1
|
Cheng L, Rui Y, Wang Y, Chen S, Su J, Yu XF. A glimpse into viral warfare: decoding the intriguing role of highly pathogenic coronavirus proteins in apoptosis regulation. J Biomed Sci 2024; 31:70. [PMID: 39003473 PMCID: PMC11245872 DOI: 10.1186/s12929-024-01062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024] Open
Abstract
Coronaviruses employ various strategies for survival, among which the activation of endogenous or exogenous apoptosis stands out, with viral proteins playing a pivotal role. Notably, highly pathogenic coronaviruses such as SARS-CoV-2, SARS-CoV, and MERS-CoV exhibit a greater array of non-structural proteins compared to low-pathogenic strains, facilitating their ability to induce apoptosis via multiple pathways. Moreover, these viral proteins are adept at dampening host immune responses, thereby bolstering viral replication and persistence. This review delves into the intricate interplay between highly pathogenic coronaviruses and apoptosis, systematically elucidating the molecular mechanisms underpinning apoptosis induction by viral proteins. Furthermore, it explores the potential therapeutic avenues stemming from apoptosis inhibition as antiviral agents and the utilization of apoptosis-inducing viral proteins as therapeutic modalities. These insights not only shed light on viral pathogenesis but also offer novel perspectives for cancer therapy.
Collapse
Affiliation(s)
- Leyi Cheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yajuan Rui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yanpu Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shiqi Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
2
|
Tan X, Cai K, Li J, Yuan Z, Chen R, Xiao H, Xu C, Hu B, Qin Y, Ding B. Coronavirus subverts ER-phagy by hijacking FAM134B and ATL3 into p62 condensates to facilitate viral replication. Cell Rep 2023; 42:112286. [PMID: 36952345 PMCID: PMC9998290 DOI: 10.1016/j.celrep.2023.112286] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
ER-phagy is a form of autophagy that is mediated by ER-phagy receptors and selectively degrades endoplasmic reticulum (ER). Coronaviruses have been shown to use the ER as a membrane source to establish their double-membrane vesicles (DMVs). However, whether viruses modulate ER-phagy to drive viral DMV formation and its underlying molecular mechanisms remains largely unknown. Here, we demonstrate that coronavirus subverts ER-phagy by hijacking the ER-phagy receptors FAM134B and ATL3 into p62 condensates, resulting in increased viral replication. Mechanistically, we show that viral protein ORF8 binds to and undergoes condensation with p62. FAM134B and ATL3 interact with homodimer of ORF8 and are aggregated into ORF8/p62 liquid droplets, leading to ER-phagy inhibition. ORF8/p62 condensates disrupt ER-phagy to facilitate viral DMV formation and activate ER stress. Together, our data highlight how coronavirus modulates ER-phagy to drive viral replication by hijacking ER-phagy receptors.
Collapse
Affiliation(s)
- Xuan Tan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Jiajia Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhen Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ruifeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hurong Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bing Hu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| | - Binbin Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
3
|
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) pandemic. Of particular interest for this topic are the signaling cascades that regulate cell survival and death, two opposite cell programs whose control is hijacked by viral infections. The AKT and the Unfolded Protein Response (UPR) pathways, which maintain cell homeostasis by regulating these two programs, have been shown to be deregulated during SARS-CoVs infection as well as in the development of cancer, one of the most important comorbidities in relation to COVID-19. Recent evidence revealed two way crosstalk mechanisms between the AKT and the UPR pathways, suggesting that they might constitute a unified homeostatic control system. Here, we review the role of the AKT and UPR pathways and their interaction in relation to SARS-CoV-2 infection as well as in tumor onset and progression. Feedback regulation between AKT and UPR pathways emerges as a master control mechanism of cell decision making in terms of survival or death and therefore represents a key potential target for developing treatments for both viral infection and cancer. In particular, drug repositioning, the investigation of existing drugs for new therapeutic purposes, could significantly reduce time and costs compared to de novo drug discovery.
Collapse
|
4
|
Krefl D, Bergmann S. Cross-GWAS coherence test at the gene and pathway level. PLoS Comput Biol 2022; 18:e1010517. [PMID: 36156592 PMCID: PMC9536597 DOI: 10.1371/journal.pcbi.1010517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 10/06/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Proximal genetic variants are frequently correlated, implying that the corresponding effect sizes detected by genome-wide association studies (GWAS) are also not independent. Methods already exist to account for this when aggregating effects from a single GWAS across genes or pathways. Here we present a rigorous yet fast method for detecting genes with coherent association signals for two traits, facilitating cross-GWAS analyses. To this end, we devised a new significance test for the covariance of datapoints not drawn independently but with a known inter-sample covariance structure. We show that the distribution of its test statistic is a linear combination of χ2 distributions with positive and negative coefficients. The corresponding cumulative distribution function can be efficiently calculated with Davies’ algorithm at high precision. We apply this general framework to test for dependence between SNP-wise effect sizes of two GWAS at the gene level. We extend this test to detect also gene-wise causal links. We demonstrate the utility of our method by uncovering potential shared genetic links between the severity of COVID-19 and (1) being prescribed class M05B medication (drugs affecting bone structure and mineralization), (2) rheumatoid arthritis, (3) vitamin D (25OHD), and (4) serum calcium concentrations. Our method detects a potential role played by chemokine receptor genes linked to TH1 versus TH2 immune response, a gene related to integrin beta-1 cell surface expression, and other genes potentially impacting the severity of COVID-19. Our approach will be useful for similar analyses involving datapoints with known auto-correlation structures.
Collapse
Affiliation(s)
- Daniel Krefl
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail: (DK); (SB)
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Dept. of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail: (DK); (SB)
| |
Collapse
|
5
|
Thiopurines inhibit coronavirus Spike protein processing and incorporation into progeny virions. PLoS Pathog 2022; 18:e1010832. [PMID: 36121863 PMCID: PMC9522307 DOI: 10.1371/journal.ppat.1010832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/29/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022] Open
Abstract
There is an outstanding need for broadly acting antiviral drugs to combat emerging viral diseases. Here, we report that thiopurines inhibit the replication of the betacoronaviruses HCoV-OC43 and SARS-CoV-2. 6-Thioguanine (6-TG) disrupted early stages of infection, limiting accumulation of full-length viral genomes, subgenomic RNAs and structural proteins. In ectopic expression models, we observed that 6-TG increased the electrophoretic mobility of Spike from diverse betacoronaviruses, matching the effects of enzymatic removal of N-linked oligosaccharides from Spike in vitro. SARS-CoV-2 virus-like particles (VLPs) harvested from 6-TG-treated cells were deficient in Spike. 6-TG treatment had a similar effect on production of lentiviruses pseudotyped with SARS-CoV-2 Spike, yielding pseudoviruses deficient in Spike and unable to infect ACE2-expressing cells. Together, these findings from complementary ectopic expression and infection models strongly indicate that defective Spike trafficking and processing is an outcome of 6-TG treatment. Using biochemical and genetic approaches we demonstrated that 6-TG is a pro-drug that must be converted to the nucleotide form by hypoxanthine phosphoribosyltransferase 1 (HPRT1) to achieve antiviral activity. This nucleotide form has been shown to inhibit small GTPases Rac1, RhoA, and CDC42; however, we observed that selective chemical inhibitors of these GTPases had no effect on Spike processing or accumulation. By contrast, the broad GTPase agonist ML099 countered the effects of 6-TG, suggesting that the antiviral activity of 6-TG requires the targeting of an unknown GTPase. Overall, these findings suggest that small GTPases are promising targets for host-targeted antivirals. The COVID-19 pandemic has ignited efforts to repurpose existing drugs as safe and effective antivirals. Rather than directly inhibiting viral enzymes, host-targeted antivirals inhibit host cell processes to indirectly impede viral replication and/or stimulate antiviral responses. Here, we describe a new antiviral mechanism of action for an FDA-approved thiopurine known as 6-thioguanine (6-TG). We demonstrate that 6-TG is a pro-drug that must be metabolized by host enzymes to gain antiviral activity. We show that it can inhibit the replication of human coronaviruses, including SARS-CoV-2, at least in part by interfering with the processing and accumulation of Spike glycoproteins, thereby impeding assembly of infectious progeny viruses. We provide evidence implicating host cell GTPase enzymes in the antiviral mechanism of action.
Collapse
|
6
|
Possible Therapeutic Intervention Strategies for COVID-19 by Manipulating the Cellular Proteostasis Network. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1352:125-147. [PMID: 35132598 DOI: 10.1007/978-3-030-85109-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The recent outbreak of coronavirus infection by SARS-CoV-2 that started from the Wuhan Province of China in 2019 has spread to most parts of the world infecting millions of people. Although the case fatality rate of SARS-CoV-2 infection is less than the previous epidemics by other closely related coronaviruses, due to its high infectivity, the total number of SARS-CoV-2 infection-associated disease, called Covid-19, is a matter of global concern. Despite drastic preventive measures, the number of Covid-19 cases are steadily increasing, and the future course of this pandemic is highly unpredictable. The most concerning fact about Covid-19 is the absence of specific and effective preventive or therapeutic agents against the disease. Finding an immediate intervention against Covid-19 is the need of the hour. In this chapter, we have discussed the role of different branches of the cellular proteostasis network, represented by Hsp70-Hsp40 chaperone system, Ubiquitin-Proteasome System (UPS), autophagy, and endoplasmic reticulum-Unfolded Protein Response (ER-UPR) pathway in the pathogenesis of coronavirus infections and in the host antiviral defense mechanisms. RESULTS Based on scientific literature, we present that pharmacological manipulation of proteostasis network can alter the fate of coronavirus infections and may help to prevent the resulting pathologies like Covid-19.
Collapse
|
7
|
Fong SW, Yeo NKW, Chan YH, Goh YS, Amrun SN, Ang N, Rajapakse MP, Lum J, Foo S, Lee CYP, Carissimo G, Chee RSL, Torres-Ruesta A, Tay MZ, Chang ZW, Poh CM, Young BE, Tambyah PA, Kalimuddin S, Leo YS, Lye DC, Lee B, Biswas S, Howland SW, Renia L, Ng LFP. Robust Virus-Specific Adaptive Immunity in COVID-19 Patients with SARS-CoV-2 Δ382 Variant Infection. J Clin Immunol 2022; 42:214-229. [PMID: 34716845 PMCID: PMC8556776 DOI: 10.1007/s10875-021-01142-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/17/2021] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that have become dominant as the pandemic progresses bear the ORF8 mutation together with multiple spike mutations. A 382-nucleotide deletion (Δ382) in the ORF7b and ORF8 regions has been associated with milder disease phenotype and less systemic inflammation in COVID-19 patients. However, its impact on host immunity against SARS-CoV-2 remains undefined. Here, RNA-sequencing was performed to elucidate whole blood transcriptomic profiles and identify contrasting immune signatures between patients infected with either wildtype or Δ382 SARS-CoV-2 variant. Interestingly, the immune landscape of Δ382 SARS-CoV-2 infected patients featured an increased adaptive immune response, evidenced by enrichment of genes related to T cell functionality, a more robust SARS-CoV-2-specific T cell immunity, as well as a more rapid antibody response. At the molecular level, eukaryotic initiation factor 2 signaling was found to be upregulated in patients bearing Δ382, and its associated genes were correlated with systemic levels of T cell-associated and pro-inflammatory cytokines. This study provides more in-depth insight into the host-pathogen interactions of ORF8 with great promise as a therapeutic target to combat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Siew-Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Nicholas Kim-Wah Yeo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Yi-Hao Chan
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Yun Shan Goh
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Siti Naqiah Amrun
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Nicholas Ang
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | | | - Josephine Lum
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Shihui Foo
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Cheryl Yi-Pin Lee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Guillaume Carissimo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Rhonda Sin-Ling Chee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Matthew Zirui Tay
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Zi Wei Chang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Chek Meng Poh
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Barnaby Edward Young
- National Centre for Infectious Diseases, Singapore City, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore City, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
| | - Paul A Tambyah
- National Centre for Infectious Diseases, Singapore City, Singapore
- Department of Medicine, National University Hospital, Singapore City, Singapore
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore City, Singapore
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore City, Singapore
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore City, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore City, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore City, Singapore
| | - David C Lye
- National Centre for Infectious Diseases, Singapore City, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore City, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore City, Singapore
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Subhra Biswas
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Shanshan Wu Howland
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
8
|
Sharma HN, Latimore COD, Matthews QL. Biology and Pathogenesis of SARS-CoV-2: Understandings for Therapeutic Developments against COVID-19. Pathogens 2021; 10:1218. [PMID: 34578250 PMCID: PMC8470303 DOI: 10.3390/pathogens10091218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023] Open
Abstract
Coronaviruses are positive sense, single-stranded, enveloped, and non-segmented RNA viruses that belong to the Coronaviridae family within the order Nidovirales and suborder Coronavirinae. Two Alphacoronavirus strains: HCoV-229E and HCoV-NL63 and five Betacoronaviruses: HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2 have so far been recognized as Human Coronaviruses (HCoVs). Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is currently the greatest concern for humanity. Despite the overflow of research on SARS-CoV-2 and other HCoVs published every week, existing knowledge in this area is insufficient for the complete understanding of the viruses and the diseases caused by them. This review is based on the analysis of 210 published works, and it attempts to cover the basic biology of coronaviruses, including the genetic characteristics, life cycle, and host-pathogen interaction, pathogenesis, the antiviral drugs, and vaccines against HCoVs, especially focusing on SARS-CoV-2. Furthermore, we will briefly discuss the potential link between extracellular vesicles (EVs) and SARS-CoV-2/COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Homa Nath Sharma
- Microbiology Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | | | - Qiana L. Matthews
- Microbiology Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| |
Collapse
|
9
|
Echavarría-Consuegra L, Cook GM, Busnadiego I, Lefèvre C, Keep S, Brown K, Doyle N, Dowgier G, Franaszek K, Moore NA, Siddell SG, Bickerton E, Hale BG, Firth AE, Brierley I, Irigoyen N. Manipulation of the unfolded protein response: A pharmacological strategy against coronavirus infection. PLoS Pathog 2021; 17:e1009644. [PMID: 34138976 PMCID: PMC8211288 DOI: 10.1371/journal.ppat.1009644] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus infection induces the unfolded protein response (UPR), a cellular signalling pathway composed of three branches, triggered by unfolded proteins in the endoplasmic reticulum (ER) due to high ER load. We have used RNA sequencing and ribosome profiling to investigate holistically the transcriptional and translational response to cellular infection by murine hepatitis virus (MHV), often used as a model for the Betacoronavirus genus to which the recently emerged SARS-CoV-2 also belongs. We found the UPR to be amongst the most significantly up-regulated pathways in response to MHV infection. To confirm and extend these observations, we show experimentally the induction of all three branches of the UPR in both MHV- and SARS-CoV-2-infected cells. Over-expression of the SARS-CoV-2 ORF8 or S proteins alone is itself sufficient to induce the UPR. Remarkably, pharmacological inhibition of the UPR greatly reduced the replication of both MHV and SARS-CoV-2, revealing the importance of this pathway for successful coronavirus replication. This was particularly striking when both IRE1α and ATF6 branches of the UPR were inhibited, reducing SARS-CoV-2 virion release (~1,000-fold). Together, these data highlight the UPR as a promising antiviral target to combat coronavirus infection.
Collapse
Affiliation(s)
- Liliana Echavarría-Consuegra
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Georgia M. Cook
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Idoia Busnadiego
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Charlotte Lefèvre
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Sarah Keep
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Katherine Brown
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Nicole Doyle
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | | | - Krzysztof Franaszek
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Nathan A. Moore
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Stuart G. Siddell
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Benjamin G. Hale
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Andrew E. Firth
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| |
Collapse
|
10
|
Zhang Z, Zhang X, Bi K, He Y, Yan W, Yang CS, Zhang J. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends Food Sci Technol 2021; 114:11-24. [PMID: 34054222 PMCID: PMC8146271 DOI: 10.1016/j.tifs.2021.05.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
Background The world is in the midst of the COVID-19 pandemic. In this comprehensive review, we discuss the potential protective effects of (−)-epigallocatechin-3-gallate (EGCG), a major constituent of green tea, against COVID-19. Scope and approach Information from literature of clinical symptoms and molecular pathology of COVID-19 as well as relevant publications in which EGCG shows potential protective activities against COVID-19 is integrated and evaluated. Key findings and conclusions EGCG, via activating Nrf2, can suppress ACE2 (a cellular receptor for SARS-CoV-2) and TMPRSS2, which mediate cell entry of the virus. Through inhibition of SARS-CoV-2 main protease, EGCG may inhibit viral reproduction. EGCG via its broad antioxidant activity may protect against SARS-CoV-2 evoked mitochondrial ROS (which promote SARS-CoV-2 replication) and against ROS burst inflicted by neutrophil extracellular traps. By suppressing ER-resident GRP78 activity and expression, EGCG can potentially inhibit SARS-CoV-2 life cycle. EGCG also shows protective effects against 1) cytokine storm-associated acute lung injury/acute respiratory distress syndrome, 2) thrombosis via suppressing tissue factors and activating platelets, 3) sepsis by inactivating redox-sensitive HMGB1, and 4) lung fibrosis through augmenting Nrf2 and suppressing NF-κB. These activities remain to be further substantiated in animals and humans. The possible concerted actions of EGCG suggest the importance of further studies on the prevention and treatment of COVID-19 in humans. These results also call for epidemiological studies on potential preventive effects of green tea drinking on COVID-19.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Musculoskeletal Tumor, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Keyi Bi
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Yufeng He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Wangjun Yan
- Department of Musculoskeletal Tumor, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854-8020, USA
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
11
|
Hu CAA, Murphy I, Klimaj S, Reece J, Chand HS. SARS-CoV-2, Inflammatory Apoptosis, and Cytokine Storm Syndrome. ACTA ACUST UNITED AC 2021. [DOI: 10.2174/2666958702101010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), a novel and currently intensively studied beta coronavirus, is the causing agent of COVID-19 (Coronavirus Disease 2019), a highly contagious and devastating disease that has killed more than 2 million human beings since December 2019. Building on what has already been understood from studying SARS-CoV, a closely related single-strand RNA virus that set off SARS in 2002 and 2003, researchers began to learn how SARS-CoV-2 operates its vicious effects on the host cells. In essence, COVID-19 patients display hyperinflammatory and dysregulated cell death phenotypes that give a spectrum of symptoms ranging from mild to moderate upper-respiratory tract illnesses. However, SARS-CoV-2 can elicit serious pathologies, such as acute respiratory distress syndrome, sepsis-like multi-organ failure and even death, depending on the individual and their pre-existing condition(s). As viruses cannot reproduce independently, they hijack the machinery within the host cells and enslave them for the purpose of propagation. SARS-CoV-2 RNA genome harbors the genes that produce the protein products for manipulating host cell, viral replication, and repeating the vicious viral cycle. For counteracting the viral invasion, human cells have developed layers of defense mechanisms, such as restriction factors, Regulated Cell Death (RCD) pathways, interferon production, inflammatory response, and innate and adaptive immunity that are used to recognize and thwart viral infection. Unfortunately, some coronavirus encoded proteins are capable of attacking the host anti-viral system to achieve parasitic advantages. We reviewed the proteins of SARS-CoV and SARS-CoV-2 that possess manipulating effects on the host cell and cause tissue damage, immune cascade, cytokine production and release. We also discuss the means to restore the homeostatic balance between inflammatory response and RCD pathways and the potential targeted interventions that can be used to treat and/or prevent COVID-19.
Collapse
|
12
|
Kaur N, Singh R, Dar Z, Bijarnia RK, Dhingra N, Kaur T. Genetic comparison among various coronavirus strains for the identification of potential vaccine targets of SARS-CoV2. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 89:104490. [PMID: 32745811 PMCID: PMC7395230 DOI: 10.1016/j.meegid.2020.104490] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
On-going pandemic pneumonia outbreak COVID-19 has raised an urgent public health issue worldwide impacting millions of people with a continuous increase in both morbidity and mortality. The causative agent of this disease is identified and named as SARS-CoV2 because of its genetic relatedness to SARS-CoV species that was responsible for the 2003 coronavirus outbreak. The immense spread of the disease in a very small period demands urgent development of therapeutic and prophylactic interventions for the treatment of SARS-CoV2 infected patients. A plethora of research is being conducted globally on this novel coronavirus strain to gain knowledge about its origin, evolutionary history, and phylogeny. This review is an effort to compare genetic similarities and diversifications among coronavirus strains, which can hint towards the susceptible antigen targets of SARS-CoV2 to come up with the potential therapeutic and prophylactic interventions for the prevention of this public threat.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Rimaljot Singh
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Zahid Dar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Neelima Dhingra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, India.
| |
Collapse
|
13
|
Abstract
COVID-19 global pandemic has not ceased to spread worldwide since December 2019. Today, scientists and healthcare workers are urgently working to stop this viral invasion and protect the world community. Deciphering the specific cellular and molecular immune response to the new coronavirus 2019 is an essential step in order to develop effective treatment and vaccine. Recovery from COVID-19 infection was linked to appropriate immune responses. However, disease severity was correlated to impaired immune reactions. This review summarized the latest research findings on the role of immune system in fighting and also in the pathogenesis of COVID-19. In addition, it highlighted the immunological basis for the new coronavirus 2019 prevention, therapy and diagnosis.
Collapse
Affiliation(s)
- Norma Saad
- Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Salim Moussa
- Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
14
|
Simabuco FM, Tamura RE, Pavan ICB, Morale MG, Ventura AM. Molecular mechanisms and pharmacological interventions in the replication cycle of human coronaviruses. Genet Mol Biol 2020; 44:e20200212. [PMID: 33237152 PMCID: PMC7731901 DOI: 10.1590/1678-4685-gmb-2020-0212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), as well as SARS-CoV from 2003 along with MERS-CoV from 2012, is a member of the Betacoronavirus genus of the Nidovirales order and is currently the cause of the pandemic called COVID-19 (or Coronavirus disease 2019). COVID-19, which is characterized by cough, fever, fatigue, and severe cases of pneumonia, has affected more than 23 million people worldwide until August 25th, 2020. Here, we present a review of the cellular mechanisms associated with human coronavirus replication, including the unique molecular events related to the replication transcription complex (RTC) of coronaviruses. We also present information regarding the interactions between each viral protein and cellular proteins associated to known host-pathogen implications for the coronavirus biology. Finally, a specific topic addresses the current attempts for pharmacological interventions against COVID-19, highlighting the possible effects of each drug on the molecular events of viral replication. This review intends to aid future studies for a better understanding of the SARS-CoV-2 replication cycle and the development of pharmacological approaches targeting COVID-19.
Collapse
Affiliation(s)
- Fernando Moreira Simabuco
- Universidade Estadual de Campinas, Faculdade de Ciências Aplicadas (FCA), Laboratório Multidisciplinar em Alimentos e Saúde (LABMAS), Limeira, SP, Brazil
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo (UNIFESP), Departmento de Ciências Biológicas, Diadema, SP, Brazil
| | - Isadora Carolina Betim Pavan
- Universidade Estadual de Campinas, Faculdade de Ciências Aplicadas (FCA), Laboratório Multidisciplinar em Alimentos e Saúde (LABMAS), Limeira, SP, Brazil.,Universidade Estadual de Campinas, Faculdade de Ciências Farmacêuticas (FCF), Campinas, SP, Brazil
| | - Mirian Galliote Morale
- Universidade de São Paulo (USP), Departamento de Radiologia e Oncologia, Faculdade de Medicina, Centro de Oncologia Translacional, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, SP, Brazil
| | - Armando Morais Ventura
- Universidade de São Paulo (USP), Instituto de Ciências Biomédicas (ICB), Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
15
|
Yaribeygi H, Sathyapalan T, Jamialahmadi T, Sahebkar A. The Impact of Diabetes Mellitus in COVID-19: A Mechanistic Review of Molecular Interactions. J Diabetes Res 2020; 2020:5436832. [PMID: 33294461 PMCID: PMC7691013 DOI: 10.1155/2020/5436832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/13/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
The ongoing pandemic of COVID-19 is now the major issue in global health. Evidence implies that patients with diabetes are at a higher risk of severe disease or death due to COVID-19 than individuals without diabetes. However, the underlying mechanism for this differential effect in individuals with and without diabetes is not clearly understood. We have reviewed the pathophysiological pathways which may facilitate the entry of virus or an increase in its infectivity in host cells in the diabetic milieu. We suggest that the preexisting pathological pathways in patients with poorly controlled diabetes increase the risk of infectivity and are responsible for the higher levels of tissue injury and death in patients with diabetes.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, UK
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Santerre M, Arjona SP, Allen CN, Shcherbik N, Sawaya BE. Why do SARS-CoV-2 NSPs rush to the ER? J Neurol 2020; 268:2013-2022. [PMID: 32870373 PMCID: PMC7461160 DOI: 10.1007/s00415-020-10197-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/15/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
SARS-CoV-2, which led to the 2020 global pandemic, is responsible for the Coronavirus Disease 2019 (COVID-19), a respiratory illness, and presents a tropism for the central nervous system. Like most members of this family, the virus is composed of structural and non-structural proteins (NSPs). The non-structural proteins are critical elements of the replication and transcription complex (RTC), as well as immune system evasion. Through hijacking the endoplasmic reticulum (ER) membrane, NSPs help the virus establish the RTC, inducing ER stress after membrane rearrangement and causing severe neuronal disturbance. In this review, we focus on the role of Nsp3, 4, and 6 in intracellular membrane rearrangement and evaluate the potential disruption of the central nervous system and the neurodegeneration which it could trigger. Studies of these NSPs will not only bring to light their specific role in viral infection but also facilitate the discovery of novel targeted drugs.
Collapse
Affiliation(s)
- Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, Lewis Katz School of Medicine, Fels Institute for Cancer Research, Temple University, 3307 North Broad Street, Philadelphia, PA, 19140, USA.
| | - Sterling P Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, Lewis Katz School of Medicine, Fels Institute for Cancer Research, Temple University, 3307 North Broad Street, Philadelphia, PA, 19140, USA
| | - Charles Ns Allen
- Molecular Studies of Neurodegenerative Diseases Lab, Lewis Katz School of Medicine, Fels Institute for Cancer Research, Temple University, 3307 North Broad Street, Philadelphia, PA, 19140, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ, 08084, USA
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Lewis Katz School of Medicine, Fels Institute for Cancer Research, Temple University, 3307 North Broad Street, Philadelphia, PA, 19140, USA. .,Department of Neurology, Lewis Katz School of Medicine - Temple University Philadelphia, Philadelphia, PA, 19140, USA.
| |
Collapse
|
17
|
Bartoszewski R, Dabrowski M, Jakiela B, Matalon S, Harrod KS, Sanak M, Collawn JF. SARS-CoV-2 may regulate cellular responses through depletion of specific host miRNAs. Am J Physiol Lung Cell Mol Physiol 2020; 319:L444-L455. [PMID: 32755307 DOI: 10.1152/ajplung.00252.2020] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cold viruses have generally been considered fairly innocuous until the appearance of the severe acute respiratory coronavirus 2 (SARS-CoV-2) in 2019, which caused the coronavirus disease 2019 (COVID-19) global pandemic. Two previous viruses foreshadowed that a coronavirus could potentially have devastating consequences in 2002 [severe acute respiratory coronavirus (SARS-CoV)] and in 2012 [Middle East respiratory syndrome coronavirus (MERS-CoV)]. The question that arises is why these viruses are so different from the relatively harmless cold viruses. On the basis of an analysis of the current literature and using bioinformatic approaches, we examined the potential human miRNA interactions with the SARS-CoV-2's genome and compared the miRNA target sites in seven coronavirus genomes that include SARS-CoV-2, MERS-CoV, SARS-CoV, and four nonpathogenic coronaviruses. Here, we discuss the possibility that pathogenic human coronaviruses, including SARS-CoV-2, could modulate host miRNA levels by acting as miRNA sponges to facilitate viral replication and/or to avoid immune responses.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Michal Dabrowski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Bogdan Jakiela
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marek Sanak
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
18
|
Sureda A, Alizadeh J, Nabavi SF, Berindan-Neagoe I, Cismaru CA, Jeandet P, Łos MJ, Clementi E, Nabavi SM, Ghavami S. Endoplasmic reticulum as a potential therapeutic target for covid-19 infection management? Eur J Pharmacol 2020; 882:173288. [PMID: 32561291 PMCID: PMC7297682 DOI: 10.1016/j.ejphar.2020.173288] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
In December 2019, many pneumonia cases with unidentified sources appeared in Wuhan, Hubei, China, with clinical symptoms like viral pneumonia. Deep sequencing analysis of samples from lower respiratory tract revealed a novel coronavirus, called 2019 novel coronavirus (2019-nCoV). Currently there is a rapid global spread. World Health Organization declare the disease a pandemic condition. The pathologic source of this disease was a new RNA virus from Coronaviridae family, which was named COVID-19. SARS-CoV-2 entry starts with the binding of the spike glycoprotein expressed on the viral envelope to ACE2 on the alveolar surface followed by clathrin-dependent endocytosis of the SARS-CoV-2 and ACE2 complex. SARS-CoV-2 enters the cells through endocytosis process, which is possibly facilitated, via a pH dependent endosomal cysteine protease cathepsins. Once inside the cells, SARS-CoV-2 exploits the endogenous transcriptional machinery of alveolar cells to replicate and spread through the entire lung. Endosomal acidic pH for SARS-CoV-2 processing and internalization is critical. After entering the cells, it possibly activates or hijack many intracellular pathways in favor of its replication. In the current opinion article, we will explain the possible involvement of unfolded protein response as a cellular stress response to the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, Health Research Institute of Balearic Islands (IdISBa), and CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma, Balearic Islands, Spain
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Seyed Fazel Nabavi
- Division of Translational Medicine, Baqiyatallah Hospital, Baqiyatallah University of Medical Sciences, Tehran, Iran; Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; The Center for Advanced Medicine - Medfuture- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; The Department for Functional Genomics and Experimental Pathology, The Oncology Institute, "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Cosmin Andrei Cismaru
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Functional Sciences, Immunology and Allergology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687, Reims Cedex 2, France
| | - Marek J Łos
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland.
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences, "Luigi Sacco" (DIBIC), Università Degli Studi di Milano, 20157, Milano, Italy
| | - Seyed Mohammad Nabavi
- Division of Translational Medicine, Baqiyatallah Hospital, Baqiyatallah University of Medical Sciences, Tehran, Iran; Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Research Institute in Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada; Faculty of Medicine, Katowice School of Technology, Katowice, Poland.
| |
Collapse
|
19
|
Roche JA, Roche R. A hypothesized role for dysregulated bradykinin signaling in COVID-19 respiratory complications. FASEB J 2020; 34:7265-7269. [PMID: 32359101 PMCID: PMC7267506 DOI: 10.1096/fj.202000967] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 01/13/2023]
Abstract
As of April 20, 2020, over time, the COVID-19 pandemic has resulted in 157 970 deaths out of 2 319 066 confirmed cases, at a Case Fatality Rate of ~6.8%. With the pandemic rapidly spreading, and health delivery systems being overwhelmed, it is imperative that safe and effective pharmacotherapeutic strategies are rapidly explored to improve survival. In this paper, we use established and emerging evidence to propose a testable hypothesis that, a vicious positive feedback loop of des-Arg(9)-bradykinin- and bradykinin-mediated inflammation → injury → inflammation, likely precipitates life threatening respiratory complications in COVID-19. Through our hypothesis, we make the prediction that the FDA-approved molecule, icatibant, might be able to interrupt this feedback loop and, thereby, improve the clinical outcomes. This hypothesis could lead to basic, translational, and clinical studies aimed at reducing COVID-19 morbidity and mortality.
Collapse
Affiliation(s)
- Joseph A Roche
- Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Renuka Roche
- College of Health and Human Services, Eastern Michigan University, Ypsilanti, MI, USA
| |
Collapse
|
20
|
Abstract
Coronaviruses have large positive-strand RNA genomes that are 5' capped and 3' polyadenylated. The 5'-terminal two-thirds of the genome contain two open reading frames (ORFs), 1a and 1b, that together make up the viral replicase gene and encode two large polyproteins that are processed by viral proteases into 15-16 nonstructural proteins, most of them being involved in viral RNA synthesis. ORFs located in the 3'-terminal one-third of the genome encode structural and accessory proteins and are expressed from a set of 5' leader-containing subgenomic mRNAs that are synthesized by a process called discontinuous transcription. Coronavirus protein synthesis not only involves cap-dependent translation mechanisms but also employs regulatory mechanisms, such as ribosomal frameshifting. Coronavirus replication is known to affect cellular translation, involving activation of stress-induced signaling pathways, and employing viral proteins that affect cellular mRNA translation and RNA stability. This chapter describes our current understanding of the mechanisms involved in coronavirus mRNA translation and changes in host mRNA translation observed in coronavirus-infected cells.
Collapse
Affiliation(s)
- K Nakagawa
- The University of Texas Medical Branch, Galveston, TX, United States
| | - K G Lokugamage
- The University of Texas Medical Branch, Galveston, TX, United States
| | - S Makino
- The University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, TX, United States; UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, TX, United States; Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
21
|
Fung TS, Liao Y, Liu DX. Regulation of Stress Responses and Translational Control by Coronavirus. Viruses 2016; 8:v8070184. [PMID: 27384577 PMCID: PMC4974519 DOI: 10.3390/v8070184] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 01/02/2023] Open
Abstract
Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER) results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed.
Collapse
Affiliation(s)
- To Sing Fung
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Ziyue Road 518, Shanghai 200241, China.
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
22
|
A Highly Immunogenic and Protective Middle East Respiratory Syndrome Coronavirus Vaccine Based on a Recombinant Measles Virus Vaccine Platform. J Virol 2015; 89:11654-67. [PMID: 26355094 DOI: 10.1128/jvi.01815-15] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/03/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED In 2012, the first cases of infection with the Middle East respiratory syndrome coronavirus (MERS-CoV) were identified. Since then, more than 1,000 cases of MERS-CoV infection have been confirmed; infection is typically associated with considerable morbidity and, in approximately 30% of cases, mortality. Currently, there is no protective vaccine available. Replication-competent recombinant measles virus (MV) expressing foreign antigens constitutes a promising tool to induce protective immunity against corresponding pathogens. Therefore, we generated MVs expressing the spike glycoprotein of MERS-CoV in its full-length (MERS-S) or a truncated, soluble variant of MERS-S (MERS-solS). The genes encoding MERS-S and MERS-solS were cloned into the vaccine strain MVvac2 genome, and the respective viruses were rescued (MVvac2-CoV-S and MVvac2-CoV-solS). These recombinant MVs were amplified and characterized at passages 3 and 10. The replication of MVvac2-CoV-S in Vero cells turned out to be comparable to that of the control virus MVvac2-GFP (encoding green fluorescent protein), while titers of MVvac2-CoV-solS were impaired approximately 3-fold. The genomic stability and expression of the inserted antigens were confirmed via sequencing of viral cDNA and immunoblot analysis. In vivo, immunization of type I interferon receptor-deficient (IFNAR(-/-))-CD46Ge mice with 2 × 10(5) 50% tissue culture infective doses of MVvac2-CoV-S(H) or MVvac2-CoV-solS(H) in a prime-boost regimen induced robust levels of both MV- and MERS-CoV-neutralizing antibodies. Additionally, induction of specific T cells was demonstrated by T cell proliferation, antigen-specific T cell cytotoxicity, and gamma interferon secretion after stimulation of splenocytes with MERS-CoV-S presented by murine dendritic cells. MERS-CoV challenge experiments indicated the protective capacity of these immune responses in vaccinated mice. IMPORTANCE Although MERS-CoV has not yet acquired extensive distribution, being mainly confined to the Arabic and Korean peninsulas, it could adapt to spread more readily among humans and thereby become pandemic. Therefore, the development of a vaccine is mandatory. The integration of antigen-coding genes into recombinant MV resulting in coexpression of MV and foreign antigens can efficiently be achieved. Thus, in combination with the excellent safety profile of the MV vaccine, recombinant MV seems to constitute an ideal vaccine platform. The present study shows that a recombinant MV expressing MERS-S is genetically stable and induces strong humoral and cellular immunity against MERS-CoV in vaccinated mice. Subsequent challenge experiments indicated protection of vaccinated animals, illustrating the potential of MV as a vaccine platform with the potential to target emerging infections, such as MERS-CoV.
Collapse
|
23
|
Fung TS, Huang M, Liu DX. Coronavirus-induced ER stress response and its involvement in regulation of coronavirus-host interactions. Virus Res 2014; 194:110-23. [PMID: 25304691 PMCID: PMC7114476 DOI: 10.1016/j.virusres.2014.09.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 12/11/2022]
Abstract
Coronavirus replication is structurally and functionally associated with the endoplasmic reticulum (ER), a major site of protein synthesis, folding, modification and sorting in the eukaryotic cells. Disturbance of ER homeostasis may occur under various physiological or pathological conditions. In response to the ER stress, signaling pathways of the unfolded protein response (UPR) are activated. UPR is mediated by three ER transmembrane sensors, namely the PKR-like ER protein kinase (PERK), the inositol-requiring protein 1 (IRE1) and the activating transcriptional factor 6 (ATF6). UPR facilitates adaptation to ER stress by reversible translation attenuation, enhancement of ER protein folding capacity and activation of ER-associated degradation (ERAD). In cells under prolonged and irremediable ER stress, UPR can also trigger apoptotic cell death. Accumulating evidence has shown that coronavirus infection causes ER stress and induces UPR in the infected cells. UPR is closely associated with a number of major signaling pathways, including autophagy, apoptosis, the mitogen-activated protein (MAP) kinase pathways, innate immunity and pro-inflammatory response. Therefore, studies on the UPR are pivotal in elucidating the complicated issue of coronavirus-host interaction. In this paper, we present the up-to-date knowledge on coronavirus-induced UPR and discuss its potential involvement in regulation of innate immunity and apoptosis.
Collapse
Affiliation(s)
- To Sing Fung
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Mei Huang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.
| |
Collapse
|
24
|
Kim E, Okada K, Kenniston T, Raj VS, AlHajri MM, Farag EABA, AlHajri F, Osterhaus ADME, Haagmans BL, Gambotto A. Immunogenicity of an adenoviral-based Middle East Respiratory Syndrome coronavirus vaccine in BALB/c mice. Vaccine 2014; 32:5975-82. [PMID: 25192975 PMCID: PMC7115510 DOI: 10.1016/j.vaccine.2014.08.058] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/15/2014] [Accepted: 08/21/2014] [Indexed: 01/04/2023]
Abstract
A new type of coronavirus has been identified as the causative agent underlying Middle East Respiratory Syndrome (MERS). The MERS coronavirus (MERS-CoV) has spread in the Middle East, but cases originating in the Middle East have also occurred in the European Union and the USA. Eight hundred and thirty-seven cases of MERS-CoV infection have been confirmed to date, including 291 deaths. MERS-CoV has infected dromedary camel populations in the Middle East at high rates, representing an immediate source of human infection. The MERS-CoV spike (S) protein, a characteristic structural component of the viral envelope, is considered as a key target of vaccines against coronavirus infection. In an initial attempt to develop a MERS-CoV vaccine to ultimately target dromedary camels, we constructed two recombinant adenoviral vectors encoding the full-length MERS-CoV S protein (Ad5.MERS-S) and the S1 extracellular domain of S protein (Ad5.MERS-S1). BALB/c mice were immunized with both candidate vaccines intramuscularly and boosted three weeks later intranasally. All the vaccinated animals had antibody responses against spike protein, which neutralized MERS-CoV in vitro. These results show that an adenoviral-based vaccine can induce MERS-CoV-specific immune responses in mice and hold promise for the development of a preventive vaccine that targets the animal reservoir, which might be an effective measure to eliminate transmission of MERS-CoV to humans.
Collapse
Affiliation(s)
- Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Kaori Okada
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Tom Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - V Stalin Raj
- Department of Viroscience, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | - Farhoud AlHajri
- Animal Resources Department - Ministry of Environment, Doha, Qatar
| | | | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
| |
Collapse
|
25
|
Fung TS, Liu DX. Coronavirus infection, ER stress, apoptosis and innate immunity. Front Microbiol 2014; 5:296. [PMID: 24987391 PMCID: PMC4060729 DOI: 10.3389/fmicb.2014.00296] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/29/2014] [Indexed: 12/27/2022] Open
Abstract
The replication of coronavirus, a family of important animal and human pathogens, is closely associated with the cellular membrane compartments, especially the endoplasmic reticulum (ER). Coronavirus infection of cultured cells was previously shown to cause ER stress and induce the unfolded protein response (UPR), a process that aims to restore the ER homeostasis by global translation shutdown and increasing the ER folding capacity. However, under prolonged ER stress, UPR can also induce apoptotic cell death. Accumulating evidence from recent studies has shown that induction of ER stress and UPR may constitute a major aspect of coronavirus–host interaction. Activation of the three branches of UPR modulates a wide variety of signaling pathways, such as mitogen-activated protein (MAP) kinase activation, autophagy, apoptosis, and innate immune response. ER stress and UPR activation may therefore contribute significantly to the viral replication and pathogenesis during coronavirus infection. In this review, we summarize the current knowledge on coronavirus-induced ER stress and UPR activation, with emphasis on their cross-talking to apoptotic signaling.
Collapse
Affiliation(s)
- To S Fung
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| | - Ding X Liu
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
26
|
Proteomic changes in the gills of wild-type and transgenic radiosensitive medaka following exposure to direct irradiation and to X-ray induced bystander signals. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:290-8. [DOI: 10.1016/j.bbapap.2010.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 11/03/2010] [Accepted: 11/09/2010] [Indexed: 02/05/2023]
|
27
|
Modulation of Host Cell Death by SARS Coronavirus Proteins. MOLECULAR BIOLOGY OF THE SARS-CORONAVIRUS 2010. [PMCID: PMC7176189 DOI: 10.1007/978-3-642-03683-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Both types of cell death, namely necrosis and apoptosis, are found in organs of SARS coronavirus (CoV) infected patients. The gastrointestinal tract, however, although also a target for SARS-CoV replication, is obviously not affected by cell death mechanisms. Such differences in cell death induction are paralleled by in-vitro studies. In a colon-derived cell line (Caco-2), proapoptotic proteins were down- and antiapoptotic proteins were upregulated during SARS-CoV infection. By contrast, in SARS-CoV infected Vero E6 cells, apoptosis was induced via the p38 MAPK and caspase dependent pathways. Both apoptotic pathways, although mostly the intrinsic signal transduction, can be targeted by structural as well as accessory proteins of SARS-CoV. The fact that all structural and most of the accessory proteins of SARS-CoV are implicated in apoptotic scenarios indicates the fundamental role of apoptosis in the SARS-CoV life cycle. Interestingly, at least for the nucleocapsid protein of SARS-CoV, a cell-type specific manipulation of apoptosis was confirmed.
Collapse
|