1
|
Rudy MJ, Wilson CJ, Hinckley B, Baker DC, Royal JM, Hoke MP, Brennan MB, Vogt MR, Clarke P, Tyler KL. EV68-228-N monoclonal antibody treatment halts progression of paralysis in a mouse model of EV-D68 induced acute flaccid myelitis. mBio 2025; 16:e0390624. [PMID: 40126012 PMCID: PMC11980581 DOI: 10.1128/mbio.03906-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025] Open
Abstract
In 2014, 2016, and 2018, infection with enterovirus D68 (EV-D68) was associated with outbreaks of a poliomyelitis-like paralytic syndrome, called acute flaccid myelitis (AFM). While only a small fraction of patients infected with EV-D68 developed AFM, this subgroup of patients does not typically seek treatment until after the onset of neurological symptoms. There are currently no approved human monoclonal antibody therapies or vaccines available for EV-D68. Here, we show that a monoclonal antibody, EV68-228-N, can quickly stop the progression of paralysis in a mouse model of AFM, even when treatment is initiated after the onset of paralysis. We found that EV68-228-N effectively halted the progression of paralysis when tested against both 2014 and 2016 EV-D68 isolates in an immunocompetent mouse model of AFM. All animal experiments were conducted in a blinded fashion. The IC50 of EV68-228-N against 2014 and 2016 EV-D68 isolates was confirmed in vitro to be less than 330 ng/mL, and EV68-228-N was found to be equally effective at neutralizing 2018 and 2022 viral isolates without any evidence of emerging resistance. We further show that, following infection with EV-D68, mice treated with EV68-228-N have more surviving motor neurons in the spinal cord's lumbar enlargement than control treated animals. Taken together, this work suggests that EV68-228-N treatment has the potential to halt the progression of paralysis in AFM patients who present at the clinic with neurologic symptoms and that EV68-228-N will retain neutralization potential against emerging EV-D68 isolates. IMPORTANCE Enterovirus D-68 (EV-D68) associated acute flaccid myelitis (AFM) is an emergent poliomyelitis-like illness occurring predominantly in children. There are currently no proven effective therapies. We describe the use of a human monoclonal antibody (EV68-228-N) in a murine model of EV-D68 AFM in which therapy prevents progression of paralysis even when treatment is instituted after onset of weakness. CLINICAL TRIALS This study is registered with ClinicalTrials.gov as NCT06444048.
Collapse
Affiliation(s)
- Michael J. Rudy
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
| | | | - Brendan Hinckley
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
| | - Danielle C. Baker
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
| | - Joshua M. Royal
- Department of Research and Discovery, KBio Inc., Owensboro, Kentucky, USA
| | - Marshall P. Hoke
- Department of Regulatory Affairs, ZabBio Inc., San Diego, California, USA
| | | | - Matthew R. Vogt
- Departments of Pediatrics and Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Penny Clarke
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
| | - Kenneth L. Tyler
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
- Division of Infectious Disease, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
2
|
Alsahag M. Computational discovery of natural inhibitors targeting enterovirus D68 3C protease using molecular docking pharmacokinetics and dynamics simulations. Sci Rep 2025; 15:11015. [PMID: 40164668 PMCID: PMC11958634 DOI: 10.1038/s41598-025-95163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Enterovirus D68 (EV-D68) is a significant global health threat, responsible for severe respiratory and neurological complications, with no FDA-approved antiviral treatments currently available. The 3C protease of EV-D68, an essential enzyme involved in viral replication, represents a key target for therapeutic development. In this study, we employed a comprehensive computational approach, including molecular docking, pharmacokinetic predictions, and molecular dynamics simulations, to identify potential natural inhibitors of the EV-D68 3C protease. Screening a library of natural compounds, Withaferin-A (CID: 265,237) and Baicalin (CID: 64,982) emerged as top candidates due to their favorable pharmacokinetic profiles, high binding affinities (-10.7 kcal/mol for Withaferin-A and -9.5 kcal/mol for Baicalin), and interactions with key residues in the protease's active site. The molecular dynamics simulations demonstrated the stability of the protein-ligand complexes, with low root mean square deviation (RMSD) and fluctuation (RMSF) values over a 100-ns trajectory. Free energy calculations further supported the superior binding efficiency of Withaferin-A. These findings suggest that Withaferin-A and Baicalin have significant potential as natural inhibitors of EV-D68 3C protease, offering a promising foundation for future experimental validation and the development of targeted antiviral therapies against EV-D68.
Collapse
Affiliation(s)
- Mansoor Alsahag
- Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia.
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
3
|
Blanco JCG, Sylla FYD, Granados S, Noghero A, Boukhvalova MS, Kajon AE. Enterovirus D68 infection in cotton rats results in systemic inflammation with detectable viremia associated with extracellular vesicle and neurologic disease. Sci Rep 2025; 15:6514. [PMID: 39987168 PMCID: PMC11847025 DOI: 10.1038/s41598-025-89447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/05/2025] [Indexed: 02/24/2025] Open
Abstract
Enterovirus D68 (EV-D68) is a non-polio enterovirus that causes respiratory illness and is linked to acute flaccid myelitis (AFM) in infants and children. Recent demonstration of association of EV-D68 with extracellular vesicles (EVs) released from infected cells in vitro suggests a role for these vesicles in non-lytic dissemination of virus beyond the respiratory tract. We previously reported the permissiveness of cotton rat (Sigmodon hispidus) to infection with different EV-D68 strains of clades A and B, but did not investigate the virus association with EVs. We present a model of acute respiratory infection with a clinical isolate of EV-D68 of clade B3 in immunocompetent cotton rats featuring systemic dissemination of the virus. EV-D68 was detected in circulation and organs outside of the respiratory tract with the inflammatory response accompanying dissemination. Further analysis demonstrated that the virus was associated with extracellular vesicles purified from plasma. We also present a model of intraperitoneal infection with EV-D68 in young cotton rats featuring dissemination of the virus to spinal cord and brain with associated clinical signs of neurologic disease. EV-D68-associated with EVs produced in cotton rat cells and injected intraperitoneally into young cotton rats also resulted in detection of virus in the CNS. Our results provide the first in vivo experimental support for the notion that respiratory infection with EV-D68 generates virus associated with extracellular vesicles that disseminate outside the respiratory tract. These models of infection could be used to investigate the role of EVs-associated EV-D68 in the pathogenesis of EV-D68 infection and to assess therapeutic interventions.
Collapse
Affiliation(s)
- Jorge C G Blanco
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA.
| | - Fatoumata Y D Sylla
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Sandra Granados
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Alessio Noghero
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Marina S Boukhvalova
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Adriana E Kajon
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
4
|
Tan H, Pollard B, Li K, Wang J. Discovery of A-967079 as an Enterovirus D68 Antiviral by Targeting the Viral 2C Protein. ACS Infect Dis 2024; 10:4327-4336. [PMID: 39578369 DOI: 10.1021/acsinfecdis.4c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Enterovirus D68 (EV-D68) has had several outbreaks worldwide, yet no FDA-approved antiviral is available for treating this viral infection. EV-D68 infection typically leads to respiratory illnesses and, in severe cases, can cause neurological complications and even death, particularly in children. This study identified a small molecule, A-967079, as an EV-D68 antiviral through phenotypical screening. A-967079 has shown potent and broad-spectrum antiviral activity with a high selectivity index against multiple strains of EV-D68. Pharmacological characterization of the mechanism of action involving time-of-addition, resistance selection, and differential scanning fluorimetry assays suggests that viral 2C protein is the drug target. Overall, A-967079 represents a promising candidate for further development as an EV-D68 antiviral.
Collapse
Affiliation(s)
- Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Brian Pollard
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
5
|
Song W, Watarastaporn T, Ooi YS, Nguyen K, Glenn JS, Carette JE, Casey KM, Nagamine CM. Characterization of Effect of Enterovirus D68 in 129/Sv Mice Deficient in IFN-α/β and/or IFN-γ Receptors. Comp Med 2024; 74:352-359. [PMID: 39142813 PMCID: PMC11524399 DOI: 10.30802/aalas-cm-24-044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Enterovirus D68 (EV-D68), a respiratory RNA virus in the family Picornaviridae, is implicated as a potential etiological agent for acute flaccid myelitis in preteen adolescents. The absence of a specific therapeutic intervention necessitates the development of an effective animal model for EV-D68. The AG129 mouse strain, characterized by the double knockout of IFN-α/β and IFN-γ receptors on the 129 genetic background, has been proposed as a suitable model for EV-D68. The goals of this study were to assess the effect of a nonmouse-adapted EV-D68 strain (US/MO/14-18947, NR-49129) in AG129 (IFN-α/β and IFN-γ receptors null), A129 (IFN-α/β receptor null), G129 (IFN-γ receptor null), and the 129 background strain (129S2/SvPasCrl) when infected intraperitoneally at 10 d of age. Both AG129 and A129 strains demonstrated similar clinical signs (paralysis, paresis, lethargy, dyspnea [characterized by prominent abdominal respiration], and morbidity requiring euthanasia) induced by EV-D68. While G129 and 129S2 strains also exhibited susceptibility to EV-D68, the severity of clinical signs was less than in AG129 and A129 strains, and many survived to the experimental endpoint. Histopathological and immunohistochemical data confirmed EV-D68 tropism for the skeletal muscle and spinal cord and suggest that the dyspnea observed in infected mice could be attributed, in part, to lesions in the diaphragmatic skeletal muscles. These findings contribute valuable insights into the pathogenesis of EV-D68 infection in this mouse model and provide investigators with key information on virus dose and mouse strain selection when using this mouse model to evaluate candidate EV-D68 therapeutics.
Collapse
Affiliation(s)
- Wenqi Song
- Department of Comparative Medicine, Stanford School of Medicine, Stanford, California
| | - Tanya Watarastaporn
- Department of Comparative Medicine, Stanford School of Medicine, Stanford, California
| | - Yaw Shin Ooi
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California; and
| | - Khanh Nguyen
- Department of Medicine/Gastroenterology and Hepatology, Stanford School of Medicine, Stanford, California
| | - Jeffery S Glenn
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California; and
- Department of Medicine/Gastroenterology and Hepatology, Stanford School of Medicine, Stanford, California
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California; and
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford School of Medicine, Stanford, California
| | - Claude M Nagamine
- Department of Comparative Medicine, Stanford School of Medicine, Stanford, California
| |
Collapse
|
6
|
Zhou Y, Zhang C, Zhang Y, Li F, Shen J. Caspase-8 activation regulates enterovirus D68 infection-induced inflammatory response and cell death. BIOSAFETY AND HEALTH 2024; 6:171-177. [PMID: 40078725 PMCID: PMC11894973 DOI: 10.1016/j.bsheal.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2025] Open
Abstract
Enterovirus D68 (EV-D68) infection causes severe acute respiratory infection and severe neurological complications, such as acute flaccid myelitis (AFM), in children. However, although EV-D68 has pandemic potential, no effective drugs or vaccines are currently clinically available. Furthermore, EV-D68 infection-induced inflammatory response and cell death are not fully understood. In this study, we demonstrated that several inflammatory cytokines were upregulated in a multiplicity of infection (MOI) dependent manner in EV-D68-infected human rhabdomyosarcoma (RD) cells. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) confirmed that tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), C-C motif chemokine ligand-5 (CCL-5), and CXC motif chemokine ligand-5 (CXCL-5) mRNA levels were highly upregulated after EV-D68 infection. IL-1β processing and maturation mediated by caspase-8 was inhibited by the caspase-8 inhibitor Z-IETD-FMK. EV-D68 infection activates caspase-8 to mediate IL-1β maturation and secretion. Additionally, EV-D68 activated cell death-related proteins such as caspase-3, poly (ADP-ribose) polymerase 1 (PARP-1), phosphorylation of Mixed Lineage Kinase domain-like protein (pMLKL), and gasdermin E (GSDME). Thus, EV-D68 infection activates caspase-8, which triggers the necroptosis and apoptosis pathways. Overall, our data suggest that caspase-8 activation is associated with the inflammatory response and cell death in EV-D68-infected RD cells. This mechanism represents a novel target for the treatment of EV-D68 infection by inhibiting caspase-8 activation.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201100, China
| | - Chongtao Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuhan Zhang
- Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201100, China
| | - Fei Li
- Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201100, China
| | - Jun Shen
- Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201100, China
| |
Collapse
|
7
|
Grizer CS, Messacar K, Mattapallil JJ. Enterovirus-D68 - A Reemerging Non-Polio Enterovirus that Causes Severe Respiratory and Neurological Disease in Children. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2024; 4:1328457. [PMID: 39246649 PMCID: PMC11378966 DOI: 10.3389/fviro.2024.1328457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The past decade has seen the global reemergence and rapid spread of enterovirus D68 (EV-D68), a respiratory pathogen that causes severe respiratory illness and paralysis in children. EV-D68 was first isolated in 1962 from children with pneumonia. Sporadic cases and small outbreaks have been reported since then with a major respiratory disease outbreak in 2014 associated with an increased number of children diagnosed with polio-like paralysis. From 2014-2018, major outbreaks have been reported every other year in a biennial pattern with > 90% of the cases occurring in children under the age of 16. With the outbreak of SARS-CoV-2 and the subsequent COVID-19 pandemic, there was a significant decrease in the prevalence EV-D68 cases along with other respiratory diseases. However, since the relaxation of pandemic social distancing protocols and masking mandates the number of EV-D68 cases have begun to rise again - culminating in another outbreak in 2022. Here we review the virology, pathogenesis, and the immune response to EV-D68, and discuss the epidemiology of EV-D68 infections and the divergence of contemporary strains from historical strains. Finally, we highlight some of the key challenges in the field that remain to be addressed.
Collapse
Affiliation(s)
- Cassandra S Grizer
- Department of Microbiology & Immunology, The Henry M. Jackson Foundation for Military Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Kevin Messacar
- The Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joseph J Mattapallil
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
8
|
Rodesch M, Sculier C, Lolli V, Remiche G, Delpire I, Fricx C, Vermeulen F, Christiaens F. A First Case of Acute Flaccid Myelitis Related to Enterovirus D68 in Belgium: Case Report. Case Rep Neurol 2024; 16:41-47. [PMID: 38405019 PMCID: PMC10890805 DOI: 10.1159/000535316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/10/2023] [Indexed: 02/27/2024] Open
Abstract
Introduction We describe the first case of acute flaccid myelitis (AFM) related to enterovirus D68 (EV-D68) infection in Belgium. The clinical and radiological presentation of AFM associated with EV-D68 although well described currently remains a challenging diagnosis. Through this interesting clinical case, we aimed to review the differential diagnosis of acute flaccid palsy in a child and discuss the specific point of interest related to AFM. Case Presentation We present the case of a 4-year-old girl with a torticollis associated with an acute palsy of the right upper limb. The magnetic resonance imaging revealed an increased T2 signal intensity of the entire central gray matter of the cervical cord with involvement of the posterior brainstem. A polymerase chain reaction (PCR) conducted on a nasopharyngeal swab was found positive for EV-D68. The definition of AFM proposed by the Center for Disease Control and Prevention (CDC) is an acute-onset flaccid weakness of one or more limbs in the absence of a clear alternative diagnosis and the radiological evidence of gray matter involvement on an MRI picture, and our case fits these two criteria. A prompt and detailed workup is required to distinguish this emergent disease from other forms of acute flaccid palsy. The functional prognosis of AFM is poor, and there are no evidence-based treatment guidelines so far. Conclusion AFM is an emerging pathology that requires the attention of pediatricians to quickly rule out differential diagnoses and adequately manage the patient. Further research is needed to optimize treatments, improve outcomes, and provide scientifically based guidelines.
Collapse
Affiliation(s)
- Marine Rodesch
- Department of Pediatrics, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Claudine Sculier
- Department of Neuropediatrics, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Valentina Lolli
- Department of Radiology, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gauthier Remiche
- Centre de Référence Neuromusculaire, Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Iris Delpire
- Department of Pediatrics, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christophe Fricx
- Department of Pediatrics, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Françoise Vermeulen
- Department of Pediatrics, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Florence Christiaens
- Department of Neuropediatrics, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
9
|
Hooi YT, Balasubramaniam VRMT. In vitro and in vivo models for the study of EV-D68 infection. Pathology 2023; 55:907-916. [PMID: 37852802 DOI: 10.1016/j.pathol.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/03/2023] [Accepted: 08/14/2023] [Indexed: 10/20/2023]
Abstract
Enterovirus D68 (EV-D68) is one of hundreds of non-polio enteroviruses that typically cause cold-like respiratory illness. The first EV-D68 outbreak in the United States in 2014 aroused widespread concern among the public and health authorities. The infection was found to be associated with increased surveillance of acute flaccid myelitis, a neurological condition that causes limb paralysis in conjunction with spinal cord inflammation. In vitro studies utilising two-dimensional (2D) and three-dimensional (3D) culture systems have been employed to elucidate the pathogenic mechanism of EV-D68. Various animal models have also been developed to investigate viral tropism and distribution, pathogenesis, and immune responses during EV-D68 infection. EV-D68 infections have primarily been investigated in respiratory, intestinal and neural cell lines/tissues, as well as in small-size immunocompetent rodent models that were limited to a young age. Some studies have implemented strategies to overcome the barriers by using immunodeficient mice or virus adaptation. Although the existing models may not fully recapitulate both respiratory and neurological disease observed in human EV-D68 infection, they have been valuable for studying pathogenesis and evaluating potential vaccine or therapeutic candidates. In this review, we summarise the methodologies and findings from each experimental model and discuss their applications and limitations.
Collapse
Affiliation(s)
- Yuan Teng Hooi
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.
| | - Vinod R M T Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.
| |
Collapse
|
10
|
Tan B, Liu C, Li K, Jadhav P, Lambrinidis G, Zhu L, Olson L, Tan H, Wen Y, Kolocouris A, Liu W, Wang J. Structure-Based Lead Optimization of Enterovirus D68 2A Protease Inhibitors. J Med Chem 2023; 66:14544-14563. [PMID: 37857371 PMCID: PMC11457037 DOI: 10.1021/acs.jmedchem.3c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Enterovirus D68 (EV-D68) virus is a nonpolio enterovirus that typically causes respiratory illness and, in severe cases, can lead to paralysis and death in children. There is currently no vaccine or antiviral for EV-D68. We previously discovered the viral 2A protease (2Apro) as a viable antiviral drug target and identified telaprevir as a 2Apro inhibitor. 2Apro is a viral cysteine protease that cleaves the viral VP1-2A polyprotein junction. In this study, we report the X-ray crystal structures of EV-D68 2Apro, wild-type, and the C107A mutant and the structure-based lead optimization of telaprevir. Guided by the X-ray crystal structure, we predicted the binding pose of telaprevir in 2Apro using molecular dynamics simulations. We then utilized this model to inform structure-based optimization of the telaprevir's reactive warhead and P1-P4 substitutions. These efforts led to the discovery of 2Apro inhibitors with improved antiviral activity than telaprevir. These compounds represent promising lead compounds for further development as EV-D68 antivirals.
Collapse
Affiliation(s)
- Bin Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Chang Liu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Prakash Jadhav
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, United States
| | - George Lambrinidis
- Laboratory of Medicinal Chemistry, Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, United States
| | - Linda Olson
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Yu Wen
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, United States
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, United States
| |
Collapse
|
11
|
Lane TR, Fu J, Sherry B, Tarbet B, Hurst BL, Riabova O, Kazakova E, Egorova A, Clarke P, Leser JS, Frost J, Rudy M, Tyler KL, Klose T, Volobueva AS, Belyaevskaya SV, Zarubaev VV, Kuhn RJ, Makarov V, Ekins S. Efficacy of an isoxazole-3-carboxamide analog of pleconaril in mouse models of Enterovirus-D68 and Coxsackie B5. Antiviral Res 2023; 216:105654. [PMID: 37327878 PMCID: PMC10527014 DOI: 10.1016/j.antiviral.2023.105654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Enteroviruses (EV) cause a number of life-threatening infectious diseases. EV-D68 is known to cause respiratory illness in children that can lead to acute flaccid myelitis. Coxsackievirus B5 (CVB5) is commonly associated with hand-foot-mouth disease. There is no antiviral treatment available for either. We have developed an isoxazole-3-carboxamide analog of pleconaril (11526092) which displayed potent inhibition of EV-D68 (IC50 58 nM) as well as other enteroviruses including the pleconaril-resistant Coxsackievirus B3-Woodruff (IC50 6-20 nM) and CVB5 (EC50 1 nM). Cryo-electron microscopy structures of EV-D68 in complex with 11526092 and pleconaril demonstrate destabilization of the EV-D68 MO strain VP1 loop, and a strain-dependent effect. A mouse respiratory model of EV-D68 infection, showed 3-log decreased viremia, favorable cytokine response, as well as statistically significant 1-log reduction in lung titer reduction at day 5 after treatment with 11526092. An acute flaccid myelitis neurological infection model did not show efficacy. 11526092 was tested in a mouse model of CVB5 infection and showed a 4-log TCID50 reduction in the pancreas. In summary, 11526092 represents a potent in vitro inhibitor of EV with in vivo efficacy in EV-D68 and CVB5 animal models suggesting it is worthy of further evaluation as a potential broad-spectrum antiviral therapeutic against EV.
Collapse
Affiliation(s)
- Thomas R Lane
- Collaborations Pharmaceuticals Inc., Raleigh, NC, USA
| | - Jianing Fu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Barbara Sherry
- Department of Molecular Biomedical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | - Bart Tarbet
- Institute for Antiviral Research, Utah State University, Logan, UT, USA; Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Brett L Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT, USA; Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Olga Riabova
- Research Center of Biotechnology RAS, 33-1 Leninsky prospect, 119071, Moscow, Russia
| | - Elena Kazakova
- Research Center of Biotechnology RAS, 33-1 Leninsky prospect, 119071, Moscow, Russia
| | - Anna Egorova
- Research Center of Biotechnology RAS, 33-1 Leninsky prospect, 119071, Moscow, Russia
| | - Penny Clarke
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Smith Leser
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joshua Frost
- Department of Immunology and Microbiology, Infectious Disease, Medicine and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Kenneth L Tyler
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Veterans Affairs, Aurora, CO, USA
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | | | - Vladimir V Zarubaev
- Saint Petersburg Pasteur Institute, 14 Mira Street, 197101, Saint Petersburg, Russia
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Vadim Makarov
- Research Center of Biotechnology RAS, 33-1 Leninsky prospect, 119071, Moscow, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., Raleigh, NC, USA.
| |
Collapse
|
12
|
Frost J, Rudy MJ, Leser JS, Tan H, Hu Y, Wang J, Clarke P, Tyler KL. Telaprevir Treatment Reduces Paralysis in a Mouse Model of Enterovirus D68 Acute Flaccid Myelitis. J Virol 2023; 97:e0015623. [PMID: 37154751 PMCID: PMC10231134 DOI: 10.1128/jvi.00156-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/09/2023] [Indexed: 05/10/2023] Open
Abstract
In 2014, 2016, and 2018, the United States experienced unprecedented spikes in pediatric cases of acute flaccid myelitis (AFM), which is a poliomyelitis-like paralytic illness. Accumulating clinical, immunological, and epidemiological evidence has identified enterovirus D68 (EV-D68) as a major causative agent of these biennial AFM outbreaks. There are currently no available FDA-approved antivirals that are effective against EV-D68, and the treatment for EV-D68-associated AFM is primarily supportive. Telaprevir is an food and drug administration (FDA)-approved protease inhibitor that irreversibly binds the EV-D68 2A protease and inhibits EV-D68 replication in vitro. Here, we utilize a murine model of EV-D68 associated AFM to show that early telaprevir treatment improves paralysis outcomes in Swiss Webster (SW) mice. Telaprevir reduces both viral titer and apoptotic activity in both muscles and spinal cords at early disease time points, which results in improved AFM outcomes in infected mice. Following intramuscular inoculation in mice, EV-D68 infection results in a stereotypic pattern of weakness that is reflected by the loss of the innervating motor neuron population, in sequential order, of the ipsilateral (injected) hindlimb, the contralateral hindlimb, and then the forelimbs. Telaprevir treatment preserved motor neuron populations and reduced weakness in limbs beyond the injected hindlimb. The effects of telaprevir were not seen when the treatment was delayed, and toxicity limited doses beyond 35 mg/kg. These studies are a proof of principle, provide the first evidence of benefit of an FDA-approved antiviral drug with which to treat AFM, and emphasize both the need to develop better tolerated therapies that remain efficacious when administered after viral infections and the development of clinical symptoms. IMPORTANCE Recent outbreaks of EV-D68 in 2014, 2016, and 2018 have resulted in over 600 cases of a paralytic illness that is known as AFM. AFM is a predominantly pediatric disease with no FDA-approved treatment, and many patients show minimal recovery from limb weakness. Telaprevir is an FDA-approved antiviral that has been shown to inhibit EV-D68 in vitro. Here, we demonstrate that a telaprevir treatment that is given concurrently with an EV-D68 infection improves AFM outcomes in mice by reducing apoptosis and viral titers at early time points. Telaprevir also protected motor neurons and improved paralysis outcomes in limbs beyond the site of viral inoculation. This study improves understanding of EV-D68 pathogenesis in the mouse model of AFM. This study serves as a proof of principle for the first FDA-approved drug that has been shown to improve AFM outcomes and have in vivo efficacy against EV-D68 as well as underlines the importance of the continued development of EV-D68 antivirals.
Collapse
Affiliation(s)
- Joshua Frost
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael J. Rudy
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - J. Smith Leser
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Yanmei Hu
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Penny Clarke
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kenneth L. Tyler
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Infectious Disease, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Neurology Service, Rocky Mountain VA Medical Center, Aurora, Colorado, USA
| |
Collapse
|
13
|
Abstract
Human enterovirus D68 (EV-D68) is a globally reemerging respiratory pathogen that is associated with the development of acute flaccid myelitis (AFM) in children. Currently, there are no approved vaccines or treatments for EV-D68 infection, and there is a paucity of data related to the virus and host-specific factors that predict disease severity and progression to the neurologic syndrome. EV-D68 infection of various animal models has served as an important platform for characterization and comparison of disease pathogenesis between historic and contemporary isolates. Still, there are significant gaps in our knowledge of EV-D68 pathogenesis that constrain the development and evaluation of targeted vaccines and antiviral therapies. Continued refinement and characterization of animal models that faithfully reproduce key elements of EV-D68 infection and disease is essential for ensuring public health preparedness for future EV-D68 outbreaks.
Collapse
|
14
|
Geng J, Hu X, Zhang Z, Gu Z, Li Y, Mou X, Mao L, Ge Y, Yang X, Song Y, Liu H, Wang L, Wei Z, Wang Z, Xu H. Discovery and pharmacodynamic evaluation of the novel butene lactone derivative M355 against influenza A virus in vitro and in vivo. J Med Virol 2022; 94:4393-4405. [PMID: 35560068 DOI: 10.1002/jmv.27853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/06/2022]
Abstract
A new series of butene lactone derivatives were designed according to an influenza neuraminidase target and their antiviral activities against H1N1 infection of MDCK cells were evaluated. Among them, a compound that was given the name M355 was identified as the most potent against H1N1 (EC50 = 14.7 μM) with low toxicity (CC50 = 538.13 μM). It also visibly reduced the virus-induced cytopathic effect. Time-of-addition analysis indicated that H1N1 was mostly suppressed by M355 at the late stage of its infectious cycle. M355 inhibited neuraminidase in a dose-dependent fashion to a similar extent as oseltamivir, which was also indicated by computer modeling experiment. In a mouse model, lung lesions and virus load were reduced and the expression of nucleoprotein was moderated by M355. The ELISA and qRT-PCR analyses revealed that the levels of IFN-γ, IRF-3, TLR-3, TNF-α, IL-1β, IL-6 and IL-8 were down-regulated in the M355-treated groups, whereas the levels of IL-10 and IL-13 were up-regulated. Similarly, IgG was found to be increased in infected mice plasma. These results demonstrate that M355 inhibit the expression of H1N1 in both cellular and animal models. Thus, M355 has the potential to be effective in the treatment of influenza A virus infection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jingwei Geng
- Zhongyuan District Center for Disease Control and Prevention of Zhengzhou, Zhengzhou, 450006, China
| | - Xiaoning Hu
- Binzhou People's Hospital, Binzhou, 256610, Shandong Province, China
| | - Zhongmou Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Zichen Gu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuanyuan Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaodong Mou
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Lu Mao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongzhuang Ge
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinyu Yang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Yihui Song
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongmin Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Linqing Wang
- Zhengzhou Key Laboratory of molecular biology, Zhengzhou Normal University, Zhengzhou, 450044, China
| | - Zhanyong Wei
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhenya Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Haiwei Xu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
15
|
Fall A, Kenmoe S, Ebogo-Belobo JT, Mbaga DS, Bowo-Ngandji A, Foe-Essomba JR, Tchatchouang S, Amougou Atsama M, Yéngué JF, Kenfack-Momo R, Feudjio AF, Nka AD, Mbongue Mikangue CA, Taya-Fokou JB, Magoudjou-Pekam JN, Noura EA, Zemnou-Tepap C, Meta-Djomsi D, Maïdadi-Foudi M, Kame-Ngasse GI, Nyebe I, Djukouo LG, Kengne Gounmadje L, Tchami Ngongang D, Oyono MG, Demeni Emoh CP, Tazokong HR, Mahamat G, Kengne-Ndé C, Sadeuh-Mba SA, Dia N, La Rosa G, Ndip L, Njouom R. Global prevalence and case fatality rate of Enterovirus D68 infections, a systematic review and meta-analysis. PLoS Negl Trop Dis 2022; 16:e0010073. [PMID: 35134062 PMCID: PMC8824346 DOI: 10.1371/journal.pntd.0010073] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
A substantial amount of epidemiological data has been reported on Enterovirus D68 (EV-D68) infections after the 2014 outbreak. Our goal was to map the case fatality rate (CFR) and prevalence of current and past EV-D68 infections. We conducted a systematic review (PROSPERO, CRD42021229255) with published articles on EV-68 infections in PubMed, Embase, Web of Science and Global Index Medicus up to January 2021. We determined prevalences using a model random effect. Of the 4,329 articles retrieved from the databases, 89 studies that met the inclusion criteria were from 39 different countries with apparently healthy individuals and patients with acute respiratory infections, acute flaccid myelitis and asthma-related diseases. The CFR estimate revealed occasional deaths (7/1353) related to EV-D68 infections in patients with severe acute respiratory infections. Analyses showed that the combined prevalence of current and past EV-D68 infections was 4% (95% CI = 3.1-5.0) and 66.3% (95% CI = 40.0-88.2), respectively. The highest prevalences were in hospital outbreaks, developed countries, children under 5, after 2014, and in patients with acute flaccid myelitis and asthma-related diseases. The present study shows sporadic deaths linked to severe respiratory EV-D68 infections. The study also highlights a low prevalence of current EV-D68 infections as opposed to the existence of EV-D68 antibodies in almost all participants of the included studies. These findings therefore highlight the need to implement and/or strengthen continuous surveillance of EV-D68 infections in hospitals and in the community for the anticipation of the response to future epidemics.
Collapse
Affiliation(s)
- Amary Fall
- Virology Department, Institute Pasteur of Dakar, Dakar, Senegal
| | - Sebastien Kenmoe
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | - Marie Amougou Atsama
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | | | - Raoul Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaounde, Cameroon
| | | | - Alex Durand Nka
- Virology Laboratory, Chantal Biya International Reference Center for Research on HIV/AIDS Prevention and Management, Yaounde, Cameroon
| | | | | | | | - Efietngab Atembeh Noura
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Dowbiss Meta-Djomsi
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | - Martin Maïdadi-Foudi
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | - Ginette Irma Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Inès Nyebe
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | | | - Martin Gael Oyono
- Department of Animals Biology and Physiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | - Gadji Mahamat
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - Cyprien Kengne-Ndé
- Research Monitoring and Planning Unit, National Aids Control Committee, Douala, Cameroon
| | | | - Ndongo Dia
- Virology Department, Institute Pasteur of Dakar, Dakar, Senegal
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Lucy Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Richard Njouom
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| |
Collapse
|
16
|
Sooksawasdi Na Ayudhya S, Laksono BM, van Riel D. The pathogenesis and virulence of enterovirus-D68 infection. Virulence 2021; 12:2060-2072. [PMID: 34410208 PMCID: PMC8381846 DOI: 10.1080/21505594.2021.1960106] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In 2014, enterovirus D68 (EV-D68) emerged causing outbreaks of severe respiratory disease in children worldwide. In a subset of patients, EV-D68 infection was associated with the development of central nervous system (CNS) complications, including acute flaccid myelitis (AFM). Since then, the number of reported outbreaks has risen biennially, which emphasizes the need to unravel the systemic pathogenesis in humans. We present here a comprehensive review on the different stages of the pathogenesis of EV-D68 infection – infection in the respiratory tract, systemic dissemination and infection of the CNS – based on observations in humans as well as experimental in vitro and in vivo studies. This review highlights the knowledge gaps on the mechanisms of systemic dissemination, routes of entry into the CNS and mechanisms to induce AFM or other CNS complications, as well as the role of virus and host factors in the pathogenesis of EV-D68.
Collapse
Affiliation(s)
| | - Brigitta M Laksono
- Department of Viroscience, Erasmus MC, Dr Molewaterplein 40, GD Rotterdam, The Netherlands
| | - Debby van Riel
- Department of Viroscience, Erasmus MC, Dr Molewaterplein 40, GD Rotterdam, The Netherlands
| |
Collapse
|
17
|
Filipe IC, Guedes MS, Zdobnov EM, Tapparel C. Enterovirus D: A Small but Versatile Species. Microorganisms 2021; 9:1758. [PMID: 34442837 PMCID: PMC8400195 DOI: 10.3390/microorganisms9081758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Enteroviruses (EVs) from the D species are the causative agents of a diverse range of infectious diseases in spite of comprising only five known members. This small clade has a diverse host range and tissue tropism. It contains types infecting non-human primates and/or humans, and for the latter, they preferentially infect the eye, respiratory tract, gastrointestinal tract, and nervous system. Although several Enterovirus D members, in particular EV-D68, have been associated with neurological complications, including acute myelitis, there is currently no effective treatment or vaccine against any of them. This review highlights the peculiarities of this viral species, focusing on genome organization, functional elements, receptor usage, and pathogenesis.
Collapse
Affiliation(s)
- Ines Cordeiro Filipe
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Mariana Soares Guedes
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Evgeny M. Zdobnov
- Department of Genetic Medicine and Development, Switzerland and Swiss Institute of Bioinformatics, University of Geneva, 1206 Geneva, Switzerland;
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| |
Collapse
|
18
|
Weber EL, Werner JM, Johnson MB, Kim G, Tiongson E, Ramos-Platt L, Seruya M. Characteristics of Upper Extremity Recovery in Acute Flaccid Myelitis: A Case Series. Plast Reconstr Surg 2021; 147:645-655. [PMID: 33009334 DOI: 10.1097/prs.0000000000007583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Clinical characteristics and timing associated with nonsurgical recovery of upper extremity function in acute flaccid myelitis are unknown. METHODS A single-institution retrospective case series was analyzed to describe clinical features of acute flaccid myelitis diagnosed between October of 2013 and December of 2016. Patients were consecutively sampled children with a diagnosis of acute flaccid myelitis who were referred to a hand surgeon. Patient factors and initial severity of paralysis were compared with upper extremity muscle strength outcomes using the Medical Research Council scale every 3 months up to 18 months after onset. RESULTS Twenty-two patients with acute flaccid myelitis (aged 2 to 16 years) were studied. Proximal upper extremity musculature was more frequently and severely affected, with 56 percent of patients affected bilaterally. Functional recovery of all muscle groups (≥M3) in an individual limb was observed in 43 percent of upper extremities within 3 months. Additional complete limb recovery to greater than or equal to M3 after 3 months was rarely observed. Extraplexal paralysis, including spinal accessory (72 percent), glossopharyngeal/hypoglossal (28 percent), lower extremity (28 percent), facial (22 percent), and phrenic nerves (17 percent), was correlated with greater severity of upper extremity paralysis and decreased spontaneous recovery. There was no correlation between severity of paralysis or recovery and patient characteristics, including age, sex, comorbidities, prodromal symptoms, or time to paralysis. CONCLUSIONS Spontaneous functional limb recovery, if present, occurred early, within 3 months of the onset of paralysis. The authors recommend that patients without signs of early recovery warrant consideration for early surgical intervention and referral to a hand surgeon or other specialist in peripheral nerve injury. CLINICAL QUESTION/LEVEL OF EVIDENCE Risk, III.
Collapse
Affiliation(s)
- Erin L Weber
- From the Keck School of Medicine, University of Southern California; and the Children's Hospital Los Angeles
| | - Julie M Werner
- From the Keck School of Medicine, University of Southern California; and the Children's Hospital Los Angeles
| | - Maxwell B Johnson
- From the Keck School of Medicine, University of Southern California; and the Children's Hospital Los Angeles
| | - Gina Kim
- From the Keck School of Medicine, University of Southern California; and the Children's Hospital Los Angeles
| | - Emmanuelle Tiongson
- From the Keck School of Medicine, University of Southern California; and the Children's Hospital Los Angeles
| | - Leigh Ramos-Platt
- From the Keck School of Medicine, University of Southern California; and the Children's Hospital Los Angeles
| | - Mitchel Seruya
- From the Keck School of Medicine, University of Southern California; and the Children's Hospital Los Angeles
| |
Collapse
|
19
|
Hu Y, Kitamura N, Musharrafieh R, Wang J. Discovery of Potent and Broad-Spectrum Pyrazolopyridine-Containing Antivirals against Enteroviruses D68, A71, and Coxsackievirus B3 by Targeting the Viral 2C Protein. J Med Chem 2021; 64:8755-8774. [PMID: 34085827 PMCID: PMC9179928 DOI: 10.1021/acs.jmedchem.1c00758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The enterovirus genus of the picornavirus family contains many important human pathogens. EV-D68 primarily infects children, and the disease manifestations range from respiratory illnesses to neurological complications such as acute flaccid myelitis (AFM). EV-A71 is a major pathogen for the hand, foot, and mouth disease (HFMD) in children and can also lead to AFM and death in severe cases. CVB3 infection can cause cardiac arrhythmias, acute heart failure, as well as type 1 diabetes. There is currently no FDA-approved antiviral for any of these enteroviruses. In this study, we report our discovery and development of pyrazolopyridine-containing small molecules with potent and broad-spectrum antiviral activity against multiple strains of EV-D68, EV-A71, and CVB3. Serial viral passage experiments, coupled with reverse genetics and thermal shift binding assays, suggested that these molecules target the viral protein 2C. Overall, the pyrazolopyridine inhibitors represent a promising class of candidates for the urgently needed nonpolio enterovirus antivirals.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Naoya Kitamura
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Rami Musharrafieh
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
20
|
Kaur R, Kumar K. Synthetic and medicinal perspective of quinolines as antiviral agents. Eur J Med Chem 2021; 215:113220. [PMID: 33609889 PMCID: PMC7995244 DOI: 10.1016/j.ejmech.2021.113220] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/17/2020] [Accepted: 01/18/2021] [Indexed: 12/20/2022]
Abstract
In current scenario, various heterocycles have come up exhibiting crucial role in various medicinal agents which are valuable for mankind. Out of diverse range of heterocycle, quinoline scaffold have been proved to play an important role in broad range of biological activities. Several drug molecules bearing a quinoline molecule with useful anticancer, antibacterial activities etc have been marketed such as chloroquine, saquinavir etc. Owing to their broad spectrum biological role, various synthetic strategies such as Skraup reaction, Combes reaction etc. has been developed by the researchers all over the world. But still the synthetic methods are associated with various limitations as formation of side products, use of expensive metal catalysts. Thus, several efforts to develop an efficient and cost effective synthetic protocol are still carried out till date. Moreover, quinoline scaffold displays remarkable antiviral activity. Therefore, in this review we have made an attempt to describe recent synthetic protocols developed by various research groups along with giving a complete explanation about the role of quinoline derivatives as antiviral agent. Quinoline derivatives were found potent against various strains of viruses like zika virus, enterovirus, herpes virus, human immunodeficiency virus, ebola virus, hepatitis C virus, SARS virus and MERS virus etc.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga, Punjab, 142001, India
| | - Kapil Kumar
- School of Pharmacy and Technology Management, SVKM's NMIMS, Hyderabad, Telangana, 509301, India.
| |
Collapse
|
21
|
Ünver O, Türkdoğan D, Güler S, Kipoğlu O, Güngör M, Paketçi C, Çarman KB, Öztürk G, Genç HM, Özkan M, Dündar NO, Işık U, Karatoprak E, Kılıç B, Özkale M, Bayram E, Yarar C, Sözen HG, Sağer G, Güneş AS, Kahraman Koytak P, Karadağ Saygı E, Ekinci G, Saltık S, Çalışkan M, Kara B, Yiş U, Aydınlı N. Acute flaccid myelitis outbreak through 2016-2018: A multicenter experience from Turkey. Eur J Paediatr Neurol 2021; 30:113-120. [PMID: 33218883 DOI: 10.1016/j.ejpn.2020.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/04/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
AIM We aim to describe the demographic characteristics, etiology, neurophysiology, imaging findings, treatment, prognosis, and prognostic factors of acute flaccid myelitis. METHODS The clinical data, laboratory test and, magnetic resonance imaging (MRI) results of pediatric patients diagnosed with acute flaccid myelitis according to the Centers for Disease Control criteria between August 1, 2016, and December 31, 2018, from 13 centers in Turkey were reviewed. RESULTS Of the 34 cases identified, 31 were confirmed (91.2%). Eighteen patients (55.9%) were boys. The median patient age was 4 years (interquartile range 2.5-6.9 years). Most of the patients were admitted in 2018 (n = 27). A preceding history of a febrile illness was reported in all patients, with a median of 4 days (interquartile range 3-7 days) before symptom onset. Thirty-one patients had T2 hyperintensity on spinal MRI, and 18 patients had cerebrospinal fluid pleocytosis. The most common infectious agents were entero/rhinoviruses (n = 5) in respiratory specimens. All patients except one received immunotherapy either alone or in combination. Among 27 patients with follow-up data 24 had persistent weakness. Involvement of four limbs together with an abnormal brain MRI at onset were associated with a poor prognosis. CONCLUSION The number of patients with acute flaccid myelitis increased since 2012, spiking with every 2-year interval, largely in the pediatric population. The median age decreases with every outbreak. Clinicians should be aware of the clinical picture for early collection of specimens and early start of rehabilitation programs. Further studies are needed to better characterize the etiology, pathogenesis, risk factors, and treatment of this rare condition.
Collapse
Affiliation(s)
- Olcay Ünver
- Division of Pediatric Neurology, Department of Pediatrics, Marmara University School of Medicine, İstanbul, Turkey.
| | - Dilşad Türkdoğan
- Division of Pediatric Neurology, Department of Pediatrics, Marmara University School of Medicine, İstanbul, Turkey
| | - Serhat Güler
- Division of Pediatric Neurology, Department of Pediatrics, İstanbul University Cerrahpaşa School of Medicine, İstanbul, Turkey
| | - Osman Kipoğlu
- Division of Pediatric Neurology, Department of Pediatrics, İstanbul University Faculty of Medicine, İstanbul, Turkey
| | - Mesut Güngör
- Division of Pediatric Neurology, Department of Pediatrics, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Cem Paketçi
- Division of Pediatric Neurology, Department of Pediatrics, Dokuz Eylül University Medical Faculty, İzmir, Turkey
| | - Kürşat Bora Çarman
- Division of Pediatric Neurology, Department of Pediatrics, Eskişehir Osmangazi University Medical Faculty, Eskişehir, Turkey
| | - Gülten Öztürk
- Division of Pediatric Neurology, Department of Pediatrics, Marmara University School of Medicine, İstanbul, Turkey
| | - Hülya Maraş Genç
- Division of Pediatric Neurology, Department of Pediatrics, Ümraniye Training and Research Hospital, İstanbul, Turkey
| | - Mehpare Özkan
- Division of Pediatric Neurology, Department of Pediatrics, Bahçeşehir University Medical Faculty, İstanbul, Turkey
| | - Nihal Olgaç Dündar
- Division of Pediatric Neurology, Department of Pediatrics, Izmir Katip Çelebi University Medical Faculty, İzmir, Turkey
| | - Uğur Işık
- Division of Pediatric Neurology, Department of Pediatrics, Acıbadem University School of Medicine, İstanbul, Turkey
| | - Elif Karatoprak
- Division of Pediatric Neurology, Department of Pediatrics, Medeniyet University School of Medicine, İstanbul, Turkey
| | - Betül Kılıç
- Division of Pediatric Neurology, Department of Pediatrics, Medipol University School of Medicine, İstanbul, Turkey
| | - Murat Özkale
- Division of Pediatric Intensive Care Unit, Department of Pediatrics, Başkent University School of Medicine, Adana, Turkey
| | - Erhan Bayram
- Division of Pediatric Neurology, Department of Pediatrics, Dokuz Eylül University Medical Faculty, İzmir, Turkey
| | - Coşkun Yarar
- Division of Pediatric Neurology, Department of Pediatrics, Eskişehir Osmangazi University Medical Faculty, Eskişehir, Turkey
| | - Hatice Gülhan Sözen
- Division of Pediatric Neurology, Department of Pediatrics, Ümraniye Training and Research Hospital, İstanbul, Turkey
| | - Güneş Sağer
- Division of Pediatric Neurology, Department of Pediatrics, Marmara University School of Medicine, İstanbul, Turkey
| | - Ayfer Sakarya Güneş
- Division of Pediatric Neurology, Department of Pediatrics, Kocaeli University School of Medicine, Kocaeli, Turkey
| | | | - Evrim Karadağ Saygı
- Department of Physical Medicine and Rehabilitation, Marmara University School of Medicine, İstanbul, Turkey
| | - Gazanfer Ekinci
- Department of Radiology, Yeditepe University School of Medicine, İstanbul, Turkey
| | - Sema Saltık
- Division of Pediatric Neurology, Department of Pediatrics, İstanbul University Cerrahpaşa School of Medicine, İstanbul, Turkey
| | - Mine Çalışkan
- Division of Pediatric Neurology, Department of Pediatrics, İstanbul University Faculty of Medicine, İstanbul, Turkey; İstanbul University Institute of Child Health, İstanbul, Turkey
| | - Bülent Kara
- Division of Pediatric Neurology, Department of Pediatrics, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Uluç Yiş
- Division of Pediatric Neurology, Department of Pediatrics, Dokuz Eylül University Medical Faculty, İzmir, Turkey
| | - Nur Aydınlı
- Division of Pediatric Neurology, Department of Pediatrics, İstanbul University Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
22
|
Elrick MJ, Pekosz A, Duggal P. Enterovirus D68 molecular and cellular biology and pathogenesis. J Biol Chem 2021; 296:100317. [PMID: 33484714 PMCID: PMC7949111 DOI: 10.1016/j.jbc.2021.100317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, enterovirus D68 (EV-D68) has advanced from a rarely detected respiratory virus to a widespread pathogen responsible for increasing rates of severe respiratory illness and acute flaccid myelitis (AFM) in children worldwide. In this review, we discuss the accumulating data on the molecular features of EV-D68 and place these into the context of enterovirus biology in general. We highlight similarities and differences with other enteroviruses and genetic divergence from own historical prototype strains of EV-D68. These include changes in capsid antigens, host cell receptor usage, and viral RNA metabolism collectively leading to increased virulence. Furthermore, we discuss the impact of EV-D68 infection on the biology of its host cells, and how these changes are hypothesized to contribute to motor neuron toxicity in AFM. We highlight areas in need of further research, including the identification of its primary receptor and an understanding of the pathogenic cascade leading to motor neuron injury in AFM. Finally, we discuss the epidemiology of the EV-D68 and potential therapeutic approaches.
Collapse
Affiliation(s)
- Matthew J Elrick
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Abstract
Enterovirus D68 (EV-D68) is an RNA virus that causes respiratory illnesses mainly in children. In severe cases, it can lead to neurological complications such as acute flaccid myelitis (AFM). EV-D68 belongs to the enterovirus genera of the Picornaviridae family, which also includes many other significant human pathogens such as poliovirus, enterovirus A71, and rhinovirus. There are currently no vaccines or antivirals against EV-D68. In this review, we present the current understanding of the link between EV-D68 and AFM, the mechanism of viral replication, and recent progress in developing EV-D68 antivirals by targeting various viral proteins and host factors that are essential for viral replication. The future directions of EV-D68 antiviral drug discovery and the criteria for drugs to reach clinical trials are also discussed.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Rami Musharrafieh
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Madeleine Zheng
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| |
Collapse
|
24
|
Vogt MR, Fu J, Kose N, Williamson LE, Bombardi R, Setliff I, Georgiev IS, Klose T, Rossmann MG, Bochkov YA, Gern JE, Kuhn RJ, Crowe JE. Human antibodies neutralize enterovirus D68 and protect against infection and paralytic disease. Sci Immunol 2020; 5:5/49/eaba4902. [PMID: 32620559 DOI: 10.1126/sciimmunol.aba4902] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/12/2020] [Indexed: 12/17/2022]
Abstract
Enterovirus D68 (EV-D68) causes outbreaks of respiratory illness, and there is increasing evidence that it causes outbreaks of acute flaccid myelitis (AFM). There are no licensed therapies to prevent or treat EV-D68 infection or AFM disease. We isolated a panel of EV-D68-reactive human monoclonal antibodies that recognize diverse antigenic variants from participants with prior infection. One potently neutralizing cross-reactive antibody, EV68-228, protected mice from respiratory and neurologic disease when given either before or after infection. Cryo-electron microscopy studies revealed that EV68-228 and another potently neutralizing antibody (EV68-159) bound around the fivefold or threefold axes of symmetry on virion particles, respectively. The structures suggest diverse mechanisms of action by these antibodies. The high potency and effectiveness observed in vivo suggest that antibodies are a mechanistic correlate of protection against AFM disease and are candidates for clinical use in humans with EV-D68 infection.
Collapse
Affiliation(s)
- Matthew R Vogt
- Department of Pediatrics (Infectious Diseases), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jianing Fu
- Department of Biological Sciences and Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren E Williamson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robin Bombardi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ian Setliff
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas Klose
- Department of Biological Sciences and Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Michael G Rossmann
- Department of Biological Sciences and Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Yury A Bochkov
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA.,Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Kuhn
- Department of Biological Sciences and Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - James E Crowe
- Department of Pediatrics (Infectious Diseases), Vanderbilt University Medical Center, Nashville, TN, USA. .,Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
25
|
Ma C, Hu Y, Zhang J, Musharrafieh R, Wang J. A Novel Capsid Binding Inhibitor Displays Potent Antiviral Activity against Enterovirus D68. ACS Infect Dis 2019; 5:1952-1962. [PMID: 31532189 DOI: 10.1021/acsinfecdis.9b00284] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Enterovirus D68 (EV-D68) is a respiratory viral pathogen that primarily infects children under the age of 8. Although EV-D68 infection typically leads to moderate to severe respiratory illnesses, recent years have seen increasing cases of EV-D68 triggered neurological complications such as acute flaccid myelitis (AFM). There is currently no vaccine or antiviral available for EV-D68; we therefore aimed to develop potent and specific small molecule antivirals against EV-D68. In this study, we report our discovery of a viral capsid inhibitor R856932 that inhibits multiple contemporary EV-D68 strains with single-digit to submicromolar efficacy. Mechanistic studies have shown that the tetrazole compound R856932 binds to the hydrophobic pocket of viral capsid protein VP1, thereby preventing viral uncoating and release of viral genome in the infected cells. The mechanism of action of R856932 was confirmed by time-of-addition, Western blot, RT-qPCR, viral heat inactivation, serial viral passage, and reverse genetics experiments. A single mutation located at VP1, A129V, confers resistance against R856932. However, a recombination virus encoding VP1-A129V appeared to have compromised fitness of replication compared to the wild-type EV-D68 virus as shown by the competition growth assay. Overall, the hit compound identified in this study, R856932, represents a promising starting point with a confirmed mechanism of action that can be further developed into EV-D68 antivirals.
Collapse
Affiliation(s)
- Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1657 East Helen Street, Tucson, Arizona 85721, United States
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1657 East Helen Street, Tucson, Arizona 85721, United States
| | - Jiantao Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1657 East Helen Street, Tucson, Arizona 85721, United States
| | - Rami Musharrafieh
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1657 East Helen Street, Tucson, Arizona 85721, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1657 East Helen Street, Tucson, Arizona 85721, United States
| |
Collapse
|
26
|
Neurotropism of Enterovirus D68 Isolates Is Independent of Sialic Acid and Is Not a Recently Acquired Phenotype. mBio 2019; 10:mBio.02370-19. [PMID: 31641090 PMCID: PMC6805996 DOI: 10.1128/mbio.02370-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since 2014, numerous outbreaks of childhood infections with enterovirus D68 (EV-D68) have occurred worldwide. Most infections are associated with flu-like symptoms, but paralysis may develop in young children. It has been suggested that infection only with recent viral isolates can cause paralysis. To address the hypothesis that EV-D68 has recently acquired neurotropism, murine organotypic brain slice cultures, induced human motor neurons and astrocytes, and mice lacking the alpha/beta interferon receptor were infected with multiple virus isolates. All EV-D68 isolates, from 1962 to the present, can infect neural cells, astrocytes, and neurons. Furthermore, our results show that sialic acid binding does not play a role in EV-D68 neuropathogenesis. The study of EV-D68 infection in organotypic brain slice cultures, induced motor neurons, and astrocytes will allow for the elucidation of the mechanism by which the virus infection causes disease. Acute flaccid myelitis (AFM) is a rare but serious illness of the nervous system, specifically affecting the gray matter of the spinal cord, motor-controlling regions of the brain, and cranial nerves. Most cases of AFM are pathogen associated, typically with poliovirus and enterovirus infections, and occur in children under the age of 6 years. Enterovirus D68 (EV-D68) was first isolated from children with pneumonia in 1962, but an association with AFM was not observed until the 2014 outbreak. Organotypic mouse brain slice cultures generated from postnatal day 1 to 10 mice and adult ifnar knockout mice were used to determine if neurotropism of EV-D68 is shared among virus isolates. All isolates replicated in organotypic mouse brain slice cultures, and three isolates replicated in primary murine astrocyte cultures. All four EV-D68 isolates examined caused paralysis and death in adult ifnar knockout mice. In contrast, no viral disease was observed after intracranial inoculation of wild-type mice. Six of the seven EV-D68 isolates, including two from 1962 and four from the 2014 outbreak, replicated in induced human neurons, and all of the isolates replicated in induced human astrocytes. Furthermore, a putative viral receptor, sialic acid, is not required for neurotropism of EV-D68, as viruses replicated within neurons and astrocytes independent of binding to sialic acid. These observations demonstrate that EV-D68 is neurotropic independent of its genetic lineage and can infect both neurons and astrocytes and that neurotropism is not a recently acquired characteristic as has been suggested. Furthermore, the results show that in mice the innate immune response is critical for restricting EV-D68 disease.
Collapse
|
27
|
Pino PA, Intravia J, Kozin SH, Zlotolow DA. Early results of nerve transfers for restoring function in severe cases of acute flaccid myelitis. Ann Neurol 2019; 86:607-615. [DOI: 10.1002/ana.25558] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/14/2019] [Accepted: 07/21/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Paula A. Pino
- Department of Orthopedic SurgeryPontifical Catholic University of Chile Santiago Chile
| | | | - Scott H. Kozin
- Department of Orthopedic SurgeryShriners Hospital for Children–Philadelphia Philadelphia PA
| | - Dan A. Zlotolow
- Department of Orthopedic SurgeryShriners Hospital for Children–Philadelphia Philadelphia PA
| |
Collapse
|
28
|
Musharrafieh R, Zhang J, Tuohy P, Kitamura N, Bellampalli SS, Hu Y, Khanna R, Wang J. Discovery of Quinoline Analogues as Potent Antivirals against Enterovirus D68 (EV-D68). J Med Chem 2019; 62:4074-4090. [PMID: 30912944 DOI: 10.1021/acs.jmedchem.9b00115] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Enterovirus D68 (EV-D68) is an atypical nonpolio enterovirus that mainly infects the respiratory system of humans, leading to moderate-to-severe respiratory diseases. In rare cases, EV-D68 can spread to the central nervous system and cause paralysis in infected patients, especially young children and immunocompromised individuals. There is currently no approved vaccine or antiviral available for the prevention and treatment of EV-D68. In this study, we aimed to improve the antiviral potency and selectivity of a previously reported EV-D68 inhibitor, dibucaine, through structure-activity relationship studies. In total, 60 compounds were synthesized and tested against EV-D68 using the viral cytopathic effect assay. Three compounds 10a, 12a, and 12c were identified to have significantly improved potency (EC50 < 1 μM) and a high selectivity index (>180) compared with dibucaine against five different strains of EV-D68 viruses. These compounds also showed potent antiviral activity in neuronal cells, such as A172 and SH-SY5Y cells, suggesting they might be further developed for the treatment of both respiratory infection as well as neuronal infection.
Collapse
|
29
|
Zhang Y, Mao D, Keeler SP, Wang X, Wu K, Gerovac BJ, Shornick LL, Agapov EV, Holtzman MJ. Respiratory Enterovirus (like Parainfluenza Virus) Can Cause Chronic Lung Disease if Protection by Airway Epithelial STAT1 Is Lost. THE JOURNAL OF IMMUNOLOGY 2019; 202:2332-2347. [PMID: 30804041 DOI: 10.4049/jimmunol.1801491] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022]
Abstract
Epithelial barrier cells are proposed to be critical for host defense, and airway epithelial cell capacity for IFN signal transduction is presumed to protect against respiratory viral infection. However, it has been difficult to fully test these concepts given the absence of tools to analyze IFN signaling specific to airway epithelial cells in vivo. To address these issues, we generated a new line of transgenic mice with Cre-driver genes (Foxj1 and Scgb1a1) for a floxed-Stat1 allele (designated Foxj1-Scgb1a1-Cre-Stat1f/f mice) to target the master IFN signal regulator STAT1 in airway epithelial cells and tested these mice for control of infection because of mouse parainfluenza (Sendai) virus and human enterovirus D68 (EV-D68). Indeed, both types of infections showed increases in viral titers and severity of acute illness in Foxj1-Scgb1a1-Cre-Stat1f/f mice and conventional Stat1-/- mice compared with wild-type mice. In concert, the chronic lung disease that develops after Sendai virus infection was also increased in Foxj1-Scgb1a1-Cre-Stat1f/f and Stat1-/ - mice, marked by airway and adjacent parenchymal immune cell infiltration and mucus production for at least 7 wk postinfection. Unexpectedly, relatively mild EV-D68 infection also progressed to chronic lung disease in Foxj1-Scgb1a1-Cre-Stat1f/f and Stat1 -/- mice but was limited (like viral replication) to airways. The results thereby provide proof-of-concept for a critical role of barrier epithelial cells in protection from acute illness and chronic disease after viral infection and suggest a specific role for airway epithelial cells given the limitation of EV-D68 replication and acute and chronic manifestations of disease primarily to airway tissue.
Collapse
Affiliation(s)
- Yong Zhang
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamus P Keeler
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xinyu Wang
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin J Gerovac
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Laurie L Shornick
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Eugene V Agapov
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
30
|
Development of a respiratory disease model for enterovirus D68 in 4-week-old mice for evaluation of antiviral therapies. Antiviral Res 2018; 162:61-70. [PMID: 30521834 DOI: 10.1016/j.antiviral.2018.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/07/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023]
Abstract
Enterovirus D68 (EV-D68) is a non-polio enterovirus that affects the respiratory system and can cause serious complications, especially in children and older people with weakened immune systems. As an emerging virus, there are no current antiviral therapies or vaccines available. Our goal was to develop a mouse model of human EV-D68 infection that mimicked the disease observed in humans and could be used for evaluation of experimental therapeutics. This is the first report of a respiratory disease model for EV-D68 infection in mice. We adapted the virus by 30 serial passages in AG129 mice, which are deficient in IFN- α/β and -γ receptors. Despite a lack of weight loss or mortality in mice, lung function measured by plethysmography, showed an increase in enhanced pause (Penh) on days 6 and 7 post-infection. In addition, as virus adapted to mice, virus titer in the lungs increased 50-fold, and the pro-inflammatory cytokines MCP-1 and RANTES increased 15-fold and 2-fold in the lung, respectively. In addition, a time course of mouse-adapted EV-D68 infection was determined in lung, blood, liver, kidney, spleen, leg muscle, spinal cord and brain. Virus in the lung replicated rapidly after intranasal inoculation of adapted virus, 106 CCID50/mL by 4 h and 108.3 CCID50/mL by 24 h. Virus then spread to the blood and other tissues, including spinal cord and brain. This mouse model for EV-D68 infection includes enhanced pause (Penh) as an indicator of morbidity, and viremia, virus titers and proinflammatory cytokines in the lung, and lung histopathology as indicators of disease. Our mouse-adapted virus has a similar antiviral profile to the original isolate as well as another respiratory picornavirus, rhinovirus-14. This model will be valuable in evaluating experimental therapies in the future.
Collapse
|