1
|
Karan S, Opdensteinen P, Ma Y, De Oliveira JFA, Steinmetz NF. A replicon-based COVID-19 vaccine candidate delivered by tobacco mosaic virus-like particles. Vaccine 2025; 53:127063. [PMID: 40168732 DOI: 10.1016/j.vaccine.2025.127063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 04/03/2025]
Abstract
The COVID-19 pandemic highlights the opportunity for mRNA vaccines and their nanotechnology carriers to make an impact as a countermeasure to infectious disease. As alternative to the synthetic lipid nanoparticles or mammalian viruses, we developed a tobacco mosaic virus (TMV)-based mRNA vaccine delivery platform. Specifically, purified coat protein from TMV was used to package a self-amplifying Nodamura replicon expressing the receptor binding domain (RBD) from the Omicron strain of SARS-CoV-2. The replicon construct contains the origin of assembly sequence from the tobacco mosaic virus (TMV) for encapsulation and mRNA stabilization. The nanoparticle vaccine was obtained through in vitro assembly using purified TMV coat proteins and in vitro transcribed mRNA cassettes. Cell assays confirmed delivery of self-amplifying mRNA vaccine, amplification of the transgene and expression of the target protein, RBD, in mammalian cells. Immunization of mice yielded RBD-specific IgG antibodies that demonstrated neutralization of SARS-CoV-2 using an in vitro neutralization assay. The TMV platform nanotechnology does not require ultralow freezers for storage or distribution; and the in vitro assembly method provide 'plug-and-play' to adapt the vaccine formulation rapidly as new strains or diseases emerge. Finally, opportunity exists to produce and self-assemble the vaccine candidate in plants through molecular farming techniques, which may allow production in the region-for the region and could make a contribution to less resourced areas of the world.
Collapse
MESH Headings
- Tobacco Mosaic Virus/genetics
- Animals
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/genetics
- Mice
- Replicon
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- COVID-19/prevention & control
- COVID-19/immunology
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Humans
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Female
- Capsid Proteins/immunology
- Capsid Proteins/genetics
- Immunoglobulin G/immunology
- Immunoglobulin G/blood
- Mice, Inbred BALB C
- Nanoparticles
Collapse
Affiliation(s)
- Sweta Karan
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA; Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, United States
| | - Patrick Opdensteinen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA; Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, United States
| | - Yifeng Ma
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA; Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, United States
| | - Jessica Fernanda Affonso De Oliveira
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA; Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, United States
| | - Nicole F Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA; Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, United States; Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States; Department of Radiology, University of California, San Diego, La Jolla, CA, United States; Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, United States; Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States; Center for Engineering in Cancer, Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
2
|
Seitz I, Saarinen S, Wierzchowiecka J, Kumpula EP, Shen B, Cornelissen JJLM, Linko V, Huiskonen JT, Kostiainen MA. Folding of mRNA-DNA Origami for Controlled Translation and Viral Vector Packaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417642. [PMID: 40012449 DOI: 10.1002/adma.202417642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/28/2025] [Indexed: 02/28/2025]
Abstract
mRNA is an important molecule in vaccine development and treatment of genetic disorders. Its capability to hybridize with DNA oligonucleotides in a programmable manner facilitates the formation of RNA-DNA origami structures, which can possess a well-defined morphology and serve as rigid supports for mRNA delivery. However, to date, comprehensive studies on the requirements for efficient folding of mRNA into distinct mRNA-DNA structures while preserving its translation functionality remain elusive. Here, the impact of design parameters on the folding of protein-encoding mRNA into mRNA-DNA origami structures is systematically investigated and the importance of the availability of ribosome-binding sequences on the translation efficiency is demonstrated. Furthermore, these hybrid structures are encapsulated inside virus capsids resulting in protecting them against nuclease degradation and also in enhancement of their cellular uptake. This multicomponent system therefore showcases a modular and versatile nanocarrier. The work provides valuable insight into the design of mRNA-DNA origami structures contributing to the development of mRNA-based gene delivery platforms.
Collapse
Affiliation(s)
- Iris Seitz
- Department of Bioproducts and Biosystems, Aalto University, 00076, Aalto, Finland
| | - Sharon Saarinen
- Department of Bioproducts and Biosystems, Aalto University, 00076, Aalto, Finland
| | - Julia Wierzchowiecka
- Department of Bioproducts and Biosystems, Aalto University, 00076, Aalto, Finland
| | - Esa-Pekka Kumpula
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Boxuan Shen
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Jeroen J L M Cornelissen
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, 7522, Enschede, The Netherlands
| | - Veikko Linko
- Department of Bioproducts and Biosystems, Aalto University, 00076, Aalto, Finland
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Mauri A Kostiainen
- Department of Bioproducts and Biosystems, Aalto University, 00076, Aalto, Finland
- LIBER Center of Excellence, Aalto University, 00076, Aalto, Finland
| |
Collapse
|
3
|
Neilsen G, Mathew AM, Castro JM, McFadden WM, Wen X, Ong YT, Tedbury PR, Lan S, Sarafianos SG. Dimming the corona: studying SARS-coronavirus-2 at reduced biocontainment level using replicons and virus-like particles. mBio 2024; 15:e0336823. [PMID: 39530689 PMCID: PMC11633226 DOI: 10.1128/mbio.03368-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The coronavirus-induced disease 19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections, has had a devastating impact on millions of lives globally, with severe mortality rates and catastrophic social implications. Developing tools for effective vaccine strategies and platforms is essential for controlling and preventing the recurrence of such pandemics. Moreover, molecular virology tools that facilitate the study of viral pathogens, impact of viral mutations, and interactions with various host proteins are essential. Viral replicon- and virus-like particle (VLP)-based systems are excellent examples of such tools. This review outlines the importance, advantages, and disadvantages of both the replicon- and VLP-based systems that have been developed for SARS-CoV-2 and have helped the scientific community in dimming the intensity of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Grace Neilsen
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Asha Maria Mathew
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jose M. Castro
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - William M. McFadden
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Xin Wen
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Yee T. Ong
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Shuiyun Lan
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Debnath S, Seth D, Pramanik S, Adhikari S, Mondal P, Sherpa D, Sen D, Mukherjee D, Mukerjee N. A comprehensive review and meta-analysis of recent advances in biotechnology for plant virus research and significant accomplishments in human health and the pharmaceutical industry. Biotechnol Genet Eng Rev 2024; 40:3193-3225. [PMID: 36063068 DOI: 10.1080/02648725.2022.2116309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023]
Abstract
Secondary metabolites made by plants and used through their metabolic routes are today's most reliable and cost-effective way to make pharmaceuticals and improve health. The concept of genetic engineering is used for molecular pharming. As more people use plants as sources of nanotechnology systems, they are adding to this. These systems are made up of viruses-like particles (VLPs) and virus nanoparticles (VNPs). Due to their superior ability to be used as plant virus expression vectors, plant viruses are becoming more popular in pharmaceuticals. This has opened the door for them to be used in research, such as the production of medicinal peptides, antibodies, and other heterologous protein complexes. This is because biotechnological approaches have been linked with new bioinformatics tools. Because of the rise of high-throughput sequencing (HTS) and next-generation sequencing (NGS) techniques, it has become easier to use metagenomic studies to look for plant virus genomes that could be used in pharmaceutical research. A look at how bioinformatics can be used in pharmaceutical research is also covered in this article. It also talks about plant viruses and how new biotechnological tools and procedures have made progress in the field.
Collapse
Affiliation(s)
- Sandip Debnath
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Dibyendu Seth
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Sourish Pramanik
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Sanchari Adhikari
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Parimita Mondal
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Dechen Sherpa
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Deepjyoti Sen
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | | | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebarsham, Australia
| |
Collapse
|
5
|
Karan S, Durán-Meza AL, Chapman A, Tanimoto C, Chan SK, Knobler CM, Gelbart WM, Steinmetz NF. In Vivo Delivery of Spherical and Cylindrical In Vitro Reconstituted Virus-like Particles Containing the Same Self-Amplifying mRNA. Mol Pharm 2024; 21:2727-2739. [PMID: 38709860 PMCID: PMC11250921 DOI: 10.1021/acs.molpharmaceut.3c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The dramatic effectiveness of recent mRNA (mRNA)-based COVID vaccines delivered in lipid nanoparticles has highlighted the promise of mRNA therapeutics in general. In this report, we extend our earlier work on self-amplifying mRNAs delivered in spherical in vitro reconstituted virus-like particles (VLPs), and on drug delivery using cylindrical virus particles. In particular, we carry out separate in vitro assemblies of a self-amplifying mRNA gene in two different virus-like particles: one spherical, formed with the capsid protein of cowpea chlorotic mottle virus (CCMV), and the other cylindrical, formed from the capsid protein of tobacco mosaic virus (TMV). The mRNA gene is rendered self-amplifying by genetically fusing it to the RNA-dependent RNA polymerase (RdRp) of Nodamura virus, and the relative efficacies of cell uptake and downstream protein expression resulting from their CCMV- and TMV-packaged forms are compared directly. This comparison is carried out by their transfections into cells in culture: expressions of two self-amplifying genes, enhanced yellow fluorescent protein (EYFP) and Renilla luciferase (Luc), packaged alternately in CCMV and TMV VLPs, are quantified by fluorescence and chemiluminescence levels, respectively, and relative numbers of the delivered mRNAs are measured by quantitative real-time PCR. The cellular uptake of both forms of these VLPs is further confirmed by confocal microscopy of transfected cells. Finally, VLP-mediated delivery of the self-amplifying-mRNA in mice following footpad injection is shown by in vivo fluorescence imaging to result in robust expression of EYFP in the draining lymph nodes, suggesting the potential of these plant virus-like particles as a promising mRNA gene and vaccine delivery modality. These results establish that both CCMV and TMV VLPs can deliver their in vitro packaged mRNA genes to immune cells and that their self-amplifying forms significantly enhance in situ expression. Choice of one VLP (CCMV or TMV) over the other will depend on which geometry of nucleocapsid is self-assembled more efficiently for a given length and sequence of RNA, and suggests that these plant VLP gene delivery systems will prove useful in a wide variety of medical applications, both preventive and therapeutic.
Collapse
Affiliation(s)
- Sweta Karan
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Ana Luisa Durán-Meza
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Abigail Chapman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Cheylene Tanimoto
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Soo Khim Chan
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Charles M Knobler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - William M Gelbart
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- UCLA Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
6
|
Shaik S, Kumar R, Chaudhary M, Kaur C, Khurana N, Singh G. Artificial viruses: A nanotechnology based approach. Daru 2024; 32:339-352. [PMID: 38105369 PMCID: PMC11087390 DOI: 10.1007/s40199-023-00496-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
OBJECTIVES The main objective of this work was to review and summarise the detailed literature available on viral nanoparticle and the strategies utilised for their manufacture along with their applications as therapeutic agents. DATA ACQUISITION The reported literature related to development and application of virus nanoparticles have been collected from electronic data bases like ScienceDirect, google scholar, PubMed by using key words like "viral nanoparticles", "targeted drug delivery" and "vaccines" and related combinations. RESULT From the detailed literature survey, virus nanoparticles were identified as carriers for the targeted delivery. Due to the presence of nanostructures in virus nanoparticles, these protect the drugs from the degradation in the gastrointestinal tract and in case of the delivery of gene medicine, they carry the nucleic acids to the target/susceptible host cells. Thus, artificial viruses are utilised for targeted delivery to specific organ in biomedical and biotechnological areas. CONCLUSION Thus, virus nanoparticles can be considered as viable option as drug/gene carrier in various healthcare sectors especially drug delivery and vaccine and can be explored further in future for the development of better drug delivery techniques.
Collapse
Affiliation(s)
- Shareef Shaik
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Manish Chaudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Gurvinder Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India.
| |
Collapse
|
7
|
Ramirez-Acosta K, Loredo-García E, Herrera-Hernandez MM, Cadena-Nava RD. Plant Virus-Like Particles for RNA Delivery. Methods Mol Biol 2024; 2822:387-410. [PMID: 38907930 DOI: 10.1007/978-1-0716-3918-4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Plant viruses such as brome mosaic virus and cowpea chlorotic mottle virus are effectively purified through PEG precipitation and sucrose cushion ultracentrifugation. Increasing ionic strength and an alkaline pH cause the viruses to swell and disassemble into coat protein subunits. The coat proteins can be reassembled into stable virus-like particles (VLPs) that carry anionic molecules at low ionic strength and through two-step dialysis from neutral pH to acidic buffer. VLPs have been extensively studied due to their ability to protect and deliver cargo, particularly RNA, while avoiding degradation under physiological conditions. Furthermore, chemical functionalization of the surface of VLPs allows for the targeted drug delivery. VLPs derived from plants have demonstrated great potential in nanomedicine by offering a versatile platform for drug delivery, imaging, and therapeutic applications.
Collapse
Affiliation(s)
- Kendra Ramirez-Acosta
- Centro de Nanociencias y Nanotecnología-Universidad Nacional Autónoma de México (UNAM), Ensenada, Baja California, Mexico
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, Mexico
| | - Elizabeth Loredo-García
- Centro de Nanociencias y Nanotecnología-Universidad Nacional Autónoma de México (UNAM), Ensenada, Baja California, Mexico
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, Mexico
| | - M Mariana Herrera-Hernandez
- Centro de Nanociencias y Nanotecnología-Universidad Nacional Autónoma de México (UNAM), Ensenada, Baja California, Mexico
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, Mexico
| | - Ruben D Cadena-Nava
- Centro de Nanociencias y Nanotecnología-Universidad Nacional Autónoma de México (UNAM), Ensenada, Baja California, Mexico.
| |
Collapse
|
8
|
Azizi M, Shahgolzari M, Fathi-Karkan S, Ghasemi M, Samadian H. Multifunctional plant virus nanoparticles: An emerging strategy for therapy of cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1872. [PMID: 36450366 DOI: 10.1002/wnan.1872] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022]
Abstract
Cancer therapy requires sophisticated treatment strategies to obtain the highest success. Nanotechnology is enabling, revolutionizing, and multidisciplinary concepts to improve conventional cancer treatment modalities. Nanomaterials have a central role in this scenario, explaining why various nanomaterials are currently being developed for cancer therapy. Viral nanoparticles (VNPs) have shown promising performance in cancer therapy due to their unique features. VNPs possess morphological homogeneity, ease of functionalization, biocompatibility, biodegradability, water solubility, and high absorption efficiency that are beneficial for cancer therapy applications. In the current review paper, we highlight state-of-the-art properties and potentials of plant viruses, strategies for multifunctional plant VNPs formulations, potential applications and challenges in VNPs-based cancer therapy, and finally practical solutions to bring potential cancer therapy one step closer to real applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi-Karkan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Maryam Ghasemi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Barkovich KJ, Zhao Z, Steinmetz NF. iRGD-targeted Physalis Mottle Virus-like Nanoparticles for Targeted Cancer Delivery. SMALL SCIENCE 2023; 3:2300067. [PMID: 38465197 PMCID: PMC10923535 DOI: 10.1002/smsc.202300067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/28/2023] [Indexed: 03/12/2024] Open
Abstract
Nanomedicine provides a promising platform for the molecular treatment of disease. An ongoing challenge in nanomedicine is the targeted delivery of intravenously administered nanoparticles to particular tissues, which is of special interest in cancer. In this study, we show that the conjugation of iRGD peptides, which specifically target tumor neovasculature, to the surface of Physalis mottle virus (PhMV)-like nanoparticles leads to rapid cellular uptake in vitro and tumor homing in vivo. We then show that iRGD-targeted PhMV loaded with the chemotherapeutic doxorubicin shows increased potency in a murine flank xenograft model of cancer. Our results validate that PhMV-like nanoparticles can be targeted to tumors through iRGD-peptide conjugation and suggest that iRGD-PhMV provides a promising platform for the targeted delivery of molecular cargo to tumors.
Collapse
Affiliation(s)
| | - Zhongchao Zhao
- Department of NanoEngineeringUniversity of California, San DiegoSan DiegoCA92093USA
- Center for Nano-ImmunoEngineeringUniversity of California, San DiegoSan DiegoCA92093USA
| | - Nicole F. Steinmetz
- Department of RadiologyUniversity of California, San DiegoSan DiegoCA92093USA
- Department of NanoEngineeringUniversity of California, San DiegoSan DiegoCA92093USA
- Center for Nano-ImmunoEngineeringUniversity of California, San DiegoSan DiegoCA92093USA
- Department of BioengineeringUniversity of California, San DiegoSan DiegoCA92093USA
- Institute for Materials Discovery and DesignUniversity of California, San DiegoSan DiegoCA92093USA
- Moores Cancer CenterUniversity of California, San DiegoSan DiegoCA92093USA
- Center for Engineering in Cancer, Institute for Engineering in MedicineUniversity of California, San DiegoSan DiegoCA92093USA
| |
Collapse
|
10
|
Liu C, Yu Y, Fang L, Wang J, Sun C, Li H, Zhuang J, Sun C. Plant-derived nanoparticles and plant virus nanoparticles: Bioactivity, health management, and delivery potential. Crit Rev Food Sci Nutr 2023; 64:8875-8891. [PMID: 37128778 DOI: 10.1080/10408398.2023.2204375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Natural plants have acquired an increasing attention in biomedical research. Recent studies have revealed that plant-derived nanoparticles (PDNPs), which are nano-sized membrane vesicles released by plants, are one of the important material bases for the health promotion of natural plants. A great deal of research in this field has focused on nanoparticles derived from fresh vegetables and fruits. Generally, PDNPs contain lipids, proteins, nucleic acids, and other active small molecules and exhibit unique biological regulatory activity and editability. Specifically, they have emerged as important mediators of intercellular communication, and thus, are potentially suitable for therapeutic purposes. In this review, PDNPs were extensively explored; by evaluating them systematically starting from the origin and isolation, toward their characteristics, including morphological compositions, biological functions, and delivery potentials, as well as distinguishing them from plant-derived exosomes and highlighting the limitations of the current research. Meanwhile, we elucidated the variations in PDNPs infected by pathogenic microorganisms and emphasized on the biological functions and characteristics of plant virus nanoparticles. After clarifying these problems, it is beneficial to further research on PDNPs in the future and develop their clinical application value.
Collapse
Affiliation(s)
- Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Yang Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liguang Fang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jia Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chunjie Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
11
|
Yuan B, Liu Y, Lv M, Sui Y, Hou S, Yang T, Belhadj Z, Zhou Y, Chang N, Ren Y, Sun C. Virus-like particle-based nanocarriers as an emerging platform for drug delivery. J Drug Target 2023; 31:433-455. [PMID: 36940208 DOI: 10.1080/1061186x.2023.2193358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
New nanocarrier technologies are emerging, and they have great potential for improving drug delivery, targeting efficiency, and bioavailability. Virus-like particles (VLPs) are natural nanoparticles from animal and plant viruses and bacteriophages. Hence, VLPs present several great advantages, such as morphological uniformity, biocompatibility, reduced toxicity, and easy functionalisation. VLPs can deliver many active ingredients to the target tissue and have great potential as a nanocarrier to overcome the limitations associated with other nanoparticles. This review will focus primarily on the construction and applications of VLPs, particularly as a novel nanocarrier to deliver active ingredients. Herein, the main methods for the construction, purification, and characterisation of VLPs, as well as various VLP-based materials used in delivery systems are summarised. The biological distribution of VLPs in drug delivery, phagocyte-mediated clearance, and toxicity are also discussed.
Collapse
Affiliation(s)
| | - Yang Liu
- School of Pharmaceutical Sciences, Zhengzhou University, No.100, Kexue Avenue, Zhengzhou 450001, China
| | - Meilin Lv
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Yilei Sui
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Shenghua Hou
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Tinghui Yang
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Zakia Belhadj
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yulong Zhou
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Naidan Chang
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Yachao Ren
- Harbin Medical University-Daqing, Daqing 163319, China.,School of Chemistry and Chemical Engineering, Tianjin University of Technology, tianjin, 300000, China
| | | |
Collapse
|
12
|
Tscheuschner G, Ponader M, Raab C, Weider PS, Hartfiel R, Kaufmann JO, Völzke JL, Bosc-Bierne G, Prinz C, Schwaar T, Andrle P, Bäßler H, Nguyen K, Zhu Y, Mey ASJS, Mostafa A, Bald I, Weller MG. Efficient Purification of Cowpea Chlorotic Mottle Virus by a Novel Peptide Aptamer. Viruses 2023; 15:v15030697. [PMID: 36992405 PMCID: PMC10051510 DOI: 10.3390/v15030697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/31/2023] Open
Abstract
The cowpea chlorotic mottle virus (CCMV) is a plant virus explored as a nanotechnological platform. The robust self-assembly mechanism of its capsid protein allows for drug encapsulation and targeted delivery. Additionally, the capsid nanoparticle can be used as a programmable platform to display different molecular moieties. In view of future applications, efficient production and purification of plant viruses are key steps. In established protocols, the need for ultracentrifugation is a significant limitation due to cost, difficult scalability, and safety issues. In addition, the purity of the final virus isolate often remains unclear. Here, an advanced protocol for the purification of the CCMV from infected plant tissue was developed, focusing on efficiency, economy, and final purity. The protocol involves precipitation with PEG 8000, followed by affinity extraction using a novel peptide aptamer. The efficiency of the protocol was validated using size exclusion chromatography, MALDI-TOF mass spectrometry, reversed-phase HPLC, and sandwich immunoassay. Furthermore, it was demonstrated that the final eluate of the affinity column is of exceptional purity (98.4%) determined by HPLC and detection at 220 nm. The scale-up of our proposed method seems to be straightforward, which opens the way to the large-scale production of such nanomaterials. This highly improved protocol may facilitate the use and implementation of plant viruses as nanotechnological platforms for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Georg Tscheuschner
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Marco Ponader
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Christopher Raab
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Prisca S Weider
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Reni Hartfiel
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Jan Ole Kaufmann
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, 81675 Munich, Germany
| | - Jule L Völzke
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Gaby Bosc-Bierne
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Carsten Prinz
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | | | - Paul Andrle
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Henriette Bäßler
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Khoa Nguyen
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Yanchen Zhu
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Antonia S J S Mey
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Amr Mostafa
- Institute of Chemistry-Physical Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Ilko Bald
- Institute of Chemistry-Physical Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Michael G Weller
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| |
Collapse
|
13
|
Chan SK, Steinmetz NF. microRNA-181a silencing by antisense oligonucleotides delivered by virus-like particles. J Mater Chem B 2023; 11:816-825. [PMID: 36597907 PMCID: PMC9898218 DOI: 10.1039/d2tb02199d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cowpea chlorotic mottle virus (CCMV) is a positive-sense RNA virus that can be repurposed for gene delivery applications. Understanding the self-assembly process of the virus enabled to remove its genome and replace it with desired nucleic acids, and we and others have previously reported using CCMV virus-like particle (VLP) to encapsulate siRNA, mRNA, as well as CpG oligodeoxynucleotides. In this study, the CCMV VLP was applied to encapsulate two different formats of anti-miR-181a oligonucleotides: naked RNA and chemically stabilized RNA to knockdown highly regulated miR-181a in ovarian cancer cells. miR-181a expression in ovarian tumors is associated with high aggressiveness, invasiveness, resistance to chemotherapy, and overall poor prognosis. Therefore, miR-181a is an important target for ovarian cancer therapy. qPCR data and cancer cell migration assays demonstrated higher knockdown efficacy when anti-miR-181a oligonucleotides were encapsulated and delivered using the VLPs resulting in reduced cancer cell invasiveness. Importantly, delivery of anti-miR-181a oligonucleotide into cells could be achieved without the aid of a transfection agent or surface modification. These results highlight the opportunity of plant-derived VLPs as nucleic acid carriers.
Collapse
Affiliation(s)
- Soo Khim Chan
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Department of Bioengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA,Department of Radiology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA,Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA,Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA,Moores Cancer Center, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA,Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
The Plant Viruses and Molecular Farming: How Beneficial They Might Be for Human and Animal Health? Int J Mol Sci 2023; 24:ijms24021533. [PMID: 36675043 PMCID: PMC9863966 DOI: 10.3390/ijms24021533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Plant viruses have traditionally been studied as pathogens in the context of understanding the molecular and cellular mechanisms of a particular disease affecting crops. In recent years, viruses have emerged as a new alternative for producing biological nanomaterials and chimeric vaccines. Plant viruses were also used to generate highly efficient expression vectors, revolutionizing plant molecular farming (PMF). Several biological products, including recombinant vaccines, monoclonal antibodies, diagnostic reagents, and other pharmaceutical products produced in plants, have passed their clinical trials and are in their market implementation stage. PMF offers opportunities for fast, adaptive, and low-cost technology to meet ever-growing and critical global health needs. In this review, we summarized the advancements in the virus-like particles-based (VLPs-based) nanotechnologies and the role they played in the production of advanced vaccines, drugs, diagnostic bio-nanomaterials, and other bioactive cargos. We also highlighted various applications and advantages plant-produced vaccines have and their relevance for treating human and animal illnesses. Furthermore, we summarized the plant-based biologics that have passed through clinical trials, the unique challenges they faced, and the challenges they will face to qualify, become available, and succeed on the market.
Collapse
|
15
|
McNulty MJ, Schwartz A, Delzio J, Karuppanan K, Jacobson A, Hart O, Dandekar A, Giritch A, Nandi S, Gleba Y, McDonald KA. Affinity Sedimentation and Magnetic Separation With Plant-Made Immunosorbent Nanoparticles for Therapeutic Protein Purification. Front Bioeng Biotechnol 2022; 10:865481. [PMID: 35573255 PMCID: PMC9092175 DOI: 10.3389/fbioe.2022.865481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
The virus-based immunosorbent nanoparticle is a nascent technology being developed to serve as a simple and efficacious agent in biosensing and therapeutic antibody purification. There has been particular emphasis on the use of plant virions as immunosorbent nanoparticle chassis for their diverse morphologies and accessible, high yield manufacturing via plant cultivation. To date, studies in this area have focused on proof-of-concept immunosorbent functionality in biosensing and purification contexts. Here we consolidate a previously reported pro-vector system into a single Agrobacterium tumefaciens vector to investigate and expand the utility of virus-based immunosorbent nanoparticle technology for therapeutic protein purification. We demonstrate the use of this technology for Fc-fusion protein purification, characterize key nanomaterial properties including binding capacity, stability, reusability, and particle integrity, and present an optimized processing scheme with reduced complexity and increased purity. Furthermore, we present a coupling of virus-based immunosorbent nanoparticles with magnetic particles as a strategy to overcome limitations of the immunosorbent nanoparticle sedimentation-based affinity capture methodology. We report magnetic separation results which exceed the binding capacity reported for current industry standards by an order of magnitude.
Collapse
Affiliation(s)
- Matthew J. McNulty
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | | | - Jesse Delzio
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Kalimuthu Karuppanan
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Aaron Jacobson
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Olivia Hart
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Abhaya Dandekar
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | | | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare® Initiative, University of California, Davis, Davis, CA, United States
| | | | - Karen A. McDonald
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare® Initiative, University of California, Davis, Davis, CA, United States
- *Correspondence: Karen A. McDonald,
| |
Collapse
|
16
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
17
|
Xue F, Cornelissen JJ, Yuan Q, Cao S. Delivery of MicroRNAs by plant virus-based nanoparticles to functionally alter the osteogenic differentiation of human mesenchymal stem cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Prates-Syed WA, Chaves LCS, Crema KP, Vuitika L, Lira A, Côrtes N, Kersten V, Guimarães FEG, Sadraeian M, Barroso da Silva FL, Cabral-Marques O, Barbuto JAM, Russo M, Câmara NOS, Cabral-Miranda G. VLP-Based COVID-19 Vaccines: An Adaptable Technology against the Threat of New Variants. Vaccines (Basel) 2021; 9:1409. [PMID: 34960155 PMCID: PMC8708688 DOI: 10.3390/vaccines9121409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/23/2022] Open
Abstract
Virus-like particles (VLPs) are a versatile, safe, and highly immunogenic vaccine platform. Recently, there are developmental vaccines targeting SARS-CoV-2, the causative agent of COVID-19. The COVID-19 pandemic affected humanity worldwide, bringing out incomputable human and financial losses. The race for better, more efficacious vaccines is happening almost simultaneously as the virus increasingly produces variants of concern (VOCs). The VOCs Alpha, Beta, Gamma, and Delta share common mutations mainly in the spike receptor-binding domain (RBD), demonstrating convergent evolution, associated with increased transmissibility and immune evasion. Thus, the identification and understanding of these mutations is crucial for the production of new, optimized vaccines. The use of a very flexible vaccine platform in COVID-19 vaccine development is an important feature that cannot be ignored. Incorporating the spike protein and its variations into VLP vaccines is a desirable strategy as the morphology and size of VLPs allows for better presentation of several different antigens. Furthermore, VLPs elicit robust humoral and cellular immune responses, which are safe, and have been studied not only against SARS-CoV-2 but against other coronaviruses as well. Here, we describe the recent advances and improvements in vaccine development using VLP technology.
Collapse
Affiliation(s)
- Wasim A. Prates-Syed
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Lorena C. S. Chaves
- Department of Microbiology and Immunology, School of Medicine, Emory University, Claudia Nance Rollins Building, Atlanta, GA 30329, USA;
| | - Karin P. Crema
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Larissa Vuitika
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | - Aline Lira
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Nelson Côrtes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Victor Kersten
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | | | - Mohammad Sadraeian
- São Carlos Institute of Physics, IFSC-USP, São Carlos 13566590, SP, Brazil; (F.E.G.G.); (M.S.)
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology, Sydney, NSW 2007, Australia
| | - Fernando L. Barroso da Silva
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040903, SP, Brazil;
- Department of Chemical and Biomolecular Engeneering, North Carolina State University, Raleigh, NC 27695, USA
| | - Otávio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children’s Medical Center, Tehran 1419733151, Iran
| | - José A. M. Barbuto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 0124690, SP, Brazil
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | - Niels O. S. Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | - Gustavo Cabral-Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| |
Collapse
|
19
|
Venkataraman S, Hefferon K. Application of Plant Viruses in Biotechnology, Medicine, and Human Health. Viruses 2021; 13:1697. [PMID: 34578279 PMCID: PMC8473230 DOI: 10.3390/v13091697] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023] Open
Abstract
Plant-based nanotechnology programs using virus-like particles (VLPs) and virus nanoparticles (VNPs) are emerging platforms that are increasingly used for a variety of applications in biotechnology and medicine. Tobacco mosaic virus (TMV) and potato virus X (PVX), by virtue of having high aspect ratios, make ideal platforms for drug delivery. TMV and PVX both possess rod-shaped structures and single-stranded RNA genomes encapsidated by their respective capsid proteins and have shown great promise as drug delivery systems. Cowpea mosaic virus (CPMV) has an icosahedral structure, and thus brings unique benefits as a nanoparticle. The uses of these three plant viruses as either nanostructures or expression vectors for high value pharmaceutical proteins such as vaccines and antibodies are discussed extensively in the following review. In addition, the potential uses of geminiviruses in medical biotechnology are explored. The uses of these expression vectors in plant biotechnology applications are also discussed. Finally, in this review, we project future prospects for plant viruses in the fields of medicine, human health, prophylaxis, and therapy of human diseases.
Collapse
Affiliation(s)
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada;
| |
Collapse
|
20
|
Ramos-Carreño S, Giffard-Mena I, Zamudio-Ocadiz JN, Nuñez-Rivera A, Valencia-Yañez R, Ruiz-Garcia J, Viana MT, Cadena-Nava RD. Antiviral therapy in shrimp through plant virus VLP containing VP28 dsRNA against WSSV. Beilstein J Org Chem 2021; 17:1360-1373. [PMID: 34136015 PMCID: PMC8182676 DOI: 10.3762/bjoc.17.95] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
The white spot syndrome virus (WSSV), currently affecting cultured shrimp, causes substantial economic losses to the worldwide shrimp industry. An antiviral therapy using double-stranded RNA interference (dsRNAi) by intramuscular injection (IM) has proven the most effective shrimp protection against WSSV. However, IM treatment is still not viable for shrimp farms. The challenge is to develop an efficient oral delivery system that manages to avoid the degradation of antiviral RNA molecules. The present work demonstrates that VLPs (virus-like particles) allow efficient delivery of dsRNAi as antiviral therapy in shrimp. In particular, VLPs derived from a virus that infects plants, such as cowpea chlorotic mottle virus (CCMV), in which the capsid protein (CP) encapsidates the dsRNA of 563 bp, are shown to silence the WSSV glycoprotein VP28 (dsRNAvp28). In experimental challenges in vivo, the VLPs- dsRNAvp28 protect shrimp against WSSV up to 40% by oral administration and 100% by IM. The novel research demonstrates that plant VLPs, which avoid zoonosis, can be applied to pathogen control in shrimp and also other organisms, widening the application window in nanomedicine.
Collapse
Affiliation(s)
- Santiago Ramos-Carreño
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Carretera Transpeninsular Ensenada-Tijuana No. 3917, Colonia Playitas, C.P. 22860 Ensenada, B.C., México
| | - Ivone Giffard-Mena
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Carretera Transpeninsular Ensenada-Tijuana No. 3917, Colonia Playitas, C.P. 22860 Ensenada, B.C., México
| | - Jose N Zamudio-Ocadiz
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM). Km 107 Carretera Tijuana-Ensenada, Col. Pedregal Playitas, C.P. 22860 Ensenada, B.C., México.,Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Carretera Ensenada - Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, B.C., México
| | - Alfredo Nuñez-Rivera
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM). Km 107 Carretera Tijuana-Ensenada, Col. Pedregal Playitas, C.P. 22860 Ensenada, B.C., México.,Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Carretera Ensenada - Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, B.C., México
| | - Ricardo Valencia-Yañez
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Carretera Transpeninsular Ensenada-Tijuana No. 3917, Colonia Playitas, C.P. 22860 Ensenada, B.C., México
| | - Jaime Ruiz-Garcia
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí 78000, México
| | - Maria Teresa Viana
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California (UABC), Carretera Transpeninsular Ensenada-Tijuana No. 3917, Colonia Playitas, C.P. 22860 Ensenada, B.C., México
| | - Ruben D Cadena-Nava
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM). Km 107 Carretera Tijuana-Ensenada, Col. Pedregal Playitas, C.P. 22860 Ensenada, B.C., México
| |
Collapse
|
21
|
Nkanga CI, Steinmetz NF. The pharmacology of plant virus nanoparticles. Virology 2021; 556:39-61. [PMID: 33545555 PMCID: PMC7974633 DOI: 10.1016/j.virol.2021.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
The application of nanoparticles for medical purposes has made enormous strides in providing new solutions to health problems. The observation that plant virus-based nanoparticles (VNPs) can be repurposed and engineered as smart bio-vehicles for targeted drug delivery and imaging has launched extensive research for improving the therapeutic and diagnostic management of various diseases. There is evidence that VNPs are promising high value nanocarriers with potential for translational development. This is mainly due to their unique features, encompassing structural uniformity, ease of manufacture and functionalization by means of expression, chemical biology and self-assembly. While the development pipeline is moving rapidly, with many reports focusing on engineering and manufacturing aspects to tailor the properties and efficacy of VNPs, fewer studies have focused on gaining insights into the nanotoxicity of this novel platform nanotechnology. Herein, we discuss the pharmacology of VNPs as a function of formulation and route of administration. VNPs are reviewed in the context of their application as therapeutic adjuvants or nanocarrier excipients to initiate, enhance, attenuate or impede the formulation's toxicity. The summary of the data however also underlines the need for meticulous VNP structure-nanotoxicity studies to improve our understanding of their in vivo fates and pharmacological profiles to pave the way for translation of VNP-based formulations into the clinical setting.
Collapse
Affiliation(s)
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, United States; Department of Bioengineering, Department of Radiology, Center for NanoImmunoEngineering, Moores Cancer Center, Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, CA, 92039, United States.
| |
Collapse
|
22
|
Bilal M, Tabassum B, Ali Q, Nasir IA. Down Regulation of Potato Virus Y (PVY) Coat Protein (CP) Expression by Iberis gibraltarica Protein Extract. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721010102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Comas-Garcia M, Colunga-Saucedo M, Rosales-Mendoza S. The Role of Virus-Like Particles in Medical Biotechnology. Mol Pharm 2020; 17:4407-4420. [PMID: 33147978 DOI: 10.1021/acs.molpharmaceut.0c00828] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Virus-like particles (VLPs) are protein-based, nanoscale, self-assembling, cage architectures, which have relevant applications in biomedicine. They can be used for the development of vaccines, imaging approaches, drug and gene therapy delivery systems, and in vitro diagnostic methods. Today, three relevant viruses are targeted using VLP-based recombinant vaccines. VLP-based drug delivery, nanoreactors for therapy, and imaging systems are approaches under development with promising outcomes. Several VLP-based vaccines are under clinical evaluation. Herein, an updated view on the VLP-based biomedical applications is provided; advanced methods for the production, functionalization, and drug loading of VLPs are described, and perspectives for the field are identified.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- Department of Sciences, Autonomous University of San Luis Potosi, San Luis Potosi 78295, México.,Genomic Medicine Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México.,High-Resolution Microscopy Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México
| | - Mayra Colunga-Saucedo
- Genomic Medicine Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México
| | - Sergio Rosales-Mendoza
- Departament of Chemical Sciences, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México.,Biotechnology Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México
| |
Collapse
|
24
|
Aljabali AA, Obeid MA. Inorganic-organic Nanomaterials for Therapeutics and Molecular Imaging Applications. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210681209666190807145229] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Surface modification of nanoparticles with targeting moieties can be
achieved through bioconjugation chemistries to impart new Functionalities. Various polymeric
nanoparticles have been used for the formulation of nanoparticles such as naturally-occurring
protein cages, virus-like particles, polymeric saccharides, and liposomes. These polymers have
been proven to be biocompatible, side effects free and degradable with no toxicity.
Objectives::
This paper reviews available literature on the nanoparticles pharmaceutical and medical
applications. The review highlights and updates the customized solutions for selective drug
delivery systems that allow high-affinity binding between nanoparticles and the target receptors.
Methods::
Bibliographic databases and web-search engines were used to retrieve studies that assessed
the usability of nanoparticles in the pharmaceutical and medical fields. Data were extracted
on each system in vivo and in vitro applications, its advantages and disadvantages, and its ability to
be chemically and genetically modified to impart new functionalities. Finally, a comparison
between naturally occurring and their synthetic counterparts was carried out.
Results::
The results showed that nanoparticles-based systems could have promising applications in
diagnostics, cell labeling, contrast agents (Magnetic Resonance Imaging and Computed Tomography),
antimicrobial agents, and as drug delivery systems. However, precautions should be taken
to avoid or minimize toxic effect or incompatibility of nanoparticles-based systems with the biological
systems in case of pharmaceutical or medical applications.
Conclusion::
This review presented a summary of recent developments in the field of pharmaceutical
nanotechnology and highlighted the challenges and the merits that some of the nanoparticles-
based systems both in vivo and in vitro systems.
Collapse
Affiliation(s)
- Alaa A.A. Aljabali
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| | - Mohammad A. Obeid
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| |
Collapse
|
25
|
Shukla S, Hu H, Cai H, Chan SK, Boone CE, Beiss V, Chariou PL, Steinmetz NF. Plant Viruses and Bacteriophage-Based Reagents for Diagnosis and Therapy. Annu Rev Virol 2020; 7:559-587. [PMID: 32991265 PMCID: PMC8018517 DOI: 10.1146/annurev-virology-010720-052252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Viral nanotechnology exploits the prefabricated nanostructures of viruses, which are already abundant in nature. With well-defined molecular architectures, viral nanocarriers offer unprecedented opportunities for precise structural and functional manipulation using genetic engineering and/or bio-orthogonal chemistries. In this manner, they can be loaded with diverse molecular payloads for targeted delivery. Mammalian viruses are already established in the clinic for gene therapy and immunotherapy, and inactivated viruses or virus-like particles have long been used as vaccines. More recently, plant viruses and bacteriophages have been developed as nanocarriers for diagnostic imaging, vaccine and drug delivery, and combined diagnosis/therapy (theranostics). The first wave of these novel virus-based tools has completed clinical development and is poised to make an impact on clinical practice.
Collapse
Affiliation(s)
- Sourabh Shukla
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - He Hu
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Hui Cai
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Soo-Khim Chan
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Christine E Boone
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Veronique Beiss
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Paul L Chariou
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
- Moores Cancer Center and Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, USA;
| |
Collapse
|
26
|
Chung YH, Cai H, Steinmetz NF. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv Drug Deliv Rev 2020; 156:214-235. [PMID: 32603813 PMCID: PMC7320870 DOI: 10.1016/j.addr.2020.06.024] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023]
Abstract
Viral nanoparticles (VNPs) encompass a diverse array of naturally occurring nanomaterials derived from plant viruses, bacteriophages, and mammalian viruses. The application and development of VNPs and their genome-free versions, the virus-like particles (VLPs), for nanomedicine is a rapidly growing. VLPs can encapsulate a wide range of active ingredients as well as be genetically or chemically conjugated to targeting ligands to achieve tissue specificity. VLPs are manufactured through scalable fermentation or molecular farming, and the materials are biocompatible and biodegradable. These properties have led to a wide range of applications, including cancer therapies, immunotherapies, vaccines, antimicrobial therapies, cardiovascular therapies, gene therapies, as well as imaging and theranostics. The use of VLPs as drug delivery agents is evolving, and sufficient research must continuously be undertaken to translate these therapies to the clinic. This review highlights some of the novel research efforts currently underway in the VNP drug delivery field in achieving this greater goal.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, United States
| | - Hui Cai
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92093, United States
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, United States; Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92093, United States; Department of Radiology, University of California-San Diego, La Jolla, CA 92093, United States; Moores Cancer Center, University of California-San Diego, La Jolla, CA 92093, United States; Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
27
|
Steinmetz NF, Lim S, Sainsbury F. Protein cages and virus-like particles: from fundamental insight to biomimetic therapeutics. Biomater Sci 2020; 8:2771-2777. [PMID: 32352101 PMCID: PMC8085892 DOI: 10.1039/d0bm00159g] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein cages (viral and non-viral) found in nature have evolved for a variety of purposes and are found in all kingdoms of life. The main functions of these nanoscale compartments are the protection and delivery of nucleic acids e.g. virus capsids, or the enrichment and sequestration of metabolons e.g. bacterial microcompartments. This review focuses on recent developments of protein cages for use in immunotherapy and therapeutic delivery. In doing so, we highlight the unique ways in which protein cages have informed on fundamental principles governing bio-nano interactions. With the enormous existing design space among naturally occurring protein cages, there is still much to learn from studying them as biomimetic particles.
Collapse
Affiliation(s)
- Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, CA 92093, USA and Department of Bioengineering, University of California, San Diego, CA 92093, USA and Department of Radiology, University of California, San Diego, CA 92093, USA and Moores Cancer Center, University of California, San Diego, CA 92093, USA and Center for Nano-ImmunoEngineering, University of California, San Diego, CA 92093, USA
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore and NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, Singapore 637457, Singapore
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia. and Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD 4001, Australia
| |
Collapse
|
28
|
Cai H, Shukla S, Steinmetz NF. The Antitumor Efficacy of CpG Oligonucleotides is Improved by Encapsulation in Plant Virus-Like Particles. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1908743. [PMID: 34366757 PMCID: PMC8340626 DOI: 10.1002/adfm.201908743] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Indexed: 05/17/2023]
Abstract
Oligodeoxynucleotides (ODNs) with CpG motifs have potent immunostimulatory effects on many subsets of immune cells. For example, Class B CpG-ODNs, such as ODN1826 induce the phagocytic activity of macrophages by activating the Toll-like receptor 9 signaling pathway. Systemic ODN delivery results in unfavorable pharmacokinetic profiles and can trigger adverse effects. To address this issue, plant virus-like particles (VLPs) are developed for the targeted delivery of ODN1826 to tumor-associated macrophages (TAMs). ODN1826 is encapsulated by the in vitro disassembly and reassembly of Cowpea chlorotic mottle virus (CCMV), producing VLPs that are structurally analogous to the native virus. The encapsulation of ODN1826 in CCMV-derived VLPs promotes ODN uptake by TAMs ex vivo and significantly enhance their phagocytic activity. The antitumor activity of the VLPs in vivo is also evaluated, revealing that the direct injection of ODN1826 VLPs into established tumors induces a robust antitumor response by increasing the phagocytic activity of TAMs in the tumor microenvironment. CCMV encapsulation significantly enhances the efficacy of ODN1826 compared to the free drug, slowing tumor growth and prolonging survival in mouse models of colon cancer and melanoma.
Collapse
Affiliation(s)
- Hui Cai
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92093, USA
| | - Sourabh Shukla
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92093, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
29
|
Fu J, Woycechowsky KJ. Guest Sequence Can Influence RNA Encapsulation by an Engineered Cationic Protein Capsid. Biochemistry 2020; 59:1517-1526. [DOI: 10.1021/acs.biochem.0c00077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiannan Fu
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | | |
Collapse
|
30
|
Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS NANO 2020; 14:2678-2701. [PMID: 32125825 PMCID: PMC8085836 DOI: 10.1021/acsnano.0c00173] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanocarrier-based delivery systems can be used to increase the safety and efficacy of active ingredients in medical, veterinary, or agricultural applications, particularly when such ingredients are unstable, sparingly soluble, or cause off-target effects. In this review, we highlight the diversity of nanocarrier materials and their key advantages compared to free active ingredients. We discuss current trends based on peer-reviewed research articles, patent applications, clinical trials, and the nanocarrier formulations already approved by regulatory bodies. Although most nanocarriers have been engineered to combat cancer, the number of formulations developed for other purposes is growing rapidly, especially those for the treatment of infectious diseases and parasites affecting humans, livestock, and companion animals. The regulation and prohibition of many pesticides have also fueled research to develop targeted pesticide delivery systems based on nanocarriers, which maximize efficacy while minimizing the environmental impact of agrochemicals.
Collapse
|
31
|
Bond KM, Lyktey NA, Tsvetkova IB, Dragnea B, Jarrold MF. Disassembly Intermediates of the Brome Mosaic Virus Identified by Charge Detection Mass Spectrometry. J Phys Chem B 2020; 124:2124-2131. [PMID: 32141748 DOI: 10.1021/acs.jpcb.0c00008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Capsid disassembly and genome release are critical steps in the lifecycle of a virus. However, their mechanisms are poorly understood, both in vivo and in vitro. Here, we have identified two in vitro disassembly pathways of the brome mosaic virus (BMV) by charge detection mass spectrometry and transmission electron microscopy. When subjected to a pH jump to a basic environment at low ionic strength, protein-RNA interactions are disrupted. Under these conditions, BMV appears to disassemble mainly through a global cleavage event into two main fragments: a near complete capsid that has released the RNA and the released RNA complexed to a small number of the capsid proteins. Upon slow buffer exchange to remove divalent cations at neutral pH, capsid protein interactions are disrupted. The BMV virions swell but there is no measurable loss of the RNA. Some of the virions break into small fragments, leading to an increase in the abundance of species with masses less than 1 MDa. The peak attributed to the BMV virion shifts to a higher mass with time. The mass increase is attributed to additional capsid proteins associating with the disrupted capsid protein-RNA complex, where the RNA is presumably partially exposed. It is likely that this pathway is more closely related to how the capsid disassembles in vivo, as it offers the advantage of protecting the RNA with the capsid protein until translation begins.
Collapse
Affiliation(s)
- Kevin M Bond
- Chemistry Department, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Nicholas A Lyktey
- Chemistry Department, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Irina B Tsvetkova
- Chemistry Department, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Bogdan Dragnea
- Chemistry Department, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Martin F Jarrold
- Chemistry Department, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
32
|
Liu K, Yang J, Ding S, Gao Y. Daisy Chain Topology Based Mammalian Synthetic Circuits for RNA-Only Delivery. ACS Synth Biol 2020; 9:269-282. [PMID: 31895544 DOI: 10.1021/acssynbio.9b00313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Owing to superior safety, the RNA-only delivery synthetic circuit is more suitable for cell-based medicine. Modules which possess matching inputs and outputs could be strung by daisy-chaining to compose RNA-only delivery synthetic gene circuits. In this study, we engineered well-characterized biological parts to construct composable modules, each of which could receive signals from the upstream module and transmit the processed signal to the next module using standard interfaces. Capsid-cNOT7, through which logic gates could be changed by merely changing the type of it, was used as the core element for logical process. Daisy chain topology was used to build RNA-only delivery mammalian synthetic circuits which possess validated functions such as fan out, protein sensing, drug sensing, light sensing, 2-input logic gate, 3-input logic gate, and volatile memory, providing a new method to simplify the design of RNA-only delivery synthetic circuits.
Collapse
Affiliation(s)
- Kaiyu Liu
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, State Key Laboratory of Organ Failure Research, Co-Innovation Center for Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jiong Yang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yi Gao
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, State Key Laboratory of Organ Failure Research, Co-Innovation Center for Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
33
|
Nuñez-Rivera A, Fournier PGJ, Arellano DL, Rodriguez-Hernandez AG, Vazquez-Duhalt R, Cadena-Nava RD. Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:372-382. [PMID: 32175217 PMCID: PMC7059527 DOI: 10.3762/bjnano.11.28] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/07/2020] [Indexed: 05/06/2023]
Abstract
There is an increasing interest in the use of plant viruses as vehicles for anti-cancer therapy. In particular, the plant virus brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV) are novel potential nanocarriers for different therapies in nanomedicine. In this work, BMV and CCMV were loaded with a fluorophore and assayed on breast tumor cells. The viruses BMV and CCMV were internalized into breast tumor cells. Both viruses, BMV and CCMV, did not show cytotoxic effects on tumor cells in vitro. However, only BMV did not activate macrophages in vitro. This suggests that BMV is less immunogenic and may be a potential carrier for therapy delivery in tumor cells. Furthermore, BMV virus-like particles (VLPs) were efficiently loaded with small interfering RNA (siRNA) without packaging signal. The gene silencing was demonstrated by VLPs loaded with siGFP and tested on breast tumor cells that constitutively express the green fluorescent protein (GPF). After VLP-siGFP treatment, GFP expression was efficiently inhibited corroborating the cargo release inside tumor cells and the gene silencing. In addition, BMV VLP carring siAkt1 inhibited the tumor growth in mice. These results show the attractive potential of plant virus VLPs to deliver molecular therapy to tumor cells with low immunogenic response.
Collapse
Affiliation(s)
- Alfredo Nuñez-Rivera
- Centro de Nanociencias y Nanotecnología - Universidad Nacional Autónoma de México (UNAM) – Ensenada, Baja California, México
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, México
| | - Pierrick G J Fournier
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, México
| | - Danna L Arellano
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, México
| | - Ana G Rodriguez-Hernandez
- Centro de Nanociencias y Nanotecnología - Universidad Nacional Autónoma de México (UNAM) – Ensenada, Baja California, México
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología - Universidad Nacional Autónoma de México (UNAM) – Ensenada, Baja California, México
| | - Ruben D Cadena-Nava
- Centro de Nanociencias y Nanotecnología - Universidad Nacional Autónoma de México (UNAM) – Ensenada, Baja California, México
| |
Collapse
|
34
|
Pretto C, van Hest JCM. Versatile Reversible Cross-Linking Strategy to Stabilize CCMV Virus Like Particles for Efficient siRNA Delivery. Bioconjug Chem 2019; 30:3069-3077. [PMID: 31765129 PMCID: PMC6923791 DOI: 10.1021/acs.bioconjchem.9b00731] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Virus like particles obtained from the Cowpea Chlorotic
Mottle
Virus (CCMV) represent an innovative platform for drug delivery applications.
Their unique reversible self-assembly properties as well as their
suitability for both cargo loading and functionalization make them
a versatile scaffold for numerous purposes. One of the main drawbacks
of this platform is however its limited stability at physiological
conditions. Herein, we report the development of a general reversible
cross-linking strategy involving the homobifunctional cross-linker
DTSSP (3,3′-dithiobis (sulfosuccinimidylpropionate)) which
is suitable for particle stabilization. This methodology is adaptable
to different CCMV variants in the presence or absence of a stabilizing
cargo without varying neither particle shape nor size thus extending
the potential use of these protein cages in nanomedical applications.
Cross-linked particles are stable at neutral pH and 37 °C and
they are capable of protecting loaded cargo against enzymatic digestion.
Furthermore, the reversible nature of the cross-linking ensures particle
disassembly when they are taken up by cells. This was demonstrated
via the highly effective delivery of active siRNA into cells.
Collapse
Affiliation(s)
- Chiara Pretto
- Eindhoven University of Technology , Institute for Complex Molecular Systems , PO Box 513, 5600 MB Eindhoven , The Netherlands
| | - Jan C M van Hest
- Eindhoven University of Technology , Institute for Complex Molecular Systems , PO Box 513, 5600 MB Eindhoven , The Netherlands
| |
Collapse
|
35
|
Villagrana-Escareño MV, Reynaga-Hernández E, Galicia-Cruz OG, Durán-Meza AL, De la Cruz-González V, Hernández-Carballo CY, Ruíz-García J. VLPs Derived from the CCMV Plant Virus Can Directly Transfect and Deliver Heterologous Genes for Translation into Mammalian Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4630891. [PMID: 31781617 PMCID: PMC6855080 DOI: 10.1155/2019/4630891] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/01/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Virus-like particles (VLPs) are being used for therapeutic developments such as vaccines and drug nanocarriers. Among these, plant virus capsids are gaining interest for the formation of VLPs because they can be safely handled and are noncytotoxic. A paradigm in virology, however, is that plant viruses cannot transfect and deliver directly their genetic material or other cargos into mammalian cells. In this work, we prepared VLPs with the CCMV capsid and the mRNA-EGFP as a cargo and reporter gene. We show, for the first time, that these plant virus-based VLPs are capable of directly transfecting different eukaryotic cell lines, without the aid of any transfecting adjuvant, and delivering their nucleic acid for translation as observed by the presence of fluorescent protein. Our results show that the CCMV capsid is a good noncytotoxic container for genome delivery into mammalian cells.
Collapse
Affiliation(s)
- María V. Villagrana-Escareño
- Physical Biology Laboratory, Institute of Physics, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Elizabeth Reynaga-Hernández
- Physical Biology Laboratory, Institute of Physics, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Othir G. Galicia-Cruz
- Analytical Pharmacology Laboratory, Faculty of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Ana L. Durán-Meza
- Physical Biology Laboratory, Institute of Physics, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Viridiana De la Cruz-González
- Physical Biology Laboratory, Institute of Physics, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | | | - Jaime Ruíz-García
- Physical Biology Laboratory, Institute of Physics, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
36
|
de Ruiter M, van der Hee R, Driessen A, Keurhorst E, Hamid M, Cornelissen J. Polymorphic assembly of virus-capsid proteins around DNA and the cellular uptake of the resulting particles. J Control Release 2019; 307:342-354. [DOI: 10.1016/j.jconrel.2019.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 12/13/2022]
|
37
|
Lam P, Steinmetz NF. Delivery of siRNA therapeutics using cowpea chlorotic mottle virus-like particles. Biomater Sci 2019; 7:3138-3142. [PMID: 31257379 PMCID: PMC6705399 DOI: 10.1039/c9bm00785g] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While highly promising in medicine, gene therapy requires delivery agents to protect and target nucleic acid therapeutics. We developed a plant viral siRNA delivery platform making use of self-assembling cowpea chlorotic mottle virus (CCMV). CCMV was loaded with siRNAs targeting GFP or FOXA1; to further enhance cell uptake and intracellular trafficking, resulting in more efficient gene knockdown, we appended CCMV with a cell penetrating peptide (CPP), specifically M-lycotoxin peptide L17E.
Collapse
Affiliation(s)
- Patricia Lam
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Departments of NanoEngineering, Bioengineering, Radiology, Moores Cancer Center, University of California San Diego, La Jolla 92093, USA.
| |
Collapse
|
38
|
Biddlecome A, Habte HH, McGrath KM, Sambanthamoorthy S, Wurm M, Sykora MM, Knobler CM, Lorenz IC, Lasaro M, Elbers K, Gelbart WM. Delivery of self-amplifying RNA vaccines in in vitro reconstituted virus-like particles. PLoS One 2019; 14:e0215031. [PMID: 31163034 PMCID: PMC6548422 DOI: 10.1371/journal.pone.0215031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/25/2019] [Indexed: 01/01/2023] Open
Abstract
Many mRNA-based vaccines have been investigated for their specific potential to activate dendritic cells (DCs), the highly-specialized antigen-presenting cells of the immune system that play a key role in inducing effective CD4+ and CD8+ T-cell responses. In this paper we report a new vaccine/gene delivery platform that demonstrates the benefits of using a self-amplifying (“replicon”) mRNA that is protected in a viral-protein capsid. Purified capsid protein from the plant virus Cowpea Chlorotic Mottle Virus (CCMV) is used to in vitro assemble monodisperse virus-like particles (VLPs) containing reporter proteins (e.g., Luciferase or eYFP) or the tandem-repeat model antigen SIINFEKL in RNA gene form, coupled to the RNA-dependent RNA polymerase from the Nodamura insect virus. Incubation of immature DCs with these VLPs results in increased activation of maturation markers – CD80, CD86 and MHC-II – and enhanced RNA replication levels, relative to incubation with unpackaged replicon mRNA. Higher RNA uptake/replication and enhanced DC activation were detected in a dose-dependent manner when the CCMV-VLPs were pre-incubated with anti-CCMV antibodies. In all experiments the expression of maturation markers correlates with the RNA levels of the DCs. Overall, these studies demonstrate that: VLP protection enhances mRNA uptake by DCs; coupling replicons to the gene of interest increases RNA and protein levels in the cell; and the presence of anti-VLP antibodies enhances mRNA levels and activation of DCs in vitro. Finally, preliminary in vivo experiments involving mouse vaccinations with SIINFEKL-replicon VLPs indicate a small but significant increase in antigen-specific T cells that are doubly positive for IFN and TFN induction.
Collapse
Affiliation(s)
- Adam Biddlecome
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
| | - Habtom H. Habte
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, United States of America
| | - Katherine M. McGrath
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, United States of America
| | | | - Melanie Wurm
- Boehringer-Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Charles M. Knobler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
| | - Ivo C. Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, United States of America
| | - Marcio Lasaro
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, United States of America
| | - Knut Elbers
- Boehringer-Ingelheim Pharma GmbH & Co KG, Biberach, Germany
- * E-mail: (KE); (WMG)
| | - William M. Gelbart
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
- * E-mail: (KE); (WMG)
| |
Collapse
|
39
|
Plant virus-based materials for biomedical applications: Trends and prospects. Adv Drug Deliv Rev 2019; 145:96-118. [PMID: 30176280 DOI: 10.1016/j.addr.2018.08.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Nanomaterials composed of plant viral components are finding their way into medical technology and health care, as they offer singular properties. Precisely shaped, tailored virus nanoparticles (VNPs) with multivalent protein surfaces are efficiently loaded with functional compounds such as contrast agents and drugs, and serve as carrier templates and targeting vehicles displaying e.g. peptides and synthetic molecules. Multiple modifications enable uses including vaccination, biosensing, tissue engineering, intravital delivery and theranostics. Novel concepts exploit self-organization capacities of viral building blocks into hierarchical 2D and 3D structures, and their conversion into biocompatible, biodegradable units. High yields of VNPs and proteins can be harvested from plants after a few days so that various products have reached or are close to commercialization. The article delineates potentials and limitations of biomedical plant VNP uses, integrating perspectives of chemistry, biomaterials sciences, molecular plant virology and process engineering.
Collapse
|
40
|
Comas-Garcia M. Packaging of Genomic RNA in Positive-Sense Single-Stranded RNA Viruses: A Complex Story. Viruses 2019; 11:v11030253. [PMID: 30871184 PMCID: PMC6466141 DOI: 10.3390/v11030253] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
The packaging of genomic RNA in positive-sense single-stranded RNA viruses is a key part of the viral infectious cycle, yet this step is not fully understood. Unlike double-stranded DNA and RNA viruses, this process is coupled with nucleocapsid assembly. The specificity of RNA packaging depends on multiple factors: (i) one or more packaging signals, (ii) RNA replication, (iii) translation, (iv) viral factories, and (v) the physical properties of the RNA. The relative contribution of each of these factors to packaging specificity is different for every virus. In vitro and in vivo data show that there are different packaging mechanisms that control selective packaging of the genomic RNA during nucleocapsid assembly. The goals of this article are to explain some of the key experiments that support the contribution of these factors to packaging selectivity and to draw a general scenario that could help us move towards a better understanding of this step of the viral infectious cycle.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- Research Center for Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí (UASLP), Av. Sierra Leona 550 Lomas 2da Seccion, 72810 San Luis Potosi, Mexico.
- Department of Sciences, Universidad Autónoma de San Luis Potosí (UASLP), Av. Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosi, Mexico.
| |
Collapse
|
41
|
Garmann RF, Knobler CM, Gelbart WM. Protocol for Efficient Cell-Free Synthesis of Cowpea Chlorotic Mottle Virus-Like Particles Containing Heterologous RNAs. Methods Mol Biol 2019; 1776:249-265. [PMID: 29869247 DOI: 10.1007/978-1-4939-7808-3_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a protocol for efficient cell-free synthesis of cowpea chlorotic mottle virus (CCMV)-like particles containing a broad range of lengths and sequences of RNA. Our protocol starts with a purified stock of wild-type CCMV (protocols for harvesting and purifying the virus are detailed elsewhere) and features three basic steps: disassembly of the CCMV and purification of the capsid protein (CP) from the viral RNA; coassembly of the purified CP and an RNA of choice; and characterization of the assembly products. We highlight several key factors that increase the yield of the assembly reaction: the CP should be uncleaved and sufficiently free of viral RNA; the length of the RNA should be between about 100 and 4000 nucleotides; and the stoichiometry of CP and RNA should be 6-1 by mass. Additionally, we point out that separating the assembly reaction into multiple steps-by successively lowering the ionic strength and then the pH of the assembly buffers-results in the highest yields of well-formed, nuclease-resistant, CCMV-like particles. Finally, we describe methods for characterizing the assembly products using native agarose gel electrophoresis and negative-stain transmission electron microscopy.
Collapse
Affiliation(s)
- Rees F Garmann
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| | - Charles M Knobler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - William M Gelbart
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA.,California NanoSystems Institute, UCLA, Los Angeles, CA, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| |
Collapse
|
42
|
Ibrahim A, Odon V, Kormelink R. Plant Viruses in Plant Molecular Pharming: Toward the Use of Enveloped Viruses. FRONTIERS IN PLANT SCIENCE 2019; 10:803. [PMID: 31275344 PMCID: PMC6594412 DOI: 10.3389/fpls.2019.00803] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/04/2019] [Indexed: 05/03/2023]
Abstract
Plant molecular pharming has emerged as a reliable platform for recombinant protein expression providing a safe and low-cost alternative to bacterial and mammalian cells-based systems. Simultaneously, plant viruses have evolved from pathogens to molecular tools for recombinant protein expression, chimaeric viral vaccine production, and lately, as nanoagents for drug delivery. This review summarizes the genesis of viral vectors and agroinfection, the development of non-enveloped viruses for various biotechnological applications, and the on-going research on enveloped plant viruses.
Collapse
|
43
|
Application of Plant Viruses as a Biotemplate for Nanomaterial Fabrication. Molecules 2018; 23:molecules23092311. [PMID: 30208562 PMCID: PMC6225259 DOI: 10.3390/molecules23092311] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Viruses are widely used to fabricate nanomaterials in the field of nanotechnology. Plant viruses are of great interest to the nanotechnology field because of their symmetry, polyvalency, homogeneous size distribution, and ability to self-assemble. This homogeneity can be used to obtain the high uniformity of the templated material and its related properties. In this paper, the variety of nanomaterials generated in rod-like and spherical plant viruses is highlighted for the cowpea chlorotic mottle virus (CCMV), cowpea mosaic virus (CPMV), brome mosaic virus (BMV), and tobacco mosaic virus (TMV). Their recent studies on developing nanomaterials in a wide range of applications from biomedicine and catalysts to biosensors are reviewed.
Collapse
|
44
|
Timmermans SBPE, Vervoort DFM, Schoonen L, Nolte RJM, van Hest JCM. Self-Assembly and Stabilization of Hybrid Cowpea Chlorotic Mottle Virus Particles under Nearly Physiological Conditions. Chem Asian J 2018; 13:3518-3525. [PMID: 29975459 DOI: 10.1002/asia.201800842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/05/2018] [Indexed: 12/27/2022]
Abstract
Capsids of the cowpea chlorotic mottle virus (CCMV) hold great promise for use as nanocarriers in vivo. A major drawback, however, is the lack of stability of the empty wild-type virus particles under physiological conditions. Herein, the assembly behavior and stability under nearly physiological conditions of protein-based block copolymers composed of the CCMV capsid protein and two hydrophobic elastin-like polypeptides are reported. UV/Vis spectroscopy studies, dynamic light-scattering analysis, and TEM measurements demonstrate that both hybrid variants form stable capsids at pH 7.5, physiological NaCl concentration, and 37 °C. The more hydrophobic variant also remains stable in a cell culture medium. These engineered, hybrid CCMV capsid particles can therefore be regarded as suitable candidates for in vivo applications.
Collapse
Affiliation(s)
- Suzanne B P E Timmermans
- Bio-Organic Chemistry research group, Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513 (STO3.41), 5600 MB, Eindhoven, The Netherlands
| | - Daan F M Vervoort
- Bio-Organic Chemistry research group, Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513 (STO3.41), 5600 MB, Eindhoven, The Netherlands
| | - Lise Schoonen
- Bio-Organic Chemistry research group, Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513 (STO3.41), 5600 MB, Eindhoven, The Netherlands
| | - Roeland J M Nolte
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Jan C M van Hest
- Bio-Organic Chemistry research group, Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513 (STO3.41), 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
45
|
Nonequilibrium self-assembly dynamics of icosahedral viral capsids packaging genome or polyelectrolyte. Nat Commun 2018; 9:3071. [PMID: 30082710 PMCID: PMC6078970 DOI: 10.1038/s41467-018-05426-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/05/2018] [Indexed: 11/20/2022] Open
Abstract
The survival of viruses partly relies on their ability to self-assemble inside host cells. Although coarse-grained simulations have identified different pathways leading to assembled virions from their components, experimental evidence is severely lacking. Here, we use time-resolved small-angle X-ray scattering to uncover the nonequilibrium self-assembly dynamics of icosahedral viral capsids packaging their full RNA genome. We reveal the formation of amorphous complexes via an en masse pathway and their relaxation into virions via a synchronous pathway. The binding energy of capsid subunits on the genome is moderate (~7kBT0, with kB the Boltzmann constant and T0 = 298 K, the room temperature), while the energy barrier separating the complexes and the virions is high (~ 20kBT0). A synthetic polyelectrolyte can lower this barrier so that filled capsids are formed in conditions where virions cannot build up. We propose a representation of the dynamics on a free energy landscape. The mechanism by which virus capsules assemble around RNA to package their genetic material is not clear. Here, the authors observed the assembly of the cowpea chlorotic mottle virus capsid around viral RNA or poly(styrene sulfonic acid) using time-resolved small-angle X-ray scattering measurements.
Collapse
|
46
|
Abstract
![]()
A big
hurdle for the use of protein-based drugs is that they are
easily degraded by proteases in the human body. In an attempt to solve
this problem, we show the possibility to functionalize TM encapsulin
nanoparticles with an mEETI-II knottin miniprotein from the cysteine-stabilized
knot class. The resulting particles did not show aggregation and retained
part of their protease inhibitive function. This imposes a protection
toward protease, in this case, trypsin, degradation of the protein
cage. The used chemistry is easy to apply and thus suitable to protect
other protein systems from degradation. In addition, this proof of
principle opens up the use of other knottins or cysteine-stabilized
knots, which can be attached to protein cages to create a heterofunctionalized
protein nanocage. This allows specific targeting and tumor suppression
among other types of functionalization. Overall, this is a promising
strategy to protect a protein of interest which brings oral administration
of protein-based drugs one step closer.
Collapse
Affiliation(s)
- Robin Klem
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology , University of Twente , 7500 AE Enschede , The Netherlands
| | - Mark V de Ruiter
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology , University of Twente , 7500 AE Enschede , The Netherlands
| | - Jeroen J L M Cornelissen
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology , University of Twente , 7500 AE Enschede , The Netherlands
| |
Collapse
|
47
|
de Ruiter MV, Overeem NJ, Singhai G, Cornelissen JJLM. Induced Förster resonance energy transfer by encapsulation of DNA-scaffold based probes inside a plant virus based protein cage. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:184002. [PMID: 29512513 PMCID: PMC7104908 DOI: 10.1088/1361-648x/aab4a9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/16/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
Insight into the assembly and disassembly of viruses can play a crucial role in developing cures for viral diseases. Specialized fluorescent probes can benefit the study of interactions within viruses, especially during cell studies. In this work, we developed a strategy based on Förster resonance energy transfer (FRET) to study the assembly of viruses without labeling the exterior of viruses. Instead, we exploit their encapsulation of nucleic cargo, using three different fluorescent ATTO dyes linked to single-stranded DNA oligomers, which are hybridised to a longer DNA strand. FRET is induced upon assembly of the cowpea chlorotic mottle virus, which forms monodisperse icosahedral particles of about 22 nm, thereby increasing the FRET efficiency by a factor of 8. Additionally, encapsulation of the dyes in virus-like particles induces a two-step FRET. When the formed constructs are disassembled, this FRET signal is fully reduced to the value before encapsulation. This reversible behavior makes the system a good probe for studying viral assembly and disassembly. It, furthermore, shows that multi-component supramolecular materials are stabilized in the confinement of a protein cage.
Collapse
Affiliation(s)
- Mark V de Ruiter
- Laboratory of Biomolecular Nanotechnology, MESA + Institute of Nanotechnology, University of Twente, P O Box 217, 7500 AE, Enschede, Netherlands
| | - Nico J Overeem
- Laboratory of Biomolecular Nanotechnology, MESA + Institute of Nanotechnology, University of Twente, P O Box 217, 7500 AE, Enschede, Netherlands
| | - Gaurav Singhai
- Laboratory of Biomolecular Nanotechnology, MESA + Institute of Nanotechnology, University of Twente, P O Box 217, 7500 AE, Enschede, Netherlands
- Flinders Centre for Nanoscale Science and Technology, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Jeroen J L M Cornelissen
- Laboratory of Biomolecular Nanotechnology, MESA + Institute of Nanotechnology, University of Twente, P O Box 217, 7500 AE, Enschede, Netherlands
| |
Collapse
|
48
|
Alemzadeh E, Dehshahri A, Izadpanah K, Ahmadi F. Plant virus nanoparticles: Novel and robust nanocarriers for drug delivery and imaging. Colloids Surf B Biointerfaces 2018; 167:20-27. [PMID: 29625419 DOI: 10.1016/j.colsurfb.2018.03.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/09/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Nanoparticles have been gained much attention for biomedical applications. A promising type of nanocarriers is viral nanoparticles (VNPs) which are natural bio-nanomaterials derived from different type of viruses. Amongst VNPs, plant VNPs present several pros over general nanoparticles such as liposomes, dendrimers or quantum dots. Some of these advantages include: degradability, safety for human, known structures to atomic level, possibility of attaching ligand with vigorous control on structure, availability for genetic and chemical manipulations and very flexible methods to prepare them. Variety of plant viruses have been modified by chemical and genetic modification of their inner cavities and their outer-surfaces. These modifications provide suitable sites for attachment of markers and drug molecules for vascular imaging and tumor targeting. In this review a brief description of plant virus nanoparticles and their biomedical applications especially in drug delivery is provided. The methods of loading cargos in these VNPs and their final biofate are also reviewed.
Collapse
Affiliation(s)
- Effat Alemzadeh
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Dehshahri
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keramatolah Izadpanah
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Fatemeh Ahmadi
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
49
|
Regnard GL, Rybicki EP, Hitzeroth II. Recombinant expression of beak and feather disease virus capsid protein and assembly of virus-like particles in Nicotiana benthamiana. Virol J 2017; 14:174. [PMID: 28893289 PMCID: PMC5594603 DOI: 10.1186/s12985-017-0847-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Beak and feather disease virus (BFDV) is an important disease causing agent affecting psittacines. BFDV is highly infectious and can present as acute, chronic or subclinical disease. The virus causes immunodeficiency and is often associated with secondary infections. No commercial vaccine is available and yields of recombinant BFDV capsid protein (CP) expressed in insect cells and bacteria are yet to be seen as commercially viable, although both systems produced BFDV CP that could successfully assemble into virus-like particles (VLPs). Plants as expression systems are increasingly becoming favourable for the production of region-specific and niche market products. The aim of this study was to investigate the formation and potential for purification of BFDV VLPs in Nicotiana benthamiana. METHODS The BFDV CP was transiently expressed in N. benthamiana using an Agrobacterium-mediated system and plant expression vectors that included a bean yellow dwarf virus (BeYDV)-based replicating DNA vector. Plant-produced BFDV CP was detected using immunoblotting. VLPs were purified using sucrose cushion and CsCl density gradient centrifugation and visualised using transmission electron microscopy. RESULTS In this study we demonstrate that the BFDV CP can be successfully expressed in N. benthamiana, albeit at relatively low yield. Using a purification strategy based on centrifugation we demonstrated that the expressed CP can self-assemble into VLPs that can be detected using electron microscopy. These plant-produced BFDV VLPs resemble those produced in established recombinant expression systems and infectious virions. It is possible that the VLPs are spontaneously incorporating amplicon DNA produced from the replicating BeYDV plant vector. CONCLUSIONS This is the first report of plant-made full-length BFDV CP assembling into VLPs. The putative pseudovirions could be used to further the efficacy of vaccines against BFDV.
Collapse
Affiliation(s)
- Guy L. Regnard
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Inga I. Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| |
Collapse
|
50
|
Loredo-Tovias M, Duran-Meza AL, Villagrana-Escareño MV, Vega-Acosta R, Reynaga-Hernández E, Flores-Tandy LM, Valdes-Resendiz OE, Cadena-Nava RD, Alvizo-Paez ER, Ruiz-Garcia J. Encapsidated ultrasmall nanolipospheres as novel nanocarriers for highly hydrophobic anticancer drugs. NANOSCALE 2017; 9:11625-11631. [PMID: 28770909 DOI: 10.1039/c7nr02118f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The design and construction of novel nanocarriers that have controlled shape and size and are made of inherently biocompatible components represents a milestone in the field of nanomedicine. Here, we show the tailoring of nanoliposphere-like particles for use as biocompatible drug nanocarriers. They are made with the building block components present in human lipoproteins by means of microfluidization, which allows for good size and polydispersity control, mimicking the physical properties of natural low-density lipoproteins (LDLs). This new type of nanocarrier has a negative surface charge and a hydrophobic core that allow the stabilization and encapsulation of hydrophobic anticancer drugs such as camptothecin, resulting in anticancer drug-loaded nanolipospheres. However, we found that the nanoparticles are unstable since their size increases with time. These nanolipospheres were further encapsidated using the non-cytotoxic capsid protein of the plant virus CCMV, which renders the nanoparticles stable. In a more general application, this new virus-like particle confers a controlled microenvironment for the transport of any kind of hydrophobic drug that can bypass the cellular defense mechanisms and deliver its payload.
Collapse
Affiliation(s)
- M Loredo-Tovias
- Biological Physics Laboratory, Institute of Physics, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, S. L. P. 78000, Mexico.
| | | | | | | | | | | | | | | | | | | |
Collapse
|