1
|
Wu Z, Lei X, Zhang Y, Wu S, Hou Z, Ma K, Pei H, Shang F, Xue T. The membrane protein DtpT plays an important role in biofilm formation and stress resistance in foodborne Staphylococcus aureus RMSA49. Food Res Int 2025; 208:116249. [PMID: 40263806 DOI: 10.1016/j.foodres.2025.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Staphylococcus aureus has been a major contributor to the contamination of dairy products and preserved foods due to its capacity for biofilm formation and strong resistance to environmental stress. The membrane transport protein di-and tripeptides transporter (DtpT) is the primary transporter of di- and tripeptides in S. aureus, yet its impact on biofilm formation and stress resistance in S. aureus has not been previously reported. Our study focused on the foodborne S. aureus strain RMSA49, revealing that mutation of the dtpT resulted in diminished biofilm formation ability and reduced tolerance to environmental stress (high temperature, dryness, oxidative stress, and salt stress). These findings highlight the significance of DtpT in both biofilm formation and response to environmental stress in foodborne S. aureus. Our study represents the first report demonstrating the crucial role of DtpT in biofilm formation and environmental tolerance in S. aureus, providing new avenues for future research on this protein while also identifying potential target genes for further investigation into S. aureus tolerance mechanisms during food processing and control of biofilm formation.
Collapse
Affiliation(s)
- Ziheng Wu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaolu Lei
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yunying Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Siyao Wu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhiyuan Hou
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Kai Ma
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hao Pei
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
2
|
Rima M, Dakramanji M, El Hayek E, El Khoury T, Fajloun Z, Rima M. Unveiling the wonders of bacteria-derived extracellular vesicles: From fundamental functions to beneficial applications. Heliyon 2025; 11:e42509. [PMID: 40028522 PMCID: PMC11869109 DOI: 10.1016/j.heliyon.2025.e42509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Extracellular vesicles (EVs), are critical mediators of intercellular communication and exhibit significant potential across various biomedical domains. These nano-sized, membrane-encapsulated entities have captured substantial interest due to their diverse roles in pathogenesis and promising therapeutic applications. EVs manage numerous physiological processes by transferring bioactive molecules, including proteins, lipids, and nucleic acids, between cells. This review delves into the factors influencing the properties of EVs, such as temperature and stress conditions, which collectively influence their size, composition, and functional attributes. We also describe the emerging roles of EVs, emphasizing their involvement in microbial interactions, immune modulation, antimicrobial resistance spread and their potential as innovative diagnostic and therapeutic instruments. Despite their promising applications, the advancement of EV-based therapies faces several challenges, which will also be discussed. By elucidating these critical elements, we aim to provide a comprehensive overview of the transformative potential of EVs in revolutionizing diagnostics and therapeutics in medicine.
Collapse
Affiliation(s)
- Mariam Rima
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, 1300, Tripoli, Lebanon
| | - Mariam Dakramanji
- Department of Biological Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Elie El Hayek
- Department of Biological Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Tia El Khoury
- Department of Biological Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, 1300, Tripoli, Lebanon
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, 1352, Tripoli, Lebanon
| | - Mohamad Rima
- Department of Biological Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| |
Collapse
|
3
|
Bagherzadeh M, Haghighat S, Mahdavi M. Killed whole-cell Staphylococcus aureus formulation in Montanide ISA266 and Alum adjuvants: different vaccine formulations varied in the vaccine's potency and efficacy. Immunol Res 2025; 73:47. [PMID: 39918699 DOI: 10.1007/s12026-025-09602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
Immunotherapy can be a sensible alternative because invasive Staphylococcus aureus infection mortality, morbidity, and cost are still alarmingly high despite the development of multiple new medications to treat methicillin-resistant S. aureus infections. Herein, killed whole-cell Staphylococcus aureus was formulated in Montanide ISA266 and Alum adjuvants, and the potency and efficacy of the vaccine were studied. After the preparation of two kinds of whole-cell vaccine (bacterin and lysate), 20 µg of each vaccine candidate was formulated in Montanide ISA266 and Alum adjuvants, then subcutaneously injected in distinct groups. Blood samples were taken two weeks after each booster injection, and two booster shots were given at 2-week intervals. Sera were examined by ELISA for total IgG, isotypes (IgG1 and IgG2a), and cytokine production (IFN-γ and IL-4), respectively, to ascertain the kind of induced immune response. Experimental mice were challenged intraperitoneally with 5 × 108 CFU of bacteria 2 weeks after their last immunization, and the mortality rate and bacterial load were measured. Both immunogens elicited strong humoral immune responses, producing antibodies that improved opsonic capability, IFN-γ, and IL-4 production and protectivity in response to the experimental challenge. Compared to other immunized groups, the lysate formulation with Montanide ISA266 produced a greater antibody titer and IgG1 isotype and showed the highest vaccine potency. Additionally, combining the whole-cell vaccine (bacterin and lysate) with the adjuvant Montanide ISA266 increased IFN-γ and IL-4 cytokines response and protection in the experimental challenge. These findings show that avoiding S. aureus infection using active vaccination with inactivated whole-cell vaccines (bacterin and lysate) may be a successful strategy. The type of adjuvant in the vaccine formulation is important and influences vaccine potency and efficacy.
Collapse
Affiliation(s)
- Mandana Bagherzadeh
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Academic Center for Education, Culture and Research (ACECR), Motamed Cancer Institute, Tehran, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Vaghasia V, Lata KS, Patel S, Das J. Epitopes mapping for identification of potential cross-reactive peptide against leptospirosis. J Biomol Struct Dyn 2025; 43:20-35. [PMID: 37948196 DOI: 10.1080/07391102.2023.2279285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Leptospira, the pathogenic helical spirochetes that cause leptospirosis, is an emerging zoonotic disease with effective dissemination tactics in the host and can infect humans and animals with moderate or severe illnesses. Thus, peptide-based vaccines may be the most effective strategy to manage the immune response against Leptospira to close these gaps. In the current investigation, highly immunogenic proteins from the proteome of Leptospira interorgan serogroup Icterohaemorrhagie serovar Lai strain 56601 were identified using immunoinformatic methods. It was discovered that the conserved and most immunogenic outer membrane Lepin protein was both antigenic and non-allergenic by testing 15 linear B-cells and the ten best T-cell (Helper-lymphocyte (HTL) with the most significant number of HLA-DR binding alleles and the eight cytotoxic T lymphocyte (CTL)) epitopes. Furthermore, a 3D structural model of CTL epitopes was created using the Pep-Fold3 platform. Using the Autodock 4.2 docking server, research was conducted to determine how well the top-ranked CTL peptide models attach to HLA-A*0201 (PDB ID: 4U6Y). With HLA-A*0201, the epitope SSGTGNLHV binds with a binding energy of -1.29 kcal/mol. Utilizing molecular dynamics modeling, the projected epitope-allele docked complex structure was optimized, and the stability of the complex system was assessed. Therefore, this epitope can trigger an immunological response and produce effective Leptospira vaccine candidates. Overall, this study offers a unique vaccination candidate and may encourage additional research into leptospirosis vaccines.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vibhisha Vaghasia
- Department of Botany, Bioinformatics and Climate Change Impacts management, Gujarat University, Ahmedabad, India
| | - Kumari Snehkant Lata
- Department of Botany, Bioinformatics and Climate Change Impacts management, Gujarat University, Ahmedabad, India
| | - Saumya Patel
- Department of Botany, Bioinformatics and Climate Change Impacts management, Gujarat University, Ahmedabad, India
| | | |
Collapse
|
5
|
Garrido-Palazuelos LI, Almanza-Orduño AA, Waseem M, Basheer A, Medrano-Félix JA, Mukthar M, Ahmed-Khan H, Shahid F, Aguirre-Sánchez JR. Immunoinformatic approach for multi-epitope vaccine design against Staphylococcus aureus based on hemolysin proteins. J Mol Graph Model 2024; 132:108848. [PMID: 39182254 DOI: 10.1016/j.jmgm.2024.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/09/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Staphylococcus aureus is a common bacterium that causes a variety of infections in humans. This microorganism produces several virulence factors, including hemolysins, which contribute to its disease-causing ability. The treatment of S. aureus infections typically involves the use of antibiotics. However, the emergence of antibiotic-resistant strains has become a major concern. Therefore, vaccination against S. aureus has gained attention as an alternative approach. Vaccination has the advantage of stimulating the immune system to produce specific antibodies that can neutralize bacteria and prevent infection. However, developing an effective vaccine against S. aureus has proven to be challenging. This study aimed to use in silico methods to design a multi-epitope vaccine against S. aureus infection based on hemolysin proteins. The designed vaccine contained four B-cell epitopes, four CTL epitopes, and four HTL epitopes, as well as the ribosomal protein L7/L12 and pan-HLA DR-binding epitope, included as adjuvants. Furthermore, the vaccine was non-allergenic and non-toxic with the potential to stimulate the TLR2-, TLR-4, and TLR-6 receptors. The predicted vaccine exhibited a high degree of antigenicity and stability, suggesting potential for further development as a viable vaccine candidate. The population coverage of the vaccine was 94.4 %, indicating potential widespread protection against S. aureus. Overall, these findings provide valuable insights into the design of an effective multi-epitope vaccine against S. aureus infection and pave the way for future experimental validations.
Collapse
Affiliation(s)
- Lennin Isaac Garrido-Palazuelos
- Universidad Autónoma de Occidente, Unidad Regional Los Mochis. Departamento Académico de Ciencias de la Salud. Blvd. Macario Gaxiola y Carretera Internacional, México 15, C.P. 81223, Los Mochis, Sinaloa, Mexico
| | - Arath Andrés Almanza-Orduño
- Universidad Autónoma de Occidente, Unidad Regional Los Mochis. Departamento Académico de Ciencias de la Salud. Blvd. Macario Gaxiola y Carretera Internacional, México 15, C.P. 81223, Los Mochis, Sinaloa, Mexico
| | - Maaz Waseem
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan; School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Amina Basheer
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan; Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - José Andrés Medrano-Félix
- Investigadoras e investigadores por México Centro de Investigación En Alimentación y Desarrollo A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria. Carretera a El Dorado km 5.5, Campo El Diez, 80110, Culiacán, Sinaloa, Mexico
| | - Mamuna Mukthar
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Haris Ahmed-Khan
- Department of Biotechnology, University of Mianwali, Punjab, 42200, Pakistan
| | - Fatima Shahid
- Department of Applied Physics, Faculty of Science & Technology, National University of Malaysia (UKM), Selangor Malaysia, Malaysia
| | - José Roberto Aguirre-Sánchez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA). Centro de Investigación en ALimentación y Desarrollo A.C. (CIAD) Unidad Culiacán, Sinaloa, México.
| |
Collapse
|
6
|
Wang X, Dou Y, Hu J, Chan CHC, Li R, Rong L, Gong H, Deng J, Yuen TTT, Lin X, He Y, Su C, Zhang BZ, Chan JFW, Yuen KY, Chu H, Huang JD. Conserved moonlighting protein pyruvate dehydrogenase induces robust protection against Staphylococcus aureus infection. Proc Natl Acad Sci U S A 2024; 121:e2321939121. [PMID: 39186649 PMCID: PMC11388329 DOI: 10.1073/pnas.2321939121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
Developing an effective Staphylococcus aureus (S. aureus) vaccine has been a challenging endeavor, as demonstrated by numerous failed clinical trials over the years. In this study, we formulated a vaccine containing a highly conserved moonlighting protein, the pyruvate dehydrogenase complex E2 subunit (PDHC), and showed that it induced strong protective immunity against epidemiologically relevant staphylococcal strains in various murine disease models. While antibody responses contributed to bacterial control, they were not essential for protective immunity in the bloodstream infection model. Conversely, vaccine-induced systemic immunity relied on γδ T cells. It has been suggested that prior S. aureus exposure may contribute to the reduction of vaccine efficacy. However, PDHC-induced protective immunity still facilitated bacterial clearance in mice previously exposed to S. aureus. Collectively, our findings indicate that PDHC is a promising serotype-independent vaccine candidate effective against both methicillin-sensitive and methicillin-resistant S. aureus isolates.
Collapse
Affiliation(s)
- Xiaolei Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Ying Dou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jingchu Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Celia Hoi-Ching Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Renhao Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Li Rong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Huarui Gong
- Chinese Academy of Sciences Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| | - Jian Deng
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Terrence Tsz-Tai Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xuansheng Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yige He
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Canhui Su
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Bao-Zhong Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| | - Hin Chu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
7
|
Biswas R, Jangra B, Ashok G, Ravichandiran V, Mohan U. Current Strategies for Combating Biofilm-Forming Pathogens in Clinical Healthcare-Associated Infections. Indian J Microbiol 2024; 64:781-796. [PMID: 39282194 PMCID: PMC11399387 DOI: 10.1007/s12088-024-01221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/07/2024] [Indexed: 09/18/2024] Open
Abstract
The biofilm formation by various pathogens causes chronic infections and poses severe threats to industry, healthcare, and society. They can form biofilm on surfaces of medical implants, heart valves, pacemakers, contact lenses, vascular grafts, urinary catheters, dialysis catheters, etc. These biofilms play a central role in bacterial persistence and antibiotic tolerance. Biofilm formation occurs in a series of steps, and any interference in these steps can prevent its formation. Therefore, the hunt to explore and develop effective anti-biofilm strategies became necessary to decrease the rate of biofilm-related infections. In this review, we highlighted and discussed the current therapeutic approaches to eradicate biofilm formation and combat drug resistance by anti-biofilm drugs, phytocompounds, antimicrobial peptides (AMPs), antimicrobial lipids (AMLs), matrix-degrading enzymes, nanoparticles, phagebiotics, surface coatings, photodynamic therapy (PDT), riboswitches, vaccines, and antibodies. The clinical validation of these findings will provide novel preventive and therapeutic strategies for biofilm-associated infections to the medical world.
Collapse
Affiliation(s)
- Rashmita Biswas
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Bhawana Jangra
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab India
| | - Ganapathy Ashok
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| |
Collapse
|
8
|
Bernhardt GV, Bernhardt K, Shivappa P, Pinto JRT. Immunoinformatic prediction to identify Staphylococcus aureus peptides that bind to CD8+ T-cells as potential vaccine candidates. Vet World 2024; 17:1413-1422. [PMID: 39077442 PMCID: PMC11283606 DOI: 10.14202/vetworld.2024.1413-1422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/04/2024] [Indexed: 07/31/2024] Open
Abstract
Background and Aim Staphylococcus aureus, with its diverse virulence factors and immune response evasion mechanisms, presents a formidable challenge as an opportunistic pathogen. Developing an effective vaccine against S. aureus has proven elusive despite extensive efforts. Autologous Staphylococcus lysate (ASL) treatment has proven effective in triggering an immune response against bovine mastitis. Peptides that stimulate the immune response can be the subject of further research. The study aimed to use immunoinformatics tools to identify epitopes on S. aureus surface and secretory proteins that can bind to major histocompatibility complex class I (MHC I) and CD8+ T-cells. This method aids in discovering prospective vaccine candidates and elucidating the rationale behind ASL therapy's efficacy. Materials and Methods Proteins were identified using both literature search and the National Center for Biotechnology Information search engine Entrez. Self and non-self peptides, allergenicity predictions, epitope locations, and physicochemical characteristics were determined using sequence alignment, AllerTOP, SVMTriP, and Protein-Sol tools. Hex was employed for simulating the docking interactions between S. aureus proteins and the MHC I + CD8+ T-cells complex. The binding sites of S. aureus proteins were assessed using Computer Atlas of Surface Topography of Proteins (CASTp) while docked with MHC I and CD8+ T-cells. Results Nine potential S. aureus peptides and their corresponding epitopes were identified in this study, stimulating cytotoxic T-cell mediated immunity. The peptides were analyzed for similarity with self-antigens and allergenicity. 1d20, 2noj, 1n67, 1nu7, 1amx, and 2b71, non-self and stable, are potential elicitors of the cytotoxic T-cell response. The energy values from docking simulations of peptide-MHC I complexes with the CD8+ and T-cell receptor (TCR) indicate the stability and strength of the formed complexes. These peptides - 2noj, 1d20, 1n67, 2b71, 1nu7, 1yn3, 1amx, 2gi9, and 1edk - demonstrated robust MHC I binding, as evidenced by their low binding energies. Peptide 2gi9 exhibited the lowest energy value, followed by 2noj, 1nu7, 1n67, and 1d20, when docked with MHC I and CD8 + TCR, suggesting a highly stable complex. CASTp analysis indicated substantial binding pockets in the docked complexes, with peptide 1d20 showing the highest values for area and volume, suggesting its potential as an effective elicitor of immunological responses. These peptides - 2noj, 2gi9, 1d20, and 1n67 - stand out for vaccine development and T-cell activation against S. aureus. Conclusion This study sheds light on the design and development of S. aureus vaccines, highlighting the significance of employing computational methods in conjunction with experimental verification. The significance of T-cell responses in combating S. aureus infections is emphasized by this study. More experiments are needed to confirm the effectiveness of these vaccine candidates and discover their possible medical uses.
Collapse
Affiliation(s)
- Grisilda Vidya Bernhardt
- Department of Biochemistry, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Kavitha Bernhardt
- Department of Basic Medical Sciences, Division of Physiology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Pooja Shivappa
- Department of Biochemistry, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Janita Rita Trinita Pinto
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| |
Collapse
|
9
|
Chan JYH, Clow F, Pearson V, Langley RJ, Fraser JD, Radcliff FJ. Feasibility of using a combination of staphylococcal superantigen-like proteins 3, 7 and 11 in a fusion vaccine for Staphylococcus aureus. Immunol Cell Biol 2024; 102:365-380. [PMID: 38572664 DOI: 10.1111/imcb.12745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Staphylococcus aureus is a significant bacterial pathogen in both community and hospital settings, and the escalation of antimicrobial-resistant strains is of immense global concern. Vaccination is an inviting long-term strategy to curb staphylococcal disease, but identification of an effective vaccine has proved to be challenging. Three well-characterized, ubiquitous, secreted immune evasion factors from the staphylococcal superantigen-like (SSL) protein family were selected for the development of a vaccine. Wild-type SSL3, 7 and 11, which inhibit signaling through Toll-like receptor 2, cleavage of complement component 5 and neutrophil function, respectively, were successfully combined into a stable, active fusion protein (PolySSL7311). Vaccination of mice with an attenuated form of the PolySSL7311 protein stimulated significantly elevated specific immunoglobulin G and splenocyte proliferation responses to each component relative to adjuvant-only controls. Vaccination with PolySSL7311, but not a mixture of the individual proteins, led to a > 102 reduction in S. aureus tissue burden compared with controls after peritoneal challenge. Comparable antibody responses were elicited after coadministration of the vaccine in either AddaVax (an analog of MF59) or an Alum-based adjuvant; but only AddaVax conferred a significant reduction in bacterial load, aligning with other studies that suggest both cellular and humoral immune responses are necessary for protective immunity to S. aureus. Anti-sera from mice immunized with PolySSL7311, but not individual proteins, partially neutralized the functional activities of SSL7. This study confirms the importance of these SSLs for the survival of S. aureus in vivo and suggests that PolySSL7311 is a promising vaccine candidate.
Collapse
Affiliation(s)
- Janlin Ying Hui Chan
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona Clow
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Victoria Pearson
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ries J Langley
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - John D Fraser
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona J Radcliff
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Caldera JR, Tsai CM, Trieu D, Gonzalez C, Hajam IA, Du X, Lin B, Liu GY. The characteristics of pre-existing humoral imprint determine efficacy of S. aureus vaccines and support alternative vaccine approaches. Cell Rep Med 2024; 5:101360. [PMID: 38232694 PMCID: PMC10829788 DOI: 10.1016/j.xcrm.2023.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/15/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024]
Abstract
The failure of the Staphylococcus aureus (SA) IsdB vaccine trial can be explained by the recall of non-protective immune imprints from prior SA exposure. Here, we investigate natural human SA humoral imprints to understand their broader impact on SA immunizations. We show that antibody responses against SA cell-wall-associated antigens (CWAs) are non-opsonic, while antibodies against SA toxins are neutralizing. Importantly, the protective characteristics of the antibody imprints accurately predict the failure of corresponding vaccines against CWAs and support vaccination against toxins. In passive immunization platforms, natural anti-SA human antibodies reduce the efficacy of the human monoclonal antibodies suvratoxumab and tefibazumab, consistent with the results of their respective clinical trials. Strikingly, in the absence of specific humoral memory responses, active immunizations are efficacious in both naive and SA-experienced mice. Overall, our study points to a practical and predictive approach to evaluate and develop SA vaccines based on pre-existing humoral imprint characteristics.
Collapse
Affiliation(s)
- J R Caldera
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chih-Ming Tsai
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Desmond Trieu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cesia Gonzalez
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Irshad A Hajam
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Du
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brian Lin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - George Y Liu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Division of Infectious Diseases, Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
11
|
Espíndola R, Vella V, Benito N, Mur I, Tedeschi S, Zamparini E, Hendriks JGE, Sorlí L, Murillo O, Soldevila L, Scarborough M, Scarborough C, Kluytmans J, Ferrari MC, Pletz MW, McNamara I, Escudero-Sanchez R, Arvieux C, Batailler C, Dauchy FA, Liu WY, Lora-Tamayo J, Praena J, Ustianowski A, Cinconze E, Pellegrini M, Bagnoli F, Rodríguez-Baño J, Del-Toro-López MD. Incidence, associated disease burden and healthcare utilization due to Staphylococcus aureus prosthetic joint infection in European hospitals: the COMBACTE-NET ARTHR-IS multi-centre study. J Hosp Infect 2023; 142:9-17. [PMID: 37797656 DOI: 10.1016/j.jhin.2023.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND The aim of this study was to estimate the incidence, associated disease burden and healthcare utilization due to Staphylococcus aureus prosthetic joint infections (SA-PJI) after primary hip and knee arthroplasty in European centres. METHODS This study was conducted in patients who underwent primary hip and knee arthroplasty in 19 European hospitals between 2014 and 2016. The global incidence of PJI and SA-PJI was calculated. The associated disease burden was measured indirectly as infection-related mortality plus loss of function. For healthcare utilization, number and duration of hospitalizations, number and type of surgical procedures, duration of antibiotic treatments, and number of outpatient visits were collected. Subgroup and regression analyses were used to evaluate the impact of SA-PJI on healthcare utilization, controlling for confounding variables. RESULTS The incidence of PJI caused by any micro-organism was 1.41%, and 0.40% for SA-PJI. Among SA-PJI, 20.7% were due to MRSA with substantial regional differences, and were more frequent in partial hip arthroplasty (PHA). Related deaths and loss of function occurred in 7.0% and 10.2% of SA-PJI cases, respectively, and were higher in patients with PHA. Compared with patients without PJI, patients with SA-PJI had a mean of 1.4 more readmissions, 25.1 more days of hospitalization, underwent 1.8 more surgical procedures, and had 5.4 more outpatient visits, controlling for confounding variables. Healthcare utilization was higher in patients who failed surgical treatment of SA-PJI. CONCLUSIONS This study confirmed that the SA-PJI burden is high, especially in PHA, and provided a solid basis for planning interventions to prevent SA-PJI.
Collapse
Affiliation(s)
- R Espíndola
- Infectious Diseases and Microbiology Clinical Unit, Hospital Universitario Virgen Macarena, Seville, Spain; Biomedicine Institute of Sevilla (IBiS)/CSIC, Seville, Spain
| | - V Vella
- GlaxoSmithKline (GSK), Siena, Italy
| | - N Benito
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau/Sant Pau Institute for Biomedical Research, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; University of Queensland, UQ Centre for Clinical Research, Brisbane, Australia
| | - I Mur
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau/Sant Pau Institute for Biomedical Research, Barcelona, Spain
| | - S Tedeschi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Infectious Diseases Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - E Zamparini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - J G E Hendriks
- Department of Orthopaedic Surgery & Trauma, Máxima MC, Eindhoven, The Netherlands
| | - L Sorlí
- Department of Infectious Diseases, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - O Murillo
- Department of Infectious Diseases, Hospital Universitari Bellvitge, IDIBELL, Barcelona, Spain
| | - L Soldevila
- Department of Infectious Diseases, Hospital Universitari Bellvitge, IDIBELL, Barcelona, Spain
| | - M Scarborough
- Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - C Scarborough
- Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - J Kluytmans
- Department of Infection Control, Amphia Hospital, Breda, The Netherlands; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - M C Ferrari
- Prosthetic-Joint Replacement Unit, Humanitas Research Hospital, Milano, Italy
| | - M W Pletz
- Center for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - I McNamara
- Department of Orthopaedics, Norfolk and Norwich University Hospital, Norwich, UK
| | - R Escudero-Sanchez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Infectious Diseases, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - C Arvieux
- Department of Infectious Diseases, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - C Batailler
- Orthopedic Surgery Department, Croix Rousse Hospital, Lyon, France
| | - F-A Dauchy
- Department of Infectious and Tropical Diseases, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - W-Y Liu
- Department of Orthopaedic Surgery & Trauma, Máxima MC, Eindhoven, The Netherlands; Department of Orthopaedic Surgery & Trauma, Catharina Hospital, Eindhoven, The Netherlands
| | - J Lora-Tamayo
- Department of Internal Medicine (CIBERINFEC-CIBER de Enfermedades Infecciosas), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - J Praena
- Clinical Unit of Infectious Diseases and Microbiology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - A Ustianowski
- Infectious Diseases Unit, North Manchester General Hospital, Manchester, UK
| | | | | | | | - J Rodríguez-Baño
- Infectious Diseases and Microbiology Clinical Unit, Hospital Universitario Virgen Macarena, Seville, Spain; Biomedicine Institute of Sevilla (IBiS)/CSIC, Seville, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Sevilla, Spain
| | - M-D Del-Toro-López
- Infectious Diseases and Microbiology Clinical Unit, Hospital Universitario Virgen Macarena, Seville, Spain; Biomedicine Institute of Sevilla (IBiS)/CSIC, Seville, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Sevilla, Spain.
| |
Collapse
|
12
|
Friot A, Djebali S, Valsesia S, Parroche P, Dubois M, Baude J, Vandenesch F, Marvel J, Leverrier Y. Antigen specific activation of cytotoxic CD8 + T cells by Staphylococcus aureus infected dendritic cells. Front Cell Infect Microbiol 2023; 13:1245299. [PMID: 37953797 PMCID: PMC10639145 DOI: 10.3389/fcimb.2023.1245299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/22/2023] [Indexed: 11/14/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathogen associated with a wide variety of diseases, from minor to life-threatening infections. Antibiotic-resistant strains have emerged, leading to increasing concern about the control of S. aureus infections. The development of vaccines may be one way to overcome these resistant strains. However, S. aureus ability to internalize into cells - and thus to form a reservoir escaping humoral immunity - is a challenge for vaccine development. A role of T cells in the elimination of persistent S. aureus has been established in mice but it remains to be established if CD8+ T cells could display a cytotoxic activity against S. aureus infected cells. We examined in vitro the ability of CD8+ T cells to recognize and kill dendritic cells infected with S. aureus. We first evidenced that both primary mouse dendritic cells and DC2.4 cell line can be infected with S. aureus. We then generated a strain of S. aureus expressing a model CD8 epitope and transgenic F5 CD8+ T cells recognizing this model epitope were used as reporter T cells. In response to S. aureus-infected dendritic cells, F5 CD8+ T cells produced IFN-γ in an antigen-specific manner and displayed an increased ability to kill infected cells. Altogether, these results demonstrate that cells infected by S. aureus display bacteria-derived epitopes at their surface that are recognized by CD8+ T cells. This paves the way for the development of CD8+ T cell-based therapies against S. aureus.
Collapse
|
13
|
Zhang Y, Yang F, Sun D, Xu L, Shi Y, Qin L, Zhao L, Wang L, Sun W, Wu H, Lu D, Zhang W, Luo P, Cheng P, Zou Q, Zeng H. rFSAV promotes Staphylococcus aureus-infected bone defect healing via IL-13- mediated M2 macrophage polarization. Clin Immunol 2023; 255:109747. [PMID: 37634854 DOI: 10.1016/j.clim.2023.109747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Staphylococcus aureus (S. aureus) contamination commonly occurs in orthopedic internal fixation operations, leading to a delayed healing of the defected bone tissue. However, antibiotic treatments are ineffective in dealing with S. aureus bone infections due to the rise in multiple antimicrobial resistances. Here, we reported the protective effects of a recombinant five-antigen S. aureus vaccine (rFSAV) in an S. aureus infected bone defect model. In this study, we found the number of M2 macrophages markedly increased in the defect site and played a critical role in the healing of defected bone mediated by rFSAV. Mechanistically, rFSAV mediated increased level of IL-13 in bone defect site predominant M2 macrophage polarization. In summary, our study reveals a key role of M2 macrophage polarization in the bone regeneration process in S. aureus infection induced bone defect, which provide a promising application of rFSAV for the treatment of bone infection for orthopedic applications.
Collapse
Affiliation(s)
- Yanhao Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Feng Yang
- Chengdu Olymvax Biopharmaceuticals Inc., Chengdu, Sichuan 611731, PR China
| | - Dong Sun
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Limin Xu
- Chengdu Olymvax Biopharmaceuticals Inc., Chengdu, Sichuan 611731, PR China
| | - Yaojia Shi
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Leilei Qin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400038, China
| | - Liqun Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Liting Wang
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China
| | - Wei Sun
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China
| | - Hongri Wu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Dongshui Lu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Ping Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China.
| |
Collapse
|
14
|
Guo Z, Zhou J, Yu Y, Krishnan N, Noh I, Zhu AT, Borum RM, Gao W, Fang RH, Zhang L. Immunostimulatory DNA Hydrogel Enhances Protective Efficacy of Nanotoxoids against Bacterial Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211717. [PMID: 37097076 PMCID: PMC10528024 DOI: 10.1002/adma.202211717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/25/2023] [Indexed: 05/03/2023]
Abstract
While vaccines have been highly successful in protecting against various infections, there are still many high-priority pathogens for which there are no clinically approved formulations. To overcome this challenge, researchers have explored the use of nanoparticulate strategies for more effective antigen delivery to the immune system. Along these lines, nanotoxoids are a promising biomimetic platform that leverages cell membrane coating technology to safely deliver otherwise toxic bacterial antigens in their native form for antivirulence vaccination. Here, in order to further boost their immunogenicity, nanotoxoids formulated against staphylococcal α-hemolysin are embedded into a DNA-based hydrogel with immunostimulatory CpG motifs. The resulting nanoparticle-hydrogel composite is injectable and improves the in vivo delivery of vaccine antigens while simultaneously stimulating nearby immune cells. This leads to elevated antibody production and stronger antigen-specific cellular immune responses. In murine models of pneumonia and skin infection caused by methicillin-resistant Staphylococcus aureus, mice vaccinated with the hybrid vaccine formulation are well-protected. This work highlights the benefits of combining nanoparticulate antigen delivery systems with immunostimulatory hydrogels into a single platform, and the approach can be readily generalized to a wide range of infectious diseases.
Collapse
Affiliation(s)
- Zhongyuan Guo
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yiyan Yu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ilkoo Noh
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Audrey Ting Zhu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Raina M Borum
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
15
|
Shen P, Zheng L, Qin X, Li D, Zhang Z, Zhao J, Lin H, Hong H, Zhou Z, Wu Z. Synthesis of structure-defined β-1,4-GlcNAc-modified wall teichoic acids as potential vaccine against methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2023; 258:115553. [PMID: 37336068 DOI: 10.1016/j.ejmech.2023.115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a high priority pathogen due to its life-threating infections to human health. Development of prophylactic or therapeutic anti-MRSA vaccine is a potential approach to treat S. aureus infections and overcome the resistance crisis. β-1,4-GlcNAc glycosylated wall teichoic acids (WTAs) derived from S. aureus are a new type of antigen that is closely associated with β-lactam resistance. In this study, structure-defined β-1,4-GlcNAc-modified WTAs varied in chain length and numbers of GlcNAc modification were synthesized by an ionic liquid-supported oligosaccharide synthesis (ILSOS) strategy in high efficiency and chromatography-free approach. Then the obtained WTAs were conjugated with tetanus toxin (TT) as vaccine candidates and were further evaluated in a mouse model to determine the structure-immunogenicity relationship. In vivo immunological studies revealed that the WTAs-TT conjugates provoked robust T cell-dependent responses and elicited high levels of specific anti-WTAs IgG antibodies production associated with the WTAs structure including chain length as well as the β-1,4-GlcNAc modification pattern. Heptamer WTAs conjugate T6, carrying three copy of β-1,4-GlcNAc modified RboP, was identified to elicit the highest titers of specific antibody production. The T6 antisera exhibited the highest recognition and binding affinity and the most potent OP-killing activities to MSSA and MRSA cells. This study demonstrated that β-1,4-GlcNAc glycosylated WTAs are promising antigens for further development against MRSA.
Collapse
Affiliation(s)
- Peng Shen
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Lele Zheng
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xinfang Qin
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Dan Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zijiang Zhang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jie Zhao
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Han Lin
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
16
|
Pei H, Wang J, Zhu C, Wang H, Fang M, Shu F, Wang H, Hu Y, Li B, Xue T. A novel gdmH-related gene, ghl, involved in environmental stress tolerance and vancomycin susceptibility in milk-derived Staphylococcus aureus. Food Res Int 2023; 167:112720. [PMID: 37087277 DOI: 10.1016/j.foodres.2023.112720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Staphylococcus aureus is one of the main microorganisms that contaminate dairy products and pickled foods, and has a great impact on economy and human health. GdmH-related proteins, as important functional units widely present in Staphylococcus species, have not been reported in S. aureus so far. In this study, we identified a gdmH-related gene, named ghl. We found that mutation of ghl gene could decrease the tolerance of environmental stresses (heat, desiccation, salt and hydrogen peroxide) of S. aureus and enhanced the capacities of biofilm formation. In addition, the ghl mutant was more sensitive to vancomycin on CAMHB solid plates but more resistant to vancomycin in CAMHB liquid medium compared to wild type RMSA24. These results indicated that ghl is an important factor to respond to environmental stress in foodborne S. aureus. This paper for the first time reported that a GdmH-related protein plays an important role in environmental tolerance, providing a new direction for the follow-up study of GdmH-related proteins, as well as a potential target gene for further research on the tolerance mechanism of Staphylococcus aureus in food processing and the control of biofilm formation.
Collapse
|
17
|
Mahapatra SR, Dey J, Raj TK, Misra N, Suar M. Designing a Next-Generation Multiepitope-Based Vaccine against Staphylococcus aureus Using Reverse Vaccinology Approaches. Pathogens 2023; 12:376. [PMID: 36986298 PMCID: PMC10058999 DOI: 10.3390/pathogens12030376] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Staphylococcus aureus is a human bacterial pathogen that can cause a wide range of symptoms. As virulent and multi-drug-resistant strains of S. aureus have evolved, invasive S. aureus infections in hospitals and the community have become one of the leading causes of mortality and morbidity. The development of novel techniques is therefore necessary to overcome this bacterial infection. Vaccines are an appropriate alternative in this context to control infections. In this study, the collagen-binding protein (CnBP) from S. aureus was chosen as the target antigen, and a series of computational methods were used to find epitopes that may be used in vaccine development in a systematic way. The epitopes were passed through a filtering pipeline that included antigenicity, toxicity, allergenicity, and cytokine inducibility testing, with the objective of identifying epitopes capable of eliciting both T and B cell-mediated immune responses. To improve vaccine immunogenicity, the final epitopes and phenol-soluble modulin α4 adjuvant were fused together using appropriate linkers; as a consequence, a multiepitope vaccine was developed. The chosen T cell epitope ensemble is expected to cover 99.14% of the global human population. Furthermore, docking and dynamics simulations were used to examine the vaccine's interaction with the Toll-like receptor 2 (TLR2), revealing great affinity, consistency, and stability between the two. Overall, the data indicate that the vaccine candidate may be extremely successful, and it will need to be evaluated in experimental systems to confirm its efficiency.
Collapse
Affiliation(s)
- Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - T. Kiran Raj
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| |
Collapse
|
18
|
Haag AF, Liljeroos L, Donato P, Pozzi C, Brignoli T, Bottomley MJ, Bagnoli F, Delany I. In Vivo Gene Expression Profiling of Staphylococcus aureus during Infection Informs Design of Stemless Leukocidins LukE and -D as Detoxified Vaccine Candidates. Microbiol Spectr 2023; 11:e0257422. [PMID: 36688711 PMCID: PMC9927290 DOI: 10.1128/spectrum.02574-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
Staphylococcus aureus is a clinically important bacterial pathogen that has become resistant to treatment with most routinely used antibiotics. Alternative strategies, such as vaccination and phage therapy, are therefore actively being investigated to prevent or combat staphylococcal infections. Vaccination requires that vaccine targets are expressed at sufficient quantities during infection so that they can be targeted by the host's immune system. While our knowledge of in vitro expression levels of putative vaccine candidates is comprehensive, crucial in vivo expression data are scarce and promising vaccine candidates during in vitro assessment often prove ineffective in preventing S. aureus infection. Here, we show how a newly developed high-throughput quantitative reverse transcription-PCR (qRT-PCR) assay monitoring the expression of 84 staphylococcal genes encoding mostly virulence factors can inform the selection and design of effective vaccine candidates against staphylococcal infections. We show that this assay can accurately quantify mRNA expression levels of these genes in several host organs relying only on very limited amounts of bacterial mRNA in each sample. We selected two highly expressed genes, lukE and lukD, encoding pore-forming leukotoxins, to inform the design of detoxified recombinant proteins and showed that immunization with recombinant genetically detoxified LukED antigens conferred protection against staphylococcal skin infection in mice. Consequently, knowledge of in vivo-expressed virulence determinants can be successfully deployed to identify and select promising candidates for optimized design of effective vaccine antigens against S. aureus. Notably, this approach should be broadly applicable to numerous other pathogens. IMPORTANCE Vaccination is an attractive strategy for preventing bacterial infections in an age of increased antimicrobial resistance. However, vaccine development frequently suffers significant setbacks when candidate antigens that show promising results in in vitro experimentation fail to protect from disease. An alluring strategy is to focus resources on developing bacterial virulence factors that are expressed during disease establishment or maintenance and are critical for bacterial in-host survival as vaccine targets. While expression profiles of many virulence factors have been characterized in detail in vitro, our knowledge of their in vivo expression profiles is still scarce. Here, using a high-throughput qRT-PCR approach, we identified two highly expressed leukotoxins in a murine infection model and showed that genetically detoxified derivatives of these elicited a protective immune response in a murine skin infection model. Therefore, in vivo gene expression can inform the selection of promising candidates for the design of effective vaccine antigens.
Collapse
Affiliation(s)
- Andreas F. Haag
- GSK, Siena, Italy
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | | | | | | | - Tarcisio Brignoli
- GSK, Siena, Italy
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | | | | |
Collapse
|
19
|
Nwabuife JC, Hassan D, Madhaorao Pant A, Devnarain N, Gafar MA, Osman N, Rambharose S, Govender T. Novel vancomycin free base – Sterosomes for combating diseases caused by Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus infections (S. Aureus and MRSA). J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Jorde I, Schreiber J, Stegemann-Koniszewski S. The Role of Staphylococcus aureus and Its Toxins in the Pathogenesis of Allergic Asthma. Int J Mol Sci 2022; 24:ijms24010654. [PMID: 36614093 PMCID: PMC9820472 DOI: 10.3390/ijms24010654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Bronchial asthma is one of the most common chronic diseases worldwide and affects more than 300 million patients. Allergic asthma affects the majority of asthmatic children as well as approximately 50% of adult asthmatics. It is characterized by a Th2-mediated immune response against aeroallergens. Many aspects of the overall pathophysiology are known, while the underlying mechanisms and predisposing factors remain largely elusive today. Over the last decade, respiratory colonization with Staphylococcus aureus (S. aureus), a Gram-positive facultative bacterial pathogen, came into focus as a risk factor for the development of atopic respiratory diseases. More than 30% of the world’s population is constantly colonized with S. aureus in their nasopharynx. This colonization is mostly asymptomatic, but in immunocompromised patients, it can lead to serious complications including pneumonia, sepsis, or even death. S. aureus is known for its ability to produce a wide range of proteins including toxins, serine-protease-like proteins, and protein A. In this review, we provide an overview of the current knowledge about the pathophysiology of allergic asthma and to what extent it can be affected by different toxins produced by S. aureus. Intensifying this knowledge might lead to new preventive strategies for atopic respiratory diseases.
Collapse
|
21
|
Han J, Poma A. Molecular Targets for Antibody-Based Anti-Biofilm Therapy in Infective Endocarditis. Polymers (Basel) 2022; 14:3198. [PMID: 35956712 PMCID: PMC9370930 DOI: 10.3390/polym14153198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Infective endocarditis (IE) is a heart disease caused by the infection of heart valves, majorly caused by Staphilococcus aureus. IE is initiated by bacteria entering the blood circulation in favouring conditions (e.g., during invasive procedures). So far, the conventional antimicrobial strategies based on the usage of antibiotics remain the major intervention for treating IE. Nevertheless, the therapeutic efficacy of antibiotics in IE is limited not only by the bacterial drug resistance, but also by the formation of biofilms, which resist the penetration of antibiotics into bacterial cells. To overcome these drawbacks, the development of anti-biofilm treatments that can expose bacteria and make them more susceptible to the action of antibiotics, therefore resulting in reduced antimicrobial resistance, is urgently required. A series of anti-biofilm strategies have been developed, and this review will focus in particular on the development of anti-biofilm antibodies. Based on the results previously reported in the literature, several potential anti-biofilm targets are discussed, such as bacterial adhesins, biofilm matrix and bacterial toxins, covering their antigenic properties (with the identification of potential promising epitopes), functional mechanisms, as well as the antibodies already developed against these targets and, where feasible, their clinical translation.
Collapse
Affiliation(s)
- Jiahe Han
- UCL Institute of Cardiovascular Science, The Rayne Building, 5 University Street, London WC1E 6JF, UK
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, UCL Medical School, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
22
|
Shen P, Lin H, Bao Y, Hong H, Wu Z. Synthesis and immunological study of a glycosylated wall teichoic acid-based vaccine against Staphylococcus aureus. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Han X, Ortines R, Mukherjee I, Kanipakala T, Kort T, Sherchand SP, Liao G, Mednikov M, Chenine AL, Aman MJ, Nykiforuk CL, Adhikari RP. Hyperimmune Targeting Staphylococcal Toxins Effectively Protect Against USA 300 MRSA Infection in Mouse Bacteremia and Pneumonia Models. Front Immunol 2022; 13:893921. [PMID: 35655774 PMCID: PMC9152286 DOI: 10.3389/fimmu.2022.893921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus has been acquiring multiple drug resistance and has evolved into superbugs such as Methicillin/Vancomycin-resistant S. aureus (MRSA/VRSA) and, consequently, is a major cause of nosocomial and community infections associated with high morbidity and mortality for which no FDA-approved vaccines or biotherapeutics are available. Previous efforts targeting the surface-associated antigens have failed in clinical testing. Here, we generated hyperimmune products from sera in rabbits against six major S. aureus toxins targeted by an experimental vaccine (IBT-V02) and demonstrated significant efficacy for an anti-virulence passive immunization strategy. Extensive in vitro binding and neutralizing titers were analyzed against six extracellular toxins from individual animal sera. All IBT-V02 immunized animals elicited the maximum immune response upon the first boost dose against all pore-forming vaccine components, while for superantigen (SAgs) components of the vaccine, second and third doses of a boost were needed to reach a plateau in binding and toxin neutralizing titers. Importantly, both anti-staphylococcus hyperimmune products consisting of full-length IgG (IBT-V02-IgG) purified from the pooled sera and de-speciated F(ab')2 (IBT-V02-F(ab')2) retained the binding and neutralizing titers against IBT-V02 target toxins. F(ab')2 also exhibited cross-neutralization titers against three leukotoxins (HlgAB, HlgCB, and LukED) and four SAgs (SEC1, SED, SEK, and SEQ) which were not part of IBT-V02. F(ab')2 also neutralized toxins in bacterial culture supernatant from major clinical strains of S. aureus. In vivo efficacy data generated in bacteremia and pneumonia models using USA300 S. aureus strain demonstrated dose-dependent protection by F(ab')2. These efficacy data confirmed the staphylococcal toxins as viable targets and support the further development effort of hyperimmune products as a potential adjunctive therapy for emergency uses against life-threatening S. aureus infections.
Collapse
Affiliation(s)
- Xiaobing Han
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, MB, Canada.,Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Roger Ortines
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - Ipsita Mukherjee
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | | | - Thomas Kort
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | | | - Grant Liao
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - Mark Mednikov
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - Agnes L Chenine
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - M Javad Aman
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - Cory L Nykiforuk
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, MB, Canada
| | - Rajan P Adhikari
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| |
Collapse
|
24
|
Recent Developments in Methicillin-Resistant Staphylococcus aureus (MRSA) Treatment: A Review. Antibiotics (Basel) 2022; 11:antibiotics11050606. [PMID: 35625250 PMCID: PMC9137690 DOI: 10.3390/antibiotics11050606] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium that may cause life-threatening diseases and some minor infections in living organisms. However, it shows notorious effects when it becomes resistant to antibiotics. Strain variants of bacteria, viruses, fungi, and parasites that have become resistant to existing multiple antimicrobials are termed as superbugs. Methicillin is a semisynthetic antibiotic drug that was used to inhibit staphylococci pathogens. The S. aureus resistant to methicillin is known as methicillin-resistant Staphylococcus aureus (MRSA), which became a superbug due to its defiant activity against the antibiotics and medications most commonly used to treat major and minor infections. Successful MRSA infection management involves rapid identification of the infected site, culture and susceptibility tests, evidence-based treatment, and appropriate preventive protocols. This review describes the clinical management of MRSA pathogenesis, recent developments in rapid diagnosis, and antimicrobial treatment choices for MRSA.
Collapse
|
25
|
Jahantigh HR, Faezi S, Habibi M, Mahdavi M, Stufano A, Lovreglio P, Ahmadi K. The Candidate Antigens to Achieving an Effective Vaccine against Staphylococcus aureus. Vaccines (Basel) 2022; 10:vaccines10020199. [PMID: 35214658 PMCID: PMC8876328 DOI: 10.3390/vaccines10020199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic pathogen that causes various inflammatory local infections, from those of the skin to postinfectious glomerulonephritis. These infections could result in serious threats, putting the life of the patient in danger. Antibiotic-resistant S. aureus could lead to dramatic increases in human mortality. Antibiotic resistance would explicate the failure of current antibiotic therapies. So, it is obvious that an effective vaccine against S. aureus infections would significantly reduce costs related to care in hospitals. Bacterial vaccines have important impacts on morbidity and mortality caused by several common pathogens, however, a prophylactic vaccine against staphylococci has not yet been produced. During the last decades, the efforts to develop an S. aureus vaccine have faced two major failures in clinical trials. New strategies for vaccine development against S. aureus has supported the use of multiple antigens, the inclusion of adjuvants, and the focus on various virulence mechanisms. We aimed to present a compressive review of different antigens of S. aureus and also to introduce vaccine candidates undergoing clinical trials, from which can help us to choose a suitable and effective candidate for vaccine development against S. aureus.
Collapse
Affiliation(s)
- Hamid Reza Jahantigh
- Animal Health and Zoonosis, Department of Veterinary Medicine, University of Bari, 70010 Bari, Italy;
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari, 70010 Bari, Italy;
- Correspondence: (H.R.J.); (K.A.); Tel.: +39-3773827669 (H.R.J.)
| | - Sobhan Faezi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht 41937, Iran;
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran;
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran 1517964311, Iran
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13164, Iran;
| | - Angela Stufano
- Animal Health and Zoonosis, Department of Veterinary Medicine, University of Bari, 70010 Bari, Italy;
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari, 70010 Bari, Italy;
| | - Piero Lovreglio
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari, 70010 Bari, Italy;
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 79391, Iran
- Correspondence: (H.R.J.); (K.A.); Tel.: +39-3773827669 (H.R.J.)
| |
Collapse
|
26
|
Kailasan S, Kant R, Noonan-Shueh M, Kanipakala T, Liao G, Shulenin S, Leung DW, Alm RA, Adhikari RP, Amarasinghe GK, Gross ML, Aman MJ. Antigenic landscapes on Staphylococcus aureus pore-forming toxins reveal insights into specificity and cross-neutralization. MAbs 2022; 14:2083467. [PMID: 35730685 PMCID: PMC9225675 DOI: 10.1080/19420862.2022.2083467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus carries an exceptional repertoire of virulence factors that aid in immune evasion. Previous single-target approaches for S. aureus-specific vaccines and monoclonal antibodies (mAbs) have failed in clinical trials due to the multitude of virulence factors released during infection. Emergence of antibiotic-resistant strains demands a multi-target approach involving neutralization of different, non-overlapping pathogenic factors. Of the several pore-forming toxins that contribute to S. aureus pathogenesis, efforts have largely focused on mAbs that neutralize α-hemolysin (Hla) and target the receptor-binding site. Here, we isolated two anti-Hla and three anti-Panton-Valentine Leukocidin (LukSF-PV) mAbs, and used a combination of hydrogen deuterium exchange mass spectrometry (HDX-MS) and alanine scanning mutagenesis to delineate and validate the toxins’ epitope landscape. Our studies identified two novel, neutralizing epitopes targeted by 2B6 and CAN6 on Hla that provided protection from hemolytic activity in vitro and showed synergy in rodent pneumonia model against lethal challenge. Of the anti-LukF mAbs, SA02 and SA131 showed specific neutralization activity to LukSF-PV while SA185 showed cross-neutralization activity to LukSF-PV, γ-hemolysin HlgAB, and leukotoxin ED. We further compared these antigen-specific mAbs to two broadly neutralizing mAbs, H5 (targets Hla, LukSF-PV, HlgAB, HlgCB, and LukED) and SA185 (targeting LukSF-PV, HlgAB, and LukED), and identified molecular level markers for broad-spectrum reactivity among the pore-forming toxins by HDX-MS. To further underscore the need to target the cross-reactive epitopes on leukocidins for the development of broad-spectrum therapies, we annotated Hla sequences isolated from patients in multiple countries for genomic variations within the perspective of our defined epitopes.
Collapse
Affiliation(s)
| | - Ravi Kant
- Department of Chemistry, Washington University in St. Louis, St. Louis, USA
| | | | | | - Grant Liao
- Integrated BioTherapeutics, Rockville, USA
| | | | - Daisy W Leung
- Department of Medicine, Washington University in St. Louis, St. Louis, USA
| | - Richard A Alm
- Boston University School of Law, Boston University, Boston, USA
| | | | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, USA
| | | |
Collapse
|
27
|
Synthetic carbohydrate-based cell wall components from Staphylococcus aureus. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:35-43. [PMID: 34895639 DOI: 10.1016/j.ddtec.2021.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/17/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Glycopolymers are found surrounding the outer layer of many bacterial species. The first uses as immunogenic component in vaccines are reported since the beginning of the XX century, but it is only in the last decades that glycoconjugate based vaccines have been effectively applied for controlling and preventing several infectious diseases, such as H. influenzae type b (Hib), N. meningitidis, S. pneumoniae or group B Streptococcus. Methicillin resistant S. aureus (MRSA) strains has been appointed by the WHO as one of those pathogens, for which new treatments are urgently needed. Herein we present an overview of the carbohydrate-based cell wall polymers associated with different S. aureus strains and the related affords to deliver well-defined fragments through synthetic chemistry.
Collapse
|
28
|
Noori Goodarzi N, Bolourchi N, Fereshteh S, Soltani Shirazi A, Pourmand MR, Badmasti F. Investigation of novel putative immunogenic targets against Staphylococcus aureus using a reverse vaccinology strategy. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105149. [PMID: 34801756 DOI: 10.1016/j.meegid.2021.105149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/31/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The emergence of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) strains is a significant public health concern. Considering the high morbidity and mortality of invasive S. aureus infections and multi-drug resistant strains, there is an urgent need for non-antibiotic immune-based approaches to cure these infections. Despite all efforts, vaccine candidates targeting S. aureus failed in human clinical trials, and no approved vaccine is available against this pathogen. Therefore, this study aimed to introduce suitable candidates for immunization against S. aureus using a comprehensive reverse vaccinology approach. METHODS In this study, we retrieved putative immunogenic targets from three different levels (literature review, automated reverse vaccinology, and manual reverse vaccinology) and evaluated them using several immunoinformatics analyses including antigenicity, allergenicity, PSI-BLAST to human proteome, physiochemical properties, B-cell, and T-cell epitopes. In the next step, the quartile method scoring was used to the shortlisted proteins. Finally, the molecular docking and immune simulation of immunogenic targets were performed. RESULTS This study presents 12 vaccine candidates, including three enzymatic proteins (WP_000222271.1, WP_001170274, and WP_000827736.1), three cell wall-associated proteins (WP_001125631.1, WP_000731642, and WP_000751265.1), two hemolysins (WP_000594517.1, and WP_000916697.1), one secretion involved protein (WP_000725226.1), one heme‑iron binding protein (WP_001041573.1), one superantigen like protein (WP_000668994.1) and one hypothetical proteins (WP_000737711.1). CONCLUSION Through quartile scoring method, immune simulation and molecular docking, four promising targets including lytic transglycosylase IsaA, HlgA, secretory antigen precursor SsaA, and heme uptake protein IsdB were selected as the shortlisted proteins. It seems that a polarized immunization (Th1/Th17) response is needed for protection against this bacterium. An optimized formulation based on these putative immunogenic proteins and a wisely adjuvant selection may drive the immune system toward a full protection.
Collapse
Affiliation(s)
- Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Bolourchi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
29
|
Nwabuife JC, Pant AM, Govender T. Liposomal delivery systems and their applications against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Adv Drug Deliv Rev 2021; 178:113861. [PMID: 34242712 DOI: 10.1016/j.addr.2021.113861] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022]
Abstract
Liposomal delivery systems have been widely explored for targeting superbugs such as S. aureus and MRSA, overcoming antimicrobial resistance associated with conventional dosage forms. They have the significant advantage of delivering hydrophilic and lipophilic antimicrobial agents, either singularly as monotherapy or in combination as combination therapy, due to their bilayers with action-site-specificity, resulting in improved targeting compared to conventional dosage forms. Herein, we present an extensive and critical review of the different liposomal delivery systems employed in the past two decades for the delivery of both antibiotics of different classes and non-antibiotic antibacterial agents, as monotherapy and combination therapy to eradicate infections caused by S. aureus and MRSA. The review also identifies future research and strategies potentiating the applications of liposomal delivery systems against S. aureus and MRSA. This review confirms the potential application of liposomal delivery systems for effective delivery and specific targeting of S. aureus and MRSA infections.
Collapse
|
30
|
Schroven K, Aertsen A, Lavigne R. Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation. FEMS Microbiol Rev 2021; 45:5902850. [PMID: 32897318 DOI: 10.1093/femsre/fuaa041] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Bacteria-infecting viruses (phages) and their hosts maintain an ancient and complex relationship. Bacterial predation by lytic phages drives an ongoing phage-host arms race, whereas temperate phages initiate mutualistic relationships with their hosts upon lysogenization as prophages. In human pathogens, these prophages impact bacterial virulence in distinct ways: by secretion of phage-encoded toxins, modulation of the bacterial envelope, mediation of bacterial infectivity and the control of bacterial cell regulation. This review builds the argument that virulence-influencing prophages hold extensive, unexplored potential for biotechnology. More specifically, it highlights the development potential of novel therapies against infectious diseases, to address the current antibiotic resistance crisis. First, designer bacteriophages may serve to deliver genes encoding cargo proteins which repress bacterial virulence. Secondly, one may develop small molecules mimicking phage-derived proteins targeting central regulators of bacterial virulence. Thirdly, bacteria equipped with phage-derived synthetic circuits which modulate key virulence factors could serve as vaccine candidates to prevent bacterial infections. The development and exploitation of such antibacterial strategies will depend on the discovery of other prophage-derived, virulence control mechanisms and, more generally, on the dissection of the mutualistic relationship between temperate phages and bacteria, as well as on continuing developments in the synthetic biology field.
Collapse
Affiliation(s)
- Kaat Schroven
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| |
Collapse
|
31
|
Solanki V, Tiwari M, Tiwari V. Subtractive proteomic analysis of antigenic extracellular proteins and design a multi-epitope vaccine against Staphylococcus aureus. Microbiol Immunol 2021; 65:302-316. [PMID: 33368661 DOI: 10.1111/1348-0421.12870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023]
Abstract
Staphylococcus aureus is a versatile Gram's positive bacterium that can reside as an asymptomatic colonizer, which can cause a wide range of skin, soft-tissue, and nosocomial infections. A vaccine against multi-drug resistant S. aureus, therefore, is urgently needed. Subtractive proteomics and reverse vaccinology are newly emerging techniques to design multiepitope-based vaccines. The analysis of 7290 proteomes (sensitive and resistant strains), five potent nonhuman homologous vaccine targets [(UNIPORT ID Q2FZL3 (Staphopain B), Q2G2R8 (Staphopain A), Q2FWP0 (uncharacterized leukocidin-like protein 1), Q2G1S6 (uncharacterized protein), and Q2FWV3 (Staphylokinase, putative)] were selected. These proteins were absent in the gut microbiome, which further enhances the significance of these proteins in vaccine design. These five virulence-associated proteins mainly have a role in the invasion mechanism in the host phagocyte cells. MHC I, MHC II, and B cell epitopes were identified in these five proteins. Finalized epitopes were examined by different online servers to screen suitable epitopes for multi-epitope based vaccine design. Shortlisted antigenic and nonallergenic associated epitopes were joined with linkers to design 30 variants (VSA1-VSA30) of multi-epitope vaccine conjugates. The antigenicity and allergenicity of all the 30 vaccine constructs were identified, and VSA30 was found to have the highest antigenicity and lowest allergenicity, and hence was selected for further study. Accordingly, VSA30 was docked with different HLA allelic variants, and the best-docked complex (VSA30-1SYS) was further analyzed by molecular dynamics simulation (MDS). The MDS result confirms the interaction of VSA30 with MHC (HLA-allelic variant). Thus, the final vaccine construct was in silico cloned in the pET28a vector for suitable expression in a heterologous system. Therefore, the designed vaccine construct VSA-30 can be developed as an appropriate vaccine to target S. aureus infection. VSA-30 still needs experimental validation to assure the antigenic and immunogenic properties.
Collapse
Affiliation(s)
- Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
32
|
Vaccine Composition Formulated with a Novel Lactobacillus-Derived Exopolysaccharides Adjuvant Provided High Protection against Staphylococcus aureus. Vaccines (Basel) 2021; 9:vaccines9070775. [PMID: 34358191 PMCID: PMC8310297 DOI: 10.3390/vaccines9070775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022] Open
Abstract
A vaccine that effectively targets methicillin-resistant Staphylococcus aureus (MRSA) is urgently needed, and has been the focus of studies by numerous research groups, but with limited success to date. Recently, our team found that exopolysaccharides derived from probiotic Lactobacilluscasei strain WXD030 as an adjuvant-formulated OVA could upregulate IFN-γ and IL-17 expression in CD4+ T cells. In this study, we developed a vaccine (termed rMntC-EPS) composed of S. aureus antigen MntC and Lactobacillus casei exopolysaccharides, which conferred high levels of protection against S. aureus infection. Methods: Six–eight-week-old female mice were vaccinated with purified rMntC-EPS30. The immune protection function of rMntC-EPS30 was assessed by the protective effect of rMntC-EPS30 to S. aureus-induced pulmonary and cutaneous infection in mice, bacterial loads and H&E in injury site, and ELISA for inflammation-related cytokines. The protective mechanism of rMntC-EPS30 was assessed by ELISA for IgG in serum, cytokines in the spleen and lungs of vaccinated mice. In addition, flow cytometry was used for analyzing cellular immune response induced by rMntC-EPS30. For confirmation of our findings, three kinds of mice were used in this study: IL-17A knockout mice, IFN-γ knockout mice and TCRγ/δ knockout mice. Results: rMntC-EPS30 conferred up to 90% protection against S. aureus pulmonary infection and significantly reduced the abscess size in the S. aureus cutaneous model, with clearance of the pathogen. The rMntC-EPS vaccine could induce superior humoral immunity as well as significantly increase IL-17A and IFN-γ production. In addition, we found that rMntC-EPS vaccination induced robust Th 17/γδ T 17 primary and recall responses. Interestingly, this protective effect was distinctly reduced in the IL-17A knockout mice but not in IFN-γ knockout mice. Moreover, in TCRγ/δ knockout mice, rMntC-EPS vaccination neither increased IL-17A secretion nor provided effective protection against S. aureus infection. Conclusions: These data demonstrated that the rMntC formulated with a novel Lactobacillus-derived Exopolysaccharides adjuvant provided high protection against Staphylococcus aureus. The rMntC-EPS vaccine induced γδ T cells and IL-17A might play substantial roles in anti-S. aureus immunity. Our findings provided direct evidence that rMntC-EPS vaccine is a promising candidate for future clinical application against S. aureus-induced pulmonary and cutaneous infection.
Collapse
|
33
|
Wang M, van den Berg S, Mora Hernández Y, Visser AH, Vera Murguia E, Koedijk DGAM, Bellink C, Bruggen H, Bakker-Woudenberg IAJM, van Dijl JM, Buist G. Differential binding of human and murine IgGs to catalytic and cell wall binding domains of Staphylococcus aureus peptidoglycan hydrolases. Sci Rep 2021; 11:13865. [PMID: 34226629 PMCID: PMC8257689 DOI: 10.1038/s41598-021-93359-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen causing high morbidity and mortality. Since multi-drug resistant S. aureus lineages are nowadays omnipresent, alternative tools for preventive or therapeutic interventions, like immunotherapy, are urgently needed. However, there are currently no vaccines against S. aureus. Surface-exposed and secreted proteins are regarded as potential targets for immunization against S. aureus infections. Yet, many potential staphylococcal antigens of this category do not elicit protective immune responses. To obtain a better understanding of this problem, we compared the binding of serum IgGs from healthy human volunteers, highly S. aureus-colonized patients with the genetic blistering disease epidermolysis bullosa (EB), or immunized mice to the purified S. aureus peptidoglycan hydrolases Sle1, Aly and LytM and their different domains. The results show that the most abundant serum IgGs from humans and immunized mice target the cell wall-binding domain of Sle1, and the catalytic domains of Aly and LytM. Interestingly, in a murine infection model, these particular IgGs were not protective against S. aureus bacteremia. In contrast, relatively less abundant IgGs against the catalytic domain of Sle1 and the N-terminal domains of Aly and LytM were almost exclusively detected in sera from EB patients and healthy volunteers. These latter IgGs may contribute to the protection against staphylococcal infections, as previous studies suggest that serum IgGs protect EB patients against severe S. aureus infection. Together, these observations focus attention on the use of particular protein domains for vaccination to direct potentially protective immune responses towards the most promising epitopes within staphylococcal antigens.
Collapse
Affiliation(s)
- Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Sanne van den Berg
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yaremit Mora Hernández
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Aafke Hinke Visser
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Elias Vera Murguia
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Dennis G A M Koedijk
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Channah Bellink
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Hilde Bruggen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Irma A J M Bakker-Woudenberg
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands.
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| |
Collapse
|
34
|
Claesen J, Spagnolo JB, Ramos SF, Kurita KL, Byrd AL, Aksenov AA, Melnik AV, Wong WR, Wang S, Hernandez RD, Donia MS, Dorrestein PC, Kong HH, Segre JA, Linington RG, Fischbach MA, Lemon KP. A Cutibacterium acnes antibiotic modulates human skin microbiota composition in hair follicles. Sci Transl Med 2021; 12:12/570/eaay5445. [PMID: 33208503 DOI: 10.1126/scitranslmed.aay5445] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/17/2019] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
Abstract
The composition of the skin microbiota varies widely among individuals when sampled at the same body site. A key question is which molecular factors determine strain-level variability within sub-ecosystems of the skin microbiota. Here, we used a genomics-guided approach to identify an antibacterial biosynthetic gene cluster in Cutibacterium acnes (formerly Propionibacterium acnes), a human skin commensal bacterium that is widely distributed across individuals and skin sites. Experimental characterization of this biosynthetic gene cluster resulted in identification of a new thiopeptide antibiotic, cutimycin. Analysis of individual human skin hair follicles revealed that cutimycin contributed to the ecology of the skin hair follicle microbiota and helped to reduce colonization of skin hair follicles by Staphylococcus species.
Collapse
Affiliation(s)
- Jan Claesen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jennifer B Spagnolo
- Microbiology, Forsyth Institute, Cambridge, MA 02142, USA.,Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | - Kenji L Kurita
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Allyson L Byrd
- Microbial Genomics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander A Aksenov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, and Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexey V Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, and Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Weng R Wong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shuo Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540, USA
| | - Ryan D Hernandez
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Human Genetics, McGill University and Genome Quebec Innovation Center, Montreal, QC H3A 0C7, Canada
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, and Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julia A Segre
- Microbial Genomics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Michael A Fischbach
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA.
| | - Katherine P Lemon
- Microbiology, Forsyth Institute, Cambridge, MA 02142, USA. .,Division of Infectious Diseases, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.,Section of Infectious Diseases, Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
35
|
Vahdani Y, Faraji N, Haghighat S, Yazdi MH, Mahdavi M. Molecular cloning and immunogenicity evaluation of IsdE protein of methicillin resistant Staphylococcus aureus as vaccine candidates. Microb Pathog 2021; 157:104953. [PMID: 34044042 DOI: 10.1016/j.micpath.2021.104953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Methicillin resistant Staphylococcus aureus is one of the most common causes of nosocomial infections. Current therapeutic approaches are not always effective in treatment of nosocomial infections, thus, there is a global demand for the development of novel therapeutic strategies. Staphylococcus aureus possesses various systems to uptake iron. One of the most important of them is iron regulated surface determinant (Isd) which can be an excellent candidate for immunization. Here, following the preparation of recombinant IsdE protein, 20 μg of r-IsdE prepared in various formulations were subcutaneously injected in different groups of mice. Two booster vaccinations were administered in two-week intervals, then, blood samples were collected two weeks after each injection. ELISA was used for the evaluation of total IgG and its isotypes (IgG1 and IgG2a) as well as quantity of IFN-γ, IL-4, IL-17, IL-2 and TNF-α cytokines on the serum samples. Meanwhile, the immunized mice were intraperitoneally inoculated with 5 × 108 CFU of bacteria then, their mortality rate and bacterial load were assessed. Our results showed that immunization with the r-IsdE in various formulations raised total IgG and isotypes (IgG1 and IgG2a) compared with the control groups. Moreover, r-IsdE formulation with MF59 and Freund adjuvants raised production of IFN-γ, IL-4, IL-17, IL-2 and TNF-α cytokines and provided an acceptable protection against Staphylococcus aureus infections. Results of present study suggest that r-IsdE which can easily be expressed by Escherichia coli BL21 system shows a great potential to develop a protective immunity against infections caused by Methicillin resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Yasaman Vahdani
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Faraji
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad Hossein Yazdi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Mahdavi
- Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Radke EE, Li Z, Hernandez DN, El Bannoudi H, Kosakovsky Pond SL, Shopsin B, Lopez P, Fenyö D, Silverman GJ. Diversity of Functionally Distinct Clonal Sets of Human Conventional Memory B Cells That Bind Staphylococcal Protein A. Front Immunol 2021; 12:662782. [PMID: 33995388 PMCID: PMC8113617 DOI: 10.3389/fimmu.2021.662782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus, a common cause of serious and often fatal infections, is well-armed with secreted factors that disarm host immune defenses. Highly expressed in vivo during infection, Staphylococcal protein A (SpA) is reported to also contribute to nasal colonization that can be a prelude to invasive infection. Co-evolution with the host immune system has provided SpA with an Fc-antibody binding site, and a Fab-binding site responsible for non-immune superantigen interactions via germline-encoded surfaces expressed on many human BCRs. We wondered whether the recurrent exposures to S. aureus commonly experienced by adults, result in the accumulation of memory B-cell responses to other determinants on SpA. We therefore isolated SpA-specific class-switched memory B cells, and characterized their encoding VH : VL antibody genes. In SpA-reactive memory B cells, we confirmed a striking bias in usage for VH genes, which retain the surface that mediates the SpA-superantigen interaction. We postulate these interactions reflect co-evolution of the host immune system and SpA, which during infection results in immune recruitment of an extraordinarily high prevalence of B cells in the repertoire that subverts the augmentation of protective defenses. Herein, we provide the first evidence that human memory responses are supplemented by B-cell clones, and circulating-antibodies, that bind to SpA determinants independent of the non-immune Fc- and Fab-binding sites. In parallel, we demonstrate that healthy individuals, and patients recovering from S. aureus infection, both have circulating antibodies with these conventional binding specificities. These findings rationalize the potential utility of incorporating specially engineered SpA proteins into a protective vaccine.
Collapse
Affiliation(s)
- Emily E Radke
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States.,Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Zhi Li
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States.,Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, United States
| | - David N Hernandez
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Hanane El Bannoudi
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Sergei L Kosakovsky Pond
- Institute of Genomic and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
| | - Bo Shopsin
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Peter Lopez
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States.,Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, United States
| | - Gregg J Silverman
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
37
|
Prajsnar TK, Serba JJ, Dekker BM, Gibson JF, Masud S, Fleming A, Johnston SA, Renshaw SA, Meijer AH. The autophagic response to Staphylococcus aureus provides an intracellular niche in neutrophils. Autophagy 2021; 17:888-902. [PMID: 32174246 PMCID: PMC8078660 DOI: 10.1080/15548627.2020.1739443] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 02/17/2020] [Accepted: 02/28/2020] [Indexed: 11/22/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen causing multiple pathologies, from cutaneous lesions to life-threatening sepsis. Although neutrophils contribute to immunity against S. aureus, multiple lines of evidence suggest that these phagocytes can provide an intracellular niche for staphylococcal dissemination. However, the mechanism of neutrophil subversion by intracellular S. aureus remains unknown. Targeting of intracellular pathogens by macroautophagy/autophagy is recognized as an important component of host innate immunity, but whether autophagy is beneficial or detrimental to S. aureus-infected hosts remains controversial. Here, using larval zebrafish, we showed that the autophagy marker Lc3 rapidly decorates S. aureus following engulfment by macrophages and neutrophils. Upon phagocytosis by neutrophils, Lc3-positive, non-acidified spacious phagosomes are formed. This response is dependent on phagocyte NADPH oxidase as both cyba/p22phox knockdown and diphenyleneiodonium (DPI) treatment inhibited Lc3 decoration of phagosomes. Importantly, NADPH oxidase inhibition diverted neutrophil S. aureus processing into tight acidified vesicles, which resulted in increased host resistance to the infection. Some intracellular bacteria within neutrophils were also tagged by Sqstm1/p62-GFP fusion protein and loss of Sqstm1 impaired host defense. Together, we have shown that intracellular handling of S. aureus by neutrophils is best explained by Lc3-associated phagocytosis (LAP), which appears to provide an intracellular niche for bacterial pathogenesis, while the selective autophagy receptor Sqstm1 is host-protective. The antagonistic roles of LAP and Sqstm1-mediated pathways in S. aureus-infected neutrophils may explain the conflicting reports relating to anti-staphylococcal autophagy and provide new insights for therapeutic strategies against antimicrobial-resistant Staphylococci.Abbreviations: ATG: autophagy related; CFU: colony-forming units; CMV: cytomegalovirus; Cyba/P22phox: cytochrome b-245, alpha polypeptide; DMSO: dimethyl sulfoxide; DPI: diphenyleneiodonium; EGFP: enhanced green fluorescent protein; GFP: green fluorescent protein; hpf: hours post-fertilization; hpi: hours post-infection; Irf8: interferon regulatory factor 8; LAP: LC3-associated phagocytosis; lyz: lysozyme; LWT: london wild type; Map1lc3/Lc3: microtubule-associated protein 1 light chain 3; NADPH oxidase: nicotinamide adenine dinucleotide phosphate oxidase; RFP: red fluorescent protein; ROS: reactive oxygen species; RT-PCR: reverse transcriptase polymerase chain reaction; Sqstm1/p62: sequestosome 1; Tg: transgenic; TSA: tyramide signal amplification.
Collapse
Affiliation(s)
- Tomasz K. Prajsnar
- Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Justyna J. Serba
- Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Bernice M. Dekker
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Josie F. Gibson
- Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Krebs Institute and Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Samrah Masud
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Angeleen Fleming
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Simon A. Johnston
- Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Stephen A. Renshaw
- Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Annemarie H. Meijer
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
| |
Collapse
|
38
|
Tam K, Lacey KA, Devlin JC, Coffre M, Sommerfield A, Chan R, O'Malley A, Koralov SB, Loke P, Torres VJ. Targeting leukocidin-mediated immune evasion protects mice from Staphylococcus aureus bacteremia. J Exp Med 2021; 217:151907. [PMID: 32602902 PMCID: PMC7478724 DOI: 10.1084/jem.20190541] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/05/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is responsible for various diseases in humans, and recurrent infections are commonly observed. S. aureus produces an array of bicomponent pore-forming toxins that target and kill leukocytes, known collectively as the leukocidins. The contribution of these leukocidins to impair the development of anti–S. aureus adaptive immunity and facilitate reinfection is unclear. Using a murine model of recurrent bacteremia, we demonstrate that infection with a leukocidin mutant results in increased levels of anti–S. aureus antibodies compared with mice infected with the WT parental strain, indicating that leukocidins negatively impact the generation of anti–S. aureus antibodies in vivo. We hypothesized that neutralizing leukocidin-mediated immune subversion by vaccination may shift this host-pathogen interaction in favor of the host. Leukocidin-immunized mice produce potent leukocidin-neutralizing antibodies and robust Th1 and Th17 responses, which collectively protect against bloodstream infections. Altogether, these results demonstrate that blocking leukocidin-mediated immune evasion can promote host protection against S. aureus bloodstream infection.
Collapse
Affiliation(s)
- Kayan Tam
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Keenan A Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Joseph C Devlin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Maryaline Coffre
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Alexis Sommerfield
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Rita Chan
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Aidan O'Malley
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Sergei B Koralov
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - P'ng Loke
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
39
|
Kranjec C, Morales Angeles D, Torrissen Mårli M, Fernández L, García P, Kjos M, Diep DB. Staphylococcal Biofilms: Challenges and Novel Therapeutic Perspectives. Antibiotics (Basel) 2021; 10:131. [PMID: 33573022 PMCID: PMC7911828 DOI: 10.3390/antibiotics10020131] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Staphylococci, like Staphylococcus aureus and S. epidermidis, are common colonizers of the human microbiota. While being harmless in many cases, many virulence factors result in them being opportunistic pathogens and one of the major causes of hospital-acquired infections worldwide. One of these virulence factors is the ability to form biofilms-three-dimensional communities of microorganisms embedded in an extracellular polymeric matrix (EPS). The EPS is composed of polysaccharides, proteins and extracellular DNA, and is finely regulated in response to environmental conditions. This structured environment protects the embedded bacteria from the human immune system and decreases their susceptibility to antimicrobials, making infections caused by staphylococci particularly difficult to treat. With the rise of antibiotic-resistant staphylococci, together with difficulty in removing biofilms, there is a great need for new treatment strategies. The purpose of this review is to provide an overview of our current knowledge of the stages of biofilm development and what difficulties may arise when trying to eradicate staphylococcal biofilms. Furthermore, we look into promising targets and therapeutic methods, including bacteriocins and phage-derived antibiofilm approaches.
Collapse
Affiliation(s)
- Christian Kranjec
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Marita Torrissen Mårli
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Lucía Fernández
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Pilar García
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Dzung B. Diep
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| |
Collapse
|
40
|
Wang X, Koffi PF, English OF, Lee JC. Staphylococcus aureus Extracellular Vesicles: A Story of Toxicity and the Stress of 2020. Toxins (Basel) 2021; 13:toxins13020075. [PMID: 33498438 PMCID: PMC7909408 DOI: 10.3390/toxins13020075] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus generates and releases extracellular vesicles (EVs) that package cytosolic, cell-wall associated, and membrane proteins, as well as glycopolymers and exoproteins, including alpha hemolysin, leukocidins, phenol-soluble modulins, superantigens, and enzymes. S. aureus EVs, but not EVs from pore-forming toxin-deficient strains, were cytolytic for a variety of mammalian cell types, but EV internalization was not essential for cytotoxicity. Because S. aureus is subject to various environmental stresses during its encounters with the host during infection, we assessed how these exposures affected EV production in vitro. Staphylococci grown at 37 °C or 40 °C did not differ in EV production, but cultures incubated at 30 °C yielded more EVs when grown to the same optical density. S. aureus cultivated in the presence of oxidative stress, in iron-limited media, or with subinhibitory concentrations of ethanol, showed greater EV production as determined by protein yield and quantitative immunoblots. In contrast, hyperosmotic stress or subinhibitory concentrations of erythromycin reduced S. aureus EV yield. EVs represent a novel S. aureus secretory system that is affected by a variety of stress responses and allows the delivery of biologically active pore-forming toxins and other virulence determinants to host cells.
Collapse
|
41
|
Klimka A, Mertins S, Nicolai AK, Rummler LM, Higgins PG, Günther SD, Tosetti B, Krut O, Krönke M. Epitope-specific immunity against Staphylococcus aureus coproporphyrinogen III oxidase. NPJ Vaccines 2021; 6:11. [PMID: 33462229 PMCID: PMC7813823 DOI: 10.1038/s41541-020-00268-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus represents a serious infectious threat to global public health and a vaccine against S. aureus represents an unmet medical need. We here characterise two S. aureus vaccine candidates, coproporphyrinogen III oxidase (CgoX) and triose phosphate isomerase (TPI), which fulfil essential housekeeping functions in heme synthesis and glycolysis, respectively. Immunisation with rCgoX and rTPI elicited protective immunity against S. aureus bacteremia. Two monoclonal antibodies (mAb), CgoX-D3 and TPI-H8, raised against CgoX and TPI, efficiently provided protection against S. aureus infection. MAb-CgoX-D3 recognised a linear epitope spanning 12 amino acids (aa), whereas TPI-H8 recognised a larger discontinuous epitope. The CgoX-D3 epitope conjugated to BSA elicited a strong, protective immune response against S. aureus infection. The CgoX-D3 epitope is highly conserved in clinical S. aureus isolates, indicating its potential wide usability against S. aureus infection. These data suggest that immunofocusing through epitope-based immunisation constitutes a strategy for the development of a S. aureus vaccine with greater efficacy and better safety profile.
Collapse
Affiliation(s)
- Alexander Klimka
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Sonja Mertins
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Anne Kristin Nicolai
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Liza Marie Rummler
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Saskia Diana Günther
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany.,Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Bettina Tosetti
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany.,Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Oleg Krut
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,Paul-Ehrlich Institute, Langen, Germany
| | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany. .,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany. .,Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), Cologne, Germany.
| |
Collapse
|
42
|
Armentrout EI, Liu GY, Martins GA. T Cell Immunity and the Quest for Protective Vaccines against Staphylococcus aureus Infection. Microorganisms 2020; 8:microorganisms8121936. [PMID: 33291260 PMCID: PMC7762175 DOI: 10.3390/microorganisms8121936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a wide-spread human pathogen, and one of the top causative agents of nosocomial infections. The prevalence of antibiotic-resistant S. aureus strains, which are associated with higher mortality and morbidity rates than antibiotic-susceptible strains, is increasing around the world. Vaccination would be an effective preventive measure against S. aureus infection, but to date, every vaccine developed has failed in clinical trials, despite inducing robust antibody responses. These results suggest that induction of humoral immunity does not suffice to confer protection against the infection. Evidence from studies in murine models and in patients with immune defects support a role of T cell-mediated immunity in protective responses against S. aureus. Here, we review the current understanding of the mechanisms underlying adaptive immunity to S. aureus infections and discuss these findings in light of the recent S. aureus vaccine trial failures. We make the case for the need to develop anti-S. aureus vaccines that can specifically elicit robust and durable protective memory T cell subsets.
Collapse
Affiliation(s)
- Erin I. Armentrout
- Lung Institute, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA;
- Division of Pulmonary and Critical Care Medicine, CSMC, Los Angeles, CA 90048, USA
| | - George Y. Liu
- Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92161, USA;
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gislâine A. Martins
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute (IBIRI), CSMC, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Research Division of Immunology, CSMC, Los Angeles, CA 90048, USA
- Department of Medicine, Division of Gastroenterology, CSMC, Los Angeles, CA 90048, USA
- Correspondence:
| |
Collapse
|
43
|
Uebele J, Habenicht K, Ticha O, Bekeredjian-Ding I. Staphylococcus aureus Protein A Induces Human Regulatory T Cells Through Interaction With Antigen-Presenting Cells. Front Immunol 2020; 11:581713. [PMID: 33117390 PMCID: PMC7560526 DOI: 10.3389/fimmu.2020.581713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
Despite continuous exposure and development of specific immunity, Staphylococcus aureus (Sa) remains one of the leading causes of severe infections worldwide. Although innate immune defense mechanisms are well understood, the role of the T cell response has not been fully elucidated. Here, we demonstrate that Sa and one of its major virulence factors protein A (SpA) induce human regulatory T cells (Tregs), key players in immune tolerance. In human PBMC and MoDC/T cell cocultures CD4+CD25+CD127dim Tregs were induced upon stimulation with Sa and to a lower extent with SpA alone. Treg induction was strongly, but not exclusively, dependent on SpA, and independent of antigen presentation or T cell epitope recognition. Lastly, soluble factors in the supernatant of SpA-stimulated MoDC were sufficient to trigger Treg formation, while supernatants of MoDC/T cell cocultures containing Sa-triggered Tregs displayed T cell suppressive activity. In summary, our findings identify a new immunosuppressory function of SpA, which leads to release of soluble, Treg-inducing factors and might be relevant to establish colonization.
Collapse
Affiliation(s)
- Julia Uebele
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Olga Ticha
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | | |
Collapse
|
44
|
Zeng H, Zhang J, Song X, Zeng J, Yuan Y, Chen Z, Xu L, Gou Q, Yang F, Zeng N, Zhang Y, Peng L, Zhao L, Zhu J, Liu Y, Luo P, Zou Q, Zhao Z. An Immunodominant Epitope-Specific Monoclonal Antibody Cocktail Improves Survival in a Mouse Model of Staphylococcus aureus Bacteremia. J Infect Dis 2020; 223:1743-1752. [PMID: 32959055 DOI: 10.1093/infdis/jiaa602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/18/2020] [Indexed: 01/22/2023] Open
Abstract
To date, no vaccine or monoclonal antibody (mAb) against Staphylococcus aureus has been approved for use in humans. Our laboratory has developed a 5-antigen S. aureus vaccine (rFSAV), which is now under efficacy evaluation in a phase 2 clinical trial. In the current study, using overlapping peptides and antiserum from rFSAV-immunized volunteers, we identified 7 B-cell immunodominant epitopes on 4 antigens in rFSAV, including 5 novel epitopes (Hla48-65, IsdB402-419, IsdB432-449, SEB78-95, and MntC7-24). Ten immunodominant epitope mAbs were generated against these epitopes, and all of them exhibited partial protection in a mouse sepsis model. Four robust mAbs were used together as an mAb cocktail to prevent methicillin-resistant S. aureus strain 252 infection. The results showed that the mAb cocktail was efficient in combating S. aureus infection and that its protective efficacy correlated with a reduced bacterial burden and decreased infection pathology, which demonstrates that the mAb cocktail is a promising S. aureus vaccine candidate.
Collapse
Affiliation(s)
- Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Xu Song
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Jiangmin Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Yue Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Zhifu Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Limin Xu
- Chengdu Olymvax Biotechnology Co, Ltd, Chengdu, Sichuan, People's Republic of China
| | - Qiang Gou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Feng Yang
- Chengdu Olymvax Biotechnology Co, Ltd, Chengdu, Sichuan, People's Republic of China
| | - Ni Zeng
- Chengdu Olymvax Biotechnology Co, Ltd, Chengdu, Sichuan, People's Republic of China
| | - Yi Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Liusheng Peng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Liqun Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Jiang Zhu
- Department of Pathology, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yuanyuan Liu
- Medical Corps Department, Unit 69016, Chinese People's Liberation Army, Xinjiang, People's Republic of China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
45
|
Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev 2020; 44:123-153. [PMID: 31841134 PMCID: PMC7053580 DOI: 10.1093/femsre/fuz030] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Invasive Staphylococcus aureus infections are a leading cause of morbidity and mortality in both hospital and community settings, especially with the widespread emergence of virulent and multi-drug resistant methicillin-resistant S. aureus strains. There is an urgent and unmet clinical need for non-antibiotic immune-based approaches to treat these infections as the increasing antibiotic resistance is creating a serious threat to public health. However, all vaccination attempts aimed at preventing S. aureus invasive infections have failed in human trials, especially all vaccines aimed at generating high titers of opsonic antibodies against S. aureus surface antigens to facilitate antibody-mediated bacterial clearance. In this review, we summarize the data from humans regarding the immune responses that protect against invasive S. aureus infections as well as host genetic factors and bacterial evasion mechanisms, which are important to consider for the future development of effective and successful vaccines and immunotherapies against invasive S. aureus infections in humans. The evidence presented form the basis for a hypothesis that staphylococcal toxins (including superantigens and pore-forming toxins) are important virulence factors, and targeting the neutralization of these toxins are more likely to provide a therapeutic benefit in contrast to prior vaccine attempts to generate antibodies to facilitate opsonophagocytosis.
Collapse
Affiliation(s)
- Lloyd S Miller
- Immunology, Janssen Research and Development, 1400 McKean Road, Spring House, PA, 19477, USA.,Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Cancer Research Building 2, Suite 209, Baltimore, MD, 21231, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD, 21287, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD, 21287, USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Vance G Fowler
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, 315 Trent Drive, Hanes House, Durham, NC, 27710, USA.,Duke Clinical Research Institute, Duke University Medical Center, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, 1000 North Oak Avenue, Marshfield, WI, 54449, USA.,Computation and Informatics in Biology and Medicine, University of Wisconsin, 425 Henry Mall, Room 3445, Madison, WI, 53706, USA
| | - Warren E Rose
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 4123 Rennebohm Hall, Madison, WI, 53705 USA
| | - Richard A Proctor
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, 1550 Linden Drive, Microbial Sciences Building, Room 1334, Madison, WI, 53705, USA
| |
Collapse
|
46
|
Heras C, Jiménez-Holguín J, Doadrio AL, Vallet-Regí M, Sánchez-Salcedo S, Salinas AJ. Multifunctional antibiotic- and zinc-containing mesoporous bioactive glass scaffolds to fight bone infection. Acta Biomater 2020; 114:395-406. [PMID: 32717329 DOI: 10.1016/j.actbio.2020.07.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/18/2020] [Accepted: 07/21/2020] [Indexed: 12/28/2022]
Abstract
Bone regeneration is a clinical challenge which requires multiple approaches. Sometimes, it also includes the development of osteogenic and antibacterial biomaterials to treat the emergence of possible infection processes arising from surgery. This study evaluates the antibacterial properties of gelatin-coated meso-macroporous scaffolds based on the bioactive glass 80%SiO2-15%CaO-5%P2O5 (mol-%) before (BL-GE) and after being doped with 4% of ZnO (4ZN-GE) and loaded with both saturated and the minimal inhibitory concentrations of one of the antibiotics: levofloxacin (LEVO), vancomycin (VANCO), rifampicin (RIFAM) or gentamicin (GENTA). After physical-chemical characterization of materials, release studies of inorganic ions and antibiotics from the scaffolds were carried out. Moreover, molecular modelling allowed determining the electrostatic potential density maps and the hydrogen bonds of antibiotics and the glass matrix. Antibacterial in vitro studies (in planktonic, inhibition halos and biofilm destruction) with S. aureus and E. coli as bacteria models showed a synergistic effect of zinc ions and antibiotics. The effect was especially noticeable in planktonic cultures of S. aureus with 4ZN-GE scaffolds loaded with VANCO, LEVO or RIFAM and in E. coli cultures with LEVO or GENTA. Moreover, S. aureus biofilms were completely destroyed by 4ZN-GE scaffolds loaded with VANCO, LEVO or RIFAM and the E. coli biofilm total destruction was accomplished with 4ZN-GE scaffolds loaded with GENTA or LEVO. This approach could be an important step in the fight against microbial resistance and provide needed options for bone infection treatment. STATEMENT OF SIGNIFICANCE: Antibacterial capabilities of scaffolds based on mesoporous bioactive glasses before and after adding a 4% ZnO and loading with saturated and minimal inhibitory concentrations of levofloxacin, vancomycin, gentamicin or rifampicin were evaluated. Staphylococcus aureus and Escherichia coli were the infection model strains for the performed assays of inhibition zone, planktonic growth and biofilm. Good inhibition results and a synergistic effect of zinc ions released from scaffolds and antibiotics were observed. Thus, the amount of antibiotic required to inhibit the bacterial planktonic growth was substantially reduced with the ZnO inclusion in the scaffold. This study shows that the ZnO-MBG osteogenic scaffolds are multifunctional tools in bone tissue engineering because they are able to fight bacterial infections with lower antibiotic dosage.
Collapse
Affiliation(s)
- C Heras
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain
| | - J Jiménez-Holguín
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain
| | - A L Doadrio
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - M Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - S Sánchez-Salcedo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| | - A J Salinas
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
47
|
|
48
|
Bekeredjian-Ding I. Challenges for Clinical Development of Vaccines for Prevention of Hospital-Acquired Bacterial Infections. Front Immunol 2020; 11:1755. [PMID: 32849627 PMCID: PMC7419648 DOI: 10.3389/fimmu.2020.01755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Increasing antibiotic resistance in bacteria causing endogenous infections has entailed a need for innovative approaches to therapy and prophylaxis of these infections and raised a new interest in vaccines for prevention of colonization and infection by typically antibiotic resistant pathogens. Nevertheless, there has been a long history of failures in late stage clinical development of this type of vaccines, which remains not fully understood. This article provides an overview on present and past vaccine developments targeting nosocomial bacterial pathogens; it further highlights the specific challenges associated with demonstrating clinical efficacy of these vaccines and the facts to be considered in future study designs. Notably, these vaccines are mainly applied to subjects with preexistent immunity to the target pathogen, transient or chronic immunosuppression and ill-defined microbiome status. Unpredictable attack rates and changing epidemiology as well as highly variable genetic and immunological strain characteristics complicate the development. In views of the clinical need, re-thinking of the study designs and expectations seems warranted: first of all, vaccine development needs to be footed on a clear rationale for choosing the immunological mechanism of action and the optimal time point for vaccination, e.g., (1) prevention (or reduction) of colonization vs. prevention of infection and (2) boosting of a preexistent immune response vs. altering the quality of the immune response. Furthermore, there are different, probably redundant, immunological and microbiological defense mechanisms that provide protection from infection. Their interplay is not well-understood but as a consequence their effect might superimpose vaccine-mediated resolution of infection and lead to failure to demonstrate efficacy. This implies that improved characterization of patient subpopulations within the trial population should be obtained by pro- and retrospective analyses of trial data on subject level. Statistical and systems biology approaches could help to define immune and microbiological biomarkers that discern populations that benefit from vaccination from those where vaccines might not be effective.
Collapse
Affiliation(s)
- Isabelle Bekeredjian-Ding
- Division of Microbiology, Langen, Germany.,Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
49
|
Avila-Agüero ML, Soriano-Fallas A, Brenes-Chacón H, Brea-Del Castillo J. Can vaccines act as a mechanism to reduce antimicrobial resistance? Expert Rev Vaccines 2020; 19:595-598. [PMID: 32657176 DOI: 10.1080/14760584.2020.1791087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- María L Avila-Agüero
- Centro de Ciencias Médicas de la Caja Costarricense de Seguro Social (CCSS) , San José, Costa Rica.,Affiliated Researcher Center for Infectious Disease Modeling and Analysis (CIDMA), Yale School of Public Health; New Haven , CT, USA
| | - Alejandra Soriano-Fallas
- Centro de Ciencias Médicas de la Caja Costarricense de Seguro Social (CCSS) , San José, Costa Rica
| | - Helena Brenes-Chacón
- Centro de Ciencias Médicas de la Caja Costarricense de Seguro Social (CCSS) , San José, Costa Rica
| | - José Brea-Del Castillo
- Presidente De La Asociación Latinoamericana De Pediatría (ALAPE), Pasado-Presidente De La Sociedad Latinoamericana De Infectología Pediátrica (SLIPE) , Santo Domingo, República Dominicana
| |
Collapse
|
50
|
Dreisbach A, Wang M, van der Kooi-Pol MM, Reilman E, Koedijk DGAM, Mars RAT, Duipmans J, Jonkman M, Benschop JJ, Bonarius HPJ, Groen H, Hecker M, Otto A, Bäsell K, Bernhardt J, Back JW, Becher D, Buist G, van Dijl JM. Tryptic Shaving of Staphylococcus aureus Unveils Immunodominant Epitopes on the Bacterial Cell Surface. J Proteome Res 2020; 19:2997-3010. [DOI: 10.1021/acs.jproteome.0c00043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annette Dreisbach
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Magdalena M. van der Kooi-Pol
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Ewoud Reilman
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Dennis G. A. M. Koedijk
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Ruben A. T. Mars
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - José Duipmans
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Marcel Jonkman
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Joris J. Benschop
- Pepscan Therapeutics BV, P. O. Box 2098, 8203 AB Lelystad, the Netherlands
| | | | - Herman Groen
- IQ Therapeutics, Rozenburglaan 13a, 9727 DL Groningen, the Netherlands
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Andreas Otto
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Katrin Bäsell
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Jörg Bernhardt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Jaap Willem Back
- Pepscan Therapeutics BV, P. O. Box 2098, 8203 AB Lelystad, the Netherlands
| | - Dörte Becher
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| |
Collapse
|