1
|
Rasquel-Oliveira FS, Ribeiro JM, Martelossi-Cebinelli G, Costa FB, Nakazato G, Casagrande R, Verri WA. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Pathogens 2025; 14:185. [PMID: 40005560 PMCID: PMC11858194 DOI: 10.3390/pathogens14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium of significant clinical importance, known for its versatility and ability to cause a wide array of infections, such as osteoarticular, pulmonary, cardiovascular, device-related, and hospital-acquired infections. This review describes the most recent evidence of the pathogenic potential of S. aureus, which is commonly part of the human microbiota but can lead to severe infections. The prevalence of pathogenic S. aureus in hospital and community settings contributes to substantial morbidity and mortality, particularly in individuals with compromised immune systems. The immunopathogenesis of S. aureus infections involves intricate interactions with the host immune and non-immune cells, characterized by various virulence factors that facilitate adherence, invasion, and evasion of the host's defenses. This review highlights the complexity of S. aureus infections, ranging from mild to life-threatening conditions, and underscores the growing public health concern posed by multidrug-resistant strains, including methicillin-resistant S. aureus (MRSA). This article aims to provide an updated perspective on S. aureus-related infections, highlighting the main diseases linked to this pathogen, how the different cell types, virulence factors, and signaling molecules are involved in the immunopathogenesis, and the future perspectives to overcome the current challenges to treat the affected individuals.
Collapse
Affiliation(s)
- Fernanda S. Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Jhonatan Macedo Ribeiro
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Fernanda Barbosa Costa
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| |
Collapse
|
2
|
Goh E, Chavatte JM, Lin RTP, Ng LFP, Rénia L, Oon HH. Vaccines in Dermatology-Present and Future: A Review. Vaccines (Basel) 2025; 13:125. [PMID: 40006672 PMCID: PMC11860801 DOI: 10.3390/vaccines13020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Dermatological vaccines have emerged as critical tools in preventing and managing a wide spectrum of skin conditions ranging from infectious diseases to malignancies. By synthesizing evidence from existing literature, this review aims to comprehensively evaluate the efficacy, safety, and immunogenicity of vaccines used in dermatology, including both approved vaccines and those currently being researched. Vaccines discussed in this paper include those targeting dermatoses and malignancies (e.g., acne vulgaris, atopic dermatitis, and melanoma); infectious diseases (e.g., human papillomavirus (HPV); varicella zoster virus (VZV); herpes zoster (HZ); warts; smallpox; mpox (monkeypox); hand, foot, and mouth disease (HFMD); candidiasis and Group B Streptococcus (GBS); and neglected tropical diseases (e.g., Buruli ulcer, leprosy, and leishmaniasis). Through this review, we aim to provide a detailed understanding of the role of vaccines in dermatology, identify knowledge gaps, and propose areas for future research.
Collapse
Affiliation(s)
- Eyan Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
| | - Jean-Marc Chavatte
- National Public Health Laboratory, Singapore 308442, Singapore; (J.-M.C.); (R.T.P.L.)
| | - Raymond T. P. Lin
- National Public Health Laboratory, Singapore 308442, Singapore; (J.-M.C.); (R.T.P.L.)
- National University Hospital Singapore, Singapore 119077, Singapore
| | - Lisa F. P. Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
- A*STAR Infectious Diseases Labs (A*STAR IDL), Agency for Science, Technology, and Research (A*STAR), Singapore 138648, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Laurent Rénia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
- A*STAR Infectious Diseases Labs (A*STAR IDL), Agency for Science, Technology, and Research (A*STAR), Singapore 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Hazel H. Oon
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National Skin Centre and Skin Research Institute of Singapore, Singapore 308205, Singapore
| |
Collapse
|
3
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
4
|
Caldera JR, Tsai CM, Trieu D, Gonzalez C, Hajam IA, Du X, Lin B, Liu GY. The characteristics of pre-existing humoral imprint determine efficacy of S. aureus vaccines and support alternative vaccine approaches. Cell Rep Med 2024; 5:101360. [PMID: 38232694 PMCID: PMC10829788 DOI: 10.1016/j.xcrm.2023.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/15/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024]
Abstract
The failure of the Staphylococcus aureus (SA) IsdB vaccine trial can be explained by the recall of non-protective immune imprints from prior SA exposure. Here, we investigate natural human SA humoral imprints to understand their broader impact on SA immunizations. We show that antibody responses against SA cell-wall-associated antigens (CWAs) are non-opsonic, while antibodies against SA toxins are neutralizing. Importantly, the protective characteristics of the antibody imprints accurately predict the failure of corresponding vaccines against CWAs and support vaccination against toxins. In passive immunization platforms, natural anti-SA human antibodies reduce the efficacy of the human monoclonal antibodies suvratoxumab and tefibazumab, consistent with the results of their respective clinical trials. Strikingly, in the absence of specific humoral memory responses, active immunizations are efficacious in both naive and SA-experienced mice. Overall, our study points to a practical and predictive approach to evaluate and develop SA vaccines based on pre-existing humoral imprint characteristics.
Collapse
Affiliation(s)
- J R Caldera
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chih-Ming Tsai
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Desmond Trieu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cesia Gonzalez
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Irshad A Hajam
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Du
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brian Lin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - George Y Liu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Division of Infectious Diseases, Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
5
|
Zhu F, Ma S, Wen H, Rao M, Zhang P, Peng W, Cui Y, Yang H, Tan C, Chen J, Pan P. Development of a novel circular mRNA vaccine of six protein combinations against Staphylococcus aureus. J Biomol Struct Dyn 2023; 41:10525-10545. [PMID: 36533395 DOI: 10.1080/07391102.2022.2154846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Staphylococcus aureus is an extraordinarily versatile pathogen, which is currently the most common cause of nosocomial and community infections. Considering that increased antibiotic resistance may hasten the spread of S. aureus, developing an effective vaccine can possibly aid in its control. The RNA vaccine coding immunodominance epitopes from bacteria provide a potential method to induce T and B cell immune responses by translating them into cells. Furthermore, using bioinformatics to create circular RNA vaccines can ensure that the translation of the vaccine is potent and durable. In this study, 7 cytotoxic T lymphocyte (CTL) epitopes, 4 helper T lymphocyte (HTL) epitopes, and 15 B cell epitopes from 6 proteins that are closely associated with the S. aureus virulence and invasion and critical to natural immune responses were mapped. To verify their interactions, all epitopes were docked with the corresponding MHC alleles. The final vaccine was composed of 26 epitopes and the adjuvant β-defencin, and a disulfide bond was also introduced to improve its stability. After the prediction of structure and characteristics, the developed vaccine was docked with TLR2 and TLR4, which induce immunological responses in S. aureus infection. According to the molecular dynamic simulation, the vaccine might interact strongly with TLRs. Meanwhile, it performed well in immunological simulation and population coverage prediction. Finally, the vaccine was converted into a circular RNA using a series of helper sequences to aid in vaccine circulation translation. Hopefully, this proposed structure will be proven to serve a viable vaccine against S. aureus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Haicheng Wen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Mingjun Rao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Peipei Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Wenzhong Peng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Yanhui Cui
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Hang Yang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Caixia Tan
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| |
Collapse
|
6
|
Hsieh RC, Liu R, Burgin DJ, Otto M. Understanding mechanisms of virulence in MRSA: implications for antivirulence treatment strategies. Expert Rev Anti Infect Ther 2023; 21:911-928. [PMID: 37501364 DOI: 10.1080/14787210.2023.2242585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen, often causing recurrent and deadly infections in the hospital and community. Many S. aureus virulence factors have been suggested as potential targets for antivirulence therapy to decrease the threat of diminishing antibiotic availability. Antivirulence methods hold promise due to their adjunctive and prophylactic potential and decreased risk for selective pressure. AREAS COVERED This review describes the dominant virulence mechanisms exerted by MRSA and antivirulence therapeutics that are currently undergoing testing in clinical or preclinical stages. We also discuss the advantages and downsides of several investigational antivirulence approaches, including the targeting of bacterial transporters, host-directed therapy, and quorum-sensing inhibitors. For this review, a systematic search of literature on PubMed, Google Scholar, and Web of Science for relevant search terms was performed in April and May 2023. EXPERT OPINION Vaccine and antibody strategies have failed in clinical trials and could benefit from more basic science-informed approaches. Antivirulence-targeting approaches need to be set up better to meet the requirements of drug development, rather than only providing limited results to provide 'proof-of-principle' translational value of pathogenesis research. Nevertheless, there is great potential of such strategies and potential particular promise for novel probiotic approaches.
Collapse
Affiliation(s)
- Roger C Hsieh
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ryan Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Dylan J Burgin
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
7
|
Smithers L, Degtjarik O, Weichert D, Huang CY, Boland C, Bowen K, Oluwole A, Lutomski C, Robinson CV, Scanlan EM, Wang M, Olieric V, Shalev-Benami M, Caffrey M. Structure snapshots reveal the mechanism of a bacterial membrane lipoprotein N-acyltransferase. SCIENCE ADVANCES 2023; 9:eadf5799. [PMID: 37390210 PMCID: PMC10313180 DOI: 10.1126/sciadv.adf5799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Bacterial lipoproteins (BLPs) decorate the surface of membranes in the cell envelope. They function in membrane assembly and stability, as enzymes, and in transport. The final enzyme in the BLP synthesis pathway is the apolipoprotein N-acyltransferase, Lnt, which is proposed to act by a ping-pong mechanism. Here, we use x-ray crystallography and cryo-electron microscopy to chart the structural changes undergone during the progress of the enzyme through the reaction. We identify a single active site that has evolved to bind, individually and sequentially, substrates that satisfy structural and chemical criteria to position reactive parts next to the catalytic triad for reaction. This study validates the ping-pong mechanism, explains the molecular bases for Lnt's substrate promiscuity, and should facilitate the design of antibiotics with minimal off-target effects.
Collapse
Affiliation(s)
- Luke Smithers
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Oksana Degtjarik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dietmar Weichert
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Coilín Boland
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Katherine Bowen
- School of Chemistry, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Abraham Oluwole
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Corinne Lutomski
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Eoin M. Scanlan
- School of Chemistry, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Moran Shalev-Benami
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Martin Caffrey
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| |
Collapse
|
8
|
Sohail MU, Mashood F, Oberbach A, Chennakkandathil S, Schmidt F. The role of pathogens in diabetes pathogenesis and the potential of immunoproteomics as a diagnostic and prognostic tool. Front Microbiol 2022; 13:1042362. [PMID: 36483212 PMCID: PMC9724628 DOI: 10.3389/fmicb.2022.1042362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 09/11/2024] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases marked by hyperglycemia, which increases the risk of systemic infections. DM patients are at greater risk of hospitalization and mortality from bacterial, viral, and fungal infections. Poor glycemic control can result in skin, blood, bone, urinary, gastrointestinal, and respiratory tract infections and recurrent infections. Therefore, the evidence that infections play a critical role in DM progression and the hazard ratio for a person with DM dying from any infection is higher. Early diagnosis and better glycemic control can help prevent infections and improve treatment outcomes. Perhaps, half (49.7%) of the people living with DM are undiagnosed, resulting in a higher frequency of infections induced by the hyperglycemic milieu that favors immune dysfunction. Novel diagnostic and therapeutic markers for glycemic control and infection prevention are desirable. High-throughput blood-based immunoassays that screen infections and hyperglycemia are required to guide timely interventions and efficiently monitor treatment responses. The present review aims to collect information on the most common infections associated with DM, their origin, pathogenesis, and the potential of immunoproteomics assays in the early diagnosis of the infections. While infections are common in DM, their role in glycemic control and disease pathogenesis is poorly described. Nevertheless, more research is required to identify novel diagnostic and prognostic markers to understand DM pathogenesis and management of infections. Precise monitoring of diabetic infections by immunoproteomics may provide novel insights into disease pathogenesis and healthy prognosis.
Collapse
Affiliation(s)
| | | | - Andreas Oberbach
- Experimental Cardiac Surgery LMU Munich, Department of Cardiac Surgery, Ludwig Maximillian University of Munich, Munich, Germany
| | | | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine, Doha, Qatar
| |
Collapse
|
9
|
Sheikh BA, Bhat BA, Mir MA. Antimicrobial resistance: new insights and therapeutic implications. Appl Microbiol Biotechnol 2022; 106:6427-6440. [PMID: 36121484 DOI: 10.1007/s00253-022-12175-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
Antimicrobial resistance has not been a new phenomenon. Still, the number of resistant organisms, the geographic areas affected by emerging drug resistance, and the magnitude of resistance in a single organism are enormous and mounting. Disease and disease-causing agents formerly thought to be contained by antibiotics are now returning in new forms resistant to existing therapies. Antimicrobial resistance is one of the most severe and complicated health issues globally, driven by interrelated dynamics in humans, animals, and environmental health sectors. Coupled with various epidemiological factors and a limited pipeline for new antimicrobials, all these misappropriations allow the transmission of drug-resistant organisms. The problem is likely to worsen soon. Antimicrobial resistance in general and antibiotic resistance in particular is a shared global problem. Actions taken by any single country can adversely or positively affect the other country. Targeted coordination and prevention strategies are critical in stopping the spread of antibiotic-resistant organisms and hence its overall management. This article has provided in-depth knowledge about various methods that can help mitigate the emergence and spread of antimicrobial resistance globally. KEY POINTS: • Overview of antimicrobial resistance as a global challenge and explain various reasons for its rapid progression. • Brief about the intrinsic and acquired resistance to antimicrobials and development of antibiotic resistance in bacteria. • Systematically organized information is provided on different strategies for tackling antimicrobial resistance for the welfare of human health.
Collapse
Affiliation(s)
- Bashir Ahmad Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, J&K, India
| | - Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, J&K, India
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, J&K, India.
| |
Collapse
|
10
|
Tobuse AJ, Ang CW, Yeong KY. Modern vaccine development via reverse vaccinology to combat antimicrobial resistance. Life Sci 2022; 302:120660. [PMID: 35642852 DOI: 10.1016/j.lfs.2022.120660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
With the continuous evolution of bacteria, the global antimicrobial resistance health threat is causing millions of deaths yearly. While depending on antibiotics as a primary treatment has its merits, there are no effective alternatives thus far in the pharmaceutical market against some drug-resistant bacteria. In recent years, vaccinology has become a key topic in scientific research. Combining with the growth of technology, vaccine research is seeing a new light where the process is made faster and more efficient. Although less discussed, bacterial vaccine is a feasible strategy to combat antimicrobial resistance. Some vaccines have shown promising results with good efficacy against numerous multidrug-resistant strains of bacteria. In this review, we aim to discuss the findings from studies utilizing reverse vaccinology for vaccine development against some multidrug-resistant bacteria, as well as provide a summary of multi-year bacterial vaccine studies in clinical trials. The advantages of reverse vaccinology in the generation of new bacterial vaccines are also highlighted. Meanwhile, the limitations and future prospects of bacterial vaccine concludes this review.
Collapse
Affiliation(s)
- Asuka Joy Tobuse
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Chee Wei Ang
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
| |
Collapse
|
11
|
Application of Nanomaterials in the Prevention, Detection, and Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA). Pharmaceutics 2022; 14:pharmaceutics14040805. [PMID: 35456638 PMCID: PMC9030647 DOI: 10.3390/pharmaceutics14040805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 01/27/2023] Open
Abstract
Due to differences in geographic surveillance systems, chemical sanitization practices, and antibiotic stewardship (AS) implementation employed during the COVID-19 pandemic, many experts have expressed concerns regarding a future surge in global antimicrobial resistance (AMR). A potential beneficiary of these differences is the Gram-positive bacteria MRSA. MRSA is a bacterial pathogen with a high potential for mutational resistance, allowing it to engage various AMR mechanisms circumventing conventional antibiotic therapies and the host’s immune response. Coupled with a lack of novel FDA-approved antibiotics reaching the clinic, the onus is on researchers to develop alternative treatment tools to mitigate against an increase in pathogenic resistance. Mitigation strategies can take the form of synthetic or biomimetic nanomaterials/vesicles employed in vaccines, rapid diagnostics, antibiotic delivery, and nanotherapeutics. This review seeks to discuss the current potential of the aforementioned nanomaterials in detecting and treating MRSA.
Collapse
|
12
|
Jahantigh HR, Faezi S, Habibi M, Mahdavi M, Stufano A, Lovreglio P, Ahmadi K. The Candidate Antigens to Achieving an Effective Vaccine against Staphylococcus aureus. Vaccines (Basel) 2022; 10:vaccines10020199. [PMID: 35214658 PMCID: PMC8876328 DOI: 10.3390/vaccines10020199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic pathogen that causes various inflammatory local infections, from those of the skin to postinfectious glomerulonephritis. These infections could result in serious threats, putting the life of the patient in danger. Antibiotic-resistant S. aureus could lead to dramatic increases in human mortality. Antibiotic resistance would explicate the failure of current antibiotic therapies. So, it is obvious that an effective vaccine against S. aureus infections would significantly reduce costs related to care in hospitals. Bacterial vaccines have important impacts on morbidity and mortality caused by several common pathogens, however, a prophylactic vaccine against staphylococci has not yet been produced. During the last decades, the efforts to develop an S. aureus vaccine have faced two major failures in clinical trials. New strategies for vaccine development against S. aureus has supported the use of multiple antigens, the inclusion of adjuvants, and the focus on various virulence mechanisms. We aimed to present a compressive review of different antigens of S. aureus and also to introduce vaccine candidates undergoing clinical trials, from which can help us to choose a suitable and effective candidate for vaccine development against S. aureus.
Collapse
Affiliation(s)
- Hamid Reza Jahantigh
- Animal Health and Zoonosis, Department of Veterinary Medicine, University of Bari, 70010 Bari, Italy;
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari, 70010 Bari, Italy;
- Correspondence: (H.R.J.); (K.A.); Tel.: +39-3773827669 (H.R.J.)
| | - Sobhan Faezi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht 41937, Iran;
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran;
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran 1517964311, Iran
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13164, Iran;
| | - Angela Stufano
- Animal Health and Zoonosis, Department of Veterinary Medicine, University of Bari, 70010 Bari, Italy;
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari, 70010 Bari, Italy;
| | - Piero Lovreglio
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari, 70010 Bari, Italy;
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 79391, Iran
- Correspondence: (H.R.J.); (K.A.); Tel.: +39-3773827669 (H.R.J.)
| |
Collapse
|
13
|
Smithers L, Olatunji S, Caffrey M. Bacterial Lipoprotein Posttranslational Modifications. New Insights and Opportunities for Antibiotic and Vaccine Development. Front Microbiol 2021; 12:788445. [PMID: 34950121 PMCID: PMC8689077 DOI: 10.3389/fmicb.2021.788445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
Lipoproteins are some of the most abundant proteins in bacteria. With a lipid anchor to the cell membrane, they function as enzymes, inhibitors, transporters, structural proteins, and as virulence factors. Lipoproteins activate the innate immune system and have biotechnological applications. The first lipoprotein was described by Braun and Rehn in 1969. Up until recently, however, work on lipoproteins has been sluggish, in part due to the challenges of handling proteins that are anchored to membranes by covalently linked lipids or are membrane integral. Activity in the area has quickened of late. In the past 5 years, high-resolution structures of the membrane enzymes of the canonical lipoprotein synthesis pathway have been determined, new lipoprotein types have been discovered and the enzymes responsible for their synthesis have been characterized biochemically. This has led to a flurry of activity aimed at developing novel antibiotics targeting these enzymes. In addition, surface exposed bacterial lipoproteins have been utilized as candidate vaccine antigens, and their potential to act as self-adjuvanting antigens is increasingly recognized. A summary of the latest developments in lipoproteins and their synthesis, as well as how this information is being exploited for therapeutic purposes is presented here.
Collapse
Affiliation(s)
- Luke Smithers
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Samir Olatunji
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Martin Caffrey
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Immunoinformatics analysis and evaluation of recombinant chimeric triple antigen toxoid (r-HAB) against Staphylococcus aureus toxaemia in mouse model. Appl Microbiol Biotechnol 2021; 105:8297-8311. [PMID: 34609523 PMCID: PMC8490849 DOI: 10.1007/s00253-021-11609-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022]
Abstract
Abstract
Staphylococcus aureus is a serious pathogen unleashing its virulence through several classes of exotoxins such as hemolysins and enterotoxins. In this study, we designed a novel multi-antigen subunit vaccine which can induce innate, humoral and cellular immune responses. Alpha hemolysin, enterotoxins A and B were selected as protective antigens for combining into a triple antigen chimeric protein (HAB). Immunoinformatics analysis predicted HAB protein as a suitable vaccine candidate for inducing both humoral and cellular immune responses. Tertiary structure of the HAB protein was predicted and validated through computational approaches. Docking studies were performed between the HAB protein and mice TLR2 receptor. Furthermore, we constructed and generated recombinant HAB (r-HAB) protein in E. coli and studied its toxicity, immunogenicity and protective efficacy in a mouse model. Triple antigen chimeric protein (r-HAB) was found to be highly immunogenic in mouse as the anti-r-HAB hyperimmune serum was strongly reactive to all three native exotoxins on Western blot. In vitro toxin neutralization assay using anti-r-HAB antibodies demonstrated > 75% neutralization of toxins on RAW 264.7 cell line. Active immunization with r-HAB toxoid gave ~ 83% protection against 2 × lethal dosage of secreted exotoxins. The protection was mediated by induction of strong antibody responses that neutralized the toxins. Passive immunization with anti-r-HAB antibodies gave ~ 50% protection from lethal challenge. In conclusion, in vitro and in vivo testing of r-HAB found the molecule to be nontoxic, highly immunogenic and induced excellent protection towards native toxins in actively immunized and partial protection to passively immunized mice groups. Key points • HAB protein was computationally designed to induce humoral and cellular responses. • r-HAB protein was found to be nontoxic, immunogenic and protective in mouse model. • r-HAB conferred protection against lethal challenge in active and passive immunization.
Collapse
|
15
|
Hwang J, Thompson A, Jaros J, Blackcloud P, Hsiao J, Shi VY. Updated understanding of Staphylococcus aureus in atopic dermatitis: From virulence factors to commensals and clonal complexes. Exp Dermatol 2021; 30:1532-1545. [PMID: 34293242 DOI: 10.1111/exd.14435] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/18/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022]
Abstract
Atopic dermatitis (AD) is a common inflammatory dermatosis that has multiple contributing factors including genetic, immunologic and environmental. Staphylococcus aureus (SA) has long been associated with exacerbation of AD. SA produces many virulence factors that interact with the human skin and immune system. These superantigens and toxins have been shown to contribute to adhesion, inflammation and skin barrier destruction. Recent advances in genome sequencing techniques have led to a broadened understanding of the multiple ways SA interacts with the cutaneous environment in AD hosts. For example, temporal shifts in the microbiome, specifically in clonal complexes of SA, have been identified during AD flares and remission. Herein, we review mechanisms of interaction between the cutaneous microbiome and SA and highlight known differences in SA clonal complexes that contribute to AD pathogenesis. Detailed knowledge of the genetic strains of SA and cutaneous dysbiosis is becoming increasingly relevant in paving the way for microbiome-modulating and precision therapies for AD.
Collapse
Affiliation(s)
- Jonwei Hwang
- University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Alyssa Thompson
- College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Joanna Jaros
- John H. Stroger Hospital Cook County Health Dermatology, Chicago, Illinois, USA
| | - Paul Blackcloud
- Division of Dermatology, University of California, Los Angeles, Los Angeles, California, USA
| | - Jennifer Hsiao
- Division of Dermatology, University of California, Los Angeles, Los Angeles, California, USA
| | - Vivian Y Shi
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
16
|
Solanki V, Tiwari M, Tiwari V. Subtractive proteomic analysis of antigenic extracellular proteins and design a multi-epitope vaccine against Staphylococcus aureus. Microbiol Immunol 2021; 65:302-316. [PMID: 33368661 DOI: 10.1111/1348-0421.12870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023]
Abstract
Staphylococcus aureus is a versatile Gram's positive bacterium that can reside as an asymptomatic colonizer, which can cause a wide range of skin, soft-tissue, and nosocomial infections. A vaccine against multi-drug resistant S. aureus, therefore, is urgently needed. Subtractive proteomics and reverse vaccinology are newly emerging techniques to design multiepitope-based vaccines. The analysis of 7290 proteomes (sensitive and resistant strains), five potent nonhuman homologous vaccine targets [(UNIPORT ID Q2FZL3 (Staphopain B), Q2G2R8 (Staphopain A), Q2FWP0 (uncharacterized leukocidin-like protein 1), Q2G1S6 (uncharacterized protein), and Q2FWV3 (Staphylokinase, putative)] were selected. These proteins were absent in the gut microbiome, which further enhances the significance of these proteins in vaccine design. These five virulence-associated proteins mainly have a role in the invasion mechanism in the host phagocyte cells. MHC I, MHC II, and B cell epitopes were identified in these five proteins. Finalized epitopes were examined by different online servers to screen suitable epitopes for multi-epitope based vaccine design. Shortlisted antigenic and nonallergenic associated epitopes were joined with linkers to design 30 variants (VSA1-VSA30) of multi-epitope vaccine conjugates. The antigenicity and allergenicity of all the 30 vaccine constructs were identified, and VSA30 was found to have the highest antigenicity and lowest allergenicity, and hence was selected for further study. Accordingly, VSA30 was docked with different HLA allelic variants, and the best-docked complex (VSA30-1SYS) was further analyzed by molecular dynamics simulation (MDS). The MDS result confirms the interaction of VSA30 with MHC (HLA-allelic variant). Thus, the final vaccine construct was in silico cloned in the pET28a vector for suitable expression in a heterologous system. Therefore, the designed vaccine construct VSA-30 can be developed as an appropriate vaccine to target S. aureus infection. VSA-30 still needs experimental validation to assure the antigenic and immunogenic properties.
Collapse
Affiliation(s)
- Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
17
|
Vaccine Composition Formulated with a Novel Lactobacillus-Derived Exopolysaccharides Adjuvant Provided High Protection against Staphylococcus aureus. Vaccines (Basel) 2021; 9:vaccines9070775. [PMID: 34358191 PMCID: PMC8310297 DOI: 10.3390/vaccines9070775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022] Open
Abstract
A vaccine that effectively targets methicillin-resistant Staphylococcus aureus (MRSA) is urgently needed, and has been the focus of studies by numerous research groups, but with limited success to date. Recently, our team found that exopolysaccharides derived from probiotic Lactobacilluscasei strain WXD030 as an adjuvant-formulated OVA could upregulate IFN-γ and IL-17 expression in CD4+ T cells. In this study, we developed a vaccine (termed rMntC-EPS) composed of S. aureus antigen MntC and Lactobacillus casei exopolysaccharides, which conferred high levels of protection against S. aureus infection. Methods: Six–eight-week-old female mice were vaccinated with purified rMntC-EPS30. The immune protection function of rMntC-EPS30 was assessed by the protective effect of rMntC-EPS30 to S. aureus-induced pulmonary and cutaneous infection in mice, bacterial loads and H&E in injury site, and ELISA for inflammation-related cytokines. The protective mechanism of rMntC-EPS30 was assessed by ELISA for IgG in serum, cytokines in the spleen and lungs of vaccinated mice. In addition, flow cytometry was used for analyzing cellular immune response induced by rMntC-EPS30. For confirmation of our findings, three kinds of mice were used in this study: IL-17A knockout mice, IFN-γ knockout mice and TCRγ/δ knockout mice. Results: rMntC-EPS30 conferred up to 90% protection against S. aureus pulmonary infection and significantly reduced the abscess size in the S. aureus cutaneous model, with clearance of the pathogen. The rMntC-EPS vaccine could induce superior humoral immunity as well as significantly increase IL-17A and IFN-γ production. In addition, we found that rMntC-EPS vaccination induced robust Th 17/γδ T 17 primary and recall responses. Interestingly, this protective effect was distinctly reduced in the IL-17A knockout mice but not in IFN-γ knockout mice. Moreover, in TCRγ/δ knockout mice, rMntC-EPS vaccination neither increased IL-17A secretion nor provided effective protection against S. aureus infection. Conclusions: These data demonstrated that the rMntC formulated with a novel Lactobacillus-derived Exopolysaccharides adjuvant provided high protection against Staphylococcus aureus. The rMntC-EPS vaccine induced γδ T cells and IL-17A might play substantial roles in anti-S. aureus immunity. Our findings provided direct evidence that rMntC-EPS vaccine is a promising candidate for future clinical application against S. aureus-induced pulmonary and cutaneous infection.
Collapse
|
18
|
Clegg J, Soldaini E, McLoughlin RM, Rittenhouse S, Bagnoli F, Phogat S. Staphylococcus aureus Vaccine Research and Development: The Past, Present and Future, Including Novel Therapeutic Strategies. Front Immunol 2021; 12:705360. [PMID: 34305945 PMCID: PMC8294057 DOI: 10.3389/fimmu.2021.705360] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the most important human pathogens worldwide. Its high antibiotic resistance profile reinforces the need for new interventions like vaccines in addition to new antibiotics. Vaccine development efforts against S. aureus have failed so far however, the findings from these human clinical and non-clinical studies provide potential insight for such failures. Currently, research is focusing on identifying novel vaccine formulations able to elicit potent humoral and cellular immune responses. Translational science studies are attempting to discover correlates of protection using animal models as well as in vitro and ex vivo models assessing efficacy of vaccine candidates. Several new vaccine candidates are being tested in human clinical trials in a variety of target populations. In addition to vaccines, bacteriophages, monoclonal antibodies, centyrins and new classes of antibiotics are being developed. Some of these have been tested in humans with encouraging results. The complexity of the diseases and the range of the target populations affected by this pathogen will require a multipronged approach using different interventions, which will be discussed in this review.
Collapse
Affiliation(s)
- Jonah Clegg
- GSK, Siena, Italy
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Rachel M. McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
19
|
Staphylococcal Infections: Host and Pathogenic Factors. Microorganisms 2021; 9:microorganisms9051080. [PMID: 34069873 PMCID: PMC8157358 DOI: 10.3390/microorganisms9051080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
|
20
|
Fernandez J, Sanders H, Henn J, Wilson JM, Malone D, Buoninfante A, Willms M, Chan R, DuMont AL, McLahan C, Grubb K, Romanello A, van den Dobbelsteen G, Torres VJ, Poolman JT. Vaccination with Detoxified Leukocidin AB Reduces Bacterial Load in a Staphylococcus aureus Minipig Deep Surgical Wound Infection Model. J Infect Dis 2021; 225:1460-1470. [PMID: 33895843 PMCID: PMC9016470 DOI: 10.1093/infdis/jiab219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Vaccines against Staphylococcus aureus have eluded researchers for >3 decades while the burden of staphylococcal diseases has increased. Early vaccine attempts mainly used rodents to characterize preclinical efficacy, and all subsequently failed in human clinical efficacy trials. More recently, leukocidin AB (LukAB) has gained interest as a vaccine antigen. We developed a minipig deep surgical wound infection model offering 3 independent efficacy readouts: bacterial load at the superficial and at the deep-seated surgical site, and dissemination of bacteria. Due to similarities with humans, minipigs are an attractive option to study novel vaccine candidates. With this model, we characterized the efficacy of a LukAB toxoid as vaccine candidate. Compared to control animals, a 3-log reduction of bacteria at the deep-seated surgical site was observed in LukAB-treated minipigs and dissemination of bacteria was dramatically reduced. Therefore, LukAB toxoids may be a useful addition to S. aureus vaccines and warrant further study.
Collapse
Affiliation(s)
| | - H Sanders
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - J Henn
- Bacterial Vaccines, Spring House, PA, USA
| | | | - D Malone
- Bacterial Vaccines, Spring House, PA, USA
| | - A Buoninfante
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - M Willms
- Bacterial Vaccines, Spring House, PA, USA
| | - R Chan
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - A L DuMont
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - C McLahan
- In Vivo Sciences, Spring House, PA, USA
| | - K Grubb
- Bacterial Vaccines, Spring House, PA, USA
| | | | | | - V J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - J T Poolman
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| |
Collapse
|
21
|
Rungelrath V, DeLeo FR. Staphylococcus aureus, Antibiotic Resistance, and the Interaction with Human Neutrophils. Antioxid Redox Signal 2021; 34:452-470. [PMID: 32460514 PMCID: PMC8020508 DOI: 10.1089/ars.2020.8127] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance:Staphylococcus aureus is among the leading causes of bacterial infections worldwide. The high burden of S. aureus among human and animal hosts, which includes asymptomatic carriage and infection, is coupled with a notorious ability of the microbe to become resistant to antibiotics. Notably, S. aureus has the ability to produce molecules that promote evasion of host defense, including the ability to avoid killing by neutrophils. Recent Advances: Significant progress has been made to better understand S. aureus-host interactions. These discoveries include elucidation of the role played by numerous S. aureus virulence molecules during infection. Based on putative functions, a number of these virulence molecules, including S. aureus alpha-hemolysin and protein A, have been identified as therapeutic targets. Although it has not been possible to develop a vaccine that can prevent S. aureus infections, monoclonal antibodies specific for S. aureus virulence molecules have the potential to moderate the severity of disease. Critical Issues: Therapeutic options for treatment of methicillin-resistant S. aureus (MRSA) are limited, and the microbe typically develops resistance to new antibiotics. New prophylactics and/or therapeutics are needed. Future Directions: Research that promotes an enhanced understanding of S. aureus-host interaction is an important step toward developing new therapeutic approaches directed to moderate disease severity and facilitate treatment of infection. This research effort includes studies that enhance our view of the interaction of S. aureus with human neutrophils. Antioxid. Redox Signal. 34, 452-470.
Collapse
Affiliation(s)
- Viktoria Rungelrath
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
22
|
Andersson DI, Balaban NQ, Baquero F, Courvalin P, Glaser P, Gophna U, Kishony R, Molin S, Tønjum T. Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiol Rev 2020; 44:171-188. [PMID: 31981358 DOI: 10.1093/femsre/fuaa001] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is one of the major challenges facing modern medicine worldwide. The past few decades have witnessed rapid progress in our understanding of the multiple factors that affect the emergence and spread of antibiotic resistance at the population level and the level of the individual patient. However, the process of translating this progress into health policy and clinical practice has been slow. Here, we attempt to consolidate current knowledge about the evolution and ecology of antibiotic resistance into a roadmap for future research as well as clinical and environmental control of antibiotic resistance. At the population level, we examine emergence, transmission and dissemination of antibiotic resistance, and at the patient level, we examine adaptation involving bacterial physiology and host resilience. Finally, we describe new approaches and technologies for improving diagnosis and treatment and minimizing the spread of resistance.
Collapse
Affiliation(s)
- Dan I Andersson
- Department of Medical Biochemistry and Microbiology, University of Uppsala, BMC, Husargatan 3, 75237, Uppsala, Sweden
| | - Nathalie Q Balaban
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Jerusalem, Israel
| | - Fernando Baquero
- Department of Microbiology, Ramón y Cajal Health Research Institute, Ctra. Colmenar Viejo Km 9,100 28034 - Madrid, Madrid, Spain
| | - Patrice Courvalin
- French National Reference Center for Antibiotics, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, Paris, France
| | - Philippe Glaser
- Ecology and Evolution of Antibiotic Resistance, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, Paris, France
| | - Uri Gophna
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, 121 Jack Green building, Tel-Aviv University, Ramat-Aviv, 6997801, Tel Aviv, Israel
| | - Roy Kishony
- Faculty of Biology, The Technion, Technion City, Haifa 3200003, Haifa, Israel
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220 2800 Kgs.Lyngby, Lyngby, Denmark
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, OUS HF Rikshospitalet Postboks 4950 Nydalen 0424 Oslo, Oslo, Norway.,Oslo University Hospital, P. O. Box 4950 Nydalen N-0424 Oslo, Oslo, Norway
| |
Collapse
|
23
|
Ahmadi K, Hasaniazad M, Kalani M, Faezi S, Ahmadi N, Enayatkhani M, Mahdavi M, Pouladfar G. Comparative study of the immune responses to the HMS-based fusion protein and capsule-based conjugated molecules as vaccine candidates in a mouse model of Staphylococcus aureus systemic infection. Microb Pathog 2020; 150:104656. [PMID: 33253858 DOI: 10.1016/j.micpath.2020.104656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Staphylococcus aureus is a powerful pathogen that causes a wide range of infectious diseases and results in a high mortality rate in humans. Treating S. aureus-related infections is extremely difficult because of its ability to resist many antibiotics; therefore, developing an effective vaccine against this infection can be an alternative and promising approach. In this study, we evaluated the protective effects of a Hla-MntC-SACOL0723 multi-epitope protein (HMS) compared with HMS conjugated to polysaccharides 5 and 8 (CP5 and CP8) of S. aureus and CP5 and CP8 in a mouse sepsis model. To evaluate the type of induced immune response, specific IgG, and antibody isotypes (IgG1 and IgG2a) were determined using the ELISA method. The functional activity of these vaccine candidates was assessed by opsonophagocytosis. Mice were infected with S. aureus COL strain and evaluated for bacterial load in the kidney and spleen homogenates. Th1, Th2, and Th17-related cytokines in the spleen cell supernatants were assessed by flow cytometry. The therapeutic effect of specific anti-HMS protein IgG antibodies against S. aureus COL strain infection was evaluated by passive immunization. HMS recombinant protein induced a higher level of Th1, Th2, and Th17-related cytokines compared with conjugated molecules. Also, mice immunized with the HMS protein reduced the bacterial load in the kidney and spleen more than the one that received the conjugated molecules. Our study suggests that the HMS fusion protein and conjugate molecule vaccine candidates could be suitable candidates for the removal of S. aureus in the mouse sepsis model but HMS protein can be a more effective candidate.
Collapse
Affiliation(s)
- Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Mehdi Hasaniazad
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Mehdi Kalani
- Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sobhan Faezi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nahid Ahmadi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Enayatkhani
- Molecular Medicine Department, Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Mahdavi
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Gholamreza Pouladfar
- Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Tran VG, Venkatasubramaniam A, Adhikari RP, Krishnan S, Wang X, Le VTM, Le HN, Vu TTT, Schneider-Smith E, Aman MJ, Diep BA. Efficacy of Active Immunization With Attenuated α-Hemolysin and Panton-Valentine Leukocidin in a Rabbit Model of Staphylococcus aureus Necrotizing Pneumonia. J Infect Dis 2020; 221:267-275. [PMID: 31504652 DOI: 10.1093/infdis/jiz437] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is a common pathogen causing infections in humans with various degrees of severity, with pneumonia being one of the most severe infections. In as much as staphylococcal pneumonia is a disease driven in large part by α-hemolysin (Hla) and Panton-Valentine leukocidin (PVL), we evaluated whether active immunization with attenuated forms of Hla (HlaH35L/H48L) alone, PVL components (LukS-PVT28F/K97A/S209A and LukF-PVK102A) alone, or combination of all 3 toxoids could prevent lethal challenge in a rabbit model of necrotizing pneumonia caused by the USA300 community-associated methicillin-resistant S. aureus (MRSA). Rabbits vaccinated with Hla toxoid alone or PVL components alone were only partially protected against lethal pneumonia, whereas those vaccinated with all 3 toxoids had 100% protection against lethality. Vaccine-mediated protection correlated with induction of polyclonal antibody response that neutralized not only α-hemolysin and PVL, but also other related toxins, produced by USA300 and other epidemic MRSA clones.
Collapse
Affiliation(s)
- Vuvi G Tran
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | | | | | | | - Xing Wang
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Vien T M Le
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Hoan N Le
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Trang T T Vu
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Erika Schneider-Smith
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - M Javad Aman
- Integrated Biotherapeutics, Inc, Rockville, Maryland
| | - Binh An Diep
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| |
Collapse
|
25
|
Paterson MJ, Caldera JR, Nguyen C, Sharma P, Castro AM, Kolar SL, Tsai CM, Limon JJ, Becker CA, Martins GA, Liu GY, Underhill DM. Harnessing antifungal immunity in pursuit of a Staphylococcus aureus vaccine strategy. PLoS Pathog 2020; 16:e1008733. [PMID: 32817694 PMCID: PMC7446838 DOI: 10.1371/journal.ppat.1008733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/22/2020] [Indexed: 02/03/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the most common bacterial infections worldwide, and antibiotic resistant strains such as Methicillin-Resistant S. aureus (MRSA) are a major threat and burden to public health. MRSA not only infects immunocompromised patients but also healthy individuals and has rapidly spread from the healthcare setting to the outside community. However, all vaccines tested in clinical trials to date have failed. Immunocompromised individuals such as patients with HIV or decreased levels of CD4+ T cells are highly susceptible to S. aureus infections, and they are also at increased risk of developing fungal infections. We therefore wondered whether stimulation of antifungal immunity might promote the type of immune responses needed for effective host defense against S. aureus. Here we show that vaccination of mice with a fungal β-glucan particle (GP) loaded with S. aureus antigens provides protective immunity to S. aureus. We generated glucan particles loaded with the four S. aureus proteins ClfA, IsdA, MntC, and SdrE, creating the 4X-SA-GP vaccine. Vaccination of mice with three doses of 4X-SA-GP promoted protection in a systemic model of S. aureus infection with a significant reduction in the bacterial burden in the spleen and kidneys. 4X-SA-GP vaccination induced antigen-specific Th1 and Th17 CD4+ T cell and antibody responses and provided long-term protection. This work suggests that the GP vaccine system has potential as a novel approach to developing vaccines for S. aureus.
Collapse
Affiliation(s)
- Marissa J. Paterson
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - JR Caldera
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Division of Infectious Diseases, Department of Pediatics, UCSD, San Diego, California, United States of America
| | - Christopher Nguyen
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Purnima Sharma
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Anthony M. Castro
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Stacey L. Kolar
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Chih-Ming Tsai
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Division of Infectious Diseases, Department of Pediatics, UCSD, San Diego, California, United States of America
| | - Jose J. Limon
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Courtney A. Becker
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Gislâine A. Martins
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - George Y. Liu
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Division of Infectious Diseases, Department of Pediatics, UCSD, San Diego, California, United States of America
| | - David M. Underhill
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| |
Collapse
|
26
|
Zhao M, Qin C, Li L, Xie H, Ma B, Zhou Z, Yin J, Hu J. Conjugation of Synthetic Trisaccharide of Staphylococcus aureus Type 8 Capsular Polysaccharide Elicits Antibodies Recognizing Intact Bacterium. Front Chem 2020; 8:258. [PMID: 32411658 PMCID: PMC7199654 DOI: 10.3389/fchem.2020.00258] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus causes a wide range of life-threatening diseases. One of the powerful approaches for prevention and treatment is to develop an efficient vaccine as antibiotic resistance greatly increases. S. aureus type 8 capsular polysaccharide (CP8) has shown great potential in vaccine development. An understanding of the immunogenicity of CP8 trisaccharide repeating unit is valuable for epitope-focused vaccine design and cost-efficient vaccine production. We report the chemical synthesis of conjugation-ready CP8 trisaccharide 1 bearing an amine linker, which effectively served for immunological evaluation. The trisaccharide 1-CRM197 conjugate elicited a robust immunoglobulin G (IgG) immune response in mice. Both serum antibodies and prepared monoclonal antibodies recognized S. aureus strain, demonstrating that synthetic trisaccharide 1 can be an efficient antigen for vaccine development.
Collapse
Affiliation(s)
- Ming Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Haotian Xie
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Beining Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ziru Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
27
|
Abstract
: The role of Staphylococcus aureus (SA) in the pathogenesis and management in atopic dermatitis is rapidly evolving. The modern understanding of SA in atopic dermatitis now includes an expanded array of virulence factors, the interplay of clonal and temporal shifts in SA populations, and host factors such as filaggrin and natural moisturizing factor. New, emerging therapies that focus on long-term, targeted elimination of SA colonization are currently under investigation (Br J Dermatol 2017;17(1)63-71). Herein, we discuss and review the latest staphylococcal and microbiome-modifying therapies including topical antibiotics, topical natural oil fatty acids, anti-SA vaccines, microbial transplantation, vitamin D supplementation, dupilumab and proposed future investigative directions.
Collapse
|
28
|
Soni DK, Dubey SK, Bhatnagar R. ATP-binding cassette (ABC) import systems of Mycobacterium tuberculosis: target for drug and vaccine development. Emerg Microbes Infect 2020; 9:207-220. [PMID: 31985348 PMCID: PMC7034087 DOI: 10.1080/22221751.2020.1714488] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nutrient procurement specifically from nutrient-limiting environment is essential for pathogenic bacteria to survive and/or persist within the host. Long-term survival or persistent infection is one of the main reasons for the overuse of antibiotics, and contributes to the development and spread of antibiotic resistance. Mycobacterium tuberculosis is known for long-term survival within the host, and develops multidrug resistance. Before and during infection, the pathogen encounters various harsh environmental conditions. To cope up with such nutrient-limiting conditions, it is crucial to uptake essential nutrients such as ions, sugars, amino acids, peptides, and metals, necessary for numerous vital biological activities. Among the various types of transporters, ATP-binding cassette (ABC) importers are essentially unique to bacteria, accessible as drug targets without penetrating the cytoplasmic membrane, and offer an ATP-dependent gateway into the cell by mimicking substrates of the importer and designing inhibitors against substrate-binding proteins, ABC importers endeavour for the development of successful drug candidates and antibiotics. Alternatively, the production of antibodies against substrate-binding proteins could lead to vaccine development. In this review, we will emphasize the role of M. tuberculosis ABC importers for survival and virulence within the host. Furthermore, we will elucidate their unique characteristics to discover emerging therapies to combat tuberculosis.
Collapse
Affiliation(s)
- Dharmendra Kumar Soni
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
29
|
Ahmadi K, Aslani MM, Pouladfar G, Faezi S, Kalani M, Pourmand MR, Ghaedi T, Havaei SA, Mahdavi M. Preparation and preclinical evaluation of two novel Staphylococcus aureus capsular polysaccharide 5 and 8-fusion protein (Hla-MntC-SACOL0723) immunoconjugates. IUBMB Life 2019; 72:226-236. [PMID: 31573748 DOI: 10.1002/iub.2159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022]
Abstract
Staphylococcus aureus is one of the most common pathogens in the hospital and the community. The emergence of broad-spectrum antibiotic resistance in S. aureus has made the treatment process more difficult. Therefore, it is obvious that an effective prevention strategy against the pathogen could significantly reduce costs related to care in hospitals. In this report, we describe a simple approach to conjugate S. aureus capsular polysaccharide 5 (CP5) from S. aureus Reynolds strain and 8 (CP8) from S. aureus Becker strain to a fusion protein (Hla-MntC-SACOL0723) and investigation of its bioactivity. The conjugation was done by using ADH (as a bridge) and EDAC (as a coupling agent). The immunoconjugates were characterized by routine polysaccharide/protein contents assays followed by reverse phase chromatography and FTIR spectroscopy. The groups of mice were immunized with conjugate vaccines, capsular polysaccharides, and phosphate-buffered saline (PBS) as a control group. The functional activity of the vaccine candidates was evaluated by ELISA, opsonophagocytosis tests, and determination of bacterial load in challenge study. The results showed that the specific antibody (total IgG) titers raised against conjugate molecules were higher than those of the nonconjugated capsular polysaccharides. The opsonic activity of the conjugate vaccines antisera was significantly higher than polysaccharides alone (58% reduction in the number of bacteria versus 16.3% at 1:2 dilution, p < .05), Further, the conjugate vaccine group had a significant reduction in bacterial load after challenge with S. aureus COL strain cells as compared to the PBS and nonconjugated controls. In conclusion, the immunoconjugates could be developed as a potential vaccine candidate against S. aureus.
Collapse
Affiliation(s)
- Khadijeh Ahmadi
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran.,Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Gholamreza Pouladfar
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sobhan Faezi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Kalani
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad R Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebe Ghaedi
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Seyed A Havaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Mahdavi
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
30
|
Barie PS, Narayan M, Sawyer RG. Immunization Against Staphylococcus aureus Infections. Surg Infect (Larchmt) 2019; 19:750-756. [PMID: 31033407 DOI: 10.1089/sur.2018.263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Infections caused by Staphylococcus aureus continue to plague surgical patients, whether as surgical site infections or other nosocomial infections that complicate surgical care. The only meaningful methods available to decrease the risk of developing such infections are topical skin antisepsis (pre-operative skin preparation) and peri-operative antibiotic prophylaxis, neither of which offer a panacea. Alternatives to the latter are sought so as to minimize antibiotic selection pressure as a factor in the increasing problem of antimicrobial drug resistance. This review considers the possibility that immunization against S. aureus may offer a viable alternative for prophylaxis. Methods: Review and synthesis of pertinent English-language medical literature. Results: Vaccination against viral pathogens has been in successful clinical use for more than two centuries and was instrumental in the eradication of smallpox and the near-elimination of diseases such as poliomyelitis. Vaccinations against a limited number of bacterial pathogens (e.g., Bordetella pertussis, Clostridium tetanii, Corynebacterium diphtheriae, Haemophilus influenzae type b, Neisseria meningiditis, Streptococcus pneumoniae) have also been introduced with success, whereas others against bacteria are in development (C. difficile, Pseudomonas aeruginosa, S. aureus). Vaccination against S. aureus infection is in current veterinary use (e.g., to prevent mastitis among dairy cattle) but has not been successful to date in human beings despite multiple attempts, although development continues. Conclusions: Because of its complex microbiology, including multiple virulence factors and the ability to evade host immune surveillance, S. aureus presents numerous antigenic targets for vaccine development. Failure of two prior single-antigen vaccines in clinical trials has led to the consensus that future vaccine candidates must be directed against multiple antigens. Two distinct four-antigen vaccines are in clinical trials, but efficacy is yet to be determined.
Collapse
Affiliation(s)
- Philip S Barie
- 1 Department of Surgery, Weill Cornell Medicine , New York, New York
- 2 Department of Medicine, Weill Cornell Medicine , New York, New York
| | - Mayur Narayan
- 1 Department of Surgery, Weill Cornell Medicine , New York, New York
| | - Robert G Sawyer
- 3 Department of Surgery, Western Michigan University , Kalamazoo, Michigan
| |
Collapse
|
31
|
Abstract
The prevalence of antimicrobial resistance among many common bacterial pathogens is increasing. The emergence and global dissemination of these antibiotic-resistant bacteria (ARB) is fuelled by antibiotic selection pressure, inter-organism transmission of resistance determinants, suboptimal infection prevention practices and increasing ease and frequency of international travel, among other factors. Patients with chronic kidney disease, particularly those with end-stage renal disease who require dialysis and/or kidney transplantation, have some of the highest rates of colonization and infection with ARB worldwide. These ARB include methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp. and several multidrug-resistant Gram-negative organisms. Antimicrobial resistance limits treatment options and increases the risk of infection-related morbidity and mortality. Several new antibiotic agents with activity against some of the most common ARB have been developed, but resistance to these agents is already emerging and highlights the dire need for new treatment options as well as consistent implementation and improvement of basic infection prevention practices. Clinicians involved in the care of patients with renal disease must be familiar with the local epidemiology of ARB, remain vigilant for the emergence of novel resistance patterns and adhere strictly to practices proven to prevent transmission of ARB and other pathogens.
Collapse
Affiliation(s)
- Tina Z Wang
- NewYork Presbyterian-Weill Cornell Medical Center, New York, NY, USA
| | | | - David P Calfee
- NewYork Presbyterian-Weill Cornell Medical Center, New York, NY, USA.
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
32
|
Abouelkhair MA, Bemis DA, Giannone RJ, Frank LA, Kania SA. Identification, cloning and characterization of SpEX exotoxin produced by Staphylococcus pseudintermedius. PLoS One 2019; 14:e0220301. [PMID: 31356636 PMCID: PMC6663030 DOI: 10.1371/journal.pone.0220301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/03/2019] [Indexed: 12/29/2022] Open
Abstract
Staphylococci have evolved numerous strategies to evade their hosts’ immune systems. Some staphylococcal toxins target essential components of host innate immunity, one of the two main branches of the immune system. Analysis of the Staphylococcus pseudintermedius secretome using liquid chromatography mass spectrometry guided by genomic data, was used to identify an S. pseudintermedius exotoxin provisionally named SpEX. This exoprotein has low overall amino acid identity with the Staphylococcus aureus group of proteins named staphylococcal superantigen like proteins (SSLs) and staphylococcal enterotoxin- like toxin X (SEIX), but predictive modeling showed that it shares similar folds and domain architecture to these important virulence factors. In this study, we found SpEX binds to complement component C5, prevents complement mediated lysis of sensitized bovine red blood cells, kills polymorphonuclear leukocytes and monocytes and inhibits neutrophil migration at sub-lethal concentrations. A mutant version of SpEX, produced through amino acid substitution at selected positions, had diminished cytotoxicity. Anti-SpEX produced in dogs reduced the inhibitory effect of native SpEX on canine neutrophil migration and protected immune cells from the toxic effects of the native recombinant protein. These results suggest that SpEX likely plays an important role in S. pseudintermedius virulence and that attenuated SpEX may be an important candidate for inclusion in a vaccine against S. pseudintermedius infections.
Collapse
Affiliation(s)
- Mohamed A. Abouelkhair
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, United States of America
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Menoufia, Egypt
| | - David A. Bemis
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, United States of America
| | - Richard J. Giannone
- Chemical Sciences Division, Biological Mass Spectrometry, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Linda A. Frank
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States of America
| | - Stephen A. Kania
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
33
|
Rello J, Parisella FR, Perez A. Alternatives to antibiotics in an era of difficult-to-treat resistance: new insights. Expert Rev Clin Pharmacol 2019; 12:635-642. [PMID: 31092053 DOI: 10.1080/17512433.2019.1619454] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: The rise of antibiotic resistance, the limited efficacy and the adverse events associated with antibiotics have urged the development of alternative measures to treat bacterial infections. Novel therapies which are pathogen specific and are safer to the healthy microbiome are being developed. Areas covered: This manuscript provides a compact overview of the feasibility and clinical impact of the latest novel therapies, with a focus on monoclonal antibodies (mAbs), vaccines, stem cells, bacteriophages, and liposomes. This is a follow-up of a previous manuscript (doi: 10.1080/17512433.2016.1241141); a database search (PubMed, EMBASE, Cochrane) was used to identify recently published literature (from January 2016) which was not covered in the previous publication. Expert opinion: Among non-traditional agents, monoclonal antibodies have not been as successful as in other therapeutic areas. In particular many are developed to prevent hospital-acquired infections caused by S. aureus or P. aeruginosa and, so far, results have been overall disappointing. Stem cells and bacteriophages still have a long way to go. Vaccines are always desirable to prevent infections but again there is a lack of confirmatory results. Broad spectrum liposomes have shown promising results in treating severely infected patients and could be game changers in patient management.
Collapse
Affiliation(s)
- Jordi Rello
- a Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain & Centro de Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES) , Instituto Salud Carlos III , Barcelona , Spain.,b Centrode Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES) , Instituto Salud Carlos III , Barcelona , Spain
| | - Francesca Romana Parisella
- c UQ Centre for Clinical Research, Faculty of Medicine , The University of Queensland , Brisbane , Australia
| | - Antonio Perez
- d Medical Department , Combioxin SA , Geneve , Switzerland
| |
Collapse
|
34
|
Ansari S, Jha RK, Mishra SK, Tiwari BR, Asaad AM. Recent advances in Staphylococcus aureus infection: focus on vaccine development. Infect Drug Resist 2019; 12:1243-1255. [PMID: 31190912 PMCID: PMC6526327 DOI: 10.2147/idr.s175014] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/19/2019] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus normally colonizes the nasal cavity and pharynx. After breaching the normal habitat, the organism is able to cause a number of infections at any site of the body. The development of antibiotic resistance has created a global challenge for treating infections. Therefore, protection by vaccines may provide valuable measures. Currently, several vaccine candidates have been prepared which are either in preclinical phase or in early clinical phase, whereas several candidates have failed to show a protective efficacy in human subjects. Approaches have also been made in the development of monoclonal or polyclonal antibodies for passive immunization to protect from S. aureus infections. Therefore, in this review we have summarized the findings of recently published scientific literature to make a concise report.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Microbiology, Chitwan Medical College and Teaching Hospital, Bharatpur, Chitwan, Nepal
| | - Rajesh Kumar Jha
- Department of Systems and Diseases (Pharmacology), Saba University School of Medicine, Saba, Dutch Caribbean
| | - Shyam Kumar Mishra
- Department of Microbiology, Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | | | - Ahmed Morad Asaad
- Department of Microbiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
35
|
The genesis and evolution of bead-based multiplexing. Methods 2019; 158:2-11. [DOI: 10.1016/j.ymeth.2019.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/10/2018] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
|
36
|
O’Brien EC, McLoughlin RM. Considering the ‘Alternatives’ for Next-Generation Anti-Staphylococcus aureus Vaccine Development. Trends Mol Med 2019; 25:171-184. [DOI: 10.1016/j.molmed.2018.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
|
37
|
Connolly R, Denton MD, Humphreys H, McLoughlin RM. Would hemodialysis patients benefit from a Staphylococcus aureus vaccine? Kidney Int 2019; 95:518-525. [PMID: 30691691 DOI: 10.1016/j.kint.2018.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/17/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus bloodstream infection can have potentially catastrophic consequences for patients on hemodialysis. Consequently, an effective vaccine to prevent S aureus infection would have a significant influence on morbidity and mortality in this group. To date, however, efforts to develop a vaccine have been unsuccessful. Previous antibody-inducing vaccine candidates did not prevent or attenuate S aureus infection in clinical trials. Recent advances have helped to elucidate the role of specific T-cell subsets, notably T-helper cell 1 and T-helper cell 17, in the immune response to S aureus. These cells are essential for coordinating an effective phagocytic response via cytokine production, indirectly leading to destruction of the organism. It is now widely accepted that next-generation S aureus vaccines must also induce effective T-cell-mediated immunity. However, there remains a gap in our knowledge: how will an S aureus vaccine drive these responses in those patients most at risk? Given that patients on hemodialysis are an immunocompromised population, in particular with specific T-cell defects, including defects in T-helper cell subsets, this is likely to affect their ability to respond to an S aureus vaccine. We urgently need a better understanding of T-cell-mediated immunity in this cohort if an efficacious vaccine is ever to be realized for these patients.
Collapse
Affiliation(s)
- Roisin Connolly
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland; Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland; Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - Mark D Denton
- Beaumont Kidney Centre, Beaumont Hospital, Dublin, Ireland
| | - Hilary Humphreys
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland; Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland.
| |
Collapse
|
38
|
Manara S, Pasolli E, Dolce D, Ravenni N, Campana S, Armanini F, Asnicar F, Mengoni A, Galli L, Montagnani C, Venturini E, Rota-Stabelli O, Grandi G, Taccetti G, Segata N. Whole-genome epidemiology, characterisation, and phylogenetic reconstruction of Staphylococcus aureus strains in a paediatric hospital. Genome Med 2018; 10:82. [PMID: 30424799 PMCID: PMC6234625 DOI: 10.1186/s13073-018-0593-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/29/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is an opportunistic pathogen and a leading cause of nosocomial infections. It can acquire resistance to all the antibiotics that entered the clinics to date, and the World Health Organization defined it as a high-priority pathogen for research and development of new antibiotics. A deeper understanding of the genetic variability of S. aureus in clinical settings would lead to a better comprehension of its pathogenic potential and improved strategies to contrast its virulence and resistance. However, the number of comprehensive studies addressing clinical cohorts of S. aureus infections by simultaneously looking at the epidemiology, phylogenetic reconstruction, genomic characterisation, and transmission pathways of infective clones is currently low, thus limiting global surveillance and epidemiological monitoring. METHODS We applied whole-genome shotgun sequencing (WGS) to 184 S. aureus isolates from 135 patients treated in different operative units of an Italian paediatric hospital over a timespan of 3 years, including both methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) from different infection types. We typed known and unknown clones from their genomes by multilocus sequence typing (MLST), Staphylococcal Cassette Chromosome mec (SCCmec), Staphylococcal protein A gene (spa), and Panton-Valentine Leukocidin (PVL), and we inferred their whole-genome phylogeny. We explored the prevalence of virulence and antibiotic resistance genes in our cohort, and the conservation of genes encoding vaccine candidates. We also performed a timed phylogenetic investigation for a potential outbreak of a newly emerging nosocomial clone. RESULTS The phylogeny of the 135 single-patient S. aureus isolates showed a high level of diversity, including 80 different lineages, and co-presence of local, global, livestock-associated, and hypervirulent clones. Five of these clones do not have representative genomes in public databases. Variability in the epidemiology is mirrored by variability in the SCCmec cassettes, with some novel variants of the type IV cassette carrying extra antibiotic resistances. Virulence and resistance genes were unevenly distributed across different clones and infection types, with highly resistant and lowly virulent clones showing strong association with chronic diseases, and highly virulent strains only reported in acute infections. Antigens included in vaccine formulations undergoing clinical trials were conserved at different levels in our cohort, with only a few highly prevalent genes fully conserved, potentially explaining the difficulty of developing a vaccine against S. aureus. We also found a recently diverged ST1-SCCmecIV-t127 PVL- clone suspected to be hospital-specific, but time-resolved integrative phylogenetic analysis refuted this hypothesis and suggested that this quickly emerging lineage was acquired independently by patients. CONCLUSIONS Whole genome sequencing allowed us to study the epidemiology and genomic repertoire of S. aureus in a clinical setting and provided evidence of its often underestimated complexity. Some virulence factors and clones are specific of disease types, but the variability and dispensability of many antigens considered for vaccine development together with the quickly changing epidemiology of S. aureus makes it very challenging to develop full-coverage therapies and vaccines. Expanding WGS-based surveillance of S. aureus to many more hospitals would allow the identification of specific strains representing the main burden of infection and therefore reassessing the efforts for the discovery of new treatments and clinical practices.
Collapse
Affiliation(s)
- Serena Manara
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Edoardo Pasolli
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Daniela Dolce
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | - Novella Ravenni
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | - Silvia Campana
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | | | | | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| | - Luisa Galli
- Department of Health Sciences, University of Florence, Florence, Italy
- Infectious Diseases Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - Carlotta Montagnani
- Infectious Diseases Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - Elisabetta Venturini
- Infectious Diseases Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - Omar Rota-Stabelli
- Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Guido Grandi
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Giovanni Taccetti
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | - Nicola Segata
- Centre for Integrative Biology, University of Trento, Trento, Italy.
| |
Collapse
|
39
|
Swietnicki W, Czarny A, Urbanska N, Drab M. Identification of small molecule compounds active against Staphylococcus aureus and Proteus mirabilis. Biochem Biophys Res Commun 2018; 506:1047-1051. [PMID: 30409430 DOI: 10.1016/j.bbrc.2018.10.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 11/27/2022]
Abstract
Staphylococcus aureus is a human pathogen rapidly becoming a serious health problem due to ease of acquiring antibiotic resistance. To help identify potential new drug candidates effective against the pathogen, a small focused library was screened for inhibition of bacterial growth against several pathogens, including S. aureus. At least one of the compounds, Compound 10, was capable of blocking bacterial growth of S. aureus in a test tube with IC50 = 140 ± 30 μM. Another inhibitor, Compound 7, was bacteriostatic against S. aureus with IC50 ranging from 33 to 150 μM against 3 different strains. However, only Compound 7 was bactericidal against P. mirabilis as examined by electron microscopy. Human cell line toxicity studies suggested that both compounds had small effect on cell growth at 100 μM concentration as examined by MTT assay. Analysis of compounds' structures showed lack of similarity to any known antibiotics and bacteriostatics, potentially offering the inhibitors as an alternative to existing solutions in controlling bacterial infections for selected pathogens.
Collapse
Affiliation(s)
- Wieslaw Swietnicki
- Institute of Immunology and Experimental Therapy of the Polish Academy of Science, Department of Immunology of Infectious Diseases, ul. R. Weigla 12, 53-114, Wroclaw, Poland.
| | - Anna Czarny
- Institute of Immunology and Experimental Therapy of the Polish Academy of Science, Department of Immunology of Infectious Diseases, ul. R. Weigla 12, 53-114, Wroclaw, Poland
| | - Natalia Urbanska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Science, Department of Immunology of Infectious Diseases, ul. R. Weigla 12, 53-114, Wroclaw, Poland; University of Wroclaw, Department of Biological Science, Institute of Experimental Biology, ul. Kanonia 6/8, 50-328, Wroclaw, Poland
| | - Marek Drab
- Institute of Immunology and Experimental Therapy of the Polish Academy of Science, Department of Immunology of Infectious Diseases, ul. R. Weigla 12, 53-114, Wroclaw, Poland
| |
Collapse
|
40
|
Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MKF, Baloch Z. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 2018; 11:1645-1658. [PMID: 30349322 PMCID: PMC6188119 DOI: 10.2147/idr.s173867] [Citation(s) in RCA: 1313] [Impact Index Per Article: 187.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The advent of multidrug resistance among pathogenic bacteria is imperiling the worth of antibiotics, which have previously transformed medical sciences. The crisis of antimicrobial resistance has been ascribed to the misuse of these agents and due to unavailability of newer drugs attributable to exigent regulatory requirements and reduced financial inducements. Comprehensive efforts are needed to minimize the pace of resistance by studying emergent microorganisms, resistance mechanisms, and antimicrobial agents. Multidisciplinary approaches are required across health care settings as well as environment and agriculture sectors. Progressive alternate approaches including probiotics, antibodies, and vaccines have shown promising results in trials that suggest the role of these alternatives as preventive or adjunct therapies in future.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Muhammad Imran Arshad
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Muhammad Atif Nisar
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ruman Farooq Alvi
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Usman Qamar
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Zulqarnain Baloch
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China,
| |
Collapse
|
41
|
Abouelkhair MA, Bemis DA, Giannone RJ, Frank LA, Kania SA. Characterization of a leukocidin identified in Staphylococcus pseudintermedius. PLoS One 2018; 13:e0204450. [PMID: 30261001 PMCID: PMC6160070 DOI: 10.1371/journal.pone.0204450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/08/2018] [Indexed: 11/18/2022] Open
Abstract
Bacterial infections from Staphylococcus pseudintermedius are the most common cause of skin infections (pyoderma) affecting dogs. Two component pore-forming leukocidins are a family of potent toxins secreted by staphylococci and consist of S (slow) and F (fast) components. They impair the innate immune system, the first line of defense against these pathogens. Seven different leukocidins have been characterized in Staphylococcus aureus, some of which are host and cell specific. Through genome sequencing and analysis of the S. pseudintermedius secretome using liquid chromatography mass spectrometry we identified two proteins, named "LukS-I" and "LukF-I", encoded on a degenerate prophage contained in the genome of S. pseudintermedius isolates. Phylogenetic analysis of LukS-I components in comparison to the rest of the leukocidin family showed that LukS-I was most closely related to S. intermedius LukS-I, S. aureus LukE and LukP, whereas LukF-I was most similar to S. intermedius LukF-I S. aureus gamma hemolysin subunit B. The killing effect of recombinant S. pseudintermedius LukS-I and LukF-I on canine polymorphonuclear leukocytes was determined using a flow cytometry cell permeability assay. The cytotoxic effect occurred only when the two recombinant proteins were combined. Engineered mutant versions of the two-component pore-forming leukocidins, produced through amino acids substitutions at selected points, were not cytotoxic. Anti-Luk-I produced in dogs against attenuated proteins reduced the cytotoxic effect of native canine leukotoxin which highlights the importance of Luk-I as a promising component in a vaccine against canine S. pseudintermedius infections.
Collapse
Affiliation(s)
- Mohamed A. Abouelkhair
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, United States of America
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Menoufia, Egypt
| | - David A. Bemis
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, United States of America
| | - Richard J. Giannone
- Chemical Sciences Division, Biological Mass Spectrometry, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Linda A. Frank
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States of America
| | - Stephen A. Kania
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
42
|
Gurtman A, Begier E, Mohamed N, Baber J, Sabharwal C, Haupt RM, Edwards H, Cooper D, Jansen KU, Anderson AS. The development of a staphylococcus aureus four antigen vaccine for use prior to elective orthopedic surgery. Hum Vaccin Immunother 2018; 15:358-370. [PMID: 30215582 DOI: 10.1080/21645515.2018.1523093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a challenging bacterial pathogen which can cause a range of diseases, from mild skin infections, to more serious and invasive disease including deep or organ space surgical site infections, life-threatening bacteremia, and sepsis. S. aureus rapidly develops resistance to antibiotic treatments. Despite current infection control measures, the burden of disease remains high. The most advanced vaccine in clinical development is a 4 antigen S. aureus vaccine (SA4Ag) candidate that is being evaluated in a phase 2b/3 efficacy study in patients undergoing elective spinal fusion surgery (STaphylococcus aureus suRgical Inpatient Vaccine Efficacy [STRIVE]). SA4Ag has been shown in early phase clinical trials to be generally safe and well tolerated, and to induce high levels of bactericidal antibodies in healthy adults. In this review we discuss the design of SA4Ag, as well as the proposed clinical development plan supporting licensure of SA4Ag for the prevention of invasive disease caused by S. aureus in elective orthopedic surgical populations. We also explore the rationale for the generalizability of the results of the STRIVE efficacy study (patients undergoing elective open posterior multilevel instrumented spinal fusion surgery) to a broad elective orthopedic surgery population due to the common pathophysiology of invasive S. aureus disease and commonalties of patient and procedural risk factors for developing postoperative S. aureus surgical site infections.
Collapse
Affiliation(s)
- A Gurtman
- a Pfizer Vaccine Research and Development , Pfizer, Inc ., Pearl River , NY , USA
| | - E Begier
- a Pfizer Vaccine Research and Development , Pfizer, Inc ., Pearl River , NY , USA
| | - N Mohamed
- a Pfizer Vaccine Research and Development , Pfizer, Inc ., Pearl River , NY , USA
| | - J Baber
- b Pfizer Vaccine Research and Development , Sydney , NSW , Australia
| | - C Sabharwal
- a Pfizer Vaccine Research and Development , Pfizer, Inc ., Pearl River , NY , USA
| | - R M Haupt
- c Medical Development, Scientific and Clinical Affairs , Pfizer, Inc ., Collegeville , PA , USA
| | - H Edwards
- d World Wide Regulatory Affairs , Pfizer Inc ., Walton Oaks , UK
| | - D Cooper
- a Pfizer Vaccine Research and Development , Pfizer, Inc ., Pearl River , NY , USA
| | - K U Jansen
- a Pfizer Vaccine Research and Development , Pfizer, Inc ., Pearl River , NY , USA
| | - A S Anderson
- a Pfizer Vaccine Research and Development , Pfizer, Inc ., Pearl River , NY , USA
| |
Collapse
|
43
|
Clowry J, Irvine AD, McLoughlin RM. Next-generation anti-Staphylococcus aureus vaccines: A potential new therapeutic option for atopic dermatitis? J Allergy Clin Immunol 2018; 143:78-81. [PMID: 30218675 DOI: 10.1016/j.jaci.2018.08.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/01/2018] [Accepted: 08/26/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Julianne Clowry
- Pediatric Dermatology, Our Lady's Children's Hospital Crumlin, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland; Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Alan D Irvine
- Pediatric Dermatology, Our Lady's Children's Hospital Crumlin, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland; Clinical Medicine, Trinity College Dublin, Dublin, Ireland.
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland.
| |
Collapse
|
44
|
Abstract
Staphylococcus aureus causes severe disease in humans for which no licensed vaccine exists. A novel vaccine is in development that targets multiple elements of the bacteria since single-component vaccines have not shown efficacy to date. How these multiple components alter the immune response raised by the vaccine is not well studied. We found that the addition of two protein components did not alter substantially the antibody responses raised with respect to function or mobilization of B cells. There was also not a substantial change in the activity of T cells, another part of the adaptive response. This study showed that protection by this vaccine may be mediated primarily by antibody protection. Staphylococcus aureus causes severe disease in humans for which no licensed vaccine exists. A novel S. aureus vaccine (SA4Ag) is in development, targeting the capsular polysaccharides (CPs) and two virulence-associated surface proteins. Vaccine-elicited antibody responses to CPs are efficacious against serious infection by other encapsulated bacteria. Studies of natural S. aureus infection have also shown a role for TH17 and/or TH1 responses in protection. Single-antigen vaccines, including CPs, have not been effective against S. aureus; a multiantigen vaccine approach is likely required. However, the impact of addition of protein antigens on the immune response to CPs has not been studied. Here, the immune response induced by a bivalent CP conjugate vaccine (to model the established mechanism of action of vaccine-induced protection against Gram-positive pathogens) was compared to the response induced by SA4Ag, which contains both CP conjugates and protein antigens, in cynomolgus macaques. Microengraving, flow cytometry, opsonophagocytic assays, and Luminex technology were used to analyze the B-cell, T-cell, functional antibody, and innate immune responses. Both the bivalent CP vaccine and SA4Ag induced cytokine production from naive cells and antigen-specific memory B-cell and functional antibody responses. Increases in levels of circulating, activated T cells were not apparent following vaccination, nor was a TH17 or TH1 response evident. However, our data are consistent with a vaccine-induced recruitment of T follicular helper (TFH) cells to lymph nodes. Collectively, these data suggest that the response to SA4Ag is primarily mediated by B cells and antibodies that abrogate important S. aureus virulence mechanisms. IMPORTANCEStaphylococcus aureus causes severe disease in humans for which no licensed vaccine exists. A novel vaccine is in development that targets multiple elements of the bacteria since single-component vaccines have not shown efficacy to date. How these multiple components alter the immune response raised by the vaccine is not well studied. We found that the addition of two protein components did not alter substantially the antibody responses raised with respect to function or mobilization of B cells. There was also not a substantial change in the activity of T cells, another part of the adaptive response. This study showed that protection by this vaccine may be mediated primarily by antibody protection.
Collapse
|
45
|
Inoue M, Yonemura T, Baber J, Shoji Y, Aizawa M, Cooper D, Eiden J, Gruber WC, Jansen KU, Anderson AS, Gurtman A. Safety, tolerability, and immunogenicity of a novel 4-antigen Staphylococcus aureus vaccine (SA4Ag) in healthy Japanese adults. Hum Vaccin Immunother 2018; 14:2682-2691. [PMID: 30084709 PMCID: PMC6314418 DOI: 10.1080/21645515.2018.1496764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/06/2018] [Accepted: 06/22/2018] [Indexed: 11/29/2022] Open
Abstract
A novel Staphylococcus aureus 4-antigen vaccine (SA4Ag) is under development, comprising capsular polysaccharide serotypes 5 and 8 (CP5 and CP8) conjugated to CRM197, recombinant protein clumping factor A (rmClfA), and recombinant manganese transporter protein C (MntC). We evaluated SA4Ag safety, tolerability, and immunogenicity in Japanese adults aged 20 to 64 and 65 to 85 years. A total of 136 healthy Japanese adults (68 per age group) were randomized 1:1 to receive single-dose SA4Ag or placebo intramuscularly (Day 1). Safety assessments included reactogenicity and adverse events. The ability of the vaccine to induce immune responses that are considered functional due to their ability to facilitate the killing of S. aureus or neutralize S. aureus virulence mechanisms was assessed using 5 different antigen-specific assays. SA4Ag was well tolerated in both age groups, with no safety concerns. At Day 29, > 85% of SA4Ag recipients in each age group achieved predefined thresholds for each antigen. Antibody geometric mean-fold rises from baseline to Day 29 in SA4Ag groups were: > 80 and > 30 for CP5 and CP8 (opsonophagocytic activity assay), > 10 for ClfA (fibrinogen-binding inhibition assay), and > 15 and > 7 for ClfA and MntC (competitive Luminex® immunoassay), respectively. Antibody titers decreased through Month 12 but remained well above baseline and placebo levels. SA4Ag had an acceptable safety profile and induced rapid and robust functional immune responses in both age groups. These results support ongoing development of SA4Ag for the prevention of invasive S. aureus disease in elective-surgery patients in Japan, North America, and Europe.
Collapse
Affiliation(s)
| | | | - James Baber
- Pfizer Vaccine Research and Development, Sydney, NSW, Australia
| | - Yasuko Shoji
- Pfizer Vaccine Research and Development, Tokyo, Japan
| | | | - David Cooper
- Pfizer Vaccine Research and Development, Pearl River, NY, USA
| | - Joseph Eiden
- Pfizer Vaccine Research and Development, Pearl River, NY, USA
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- A. Krishna Prasad
- Pfizer Vaccines Research and Development, 401 N. Middletown Rd., Pearl River, New York 10965, United States
| | - Jin-hwan Kim
- Pfizer Vaccines Research and Development, 401 N. Middletown Rd., Pearl River, New York 10965, United States
| | - Jianxin Gu
- Pfizer Vaccines Research and Development, 401 N. Middletown Rd., Pearl River, New York 10965, United States
| |
Collapse
|
47
|
MntC-Dependent Manganese Transport Is Essential for Staphylococcus aureus Oxidative Stress Resistance and Virulence. mSphere 2018; 3:3/4/e00336-18. [PMID: 30021878 PMCID: PMC6052334 DOI: 10.1128/msphere.00336-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Work outlined in this report demonstrated that MntC-dependent manganese transport is required for S. aureus virulence. These study results support the model that MntC-specific antibodies elicited by a vaccine have the potential to disrupt S. aureus manganese transport and thus abrogate to its virulence. Staphylococcus aureus is a human pathogen that has developed several approaches to evade the immune system, including a strategy to resist oxidative killing by phagocytes. This resistance is mediated by production of superoxide dismutase (SOD) enzymes which use manganese as a cofactor. S. aureus encodes two manganese ion transporters, MntABC and MntH, and a possible Nramp family manganese transporter, exemplified by S. aureus N315 SA1432. Their relative contributions to manganese transport have not been well defined in clinically relevant isolates. For this purpose, insertional inactivation mutations were introduced into mntC, mntH, and SA1432 individually and in combination. mntC was necessary for full resistance to methyl viologen, a compound that generates intracellular free radicals. In contrast, strains with an intact mntH gene had a minimal increase in resistance that was revealed only in mntC strains, and no change was observed upon mutation of SA1432 in strains lacking both mntC and mntH. Similarly, MntC alone was required for high cellular SOD activity. In addition, mntC strains were attenuated in a murine sepsis model. To further link these observations to manganese transport, an S. aureus MntC protein lacking manganese binding activity was designed, expressed, and purified. While circular dichroism experiments demonstrated that the secondary and tertiary structures of this protein were unaltered, a defect in manganese binding was confirmed by isothermal titration calorimetry. Unlike complementation with wild-type mntC, introduction of the manganese-binding defective allele into the chromosome of an mntC strain did not restore resistance to oxidative stress or virulence. Collectively, these results underscore the importance of MntC-dependent manganese transport in S. aureus oxidative stress resistance and virulence. IMPORTANCE Work outlined in this report demonstrated that MntC-dependent manganese transport is required for S. aureus virulence. These study results support the model that MntC-specific antibodies elicited by a vaccine have the potential to disrupt S. aureus manganese transport and thus abrogate to its virulence.
Collapse
|
48
|
Tanaka KJ, Song S, Mason K, Pinkett HW. Selective substrate uptake: The role of ATP-binding cassette (ABC) importers in pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:868-877. [PMID: 28847505 PMCID: PMC5807212 DOI: 10.1016/j.bbamem.2017.08.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023]
Abstract
The uptake of nutrients, including metals, amino acids and peptides are required for many biological processes. Pathogenic bacteria scavenge these essential nutrients from microenvironments to survive within the host. Pathogens must utilize a myriad of mechanisms to acquire these essential nutrients from the host while mediating the effects of toxicity. Bacteria utilize several transport proteins, including ATP-binding cassette (ABC) transporters to import and expel substrates. ABC transporters, conserved across all organisms, are powered by the energy from ATP to move substrates across cellular membranes. In this review, we will focus on nutrient uptake, the role of ABC importers at the host-pathogen interface, and explore emerging therapies to combat pathogenesis. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Kari J Tanaka
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Saemee Song
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Kevin Mason
- The Research Institute at Nationwide Children's Hospital and The Ohio State University, College of Medicine, Department of Pediatrics, Center for Microbial Pathogenesis, Columbus, OH, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
49
|
Thomsen IP, Liu GY. Targeting fundamental pathways to disrupt Staphylococcus aureus survival: clinical implications of recent discoveries. JCI Insight 2018. [PMID: 29515041 DOI: 10.1172/jci.insight.98216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The emergence of community-associated methicillin-resistant Staphylococcus aureus during the past decade along with an impending shortage of effective antistaphylococcal antibiotics have fueled impressive advances in our understanding of how S. aureus overcomes the host environment to establish infection. Backed by recent technologic advances, studies have uncovered elaborate metabolic, nutritional, and virulence strategies deployed by S. aureus to survive the restrictive and hostile environment imposed by the host, leading to a plethora of promising antimicrobial approaches that have potential to remedy the antibiotic resistance crisis. In this Review, we highlight some of the critical and recently elucidated bacterial strategies that are potentially amenable to intervention, discuss their relevance to human diseases, and address the translational challenges posed by current animal models.
Collapse
Affiliation(s)
- Isaac P Thomsen
- Department of Pediatrics, Division of Pediatric Infectious Diseases, and Vanderbilt Vaccine Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George Y Liu
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
50
|
Balachandran M, Bemis DA, Kania SA. Expression and function of protein A in Staphylococcus pseudintermedius. Virulence 2018; 9:390-401. [PMID: 29157101 PMCID: PMC5955199 DOI: 10.1080/21505594.2017.1403710] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023] Open
Abstract
Staphylococcus pseudintermedius is an opportunistic pathogen in dogs and the most frequent cause of canine pyoderma. Protein A, a potent virulence factor in S. aureus is encoded by the spa gene. S. pseudintermedius possesses genes seemingly analogous to spa, but the expression and the characteristics of their products have not been directly determined. The purpose of this study was to test isolates from major clonal groups for the presence of spa gene orthologs, quantitate their expression levels, and to characterize protein A in S. pseudintermedius. From the data, it was observed that S. pseudintermedius isolates express genes analogous to spa in S. aureus. Isolates representing major clonal populations in the United States and Europe, ST68 and ST71 respectively, bound significantly higher amounts of canine IgG than isolates with other genetic backgrounds, suggesting that these isolates have a higher density of protein A on their surface. Also, canine IgG bound to protein A on S. pseudintermedius via its Fc region similar to protein A from S. aureus. The mRNA profile differed based on the bacterial sequence types and correlated to the density of protein A on the bacterial surface. Protein A was also found to be secreted during the exponential growth phase. Phagocytosis experiments with S. pseudintermedius show that blocking of protein A enhanced phagocytosis in whole blood, neutrophils and in DH82 canine macrophage-like cell line. Taken together, the results demonstrate that S. pseudintermedius produces protein A that shares S. aureus protein A's ability to bind the Fc region of immunoglobulins and may serve as a potential virulence factor by evading the host immune system.
Collapse
Affiliation(s)
- Manasi Balachandran
- Department of Biomedical and Diagnostic Sciences, Comparative and Experimental Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, USA
| | - David A. Bemis
- Department of Biomedical and Diagnostic Sciences, Comparative and Experimental Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, USA
| | - Stephen A. Kania
- Department of Biomedical and Diagnostic Sciences, Comparative and Experimental Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, USA
| |
Collapse
|