1
|
Qi Q, Wang Z. Integrating machine learning and nano-QSAR models to predict the oxidative stress potential caused by single and mixed carbon nanomaterials in algal cells. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025:vgae049. [PMID: 39798159 DOI: 10.1093/etojnl/vgae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/19/2024] [Indexed: 01/15/2025]
Abstract
In silico methods are increasingly important in predicting the ecotoxicity of engineered nanomaterials (ENMs), encompassing both individual and mixture toxicity predictions. It is widely recognized that ENMs trigger oxidative stress effects by generating intracellular reactive oxygen species (ROS), serving as a key mechanism in their cytotoxicity studies. However, existing in silico methods still face significant challenges in predicting the oxidative stress effects induced by ENMs. Herein, we utilized laboratory-derived toxicity data and machine learning methods to develop quantitative nanostructure-activity relationship (nano-QSAR) classification and regression models, aiming to predict the oxidative stress effects of five carbon nanomaterials (fullerene, graphene, graphene oxide, single-walled carbon nanotubes, and multi-walled carbon nanotubes) and their binary mixtures on Scenedesmus obliquus cells. We constructed five nano-QSAR classification models by combining zeta potential (ζP) with the C4.5 decision tree, support vector machine, artificial neural network, naive Bayes, and K-nearest neighbor algorithms. Moreover, we constructed three classification models by integrating the features including ζP, hydrodynamic diameter (DH), and specific surface area (SSA) with the logistic regression, random forest, and Adaboost algorithms. The Accuracy, Recall, Precision and harmonic mean of Precision and Recall (F1-score) values of these models were all higher than 0.600, indicating an excellent performance in distinguishing whether CNMs have the potential to generate ROS. In addition, using the ζP, DH, and SSA descriptors, we combined decision tree regression, random forest regression, gradient boosting, and the Adaboost algorithm, and successfully constructed four nano-QSAR regression models with applicable application domains (all training and testing data points lie within 95% confidence intervals), goodness-of-fit (Rtrain2 ≥ 0.850), and robustness (cross-validation R2 ≥ 0.650) as well as predictive power (Rtest2 ≥ 0.610). The method developed would establish a fundamental basis for more precise evaluations of ecological risks posed by these materials from a mechanistic standpoint.
Collapse
Affiliation(s)
- Qi Qi
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, PR China
| | - Zhuang Wang
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, PR China
| |
Collapse
|
2
|
Batchelder JI, Taylor AJ, Mok WWK. Metabolites augment oxidative stress to sensitize antibiotic-tolerant Staphylococcus aureus to fluoroquinolones. mBio 2024; 15:e0271424. [PMID: 39475229 PMCID: PMC11633220 DOI: 10.1128/mbio.02714-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/08/2024] [Indexed: 12/12/2024] Open
Abstract
If left unchecked, infections involving antibiotic-refractory bacteria are expected to cause millions of deaths per year in the coming decades. Beyond genetically resistant bacteria, persisters, which are genetically susceptible cells that survive antibiotic doses that kill the rest of the clonal population, can potentially contribute to treatment failure and infection relapse. Stationary-phase bacterial cultures are enriched with persisters, and it has been shown that stimulating these populations with exogenous nutrients can reduce persistence to different classes of antibiotics, including topoisomerase-targeting fluoroquinolones (FQs). In this study, we show that adding glucose and amino acids to nutrient-starved Staphylococcus aureus cultures enhanced their sensitivity to FQs, including delafloxacin (Dela)-a drug that was recently approved for treating staphylococcal infections. We found that while the added nutrients increased nucleic acid synthesis, this increase was not required to sensitize S. aureus to FQs. We further demonstrate that addition of these nutrients increases membrane potential and the ability to generate harmful reactive oxygen species (ROS) during FQ treatment. Chelating iron, scavenging hydroxyl radicals, and limiting oxygenation during FQ treatment and during recovery following FQ treatment rescued nutrient-stimulated S. aureus. In all, our data suggest that while nutrient stimulation increases the activity of FQ targets in stationary-phase S. aureus, the resulting generation of ROS, presumably made possible through metabolic upregulation, is the primary driver of increased sensitivity to these drugs.IMPORTANCEStaphylococcus aureus causes many chronic and relapsing infections because of its ability to endure host immunity and antibiotic therapy. While several studies have focused on the nutrient requirements for the formation and maintenance of staphylococcal infections, the effects of the nutrient environment on bacterial responses to antibiotic treatment remain understudied. Here, we show that adding nutrients to starved S. aureus activates biosynthetic processes, including DNA synthesis, but it is the generation of harmful reactive oxidants that sensitizes S. aureus to DNA topoisomerase-targeting FQs. Our results suggest that the development of approaches aimed at perturbing metabolism and increasing oxidative stress can potentiate the bactericidal activity of FQs against antibiotic-tolerant S. aureus.
Collapse
Affiliation(s)
- Jonathan I. Batchelder
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Andrew J. Taylor
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Wendy W. K. Mok
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
3
|
Pereira ME, Lima LS, Souza JV, de Souza da Costa N, da Silva JF, Guiloski IC, Irioda AC, Oliveira CS. Evaluation of the Neuroprotective Effect of Organic Selenium Compounds: An in Vitro Model of Alzheimer's Disease. Biol Trace Elem Res 2024; 202:2954-2965. [PMID: 37803188 DOI: 10.1007/s12011-023-03893-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
Selenium (Se) is an essential trace element for human health and plays an important role in the development and maintenance of central nervous system functions. Se deficiency has been associated with cognitive decline and increased oxidative stress. The increase in oxidative stress is one of the hypotheses for the emergence and worsening of neurodegenerative diseases, such as Alzheimer's disease (AD). To investigate the neuroprotective effects of organic Se compounds in human neuroblastoma cells (SH-SY5Y) differentiated into cholinergic neurons-like. The SH-SY5Y cells were differentiated into cholinergic neuron-like with retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). AD was mimicked exposing the cells to okadaic acid (OA) and beta-amyloid protein (Aβ). The neuroprotective effect of organic Se compounds, selenomethionine (SeMet) and Ebselen, was evaluated through cell viability tests, acetylcholinesterase and antioxidant enzyme activities, and detection of reactive oxygen species (ROS). None of the SeMet concentrations tested protected against the toxic effect of OA + Aβ. On the other hand, previous exposure to 0.1 and 1 µM Ebselen protected cells from the toxic effect of OA + Aβ. Cell differentiation induced by RA and BDNF exposure was effective, showing characteristics of neuronal cells, and pointing to a promising model of AD. Ebselen showed a protective effect, but more studies are needed to identify the mechanism of action.
Collapse
Affiliation(s)
- Meire Ellen Pereira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Luiza Siqueira Lima
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Júlia Vicentin Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Nayara de Souza da Costa
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Juliana Ferreira da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Izonete Cristina Guiloski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | | | - Cláudia Sirlene Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil.
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
| |
Collapse
|
4
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Hart A, Schroeder H, Rose M, Vrijheid M, Kouloura E, Bordajandi LR, Riolo F, Vleminckx C. Update of the scientific opinion on tetrabromobisphenol A (TBBPA) and its derivatives in food. EFSA J 2024; 22:e8859. [PMID: 39010865 PMCID: PMC11247339 DOI: 10.2903/j.efsa.2024.8859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on tetrabromobisphenol A (TBBPA) and five derivatives in food. Neurotoxicity and carcinogenicity were considered as the critical effects of TBBPA in rodent studies. The available evidence indicates that the carcinogenicity of TBBPA occurs via non-genotoxic mechanisms. Taking into account the new data, the CONTAM Panel considered it appropriate to set a tolerable daily intake (TDI). Based on decreased interest in social interaction in male mice, a lowest observed adverse effect level (LOAEL) of 0.2 mg/kg body weight (bw) per day was identified and selected as the reference point for the risk characterisation. Applying the default uncertainty factor of 100 for inter- and intraspecies variability, and a factor of 3 to extrapolate from the LOAEL to NOAEL, a TDI for TBBPA of 0.7 μg/kg bw per day was established. Around 2100 analytical results for TBBPA in food were used to estimate dietary exposure for the European population. The most important contributors to the chronic dietary LB exposure to TBBPA were fish and seafood, meat and meat products and milk and dairy products. The exposure estimates to TBBPA were all below the TDI, including those estimated for breastfed and formula-fed infants. Accounting for the uncertainties affecting the assessment, the CONTAM Panel concluded with 90%-95% certainty that the current dietary exposure to TBBPA does not raise a health concern for any of the population groups considered. There were insufficient data on the toxicity of any of the TBBPA derivatives to derive reference points, or to allow a comparison with TBBPA that would support assignment to an assessment group for the purposes of combined risk assessment.
Collapse
|
5
|
Honkisz-Orzechowska E, Barczyk-Woźnicka O, Kaleta M, Handzlik J, Kieć-Kononowicz K. Studies on Autophagy and Apoptosis of Fibrosarcoma HT-1080 Cells Mediated by Chalcone with Indole Moiety. Int J Mol Sci 2024; 25:6100. [PMID: 38892288 PMCID: PMC11172467 DOI: 10.3390/ijms25116100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
This study demonstrated the anticancer efficacy of chalcones with indole moiety (MIPP, MOMIPP) in fibrosarcoma cells for the first time. The results showed that MIPP and MOMIPP reduced the viability of HT-1080 cells in a concentration-dependent manner. MOMIPP was more active than MIPP in HT-1080 cells, showing lower IC50 values (3.67 vs. 29.90 μM). Both compounds at a concentration of 1 μM induced apoptosis in HT-1080 cells, causing death strictly related to caspase activation, as cell viability was restored when the caspase inhibitor Z-VAD was added. Reactive oxygen species production was approximately 3-fold higher than in control cells, and cotreatment with the inhibitor of mitochondrial ATPase oligomycin diminished this effect. Such effects were also reflected in mitochondrial dysfunction, including decreased membrane potential. Interestingly, the compounds that were studied caused massive vacuolization in HT-1080 cells. Immunocytochemical staining and TEM analysis showed that HT-1080 cells exhibited increased expression of the LC3-II protein and the presence of autophagosomes with a double membrane, respectively. Both compounds induced apoptosis, highlighting a promising link between autophagy and apoptosis. This connection could be a new target for therapeutic strategies to overcome chemoresistance, which is a significant cause of treatment failure and tumour recurrence in fibrosarcoma following traditional chemotherapy.
Collapse
Affiliation(s)
- Ewelina Honkisz-Orzechowska
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (E.H.-O.); (M.K.); (J.H.)
| | - Olga Barczyk-Woźnicka
- Laboratory of Transmission Electron Microscopy, Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, 9 Gronostajowa Street, 30-387 Kraków, Poland;
| | - Maria Kaleta
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (E.H.-O.); (M.K.); (J.H.)
| | - Jadwiga Handzlik
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (E.H.-O.); (M.K.); (J.H.)
| | - Katarzyna Kieć-Kononowicz
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (E.H.-O.); (M.K.); (J.H.)
| |
Collapse
|
6
|
Kumar Pradhan M, Suresh Puthenpurackal S, Srivastava A. Enzymatic Dimerization-Induced Self-Assembly of Alanine-Tyramine Conjugates into Versatile, Uniform, Enzyme-Loaded Organic Nanoparticles. Angew Chem Int Ed Engl 2024; 63:e202314960. [PMID: 37992201 DOI: 10.1002/anie.202314960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
Herein, we report a novel enzymatic dimerization-induced self-assembly (e-DISA) procedure that converts alanine-tyramine conjugates into highly uniform enzyme-loaded nanoparticles (NPs) or nanocontainers by the action of horseradish peroxidase (HRP) in an aqueous medium under ambient conditions. The NP formation was possible with both enantiomers of alanine, and the average diameter could be varied from 150 nm to 250 nm (with a 5-12 % standard deviation of as-prepared samples) depending on the precursor concentration. About 60 % of the added HRP enzyme was entrapped within the NPs and was subsequently utilized for post-synthetic modification of the NPs with phenolic compounds such as tyramine or tannic acid. One-pot multi-enzyme entrapment of glucose oxidase (GOx) and peroxidase (HRP) within the NPs was also achieved. These GOx-HRP loaded NPs allowed multimodal detection of glucose, including that present in human saliva, with a limit of detection (LoD) of 740 nM through fluorimetry. The NPs exhibited good cytocompatibility and were stable to changes in pH (acidic to basic), temperature, ultrasonication, and even the presence of organic solvent (EtOH) to a certain extent, since they are stabilized by intermolecular hydrogen bonding, π-π, and CH-π interactions. The proposed e-DISA procedure can be widely expanded through the design of diverse enzyme-responsive precursors.
Collapse
Affiliation(s)
- Manas Kumar Pradhan
- Department of Chemistry, IISER Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | | | - Aasheesh Srivastava
- Department of Chemistry, IISER Bhopal, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
7
|
Elías-Llumbet A, Tian Y, Reyes-San-Martin C, Reina-Mahecha A, Damle V, Morita A, van der Veen HC, Sharma PK, Sandovici M, Mzyk A, Schirhagl R. Quantum Sensing for Real-Time Monitoring of Drug Efficacy in Synovial Fluid from Arthritis Patients. NANO LETTERS 2023; 23:8406-8410. [PMID: 37676737 PMCID: PMC10540259 DOI: 10.1021/acs.nanolett.3c01506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Diamond-based T1 relaxometry is a new technique that allows nanoscale magnetic resonance measurements. Here we present its first application in patient samples. More specifically, we demonstrate that relaxometry can determine the free radical load in samples from arthritis patients. We found that we can clearly differentiate between osteoarthritis and rheumatoid arthritis patients in both the synovial fluid itself and cells derived from it. Furthermore, we tested how synovial fluid and its cells respond to piroxicam, a common nonsteroidal anti-inflammatory drug (NSAID). It is known that this drug leads to a reduction in reactive oxygen species production in fibroblast-like synoviocytes (FLS). Here, we investigated the formation of free radicals specifically. While FLS from osteoarthritis patients showed a drastic decrease in the free radical load, cells from rheumatoid arthritis retained a similar radical load after treatment. This offers a possible explanation for why piroxicam is more beneficial for patients with osteoarthritis than those with rheumatoid arthritis.
Collapse
Affiliation(s)
- Arturo Elías-Llumbet
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
- Laboratory
of Genomic of Germ Cells, Biomedical Sciences Institute, Faculty of
Medicine, University of Chile, 1027 Independencia, Santiago, Chile
| | - Yuchen Tian
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| | - Claudia Reyes-San-Martin
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| | - Alejandro Reina-Mahecha
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| | - Viraj Damle
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| | - Aryan Morita
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| | - Hugo C. van der Veen
- Department
of Orthopaedic Surgery, University of Groningen,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| | - Prashant K. Sharma
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| | - Maria Sandovici
- Department
of Rheumatology and Clinical Immunology, University Medical Center Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| | - Aldona Mzyk
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
- Institute
of Metallurgy and Materials Science, Polish
Academy of Sciences, Reymonta 25, 30-059 Cracow, Poland
| | - Romana Schirhagl
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| |
Collapse
|
8
|
Feng J, Soto‐Moreno EJ, Prakash A, Balboula AZ, Qiao H. Adverse PFAS effects on mouse oocyte in vitro maturation are associated with carbon-chain length and inclusion of a sulfonate group. Cell Prolif 2023; 56:e13353. [PMID: 36305033 PMCID: PMC9890540 DOI: 10.1111/cpr.13353] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Per- and polyfluoroalkyl substances (PFAS) are man-made chemicals that are widely used in various products. PFAS are characterized by their fluorinated carbon chains that make them hard to degrade and bioaccumulate in human and animals. Toxicological studies have shown PFAS toxic effects: cytotoxicity, immunotoxicity, neurotoxicity, and reproductive toxicity. However, it is still unclear how the structures of PFAS, such as carbon-chain length and functional groups, determine their reproductive toxicity. METHODS AND RESULTS By using a mouse-oocyte-in-vitro-maturation (IVM) system, we found the toxicity of two major categories of PFAS, perfluoroalkyl carboxylic acid (PFCA) and perfluoroalkyl sulfonic acid (PFSA), is elevated with increasing carbon-chain length and the inclusion of the sulfonate group. Specifically, at 600 μM, perfluorohexanesulfonic acid (PFHxS) and perfluorooctanesulfonic acid (PFOS) reduced the rates of both germinal-vesicle breakdown (GVBD) and polar-body extrusion (PBE) as well as enlarged polar bodies. However, the shorter PFSA, perfluorobutanesulfonic acid (PFBS), and all PFCA did not show similar adverse cytotoxicity. Further, we found that 600 μM PFHxS and PFOS exposure induced excess reactive oxygen species (ROS) and decreased mitochondrial membrane potential (MMP). Cytoskeleton analysis revealed that PFHxS and PFOS exposure induced chromosome misalignment, abnormal F-actin organization, elongated spindle formation, and symmetric division in the treated oocytes. These meiotic defects compromised oocyte developmental competence after parthenogenetic activation. CONCLUSIONS Our study provides new information on the structure-toxicity relationship of PFAS.
Collapse
Affiliation(s)
- Jianan Feng
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignChampaignUrbanaUSA
| | | | - Aashna Prakash
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignChampaignUrbanaUSA
| | - Ahmed Z. Balboula
- Division of Animal SciencesUniversity of MissouriMissouriColumbiaUSA
| | - Huanyu Qiao
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignChampaignUrbanaUSA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignUrbanaUSA
| |
Collapse
|
9
|
Zhao R, Lopez B, Schwingshackl A, Goldstein SA. Protection from acute lung injury by a peptide designed to inhibit the voltage-gated proton channel. iScience 2022; 26:105901. [PMID: 36660473 PMCID: PMC9843441 DOI: 10.1016/j.isci.2022.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
There are no targeted medical therapies for Acute Lung Injury (ALI) or its most severe form acute respiratory distress syndrome (ARDS). Infections are the most common cause of ALI/ARDS and these disorders present clinically with alveolar inflammation and barrier dysfunction due to the influx of neutrophils and inflammatory mediator secretion. We designed the C6 peptide to inhibit voltage-gated proton channels (Hv1) and demonstrated that it suppressed the release of reactive oxygen species (ROS) and proteases from neutrophils in vitro. We now show that intravenous C6 counteracts bacterial lipopolysaccharide (LPS)-induced ALI in mice, and suppresses the accumulation of neutrophils, ROS, and proinflammatory cytokines in bronchoalveolar lavage fluid. Confirming the salutary effects of C6 are via Hv1, genetic deletion of the channel similarly protects mice from LPS-induced ALI. This report reveals that Hv1 is a key regulator of ALI, that Hv1 is a druggable target, and that C6 is a viable agent to treat ALI/ARDS.
Collapse
Affiliation(s)
- Ruiming Zhao
- Departments of Pediatrics, Physiology & Biophysics, and Pharmaceutical Sciences, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Benjamin Lopez
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andreas Schwingshackl
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA 90095, USA,Corresponding author
| | - Steve A.N. Goldstein
- Departments of Pediatrics, Physiology & Biophysics, and Pharmaceutical Sciences, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA 92697, USA,Corresponding author
| |
Collapse
|
10
|
Abakumova T, Vaneev A, Naumenko V, Shokhina A, Belousov V, Mikaelyan A, Balysheva K, Gorelkin P, Erofeev A, Zatsepin T. Intravital electrochemical nanosensor as a tool for the measurement of reactive oxygen/nitrogen species in liver diseases. J Nanobiotechnology 2022; 20:497. [PMID: 36424605 DOI: 10.1186/s12951-022-01688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractReactive oxygen/nitrogen species (ROS/RNS) are formed during normal cellular metabolism and contribute to its regulation, while many pathological processes are associated with ROS/RNS imbalances. Modern methods for measuring ROS/RNS are mainly based on the use of inducible fluorescent dyes and protein-based sensors, which have several disadvantages for in vivo use. Intravital electrochemical nanosensors can be used to quantify ROS/RNS with high sensitivity without exogenous tracers and allow dynamic ROS/RNS measurements in vivo. Here, we developed a method for quantifying total ROS/RNS levels in the liver and evaluated our setup in live mice using three common models of liver disease associated with ROS activation: acute liver injury with CCl4, partial hepatectomy (HE), and induced hepatocellular carcinoma (HCC). We have demonstrated using intravital electrochemical detection that any exposure to the peritoneum in vivo leads to an increase in total ROS/RNS levels, from a slight increase to an explosion, depending on the procedure. Analysis of the total ROS/RNS level in a partial hepatectomy model revealed oxidative stress, both in mice 24 h after HE and in sham-operated mice. We quantified dose-dependent ROS/RNS production in CCl4-induced injury with underlying neutrophil infiltration and cell death. We expect that in vivo electrochemical measurements of reactive oxygen/nitrogen species in the liver may become a routine approach that provides valuable data in research and preclinical studies.
Collapse
|
11
|
de Haan LR, Reiniers MJ, Reeskamp LF, Belkouz A, Ao L, Cheng S, Ding B, van Golen RF, Heger M. Experimental Conditions That Influence the Utility of 2′7′-Dichlorodihydrofluorescein Diacetate (DCFH2-DA) as a Fluorogenic Biosensor for Mitochondrial Redox Status. Antioxidants (Basel) 2022; 11:antiox11081424. [PMID: 35892626 PMCID: PMC9329753 DOI: 10.3390/antiox11081424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress has been causally linked to various diseases. Electron transport chain (ETC) inhibitors such as rotenone and antimycin A are frequently used in model systems to study oxidative stress. Oxidative stress that is provoked by ETC inhibitors can be visualized using the fluorogenic probe 2′,7′-dichlorodihydrofluorescein-diacetate (DCFH2-DA). Non-fluorescent DCFH2-DA crosses the plasma membrane, is deacetylated to 2′,7′-dichlorodihydrofluorescein (DCFH2) by esterases, and is oxidized to its fluorescent form 2′,7′-dichlorofluorescein (DCF) by intracellular ROS. DCF fluorescence can, therefore, be used as a semi-quantitative measure of general oxidative stress. However, the use of DCFH2-DA is complicated by various protocol-related factors that mediate DCFH2-to-DCF conversion independently of the degree of oxidative stress. This study therefore analyzed the influence of ancillary factors on DCF formation in the context of ETC inhibitors. It was found that ETC inhibitors trigger DCF formation in cell-free experiments when they are co-dissolved with DCFH2-DA. Moreover, the extent of DCF formation depended on the type of culture medium that was used, the pH of the assay system, the presence of fetal calf serum, and the final DCFH2-DA solvent concentration. Conclusively, experiments with DCFH2-DA should not discount the influence of protocol-related factors such as medium and mitochondrial inhibitors (and possibly other compounds) on the DCFH2-DA-DCF reaction and proper controls should always be built into the assay protocol.
Collapse
Affiliation(s)
- Lianne R. de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (L.R.d.H.); (M.J.R.); (L.A.); (B.D.)
- Laboratory for Experimental Oncology, Department of Pathology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Megan J. Reiniers
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (L.R.d.H.); (M.J.R.); (L.A.); (B.D.)
- Department of Surgery, Haaglanden Medisch Centrum, 2262 BA The Hague, The Netherlands
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Laurens F. Reeskamp
- Department of Vascular Medicine, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands;
| | - Ali Belkouz
- Department of Medical Oncology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Lei Ao
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (L.R.d.H.); (M.J.R.); (L.A.); (B.D.)
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, The Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, China;
| | - Baoyue Ding
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (L.R.d.H.); (M.J.R.); (L.A.); (B.D.)
| | - Rowan F. van Golen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (L.R.d.H.); (M.J.R.); (L.A.); (B.D.)
- Laboratory for Experimental Oncology, Department of Pathology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: or ; Tel.: +31-6-2448-3083 or +31-30-2533-966
| |
Collapse
|
12
|
Chapela SP, Burgos HI, Stella CA. N-Acetyl cysteine improves cellular growth in respiratory-deficient yeast. Braz J Microbiol 2022; 53:791-794. [PMID: 35122656 PMCID: PMC9151961 DOI: 10.1007/s42770-022-00705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/01/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) is a main factor that alters cellular physiology and functionality. Many strategies are used in order to control excessive oxidative stress. One strategy includes the use of antioxidants like N-acetyl cysteine (NAC). The aim of this study was to compare the effect of this antioxidant on ROS production and cellular growth of a wild-type and a respiratory-deficient Saccharomyces cerevisiae strain. METHODS Using a simple system such as yeast allows oxidative stress investigations on which numerous factors are more manageable or circumscribed than in a higher organism. We grew cells in a complex medium and incubated them during 72 h. Later, cellular viability and ROS production was evaluated. ROS level was estimated by use of fluorescence signal with 2',7'-dichlorofluorescein diacetate (DCFH-DA). RESULTS As it is found in the present work, a reducing environment exerted by NAC presence during incubation of the cells allows a respiratory-deficient Saccharomyces cerevisiae strain to improve its cellular growth. CONCLUSIONS It seems likely that the energy production or the phenotype which characterizes a deficient strain is incapable of palliating ROS growth inhibition while NAC helps to overcome this limitation.
Collapse
Affiliation(s)
- Sebastián P. Chapela
- grid.414382.80000 0001 2337 0926Hospital Británico Buenos Aires, CABA, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Hilda I. Burgos
- grid.7345.50000 0001 0056 1981Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Carlos A. Stella
- grid.7345.50000 0001 0056 1981Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| |
Collapse
|
13
|
Rouco L, Alvariño R, Alfonso A, Romero MJ, Pedrido R, Maneiro M. Neuroprotective effects of fluorophore-labelled manganese complexes: Determination of ROS production, mitochondrial membrane potential and confocal fluorescence microscopy studies in neuroblastoma cells. J Inorg Biochem 2021; 227:111670. [PMID: 34864293 DOI: 10.1016/j.jinorgbio.2021.111670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
In this work, four manganese(II) complexes derived from the ligands H2L1-H2L4, that incorporate dansyl or tosyl fluorescent dyes, have been investigated in term of their antioxidant properties. Two of the manganese(II) complexes have been newly prepared using the asymmetric half-salen ligand H2L2 and the thiosemicarbazone ligand H2L3. The four organic strands and the manganese complexes have been characterized by different analytical and spectroscopic techniques. The study of the antioxidant behaviour of these two new complexes and other two fluorophore-labelled analogues was tested in SH-SY5Y neuroblastoma cells. These four model complexes 1-4 were found to protect cells from oxidative damage in this human neuronal model, by reducing the release of reactive oxygen species. Complexes 1-4 significantly improved cell survival, with levels between 79.1 ± 0.8% and 130.9 ± 4.1%. Moreover, complexes 3 and 4 were able to restore the mitochondrial membrane potential at 1 μM, with 4 reaching levels higher than 85%, similar to the percentages obtained by the positive control agent cyclosporin A. The incorporation of the fluorescent label in the complexes allowed the study of their ability to enter the human neuroblastoma cells by confocal microscopy.
Collapse
Affiliation(s)
- Lara Rouco
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - Rebeca Alvariño
- Departamento de Farmacología, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - María J Romero
- Departamento de Didácticas Aplicadas, Facultade de Formación do Profesorado, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain.
| |
Collapse
|
14
|
Tirunavalli SK, Gourishetti K, Kotipalli RSS, Kuncha M, Kathirvel M, Kaur R, Jerald MK, Sistla R, Andugulapati SB. Dehydrozingerone ameliorates Lipopolysaccharide induced acute respiratory distress syndrome by inhibiting cytokine storm, oxidative stress via modulating the MAPK/NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153729. [PMID: 34517257 PMCID: PMC8390101 DOI: 10.1016/j.phymed.2021.153729] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Inflammation-mediated lung injury is a major cause of health problems in many countries and has been the leading cause of morbidity/mortality in intensive care units. In the current COVID-19 pandemic, the majority of the patients experienced serious pneumonia resulting from inflammation (Acute respiratory distress syndrome/ARDS). Pathogenic infections cause cytokine release syndrome (CRS) by hyperactivation of immune cells, which in turn release excessive cytokines causing ARDS. Currently, there are no standard therapies for viral, bacterial or pathogen-mediated CRS. PURPOSE This study aimed to investigate and validate the protective effects of Dehydrozingerone (DHZ) against LPS induced lung cell injury by in-vitro and in-vivo models and to gain insights into the molecular mechanisms that mediate these therapeutic effects. METHODS The therapeutic activity of DHZ was determined in in-vitro models by pre-treating the cells with DHZ and exposed to LPS to stimulate the inflammatory cascade of events. We analysed the effect of DHZ on LPS induced inflammatory cytokines, chemokines and cell damage markers expression/levels using various cell lines. We performed gene expression, ELISA, and western blot analysis to elucidate the effect of DHZ on inflammation and its modulation of MAPK and NF-κB pathways. Further, the prophylactic and therapeutic effect of DHZ was evaluated against the LPS induced ARDS model in rats. RESULTS DHZ significantly (p < 0.01) attenuated the LPS induced ROS, inflammatory cytokine, chemokine gene expression and protein release in macrophages. Similarly, DHZ treatment protected the lung epithelial and endothelial cells by mitigating the LPS induced inflammatory events in a dose-dependent manner. In vivo analysis showed that DHZ treatment significantly (p < 0.001) mitigated the LPS induced ARDS pathophysiology of increase in the inflammatory cells in BALF, inflammatory cytokine and chemokines in lung tissues. LPS stimulated neutrophil-mediated events, apoptosis, alveolar wall thickening and alveolar inflammation were profoundly reduced by DHZ treatment in a rat model. CONCLUSION This study demonstrates for the first time that DHZ has the potential to ameliorate LPS induced ARDS by inhibiting cytokine storm and oxidative through modulating the MAPK and NF-κB pathways. This data provides pre-clinical support to develop DHZ as a potential therapeutic agent against ARDS.
Collapse
Affiliation(s)
- Satya Krishna Tirunavalli
- CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India; Centre for Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Karthik Gourishetti
- CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India
| | | | - Madusudhana Kuncha
- CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India
| | | | - Rajwinder Kaur
- CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India
| | - Mahesh Kumar Jerald
- CSIR - Centre for Cellular & Molecular Biology (CCMB), Hyderabad 500 007, India
| | - Ramakrishna Sistla
- CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India; Centre for Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Sai Balaji Andugulapati
- CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India; Centre for Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India.
| |
Collapse
|
15
|
The Phenoxyalkyltriazine Antagonists for 5-HT 6 Receptor with Promising Procognitive and Pharmacokinetic Properties In Vivo in Search for a Novel Therapeutic Approach to Dementia Diseases. Int J Mol Sci 2021; 22:ijms221910773. [PMID: 34639113 PMCID: PMC8509428 DOI: 10.3390/ijms221910773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Among the serotonin receptors, one of the most recently discovered 5-HT6 subtype is an important protein target and its ligands may play a key role in the innovative treatment of cognitive disorders. However, none of its selective ligands have reached the pharmaceutical market yet. Recently, a new chemical class of potent 5-HT6 receptor agents, the 1,3,5-triazine-piperazine derivatives, has been synthesized. Three members, the ortho and meta dichloro- (1,2) and the unsubstituted phenyl (3) derivatives, proved to be of special interest due to their high affinities (1,2) and selectivity (3) toward 5-HT6 receptor. Thus, a broader pharmacological profile for 1–3, including comprehensive screening of the receptor selectivity and drug-like parameters in vitro as well as both, pharmacokinetic and pharmacodynamic properties in vivo, have been investigated within this study. A comprehensive analysis of the obtained results indicated significant procognitive-like activity together with beneficial drug-likeness in vitro and pharmacokinetics in vivo profiles for both, (RS)-4-[1-(2,3-dichlorophenoxy)propyl]-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (2) and (RS)-4-(4-methylpiperazin-1-yl)-6-(1-phenoxypropyl)-1,3,5-triazin-2-amine (3), but insensibly predominant for compound 2. Nevertheless, both compounds (2 and 3) seem to be good Central Nervous System drug candidates in search for novel therapeutic approach to dementia diseases, based on the 5-HT6 receptor target.
Collapse
|
16
|
Zeinali S, Tuncel A, Yüzer A, Yurt F. Imaging and detection of cell apoptosis byIn vitrophotodynamic therapy applications of zinc (II) phthalocyanine on human melanoma cancer. Photodiagnosis Photodyn Ther 2021; 36:102518. [PMID: 34478898 DOI: 10.1016/j.pdpdt.2021.102518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/29/2021] [Accepted: 08/27/2021] [Indexed: 01/10/2023]
Abstract
This study aims to investigate the photodynamic therapy (PDT) effects on MeWo (human melanoma cells) and HaCaT (normal human keratinocyte cells) by light stimulation of different concentrations of Zinc (II)-tetra-tert-butyl-phthalocyaninato (ZnPc). MTT viability assay data indicated that a 25 μM concentration of ZnPc is cytotoxic to the melanoma cancer cells while this concentration of ZnPc is not cytotoxic for the HaCaT cell line. Moreover, the results showed that photoactivated ZnPc at 12.5 μM concentration reduced the cell viability of the MeWo cell line to about 50 %. At this photosensitizing concentration, the efficacy of light doses of 20, 30, 40, and 50 J/cm2 was evaluated against MeWo and HaCaT cells. ZnPc at a concentration of 12.5 μM activated with a light dose of 50 J/cm2 was the most efficient for the killing of MeWo cells. In conclusion, the 12.5 μM of ZnPc with the treatment light dose of 50 J/cm2 from a RED light source was adequate to destroy MeWo cells by the ROS-induced apoptosis mechanism. It also exhibited low killing effects on healthy HaCaT cells. These findings are supported by the results of apoptosis with the Annexin V & Dead Cell Kit and fluorescence imaging.
Collapse
Affiliation(s)
- Sevda Zeinali
- Department Biomedical Technologies, Institute of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Ayca Tuncel
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Abdulcelil Yüzer
- Faculty of Engineering, Department of Engineering Fundamental Sciences, Tarsus University, 33400, Tarsus, Turkey
| | - Fatma Yurt
- Department Biomedical Technologies, Institute of Science, Ege University, 35100, Bornova, Izmir, Turkey; Department of Nuclear Applications, Institute of Nuclear Science, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
17
|
Bisavenathramide Analogues as Nrf2 Inductors and Neuroprotectors in In Vitro Models of Oxidative Stress and Hyperphosphorylation. Antioxidants (Basel) 2021; 10:antiox10060941. [PMID: 34200859 PMCID: PMC8230565 DOI: 10.3390/antiox10060941] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is crucial to the outbreak and advancement of neurodegenerative diseases and is a common factor to many of them. We describe the synthesis of a library of derivatives of the 4-arylmethylen-2-pyrrolin-5-one framework by sequential application of a three-component reaction of primary amines, β-dicarbonyl compounds, and α-haloketones and a Knoevenagel condensation. These compounds can be viewed as cyclic amides of caffeic and ferulic acids, and are also structurally related to the bisavenanthramide family of natural antioxidants. Most members of the library showed low cytotoxicity and good activity as inductors of Nrf2, a transcription factor that acts as the master regulator of the antioxidant response associated with activation of the antioxidant response element (ARE). Nrf2-dependent protein expression was also proved by the significant increase in the levels of the HMOX1 and NQO1 proteins. Some compounds exerted neuroprotective properties in oxidative stress situations, such as rotenone/oligomycin-induced toxicity, and also against protein hyperphosphorylation induced by the phosphatase inhibitor okadaic acid. Compound 3i, which can be considered a good candidate for further hit-to-lead development against neurodegenerative diseases due to its well-balanced multitarget profile, was further characterized by proving its ability to reduce phosphorylated Tau levels.
Collapse
|
18
|
Noori S, Rajabi S, Tavirani MR, Shokri B, Zarghi A. Anti-Breast Cancer Activities of Ketoprofen-RGD Conjugate by Targeting Breast Cancer Stem-Like Cells and Parental Cells. Anticancer Agents Med Chem 2021; 21:1027-1036. [PMID: 32900351 DOI: 10.2174/1871520620666200908105416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer Stem Cells (CSCs) play an important role in various stages of cancer development, advancement, and therapy resistance. Ketoprofen-RGD has been revealed to act as an anti-cancer agent against some tumors. OBJECTIVE We aimed to explore the effects of a novel Ketoprofen-RGD compound on the suppression of Breast Cancer Stem-like Cells (BCSCs) and their parental cells. METHODS Mammospheres were developed from MCF-7 cells and assessed by CSC surface markers through flowcytometry. The anti-proliferative and pro-apoptotic activities of Ketoprofen-RGD were measured by MTS assay and flowcytometry. The expression levels of stemness markers and JAK2/STAT proteins were measured by quantitative Real Time-PCR (qRT-PCR) and western blotting, respectively. Intracellular Reactive Oxygen Species (ROS) was measured using a cell permeable, oxidant-sensitive fluorescence probe (carboxy-H2DCFDA). RESULTS Ketoprofen-RGD significantly reduced the mammosphere formation rate and the expression of three out of six stemness markers and remarkably decreased viability and induced apoptosis of spheroidal and parental cells compared to controls. Further experiments using CD95L, as a death ligand, and ZB4 antibody, as an extrinsic apoptotic pathway blocker, showed that Ketoprofen-RGD induced intrinsic pathway, suggesting a mechanism by which Ketoprofen-RGD triggers apoptosis. ROS production was also another way to induce apoptosis. Results of western blot analysis also revealed a marked diminish in the phosphorylation of JAK2 and STAT proteins. CONCLUSION Our study, for the first time, elucidated an anti-BCSC activity for Ketoprofen-RGD via declining stemness markers, inducing toxicity, and apoptosis in these cells and parental cells. These findings may suggest this compound as a promising anti-breast cancer.
Collapse
Affiliation(s)
- Shokoofe Noori
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center (TMRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa R Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahare Shokri
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Haasler L, Kondadi AK, Tsigaras T, von Montfort C, Graf P, Stahl W, Brenneisen P. The BH3 mimetic (±) gossypol induces ROS-independent apoptosis and mitochondrial dysfunction in human A375 melanoma cells in vitro. Arch Toxicol 2021; 95:1349-1365. [PMID: 33523262 PMCID: PMC8032633 DOI: 10.1007/s00204-021-02987-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
A major challenge in current cancer therapy is still the treatment of metastatic melanomas of the skin. BH3 mimetics represent a novel group of substances inducing apoptosis. In this study, we investigated the cytotoxic effect of (±) gossypol (GP), a natural compound from cotton seed, on A375 melanoma cells and the underlying biochemical mechanisms. To prevent undesired side effects due to toxicity on normal (healthy) cells, concentrations only toxic for tumor cells have been elaborated. Viability assays were performed to determine the cytotoxicity of GP in A375 melanoma and normal (healthy) cells. For the majority of experiments, a concentration of 2.5 µM GP was used resulting in a ROS-independent but caspase-dependent cell death of A375 melanoma cells. At this level, GP was non-toxic for normal human epidermal melanocytes. GP has a very short half-life, however, it was demonstrated that only the “parent” compound and not decomposition products are responsible for the cytotoxic effect in A375 melanoma cells. GP significantly decreased mitochondrial membrane potential accompanied by a Drp1-dependent loss of mitochondrial integrity (fragmentation) in tumor cells. Taken together, GP induced a ROS-independent intrinsic apoptosis leading to the conclusion that within a specific concentration range, GP may work as effective anticancer drug without harmful side effects.
Collapse
Affiliation(s)
- Lisa Haasler
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thanos Tsigaras
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Claudia von Montfort
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Graf
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
20
|
The Role of Solid Particles Obtained from Plant Materials in Improvement the Quality of Cosmetic Care Balms. TENSIDE SURFACT DET 2021. [DOI: 10.1515/tsd-2020-2313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The sensory properties of cosmetic emulsions are part of the basic properties of products such as face creams and body balms. They are extremely important parameters in the product evaluation by consumers. Cosmetics manufacturers are increasingly introducing ingredients in the form of solid particles (talc, bentonite, clay) into formulations to improve the sensory properties of products. Their addition simplifies the application of the emulsion on the skin, effects faster absorption and leaves a feeling of silky smoothness after application. During the work, we investigated solid particles of plant origin: powder from ground orange peel and oat grain. These ingredients were introduced into the formulation of the model body balms. The antioxidant and physicochemical properties of the obtained emulsions as well as the skin hydration after their application were evaluated. It has been shown that the introduction of solid plant particles increases the antioxidant properties of the emulsions and significantly improves emulsion stability and skin moisture after application.
Collapse
|
21
|
Rouco L, Sánchez-González Á, Alvariño R, Alfonso A, Vázquez-López EM, García-Martínez E, Maneiro M. Combined Effect of Caspase-Dependent and Caspase-Independent Apoptosis in the Anticancer Activity of Gold Complexes with Phosphine and Benzimidazole Derivatives. Pharmaceuticals (Basel) 2020; 14:10. [PMID: 33374177 PMCID: PMC7824672 DOI: 10.3390/ph14010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/28/2022] Open
Abstract
Since the potential anticancer activity of auranofin was discovered, gold compounds have attracted interest with a view to developing anticancer agents that follow cytotoxic mechanisms other than cisplatin. Two benzimidazole gold(I) derivatives containing triphenylphosphine (Au(pben)(PPh3)) (1) or triethylphosphine (Au(pben)(PEt3)) (2) were prepared and characterized by standard techniques. X-ray crystal structures for 1 and 2 were solved. The cytotoxicity of 1 and 2 was tested in human neuroblastoma SH-SY5Y cells. Cells were incubated with compounds for 24 h with concentrations ranging from 10 µM to 1 nM, and the half-maximal inhibitory concentration (IC50) was determined. 1 and 2 showed an IC50 of 2.7 and 1.6 µM, respectively. In order to better understand the type of cell death induced by compounds, neuroblastoma cells were stained with Annexin-FITC and propidium iodide. The fluorescence analysis revealed that compounds were inducing apoptosis; however, pre-treatment with the caspase inhibitor Z-VAD did not reduce cell death. Analysis of compound effects on caspase-3 activity and reactive oxygen species (ROS) production in SH-SY5Y cells revealed an antiproliferative ability mediated through oxidative stress and both caspase-dependent and caspase-independent mechanisms.
Collapse
Grants
- 2017 GRC GI-1682 (ED431C 2017/01), 2018 GRC-1584 (ED431C 2018/13), MetalBIO network (ED431D 2017/01) Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- CTQ2015-65707-C2-2-P, AGL2016-78728-R (AEI/FEDER, UE), ISCIII/PI16/01830, RTC-2016-5507-2, ITC-20161072 Ministerio de Economía, Industria y Competitividad
- POPTEP 0161-Nanoeaters-1-E-1, Interreg AlertoxNet EAPA-317-2016, Interreg Agritox EAPA-998-2018, H2020 778069-EMERTOX European Union
Collapse
Affiliation(s)
- Lara Rouco
- Departamento de Química Inorgánica, Facultade de Ciencias, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Ángeles Sánchez-González
- Departamento de Química Inorgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rebeca Alvariño
- Departamento de Farmacología, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Amparo Alfonso
- Departamento de Farmacología, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Ezequiel M. Vázquez-López
- Departamento de Química Inorgánica, Facultade de Química, Campus Universitario Lagoas-Marcosende, Universidade de Vigo, 36310 Vigo, Spain; (E.M.V.-L.); (E.G.-M.)
| | - Emilia García-Martínez
- Departamento de Química Inorgánica, Facultade de Química, Campus Universitario Lagoas-Marcosende, Universidade de Vigo, 36310 Vigo, Spain; (E.M.V.-L.); (E.G.-M.)
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Facultade de Ciencias, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| |
Collapse
|
22
|
Choi D, Bang J, Kim T, Oh Y, Hwang Y, Hong J. In vitro chemical and physical toxicities of polystyrene microfragments in human-derived cells. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123308. [PMID: 32947711 DOI: 10.1016/j.jhazmat.2020.123308] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 05/23/2023]
Abstract
With the increase in plastic production, a variety of toxicological studies on microplastics have been conducted as microplastics can be accumulated in the human body and cause unknown disease. However, previous studies have mainly assessed the toxicity of sphere-type microbeads, which may differ from randomly-shaped microplastics in a real environment. Here, we conducted in vitro toxicology analysis for randomly-shaped microplastics based on the hypotheses that (1) physical cytotoxicity is affected by nano-/micro-size roughness in polystyrene (PS) microfragments and (2) chemical toxicity is caused by chemical reagents from microplastics. We confirmed that the PS microfragments increased the acute inflammation of immune cells 20 times than control, the production of reactive oxygen species, and cell death of fibroblasts and cancer cells by releasing chemical reagents. In addition, when the PS microfragments were in direct contact with fibroblasts and red blood cells, the physical stress caused by them resulted in lactose dehydrogenase and hemoglobin release, respectively, due to cell membrane damage and hemolysis. This phenomenon was amplified when the concentration and roughness of the microfragments increased. Moreover, we quantitatively analyzed roughness differences between microplastics, which revealed a strong relationship between the physical damage of cells and the roughness of microplastics.
Collapse
Affiliation(s)
- Daheui Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Junah Bang
- Department of Statistics, Sungkyunkwan University, Seoul 03132, Republic of Korea
| | - Taeho Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yoogyeong Oh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Youngdeok Hwang
- Paul H. Chook Department of Information Systems and Statistics, Baruch College CUNY, New York, NY, United States.
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
23
|
Kovač V, Poljšak B, Primožič J, Jamnik P. Are Metal Ions That Make up Orthodontic Alloys Cytotoxic, and Do They Induce Oxidative Stress in a Yeast Cell Model? Int J Mol Sci 2020; 21:ijms21217993. [PMID: 33121155 PMCID: PMC7662645 DOI: 10.3390/ijms21217993] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Compositions of stainless steel, nickel-titanium, cobalt-chromium and β-titanium orthodontic alloys were simulated with mixtures of Fe, Ni, Cr, Co, Ti and Mo metal ions as potential oxidative stress-triggering agents. Wild-type yeast Saccharomyces cerevisiae and two mutants ΔSod1 and ΔCtt1 were used as model organisms to assess the cytotoxicity and oxidative stress occurrence. Metal mixtures at concentrations of 1, 10, 100 and 1000 µM were prepared out of metal chlorides and used to treat yeast cells for 24 h. Every simulated orthodontic alloy at 1000 µM was cytotoxic, and, in the case of cobalt-chromium alloy, even 100 µM was cytotoxic. Reactive oxygen species and oxidative damage were detected for stainless steel and both cobalt-chromium alloys at 1000 µM in wild-type yeast and 100 µM in the ΔSod1 and ΔCtt1 mutants. Simulated nickel-titanium and β-titanium alloy did not induce oxidative stress in any of the tested strains.
Collapse
Affiliation(s)
- Vito Kovač
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; (V.K.); (B.P.)
| | - Borut Poljšak
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; (V.K.); (B.P.)
| | - Jasmina Primožič
- Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
| | - Polona Jamnik
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-3203-729
| |
Collapse
|
24
|
Panchal K, Tiwari AK. Miro, a Rho GTPase genetically interacts with Alzheimer's disease-associated genes ( Tau, Aβ42 and Appl) in Drosophila melanogaster. Biol Open 2020; 9:bio049569. [PMID: 32747449 PMCID: PMC7489762 DOI: 10.1242/bio.049569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Miro (mitochondrial Rho GTPases), a mitochondrial outer membrane protein, facilitates mitochondrial axonal transport along the microtubules to facilitate neuronal function. It plays an important role in regulating mitochondrial dynamics (fusion and fission) and cellular energy generation. Thus, Miro might be associated with the key pathologies of several neurodegenerative diseases (NDs) including Alzheimer's disease (AD). In the present manuscript, we have demonstrated the possible genetic interaction between Miro and AD-related genes such as Tau, Aβ42 and Appl in Drosophila melanogaster Ectopic expression of Tau, Aβ42 and Appl induced a rough eye phenotype, defects in phototaxis and climbing activity, and shortened lifespan in the flies. In our study, we have observed that overexpression of Miro improves the rough eye phenotype, behavioral activities (climbing and phototaxis) and ATP level in AD model flies. Further, the improvement examined in AD-related phenotypes was correlated with decreased oxidative stress, cell death and neurodegeneration in Miro overexpressing AD model flies. Thus, the obtained results suggested that Miro genetically interacts with AD-related genes in Drosophila and has the potential to be used as a therapeutic target for the design of therapeutic strategies for NDs.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics and Developmental Biology Laboratory, Department of Biological Sciences and Biotechnology, Institute of Advanced Research (IAR), Koba, Gandhinagar, Gujarat 382426, India
| | - Anand Krishna Tiwari
- Genetics and Developmental Biology Laboratory, Department of Biological Sciences and Biotechnology, Institute of Advanced Research (IAR), Koba, Gandhinagar, Gujarat 382426, India
| |
Collapse
|
25
|
Moringa oleifera L. Extracts as Bioactive Ingredients That Increase Safety of Body Wash Cosmetics. Dermatol Res Pract 2020; 2020:8197902. [PMID: 32695156 PMCID: PMC7350073 DOI: 10.1155/2020/8197902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/03/2020] [Indexed: 11/17/2022] Open
Abstract
The work attempts to obtain a multifunctional plant extract derived from Moringa tree leaves. Obtained results indicate a strong antioxidant potential of the tested extracts. It was shown that Moringa oleifera leaf extract is a rich source of flavonoid and phenolic compounds. Furthermore, it shows a strong antioxidant activity by scavenging free radicals. In vitro toxicity studies showed that the tested extracts in concentrations up to 5% showed a positive effect on cell proliferation and metabolism and may contribute to the reduction of oxidative stress in cells. It was noted that the tested model formulation of cosmetic (1% SCS) with the addition of different types of extracts might contribute to the reduction of skin irritation and improve the safety of the product.
Collapse
|
26
|
Kim H, Xue X. Detection of Total Reactive Oxygen Species in Adherent Cells by 2',7'-Dichlorodihydrofluorescein Diacetate Staining. J Vis Exp 2020. [PMID: 32658187 DOI: 10.3791/60682] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Oxidative stress is an important event under both physiological and pathological conditions. In this study, we demonstrate how to quantify oxidative stress by measuring total reactive oxygen species (ROS) using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining in colorectal cancer cell lines as an example. This protocol describes detailed steps including preparation of DCFH-DA solution, incubation of cells with DCFH-DA solution, and measurement of normalized intensity. DCFH-DA staining is a simple and cost-effective way to detect ROS in cells. It can be used to measure ROS generation after chemical treatment or genetic modifications. Therefore, it is useful for determining cellular oxidative stress upon environment stress, providing clues to mechanistic studies.
Collapse
Affiliation(s)
- Hyeoncheol Kim
- Department of Biochemistry and Molecular Biology, University of New Mexico
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico;
| |
Collapse
|
27
|
Klosowski EM, de Souza BTL, Mito MS, Constantin RP, Mantovanelli GC, Mewes JM, Bizerra PFV, Menezes PVMDC, Gilglioni EH, Utsunomiya KS, Marchiosi R, Dos Santos WD, Filho OF, Caetano W, Pereira PCDS, Gonçalves RS, Constantin J, Ishii-Iwamoto EL, Constantin RP. The photodynamic and direct actions of methylene blue on mitochondrial energy metabolism: A balance of the useful and harmful effects of this photosensitizer. Free Radic Biol Med 2020; 153:34-53. [PMID: 32315767 DOI: 10.1016/j.freeradbiomed.2020.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
According to the literature, methylene blue (MB) is a photosensitizer (PS) with a high affinity for mitochondria. Therefore, several studies have explored this feature to evaluate its photodynamic effects on the mitochondrial apoptotic pathway under normoxic conditions. We are aware only of limited reports regarding MB's photodynamic effects on mitochondrial energy metabolism, especially under hypoxic conditions. Thus, the purposes of this study were to determine the direct and photodynamic acute effects of MB on the energy metabolism of rat liver mitochondria under hypoxic conditions and its direct acute effects on several parameters linked to energy metabolism in the isolated perfused rat liver. MB presented a high affinity for mitochondria, irrespective of photostimulation or proton gradient formation. Upon photostimulation, MB demonstrated high in vitro oxidizing species generation ability. Consequently, MB damaged the mitochondrial macromolecules, as could be evidenced by the elevated levels of lipid peroxidation and protein carbonyls. In addition to generating a pro-oxidant environment, MB also led to a deficient antioxidant defence system, as indicated by the reduced glutathione (GSH) depletion. Bioenergetically, MB caused uncoupling of oxidative phosphorylation and led to photodynamic inactivation of complex I, complex II, and F1FO-ATP synthase complex, thus decreasing mitochondrial ATP generation. Contrary to what is expected for an ideal PS, MB displayed appreciable dark toxicity on mitochondrial energy metabolism. The results indicated that MB acted via at least three mechanisms: direct damage to the inner mitochondrial membrane; uncoupling of oxidative phosphorylation; and inhibition of electron transfer. Confirming the impairment of mitochondrial energy metabolism, MB also strongly inhibited mitochondrial ATP production. In the perfused rat liver, MB stimulated oxygen consumption, decreased the ATP/ADP ratio, inhibited gluconeogenesis and ureogenesis, and stimulated glycogenolysis, glycolysis, and ammoniagenesis, fully corroborating its uncoupling action in intact cells, as well. It can be concluded that even under hypoxic conditions, MB is a PS with potential for photodynamic effect-induced mitochondrial dysfunction. However, MB disrupts the mitochondrial energy metabolism even in the dark, causing energy-linked liver metabolic changes that could be harmful in specific circumstances.
Collapse
Affiliation(s)
- Eduardo Makiyama Klosowski
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Byanca Thais Lima de Souza
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Marcio Shigueaki Mito
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Renato Polimeni Constantin
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Gislaine Cristiane Mantovanelli
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Juliana Morais Mewes
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Paulo Francisco Veiga Bizerra
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Paulo Vinicius Moreira da Costa Menezes
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Eduardo Hideo Gilglioni
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Karina Sayuri Utsunomiya
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Rogério Marchiosi
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Wanderley Dantas Dos Santos
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Osvaldo Ferrarese Filho
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | | | | | - Jorgete Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Emy Luiza Ishii-Iwamoto
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Rodrigo Polimeni Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| |
Collapse
|
28
|
Pichla M, Bartosz G, Pieńkowska N, Sadowska-Bartosz I. Possible artefacts of antioxidant assays performed in the presence of nitroxides and nitroxide-containing nanoparticles. Anal Biochem 2020; 597:113698. [DOI: 10.1016/j.ab.2020.113698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/07/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
|
29
|
Pérez-Albaladejo E, Lacorte S, Porte C. Differential Toxicity of Alkylphenols in JEG-3 Human Placental Cells: Alteration of P450 Aromatase and Cell Lipid Composition. Toxicol Sci 2020; 167:336-346. [PMID: 30247713 DOI: 10.1093/toxsci/kfy243] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alkylphenols (APs) are a diverse class of chemicals that can cross the placental barrier and interfere with embryonic and fetal development. This work investigates the comparative toxicity, ability to inhibit aromatase activity, and to alter the lipid composition of 10 alkylphenols in the human placenta choriocarcinoma cell line JEG-3. Among the selected APs, 4-dodecylphenol (DP), 4-heptylphenol (HP), and 4-cumylphenol (CP) showed the highest cytotoxicity (EC50: 18-65 µM). Aromatase inhibition was closely related to the hydrophobicity of APs. HP significantly induced the generation of reactive oxygen species (ROS) (43-fold), inhibited placental aromatase activity (IC50: 41 µM), and induced a general dose-dependent depletion of polyunsaturated lipids (10-20 µM), which were attributed to high levels of oxidative stress. In contrast, 2,4,6-tri-tert-butylphenol (TTBP) significantly induced the intracellular accumulation of triacylglycerides (TGs), whereas DP increased the synthesis of phosphatidylcholines (PCs) and TGs at the expense of diacylglycerides (DGs). Overall, this study evidences the different modes of action of alkylphenols in human placental JEG-3 cells, describes differential lipidomic fingerprints, and highlights DP, HP, CP, and TTBP as the ones that caused the most harmful effects.
Collapse
Affiliation(s)
| | - Silvia Lacorte
- Environmental Chemistry Department, IDAEA-CSIC, C/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA-CSIC, C/Jordi Girona 18-26, Barcelona 08034, Spain
| |
Collapse
|
30
|
Aplak E, von Montfort C, Haasler L, Stucki D, Steckel B, Reichert AS, Stahl W, Brenneisen P. CNP mediated selective toxicity on melanoma cells is accompanied by mitochondrial dysfunction. PLoS One 2020; 15:e0227926. [PMID: 31951630 PMCID: PMC6968876 DOI: 10.1371/journal.pone.0227926] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022] Open
Abstract
Cerium (Ce) oxide nanoparticles (CNP; nanoceria) are reported to have cytotoxic effects on certain cancerous cell lines, while at the same concentration they show no cytotoxicity on normal (healthy) cells. Redox-active CNP exhibit both selective prooxidative as well as antioxidative properties. The former is proposed to be responsible for impairment of tumor growth and invasion and the latter for rescuing normal cells from reactive oxygen species (ROS)-induced damage. Here we address possible underlying mechanisms of prooxidative effects of CNP in a metastatic human melanoma cell line. Malignant melanoma is the most aggressive form of skin cancer, and once it becomes metastatic the prognosis is very poor. We have shown earlier that CNP selectively kill A375 melanoma cells by increasing intracellular ROS levels, whose basic amount is significantly higher than in the normal (healthy) counterpart, the melanocytes. Here we show that CNP initiate a mitochondrial increase of ROS levels accompanied by an increase in mitochondrial thiol oxidation. Furthermore, we observed CNP-induced changes in mitochondrial bioenergetics, dynamics, and cristae morphology demonstrating mitochondrial dysfunction which finally led to tumor cell death. CNP-induced cell death is abolished by administration of PEG-conjugated catalase. Overall, we propose that cerium oxide nanoparticles mediate cell death via hydrogen peroxide production linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Elif Aplak
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Claudia von Montfort
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| | - Lisa Haasler
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Stucki
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bodo Steckel
- Department of Molecular Cardiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas S. Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
31
|
Tomar V, Kumar N, Tomar R, Sood D, Dhiman N, Dass SK, Prakash S, Madan J, Chandra R. Biological Evaluation of Noscapine analogues as Potent and Microtubule-Targeted Anticancer Agents. Sci Rep 2019; 9:19542. [PMID: 31862933 PMCID: PMC6925231 DOI: 10.1038/s41598-019-55839-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
In present investigation, an attempt was undertaken to modify the C-9 position of noscapine (Nos), an opium alkaloid to yield 9 -hydroxy methyl and 9 -carbaldehyde oxime analogues for augmenting anticancer potential. The synthesis of 9-hydroxy methyl analogue of Nos was carried out by Blanc reaction and 9-carbaldehyde oxime was engineered by oxime formation method and characterized using FT-IR, 1H NMR, 13C NMR, mass spectroscopy, and so on techniques. In silico docking techniques informed that 9-hydroxy methyl and 9-carbaldehyde oxime analogues of Nos had higher binding energy score as compared to Nos. The IC50 of Nos was estimated to be 46.8 µM signficantly (P < 0.05) higher than 8.2 µM of 9-carbaldehyde oxime and 4.6 µM of 9-hydroxy methyl analogue of Nos in U87, human glioblastoma cells. Moreover, there was significant (P < 0.05) difference between the IC50 of 9-carbaldehyde oxime and 9-hydroxy methyl analogue of Nos. Consistent to in vitro cytotoxicity data, 9-hydroxy methyl analogue of Nos induced significantly (P < 0.05) higher degree of apoptosis of 84.6% in U87 cells as compared to 78.5% and 64.3% demonstrated by 9-carbaldehyde oxime and Nos, respectively. Thus the higher therapeutic efficacy of 9-hydroxy methyl analogue of Nos may be credited to higher solubility and inhibitory constant (K).
Collapse
Affiliation(s)
- Vartika Tomar
- Department of Chemistry, University of Delhi, Delhi, 110007, India.,BioMedical Engineering Department, Faculty of Medicine, McGill University, Montreal, Canada
| | - Neeraj Kumar
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Ravi Tomar
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Damini Sood
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | | | | | - Satya Prakash
- BioMedical Engineering Department, Faculty of Medicine, McGill University, Montreal, Canada
| | | | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, 110007, India. .,Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
32
|
Hung S, Mohan A, Reckhow DA, Godri Pollitt KJ. Assessment of the in vitro toxicity of the disinfection byproduct 2,6-dichloro-1,4-benzoquinone and its transformed derivatives. CHEMOSPHERE 2019; 234:902-908. [PMID: 31519098 DOI: 10.1016/j.chemosphere.2019.06.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
An emerging class of unregulated disinfection byproducts, halobenzoquinones (HBQs), has gained recent interest following suggestions of enhanced toxicity compared to regulated disinfection byproducts. While the kinetics of HBQ hydrolysis in water have been well characterized, the stability of HBQs in cell culture media, a critical parameter when evaluating toxicity in vitro, has been overlooked. The objective of this study was: (1) to contrast the stability of a prevalent HBQ, 2,6-dichloro-1,4-benzoquinone (DCBQ), in cell culture media and water, and (2) to evaluate the cytotoxicity of parent and transformed DCBQ compounds as well as the ability of these compounds to generate intracellular reactive oxygen species (ROS) in normal human colon cells (CCD 841 CoN) and human liver cancer cells (HepG2). The half-life of DCBQ in cell media was found to be less than 40 min, compared to 7.2 h in water at pH 7. DCBQ induced a concentration-dependent decrease in cell viability and increase in ROS production in both cell lines. The parent DCBQ compound was found to induce significantly greater cytotoxicity compared to transformed DCBQ products. We demonstrate that the study design used by most published studies (i.e., extended exposure periods) has led to a potential underestimation of the cytotoxicity of HBQs by evaluating the toxicological profile primarily of transformed HBQs, rather than corresponding parent compounds. Future in vitro toxicological studies should account for HBQ stability in media to evaluate the acute cytotoxicity of parent HBQs.
Collapse
Affiliation(s)
- Stephanie Hung
- Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Aarthi Mohan
- Civil and Environmental Engineering, College of Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - David A Reckhow
- Civil and Environmental Engineering, College of Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Krystal J Godri Pollitt
- Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
33
|
Berning L, Scharf L, Aplak E, Stucki D, von Montfort C, Reichert AS, Stahl W, Brenneisen P. In vitro selective cytotoxicity of the dietary chalcone cardamonin (CD) on melanoma compared to healthy cells is mediated by apoptosis. PLoS One 2019; 14:e0222267. [PMID: 31553748 PMCID: PMC6760786 DOI: 10.1371/journal.pone.0222267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma is an aggressive type of cancer and the deadliest form of skin cancer. Even though enormous efforts have been undertaken, in particular the treatment options against the metastasizing form are challenging and the prognosis is generally poor. A novel therapeutical approach is the application of secondary plant constituents occurring in food and food products. Herein, the effect of the dietary chalcone cardamonin, inter alia found in Alpinia species, was tested using human malignant melanoma cells. These data were compared to cardamonin treated normal melanocytes and dermal fibroblasts representing healthy cells. To investigate the impact of cardamonin on tumor and normal cells, it was added to monolayer cell cultures and cytotoxicity, proliferation, tumor invasion, and apoptosis were studied with appropriate cell biological and biochemical methods. Cardamonin treatment resulted in an apoptosis-mediated increase in cytotoxicity towards tumor cells, a decrease in their proliferation rate, and a lowered invasive capacity, whereas the viability of melanocytes and fibroblasts was hardly affected at such concentrations. A selective cytotoxic effect of cardamonin on melanoma cells compared to normal (healthy) cells was shown in vitro. This study along with others highlights that dietary chalcones may be a valuable tool in anticancer therapies which has to be proven in the future in vivo.
Collapse
Affiliation(s)
- Lena Berning
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Lisa Scharf
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Elif Aplak
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Stucki
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Claudia von Montfort
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Andreas S. Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
34
|
Parenteral Succinate Reduces Systemic ROS Production in Septic Rats, but It Does Not Reduce Creatinine Levels. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1928945. [PMID: 30524651 PMCID: PMC6247384 DOI: 10.1155/2018/1928945] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/02/2018] [Accepted: 10/18/2018] [Indexed: 12/26/2022]
Abstract
In sepsis, reactive oxygen species (ROS) production is increased. This process takes place mainly within the electron transport chain. ROS production is part of the pathophysiology of multiple organ failure in sepsis. Succinate yields Dihydroflavine-Adenine Dinucleotide (FADH2), which enters the chain through complex II, avoiding complex I, through which electrons are lost. The aim of this work is to determine if parenteral succinate reduces systemic ROS production and improves kidney function. Rats with cecal ligation and puncture were used as model of sepsis, and 4 groups were made: Control group; Succinate group, which only received parenteral succinate; Sepsis group; and Sepsis which received parenteral succinate. Systemic ROS are measured 24 hours after the procedure. Rats subjected to cecal puncture treated with succinate had less systemic ROS than Septic untreated rats (p = 0.007), while there were no differences in creatinine levels (p = 0.07). There was no correlation between creatinine and systemic ROS levels (p = 0.3). We concluded that parenteral succinate reduces ROS levels, but it does not reduce creatinine levels. Since there is no correlation between both levels, the processes would not be related.
Collapse
|
35
|
Arita Y, Pressman M, Getahun D, Menon R, Peltier MR. Effect of Tetrabromobisphenol A on expression of biomarkers for inflammation and neurodevelopment by the placenta. Placenta 2018; 68:33-39. [DOI: 10.1016/j.placenta.2018.06.306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/05/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022]
|
36
|
Farooq A, Shukur A, Astley C, Tosheva L, Kelly P, Whitehead D, Azzawi M. Titania coating of mesoporous silica nanoparticles for improved biocompatibility and drug release within blood vessels. Acta Biomater 2018; 76:208-216. [PMID: 29933106 DOI: 10.1016/j.actbio.2018.06.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/08/2018] [Accepted: 06/18/2018] [Indexed: 01/08/2023]
Abstract
Blood vessel disease is a major contributor to cardiovascular morbidity and mortality and is hallmarked by dysfunction of the lining endothelial cells (ECs). These cells play a significant role in vascular homeostasis, through the release of mediators to control vessel diameter, hence tissue perfusion. Mesoporous silica nanoparticles (MSNs) can be used as potential drug delivery platforms for vasodilator drugs. Here, using an ex vivo model of vascular function, we examine the use of titania coating for improved biocompatibility and release dynamics of MSN loaded sodium nitroprusside (SNP). MSNs (95 ± 23 nm diameter; pore size 2.7 nm) were synthesised and fully characterised. They were loaded with SNP and coated with titania (TiO2), using the magnetron sputtering technique. Pre-constricted aortic vessels were exposed to drug loaded MSNs (at 1.96 × 1012 MSN mL-1) and the time course of vessel dilation observed, in real time. Exposure of viable vessels to MSNs lead to their internalization into the cytoplasm of ECs, while TiMSNs were also observed in the elastic lamina and smooth muscle cell layers. We demonstrate that titania coating of MSNs significantly improves their biocompatibility and alters the dynamics of drug release. A slow and more sustained relaxation was evident after uptake of TiMSN-SNP, in comparison to uncoated MSN-SNP (rate of dilation was 0.08% per min over a 2.5 h period). The use of titania coated MSNs for drug delivery to the vasculature may be an attractive strategy for therapeutic clinical intervention in cardiovascular disease. STATEMENT OF SIGNIFICANCE Cardiovascular disease is a major cause of mortality and morbidity worldwide, with a total global cost of over $918 billion, by 2030. Mesoporous silica nanoparticles (MSNs) have great potential for the delivery of drugs that can treat vessel disease. This paper provides the first description for the use of titania coated MSNs with increased vascular penetration, for the delivery of vasodilator drugs, without compromising overall vessel function. We demonstrate that titania coating of MSNs significantly improves their biocompatibility and uptake within aortic blood vessels and furthermore, enables a slower and more sustained release of the vasodilator drug, sodium nitroprusside within the vessel, thus making them an attractive strategy for the treatment of vascular disease.
Collapse
Affiliation(s)
- Asima Farooq
- Cardiovascular Research Group, School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Ali Shukur
- Cardiovascular Research Group, School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Cai Astley
- Cardiovascular Research Group, School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Lubomira Tosheva
- Advanced Materials and Surface Engineering Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Peter Kelly
- Advanced Materials and Surface Engineering Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Debra Whitehead
- Advanced Materials and Surface Engineering Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK.
| | - May Azzawi
- Cardiovascular Research Group, School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK.
| |
Collapse
|
37
|
NTP Research Report on Biological Activity of Bisphenol A (BPA) Structural Analogues and Functional Alternatives. ACTA ACUST UNITED AC 2017. [DOI: 10.22427/ntp-rr-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Feyzi A, Delkhosh A, Nasrabadi HT, Cheraghi O, khakpour M, Barekati-Mowahed M, Soltani S, Mohammadi SM, Kazemi M, Hassanpour M, Rezabakhsh A, Maleki‐Dizaji N, Rahbarghazi R, Namdarian R. Copper sulfate pentahydrate reduced epithelial cytotoxicity induced by lipopolysaccharide from enterogenic bacteria. Biomed Pharmacother 2017; 89:454-461. [DOI: 10.1016/j.biopha.2017.02.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 01/31/2017] [Indexed: 11/28/2022] Open
|
39
|
Li W, Liu Y, Wang B, Luo Y, Hu N, Chen D, Zhang X, Xiong Y. Protective effect of berberine against oxidative stress-induced apoptosis in rat bone marrow-derived mesenchymal stem cells. Exp Ther Med 2016; 12:4041-4048. [PMID: 28101183 DOI: 10.3892/etm.2016.3866] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/06/2016] [Indexed: 12/13/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have the potential to be used for the treatment of delayed union, nonunion or persistent bone defects in MSC-based cell therapy. However, implantation of BMSCs into the fracture site is confronted with apoptosis on account of harsh conditions and oxidative stress. In the present study, the anti-apoptotic effects of berberine (BBR) on BMSCs subjected to hydrogen peroxide (H2O2) are investigated, and the potential underlying mechanisms are explored. Oxidative injury was induced by exposure to H2O2, and cell viability was assessed using a cell counting kit-8 assay. The apoptosis of BMSCs was measured by Hoechst 33258 and Annexin V-fluorescein isothiocyanate/propidium iodide assay. Reactive oxygen species staining and superoxide dismutase (SOD) assay were applied to assess the anti-oxidative effect of BBR. Finally, western blot was performed to measure the expression levels of phosphorylated (p)-Akt, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax) and cleaved caspase-3. In the present study, it was identified that BBR remarkably attenuated H2O2-induced apoptotic cell death via quenching ROS production and increasing SOD activity. Further studies indicated that BBR can reduce apoptosis by upregulating the expression level of p-Akt and Bcl-2, and downregulating the expression levels of Bax and cleaved caspase-3. Taken together, the results of the present study demonstrate that pretreatment with BBR could alleviate H2O2-induced apoptosis in rat BMSCs in vitro.
Collapse
Affiliation(s)
- Wangyang Li
- Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510240, P.R. China
| | - Yamei Liu
- Department of Diagnostics of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Bin Wang
- Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510240, P.R. China
| | - Yiwen Luo
- Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510240, P.R. China
| | - Nianhong Hu
- Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510240, P.R. China
| | - Dongfeng Chen
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xunchao Zhang
- Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510240, P.R. China
| | - Yunpu Xiong
- Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510240, P.R. China
| |
Collapse
|
40
|
Zieminska E, Lenart J, Diamandakis D, Lazarewicz JW. The Role of Ca 2+ Imbalance in the Induction of Acute Oxidative Stress and Cytotoxicity in Cultured Rat Cerebellar Granule Cells Challenged with Tetrabromobisphenol A. Neurochem Res 2016; 42:777-787. [PMID: 27718046 PMCID: PMC5357503 DOI: 10.1007/s11064-016-2075-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 12/31/2022]
Abstract
Using primary cultures of rat cerebellar granule cells (CGC) we examined the role of calcium transients induced by tetrabromobisphenol A (TBBPA) in triggering oxidative stress and cytotoxicity. CGC were exposed for 30 min to 10 or 25 µM TBBPA. Changes in intracellular calcium concentration ([Ca2+]i), in the production of reactive oxygen species (ROS), and in the potential of mitochondria (∆Ψm) were measured fluorometrically during the exposure. The intracellular glutathione (GSH) and catalase activity were determined after the incubation; cell viability was evaluated 24 h later. TBBPA concentration-dependently increased [Ca2+]i and ROS production, and reduced GSH content, catalase activity, ∆Ψm and neuronal viability. The combination of NMDA and ryanodine receptor antagonists, MK-801 and bastadin 12 with ryanodine, respectively, prevented Ca2+ transients and partially reduced cytotoxicity induced by TBBPA at both concentrations. The antagonists also completely inhibited oxidative stress and depolarization of mitochondria evoked by 10 µM TBBPA, whereas these effects were only partially reduced in the 25 µM TBBPA treatment. Free radical scavengers prevented TBBPA-induced development of oxidative stress and improved CGC viability without having any effect on the rises in Ca2+ and drop in ∆Ψm. The co-administration of scavengers with NMDA and ryanodine receptor antagonists provided almost complete neuroprotection. These results indicate that Ca2+ imbalance and oxidative stress both mediate acute toxicity of TBBPA in CGC. At 10 µM TBBPA Ca2+ imbalance is a primary event, inducing oxidative stress, depolarization of mitochondria and cytotoxicity, whilst at a concentration of 25 µM TBBPA an additional Ca2+-independent portion of oxidative stress and cytotoxicity emerges.
Collapse
Affiliation(s)
- Elzbieta Zieminska
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland
| | - Jacek Lenart
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland
| | - Dominik Diamandakis
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland
| | - Jerzy W Lazarewicz
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland.
| |
Collapse
|
41
|
Swain L, Kesemeyer A, Meyer-Roxlau S, Vettel C, Zieseniss A, Güntsch A, Jatho A, Becker A, Nanadikar MS, Morgan B, Dennerlein S, Shah AM, El-Armouche A, Nikolaev VO, Katschinski DM. Redox Imaging Using Cardiac Myocyte-Specific Transgenic Biosensor Mice. Circ Res 2016; 119:1004-1016. [PMID: 27553648 DOI: 10.1161/circresaha.116.309551] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/22/2016] [Indexed: 01/09/2023]
Abstract
RATIONALE Changes in redox potentials of cardiac myocytes are linked to several cardiovascular diseases. Redox alterations are currently mostly described qualitatively using chemical sensors, which however do not allow quantifying redox potentials, lack specificity, and the possibility to analyze subcellular domains. Recent advances to quantitatively describe defined redox changes include the application of genetically encoded redox biosensors. OBJECTIVE Establishment of mouse models, which allow the quantification of the glutathione redox potential (EGSH) in the cytoplasm and the mitochondrial matrix of isolated cardiac myocytes and in Langendorff-perfused hearts based on the use of the redox-sensitive green fluorescent protein 2, coupled to the glutaredoxin 1 (Grx1-roGFP2). METHODS AND RESULTS We generated transgenic mice with cardiac myocyte-restricted expression of Grx1-roGFP2 targeted either to the mitochondrial matrix or to the cytoplasm. The response of the roGFP2 toward H2O2, diamide, and dithiothreitol was titrated and used to determine the EGSH in isolated cardiac myocytes and in Langendorff-perfused hearts. Distinct EGSH were observed in the cytoplasm and the mitochondrial matrix. Stimulation of the cardiac myocytes with isoprenaline, angiotensin II, or exposure to hypoxia/reoxygenation additionally underscored that these compartments responded independently. A compartment-specific response was also observed 3 to 14 days after myocardial infarction. CONCLUSIONS We introduce redox biosensor mice as a new tool, which allows quantification of defined alterations of EGSH in the cytoplasm and the mitochondrial matrix in cardiac myocytes and can be exploited to answer questions in basic and translational cardiovascular research.
Collapse
Affiliation(s)
- Lija Swain
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Andrea Kesemeyer
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Stefanie Meyer-Roxlau
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Christiane Vettel
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Anke Zieseniss
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Annemarie Güntsch
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Aline Jatho
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Andreas Becker
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Maithily S Nanadikar
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Bruce Morgan
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Sven Dennerlein
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Ajay M Shah
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Ali El-Armouche
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Viacheslav O Nikolaev
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Dörthe M Katschinski
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.).
| |
Collapse
|
42
|
Szychowski KA, Rybczyńska-Tkaczyk K, Leja ML, Wójtowicz AK, Gmiński J. Tetrabromobisphenol A (TBBPA)-stimulated reactive oxygen species (ROS) production in cell-free model using the 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) assay-limitations of method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:12246-52. [PMID: 26976009 PMCID: PMC4893053 DOI: 10.1007/s11356-016-6450-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/08/2016] [Indexed: 05/22/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant, applied in a variety of commercial and household products, mainly electronic ones. Since the production of reactive oxygen species (ROS) is considered one of the principal cytotoxicity mechanisms, numerous studies undertake that aspect of TBBPA's mechanism of action. The present study verifies if the fluorogenic substrate 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) should be used to detect ROS production induced by TBBPA. To determine the ability of TBBPA alone to stimulate the conversion of H2DCFDA to its fluorescent product 2',7'-dichlorofluorescein (DCF), we used a cell-free model. In the experiments we check different cultured media also in combination with free radical scavenger N-acetyl-l-cysteine (NAC). Additionally, experiments with stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH·) have been made. The presented data showed that TBBPA in all tested concentrations interacts with H2DCFDA in phosphate-buffered saline (PBS) buffer while in micromolar concentrations in the DMEM/F12 medium with and without serum. The addition of NAC inhibited the interaction of TBBPA with H2DCFDA. Experiments with DPPH· showed that, in the presence of NAC, TBBPA acts like a free radical. TBBPA has similar properties to free radical and is susceptible to free radical scavenging properties of NAC. Our results indicated that H2DCFDA assay cannot be used to evaluate cellular ROS production in TBBPA studies. The study connected with TBBPA-stimulated ROS production in cell culture models using the H2DCFDA assay should be revised using a different method. However, due to the free radical-like nature of TBBPA, it can be very difficult. Therefore, further investigation of the nature of TBBPA as a compound with similar properties to free radical is required.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Public Health, Dietetics and Lifestyle Disorders, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland.
| | - Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, Laboratory of Mycology, University of Life Sciences, Leszczyńskiego 7, 20-069, Lublin, Poland
| | - Marcin L Leja
- Department of Public Health, Dietetics and Lifestyle Disorders, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Anna K Wójtowicz
- Department of Animal Biotechnology, Animal Sciences Faculty, University of Agriculture, Redzina 1B, 30-248, Krakow, Poland
| | - Jan Gmiński
- Department of Public Health, Dietetics and Lifestyle Disorders, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
43
|
Huang BK, Langford TF, Sikes HD. Using Sensors and Generators of H2O2 to Elucidate the Toxicity Mechanism of Piperlongumine and Phenethyl Isothiocyanate. Antioxid Redox Signal 2016; 24:924-38. [PMID: 26905788 PMCID: PMC4900193 DOI: 10.1089/ars.2015.6482] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/02/2016] [Accepted: 02/21/2016] [Indexed: 01/23/2023]
Abstract
AIMS Chemotherapeutics target vital functions that ensure survival of cancer cells, including their increased reliance on defense mechanisms against oxidative stress compared to normal cells. Many chemotherapeutics exploit this vulnerability to oxidative stress by elevating the levels of intracellular reactive oxygen species (ROS). A quantitative understanding of the oxidants generated and how they induce toxicity will be important for effective implementation and design of future chemotherapeutics. Molecular tools that facilitate measurement and manipulation of individual chemical species within the context of the larger intracellular redox network present a means to develop this understanding. In this work, we demonstrate the use of such tools to elucidate the roles of H2O2 and glutathione (GSH) in the toxicity mechanism of two ROS-based chemotherapeutics, piperlongumine and phenethyl isothiocyanate. RESULTS Depletion of GSH as a result of treatment with these compounds is not an important part of the toxicity mechanisms of these drugs and does not lead to an increase in the intracellular H2O2 level. Measuring peroxiredoxin-2 (Prx-2) oxidation as evidence of increased H2O2, only piperlongumine treatment shows elevation and it is GSH independent. Using a combination of a sensor (HyPer) along with a generator (D-amino acid oxidase) to monitor and mimic the drug-induced H2O2 production, it is determined that H2O2 produced during piperlongumine treatment acts synergistically with the compound to cause enhanced cysteine oxidation and subsequent toxicity. The importance of H2O2 elevation in the mechanism of piperlongumine promotes a hypothesis of why certain cells, such as A549, are more resistant to the drug than others. INNOVATION AND CONCLUSION The approach described herein sheds new light on the previously proposed mechanism of these two ROS-based chemotherapeutics and advocates for the use of both sensors and generators of specific oxidants to isolate their effects. Antioxid. Redox Signal. 24, 924-938.
Collapse
Affiliation(s)
- Beijing K. Huang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Troy F. Langford
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Hadley D. Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
44
|
Liu K, Li J, Yan S, Zhang W, Li Y, Han D. A review of status of tetrabromobisphenol A (TBBPA) in China. CHEMOSPHERE 2016; 148:8-20. [PMID: 26800486 DOI: 10.1016/j.chemosphere.2016.01.023] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/03/2016] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a currently intensively used brominated flame retardant (BFR), is employed primarily as a reactive flame retardant in printed circuit boards but also has additive applications in several types of polymers. TBBPA is a ubiquitous environmental contaminant that is observed in both abiotic and biotic matrices. This paper summarizes and critically reviews the published scientific data concerning the current pollution status of TBBPA in China. To provide an indication of the seriousness of the pollution levels of TBBPA in China, the data are compared with available existing data from other countries of the world. According to the available data, the sources of TBBPA in China are mainly derived from the primitive e-waste dismantling, TBBPA manufacturing and processing of TBBPA-based materials. The most serious cases of TBBPA pollution in China are in Guiyu, Guangdong (primitive e-waste dismantling site) with concentrations of TBBPA reaching 66,010-95,040 pg m(-3) in air, Shouguang, Shandong (TBBPA manufacturing site) with concentrations of TBBPA reaching 1.64-7758 ng g(-1) dry weight in soil, and Chaohu Lake, Anhui (industry concentration site) with concentrations of TBBPA reaching 850-4870 ng L(-1) in water. In general, China is the most polluted region as affected by TBBPA compared with other countries. The present review preliminarily reveals the research status of TBBPA in China.
Collapse
Affiliation(s)
- Kou Liu
- Research Institute of Tianying in Shanghai, China Tianying Inc., Shanghai 200233, China; School of Resource and Environmental Engineering, East China University of Science and Technology, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237, China
| | - Jun Li
- Research Institute of Tianying in Shanghai, China Tianying Inc., Shanghai 200233, China.
| | - Shengjun Yan
- Research Institute of Tianying in Shanghai, China Tianying Inc., Shanghai 200233, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237, China.
| | - Yaojian Li
- Research Institute of Tianying in Shanghai, China Tianying Inc., Shanghai 200233, China
| | - Dan Han
- Research Institute of Tianying in Shanghai, China Tianying Inc., Shanghai 200233, China
| |
Collapse
|
45
|
Jin HJ, Lee HJ, Heo J, Lim J, Kim M, Kim MK, Nam HY, Hong GH, Cho YS, Choi SJ, Kim IG, Shin DM, Kim SW. Senescence-Associated MCP-1 Secretion Is Dependent on a Decline in BMI1 in Human Mesenchymal Stromal Cells. Antioxid Redox Signal 2016; 24:471-85. [PMID: 26573462 PMCID: PMC4800271 DOI: 10.1089/ars.2015.6359] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS Cellular senescence and its secretory phenotype (senescence-associated secretory phenotype [SASP]) develop after long-term expansion of mesenchymal stromal cells (MSCs). Further investigation of this phenotype is required to improve the therapeutic efficacy of MSC-based cell therapies. In this study, we show that positive feedback between SASP and inherent senescence processes plays a crucial role in the senescence of umbilical cord blood-derived MSCs (UCB-MSCs). RESULTS We found that monocyte chemoattractant protein-1 (MCP-1) was secreted as a dominant component of the SASP during expansion of UCB-MSCs and reinforced senescence via its cognate receptor chemokine (c-c motif) receptor 2 (CCR2) by activating the ROS-p38-MAPK-p53/p21 signaling cascade in both an autocrine and paracrine manner. The activated p53 in turn increased MCP-1 secretion, completing a feed-forward loop that triggered the senescence program in UCB-MSCs. Accordingly, knockdown of CCR2 in UCB-MSCs significantly improved their therapeutic ability to alleviate airway inflammation in an experimental allergic asthma model. Moreover, BMI1, a polycomb protein, repressed the expression of MCP-1 by binding to its regulatory elements. The reduction in BMI1 levels during UCB-MSC senescence altered the epigenetic status of MCP-1, including the loss of H2AK119Ub, and resulted in derepression of MCP-1. INNOVATION Our results provide the first evidence supporting the existence of the SASP as a causative contributor to UCB-MSC senescence and reveal a so far unappreciated link between epigenetic regulation and SASP for maintaining a stable senescent phenotype. CONCLUSION Senescence of UCB-MSCs is orchestrated by MCP-1, which is secreted as a major component of the SASP and is epigenetically regulated by BMI1.
Collapse
Affiliation(s)
- Hye Jin Jin
- 1 Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,2 Biomedical Research Institute , MEDIPOST Co., Ltd., Seongnam, Korea
| | - Hyang Ju Lee
- 1 Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Jinbeom Heo
- 3 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,4 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Jisun Lim
- 3 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,4 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,5 Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine , Seoul, Korea
| | - Miyeon Kim
- 2 Biomedical Research Institute , MEDIPOST Co., Ltd., Seongnam, Korea
| | - Min Kyung Kim
- 1 Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Hae Yun Nam
- 1 Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Gyong Hwa Hong
- 6 Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology , Daejeon, Korea
| | - You Sook Cho
- 7 Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Soo Jin Choi
- 2 Biomedical Research Institute , MEDIPOST Co., Ltd., Seongnam, Korea
| | - In-Gyu Kim
- 5 Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine , Seoul, Korea
| | - Dong-Myung Shin
- 3 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,4 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Seong Who Kim
- 1 Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| |
Collapse
|
46
|
Szychowski KA, Wójtowicz AK. TBBPA causes neurotoxic and the apoptotic responses in cultured mouse hippocampal neurons in vitro. Pharmacol Rep 2016; 68:20-6. [DOI: 10.1016/j.pharep.2015.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023]
|
47
|
Mohring F, Jortzik E, Becker K. Comparison of methods probing the intracellular redox milieu in Plasmodium falciparum. Mol Biochem Parasitol 2015; 206:75-83. [PMID: 26593282 DOI: 10.1016/j.molbiopara.2015.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/28/2015] [Accepted: 11/10/2015] [Indexed: 02/06/2023]
Abstract
Glutathione plays a crucial role in the redox regulation of the malaria parasite Plasmodium falciparum and is linked to drug resistance mechanisms, especially in resistance against the antimalarial drug chloroquine (CQ). The determination of the glutathione-dependent redox potential was recently established in living parasites using a cytosolically expressed biosensor comprising redox-sensitive green fluorescent protein coupled to human glutaredoxin 1 (hGrx1-roGFP2). In order to further elucidate redox changes induced by antimalarial drugs and to consolidate the application spectrum of the ratiometric biosensor we systematically compared it to other methods probing thiol and redox metabolism. Among these methods were cell disruptive and non-disruptive approaches including spectrophotometric assays with Ellman's reagent and naphthalene dicarboxyaldehyde as well as molecular probes such as ThiolTracker™ Violet and the dichlorofluorescein-based probe CM-H2DCFDA. To directly compare the methods, blood stages of the CQ-sensitive P. falciparum 3D7 strain were challenged with the oxidative agent diamide and the antimalarial drugs artemisinin and CQ for 1h, 4h, and 24h. For all conditions, dose-dependent changes in the different redox parameters could be monitored which are compared and discussed. We furthermore detected slight differences in thiol status of parasites transiently transfected with hGrx1-roGFP2 in comparison with control 3D7 cells. In conclusion, ThiolTracker™ Violet and, even more so, the hGrx1-roGFP2 probe reacted reliably and sensitively to drug induced changes in intracellular redox metabolism. These results were substantiated by classical cell disruptive methods.
Collapse
Affiliation(s)
- Franziska Mohring
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Esther Jortzik
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany.
| |
Collapse
|
48
|
Wang J, Shanmugam A, Markand S, Zorrilla E, Ganapathy V, Smith SB. Sigma 1 receptor regulates the oxidative stress response in primary retinal Müller glial cells via NRF2 signaling and system xc(-), the Na(+)-independent glutamate-cystine exchanger. Free Radic Biol Med 2015; 86:25-36. [PMID: 25920363 PMCID: PMC4554890 DOI: 10.1016/j.freeradbiomed.2015.04.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 01/18/2023]
Abstract
Oxidative stress figures prominently in retinal diseases, including diabetic retinopathy, and glaucoma. Ligands for σ1R, a unique transmembrane protein localized to the endoplasmic reticulum, mitochondria, and nuclear and plasma membranes, have profound retinal neuroprotective properties in vitro and in vivo. Studies to determine the mechanism of σ1R-mediated retinal neuroprotection have focused mainly on neurons. Little is known about the effects of σ1R on Müller cell function, yet these radial glial cells are essential for homeostatic support of the retina. Here we investigated whether σ1R mediates the oxidative stress response of Müller cells using wild-type (WT) and σ1R-knockout (σ1RKO) mice. We observed increased endogenous reactive oxygen species (ROS) levels in σ1RKO Müller cells compared to WT, which was accompanied by decreased expression of Sod1, catalase, Nqo1, Hmox1, Gstm6, and Gpx1. The protein levels of SOD1, CAT, NQO1, and GPX1 were also significantly decreased. The genes encoding these antioxidants contain an antioxidant response element (ARE), which under stress is activated by NRF2, a transcription factor that typically resides in the cytoplasm bound by KEAP1. In the σ1RKO Müller cells Nrf2 expression was decreased significantly at the gene (and protein) level, whereas Keap1 gene (and protein) levels were markedly increased. NRF2-ARE binding affinity was decreased markedly in σ1RKO Müller cells. We investigated system xc(-), the cystine-glutamate exchanger important for synthesis of glutathione (GSH), and observed decreased function in σ1RKO Müller cells compared to WT as well as decreased GSH and GSH/GSSG ratios. This was accompanied by decreased gene and protein levels of xCT, the unique component of system xc(-). We conclude that Müller glial cells lacking σ1R manifest elevated ROS, perturbation of antioxidant balance, suppression of NRF2 signaling, and impaired function of system xc(-). The data suggest that the oxidative stress-mediating function of retinal Müller glial cells may be compromised in the absence of σ1R. The neuroprotective role of σ1R may be linked directly to the oxidative stress-mediating properties of supportive glial cells.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912-2000, USA; James and Jean Culver Vision Discovery Institute, Augusta, GA 30912-2000, USA
| | - Arul Shanmugam
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912-2000, USA; James and Jean Culver Vision Discovery Institute, Augusta, GA 30912-2000, USA
| | - Shanu Markand
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912-2000, USA; James and Jean Culver Vision Discovery Institute, Augusta, GA 30912-2000, USA
| | - Eric Zorrilla
- Harold L. Dorris Neurological Research Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vadivel Ganapathy
- James and Jean Culver Vision Discovery Institute, Augusta, GA 30912-2000, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912-2000, USA
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912-2000, USA; James and Jean Culver Vision Discovery Institute, Augusta, GA 30912-2000, USA; Department of Ophthalmology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912-2000, USA.
| |
Collapse
|
49
|
Protective effect of (±)α-tocopherol on brominated diphenyl ether-47-stimulated prostaglandin pathways in human extravillous trophoblasts in vitro. Toxicol In Vitro 2015; 29:1309-18. [PMID: 26026498 DOI: 10.1016/j.tiv.2015.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/09/2015] [Accepted: 05/19/2015] [Indexed: 12/21/2022]
Abstract
Brominated diphenyl ether (BDE)-47 is a prevalent flame retardant chemical found in human tissues and is linked to adverse pregnancy outcomes in humans. Because dysregulation of the prostaglandin pathway is implicated in adverse pregnancy outcomes, the present study investigates BDE-47 induction of prostaglandin synthesis in a human extravillous trophoblast cell line, HTR-8/SVneo, examining the hypothesis that BDE-47 increases generation of reactive oxygen species (ROS) to stimulate the prostaglandin response. Treatment with 20 μM BDE-47 significantly increased mRNA expression of prostaglandin-endoperoxide synthase 2 (PTGS2) at 4, 12 and 24 h, and 24-h treatment significantly increased cyclooxygenase (COX)-2 cellular protein expression and prostaglandin E2 (PGE2) concentration in culture medium. The BDE-47-stimulated PGE2 release was inhibited by the COX inhibitors indomethacin and NS398, implicating COX activity. Exposure to 20 μM BDE-47 significantly increased ROS generation as measured by carboxydichlorofluorescein fluorescence, and this response was blocked by cotreatment with the peroxyl radical scavenger (±)-α-tocopherol. (±)-α-Tocopherol cotreatment suppressed BDE-47-stimulated increases of PGE2 release without significant effects on COX-2 mRNA and protein expression, implicating a role for ROS in post-translational regulation of COX activity. Because prostaglandins regulate trophoblast functions necessary for placentation and pregnancy, further investigation is warranted of BDE-47 impacts on trophoblast responses.
Collapse
|
50
|
Involvement of reactive oxygen species in brominated diphenyl ether-47-induced inflammatory cytokine release from human extravillous trophoblasts in vitro. Toxicol Appl Pharmacol 2013; 274:283-92. [PMID: 24296301 DOI: 10.1016/j.taap.2013.11.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 11/23/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant compounds. Brominated diphenyl ether (BDE)-47 is one of the most prevalent PBDE congeners found in human breast milk, serum and placenta. Despite the presence of PBDEs in human placenta, effects of PBDEs on placental cell function are poorly understood. The present study investigated BDE-47-induced reactive oxygen species (ROS) formation and its role in BDE-47-stimulated proinflammatory cytokine release in a first trimester human extravillous trophoblast cell line, HTR-8/SVneo. Exposure of HTR-8/SVneo cells for 4h to 20μM BDE-47 increased ROS generation 1.7 fold as measured by the dichlorofluorescein (DCF) assay. Likewise, superoxide anion production increased approximately 5 fold at 10 and 15μM and 9 fold at 20μM BDE-47 with a 1-h exposure, as measured by cytochrome c reduction. BDE-47 (10, 15 and 20μM) decreased the mitochondrial membrane potential by 47-64.5% at 4, 8 and 24h as assessed with the fluorescent probe Rh123. Treatment with 15 and 20μM BDE-47 stimulated cellular release and mRNA expression of IL-6 and IL-8 after 12 and 24-h exposures: the greatest increases were a 35-fold increased mRNA expression at 12h and a 12-fold increased protein concentration at 24h for IL-6. Antioxidant treatments (deferoxamine mesylate, (±)α-tocopherol, or tempol) suppressed BDE-47-stimulated IL-6 release by 54.1%, 56.3% and 37.7%, respectively, implicating a role for ROS in the regulation of inflammatory pathways in HTR-8/SVneo cells. Solvent (DMSO) controls exhibited statistically significantly decreased responses compared with non-treated controls for IL-6 release and IL-8 mRNA expression, but these responses were not consistent across experiments and times. Nonetheless, it is possible that DMSO (used to dissolve BDE-47) may have attenuated the stimulatory actions of BDE-47 on cytokine responses. Because abnormal activation of proinflammatory responses can disrupt trophoblast functions necessary for placental development and successful pregnancy, further investigation is warranted of the impact of ROS and BDE-47 on trophoblast cytokine responses.
Collapse
|