promising future, which are summarized in this commentary.
Collapse
Affiliation(s)
- Ming Tan
- a Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA.,b Department of Pediatrics , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Xi Jiang
- a Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA.,b Department of Pediatrics , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| |
Collapse
|
26
|
Effective in vivo therapeutic IgG antibody against VP3 of enterovirus 71 with receptor-competing activity. Sci Rep 2017; 7:46402. [PMID: 28422137 PMCID: PMC5395816 DOI: 10.1038/srep46402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/17/2017] [Indexed: 11/23/2022] Open
Abstract
Passive immunization is an effective option for treatment against hand, foot and mouth disease caused by EV71, especially with cross-neutralizing IgG monoclonal antibodies. In this study, an EV71-specific IgG2a antibody designated 5H7 was identified and characterized. 5H7 efficiently neutralizes the major EV71 genogroups (A, B4, C2, C4). The conformational epitope of 5H7 was mapped to the highly conserved amino acid position 74 on VP3 capsid protein using escape mutants. Neutralization with 5H7 is mediated by the inhibition of viral attachment, as revealed by virus-binding and post-attachment assays. In a competitive pull-down assay with SCARB2, 5H7 blocks the receptor-binding site on EV71 for virus neutralization. Passive immunization of chimeric 5H7 protected 100% of two-week-old AG129 mice from lethal challenge with an EV71 B4 strain for both prophylactic and therapeutic treatments. In contrast, 10D3, a previously reported neutralizing antibody that takes effect after virus attachment, could only confer prophylactic protection. These results indicate that efficient interruption of viral attachment is critical for effective therapeutic activity with 5H7. This report documents a novel universal neutralizing IgG antibody for EV71 therapeutics and reveals the underlying mechanism.
Collapse
|
27
|
Aw-Yong KL, Sam IC, Koh MT, Chan YF. Immunodominant IgM and IgG Epitopes Recognized by Antibodies Induced in Enterovirus A71-Associated Hand, Foot and Mouth Disease Patients. PLoS One 2016; 11:e0165659. [PMID: 27806091 PMCID: PMC5091889 DOI: 10.1371/journal.pone.0165659] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/26/2016] [Indexed: 01/20/2023] Open
Abstract
Enterovirus A71 (EV-A71) is one of the main causative agents of hand, foot and mouth disease (HFMD). Unlike other enteroviruses that cause HFMD, EV-A71 is more frequently associated with severe neurological complications and fatality. To date, no effective licensed antivirals are available to combat EV-A71 infection. Little is known about the immunogenicity of viral non-structural proteins in humans. Previous studies have mainly focused on characterization of epitopes of EV-A71 structural proteins by using immunized animal antisera. In this study, we have characterized human antibody responses against the structural and non-structural proteins of EV-A71. Each viral protein was cloned and expressed in either bacterial or mammalian systems, and tested with antisera by western blot. Results revealed that all structural proteins (VP1-4), and non-structural proteins 2A, 3C and 3D were targets of EV-A71 IgM, whereas EV-A71 IgG recognized all the structural and non-structural proteins. Sixty three synthetic peptides predicted to be immunogenic in silico were synthesized and used for the characterization of EV-A71 linear B-cell epitopes. In total, we identified 22 IgM and four IgG dominant epitopes. Synthetic peptide PEP27, corresponding to residues 142-156 of VP1, was identified as the EV-A71 IgM-specific immunodominant epitope. PEP23, mapped to VP1 41-55, was recognized as the EV-A71 IgG cross-reactive immunodominant epitope. The structural protein VP1 is the major immunodominant site targeted by anti-EV-A71 IgM and IgG antibodies, but epitopes against non-structural proteins were also detected. These data provide new understanding of the immune response to EV-A71 infection, which benefits the development of diagnostic tools, potential therapeutics and subunit vaccine candidates.
Collapse
Affiliation(s)
- Kam Leng Aw-Yong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mia Tuang Koh
- Department of Paediatrics, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Ding Y, Wang Z, Zhang X, Teng Z, Gao C, Qian B, Wang L, Feng J, Wang J, Zhao C, Guo C, Pan W. Different Antibody Response against the Coxsackievirus A16 VP1 Capsid Protein: Specific or Non-Specific. PLoS One 2016; 11:e0162820. [PMID: 27622652 PMCID: PMC5021329 DOI: 10.1371/journal.pone.0162820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/29/2016] [Indexed: 11/21/2022] Open
Abstract
Coxsackievirus A16 (CA16) is one of the major causative agents of hand, foot, and mouth disease worldwide. The non-neutralizing antibody response that targets CA16 VP1 remains poorly elucidated. In the present study, antibody responses against CA16 VP1 in Shanghai blood donors and Shanxi individuals were analyzed by ELISA and inhibitory ELISA using five CA16 VP1 antigens: VP11-297, VP141-297, VP11-60, VP145-58 and VP161-297. The correlation coefficients for most of the reactions against each of the five antigens and the inhibition of the anti-CA16 VP1 antibody response produced by the various antigens were higher in Shanghai blood donors compared to those in Shanxi individuals. VP11-297 and VP141-297 strongly inhibited the anti-CA16 VP1 response in serum samples from both populations, while VP145-58 and VP161-297 intermediately and weakly inhibited the anti-CA16 VP1 response, respectively, in only Shanghai group. A specific type of inhibition (anti-CA16 VP1 was completely inhibited by both VP11-60 and VP141-297) characterized by high neutralizing antibody titers was identified and accounted for 71.4% of the strongly reactive samples from the Shanghai group. These results indicate that the Shanghai blood donors exhibited a consistent and specific antibody response, while the Shanxi individuals showed an inconsistent and non-specific antibody response. These findings may improve the understanding of host humoral immunity against CA16 and help to identify an effective approach for seroepidemiological surveillance and specific diagnosis of CA16 infection based on normal and competitive ELISA.
Collapse
Affiliation(s)
- Yingying Ding
- Department of Medical Microbiology and Parasitology, School of Basic Medicine, Second Military Medical University, Shanghai, China
| | - Zhihong Wang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Shanxi Medical College, Taiyuan, China
| | - Xi Zhang
- Department of Infectious Disease Control and Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Zheng Teng
- Department of Infectious Disease Control and Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Caixia Gao
- Department of Medical Microbiology and Parasitology, School of Basic Medicine, Second Military Medical University, Shanghai, China
| | - Baohua Qian
- Department of Blood Transfusion, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lili Wang
- Department of Medical Microbiology and Parasitology, School of Basic Medicine, Second Military Medical University, Shanghai, China
| | - Jiaojiao Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medicine, Second Military Medical University, Shanghai, China
| | - Jinhong Wang
- Department of Medical Microbiology and Parasitology, School of Basic Medicine, Second Military Medical University, Shanghai, China
| | - Chunyan Zhao
- Department of Medical Microbiology and Parasitology, School of Basic Medicine, Second Military Medical University, Shanghai, China
| | - Cunjiu Guo
- Department of Clinical Laboratory, the Second Affiliated Hospital of Shanxi Medical College, Taiyuan, China
| | - Wei Pan
- Department of Medical Microbiology and Parasitology, School of Basic Medicine, Second Military Medical University, Shanghai, China
- * E-mail:
| |
Collapse
|