1
|
The Borna Disease Virus 2 (BoDV-2) Nucleoprotein Is a Conspecific Protein That Enhances BoDV-1 RNA-Dependent RNA Polymerase Activity. J Virol 2021; 95:e0093621. [PMID: 34406860 DOI: 10.1128/jvi.00936-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
An RNA virus-based episomal vector (REVec) based on Borna disease virus 1 (BoDV-1) is a promising viral vector that achieves stable and long-term gene expression in transduced cells. However, the onerous procedure of reverse genetics used to generate an REVec is one of the challenges that must be overcome to make REVec technologies practical for use. In this study, to resolve the problems posed by reverse genetics, we focused on BoDV-2, a conspecific virus of BoDV-1 in the Mammalian 1 orthobornavirus. We synthesized the BoDV-2 nucleoprotein (N) and phosphoprotein (P) according to the reference sequences and evaluated their effects on the RNA polymerase activity of the BoDV-1 large protein (L) and viral replication. In the minireplicon assay, we found that BoDV-2 N significantly enhanced BoDV-1 polymerase activity and that BoDV-2 P supported further enhancement of this activity by N. A single amino acid substitution assay identified serine at position 30 of BoDV-2 N and alanine at position 24 of BoDV-2 P as critical amino acid residues for the enhancement of BoDV-1 polymerase activity. In reverse genetics, conversely, BoDV-2 N alone was sufficient to increase the rescue efficiency of the REVec. We showed that the REVec can be rescued directly from transfected 293T cells by using BoDV-2 N as a helper plasmid without cocultivation with Vero cells and following several weeks of passage. In addition, a chimeric REVec harboring the BoDV-2 N produced much higher levels of transgene mRNA and genomic RNA than the wild-type REVec in transduced cells. Our results contribute to not only improvements to the REVec system but also to understanding of the molecular regulation of orthobornavirus polymerase activity. IMPORTANCE Borna disease virus 1 (BoDV-1), a prototype virus of the species Mammalian 1 orthobornavirus, is a nonsegmented negative-strand RNA virus that persists in the host nucleus. The nucleoprotein (N) of BoDV-1 encapsidates genomic and antigenomic viral RNA, playing important roles in viral transcription and replication. In this study, we demonstrated that the N of BoDV-2, another genotype in the species Mammalian 1 orthobornavirus, can participate in the viral ribonucleoprotein complex of BoDV-1 and enhance the activity of BoDV-1 polymerase (L) in both the BoDV-1 minireplicon assay and reverse genetics system. Chimeric recombinant BoDV-1 expressing BoDV-2 N but not BoDV-1 N showed higher transcription and replication levels, whereas the propagation and infectious particle production of the chimeric virus were comparable to those of wild-type BoDV-1, suggesting that the level of viral replication in the nucleus is not directly involved in the progeny virion production of BoDVs. Our results demonstrate a molecular mechanism of bornaviral polymerase activity, which will contribute to further development of vector systems using orthobornaviruses.
Collapse
|
2
|
Komatsu Y, Tomonaga K. Reverse genetics approaches of Borna disease virus: applications in development of viral vectors and preventive vaccines. Curr Opin Virol 2020; 44:42-48. [PMID: 32659515 DOI: 10.1016/j.coviro.2020.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023]
Abstract
The plasmid-based reverse genetics system, which involves generation of recombinant viruses from cloned cDNA, has accelerated the understanding of clinical and virological aspects of different viruses. Borna disease virus (BoDV) is a nonsegmented, negative-strand RNA virus that causes persistent intranuclear infection in various vertebrate species. Since its first report, reverse genetics approaches with modified strategies have greatly improved rescue efficiency of recombinant BoDV and enhanced the understanding of function of each viral protein and mechanism of intranuclear persistency. Here, we summarize different reverse genetics approaches of BoDV and recent developments in the use of reverse genetics for generation of viral vectors for gene therapy and virus-like particles for potential preventive vaccines.
Collapse
Affiliation(s)
- Yumiko Komatsu
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, Japan; Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research, Kyoto University, Kyoto, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Randall RE, Griffin DE. Within host RNA virus persistence: mechanisms and consequences. Curr Opin Virol 2017; 23:35-42. [PMID: 28319790 PMCID: PMC5474179 DOI: 10.1016/j.coviro.2017.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022]
Abstract
In a prototypical response to an acute viral infection it would be expected that the adaptive immune response would eliminate all virally infected cells within a few weeks of infection. However many (non-retrovirus) RNA viruses can establish 'within host' persistent infections that occasionally lead to chronic or reactivated disease. Despite the importance of 'within host' persistent RNA virus infections, much has still to be learnt about the molecular mechanisms by which RNA viruses establish persistent infections, why innate and adaptive immune responses fail to rapidly clear these infections, and the epidemiological and potential disease consequences of such infections.
Collapse
Affiliation(s)
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Hirai Y, Hirano Y, Matsuda A, Hiraoka Y, Honda T, Tomonaga K. Borna Disease Virus Assembles Porous Cage-like Viral Factories in the Nucleus. J Biol Chem 2016; 291:25789-25798. [PMID: 27803166 DOI: 10.1074/jbc.m116.746396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/21/2016] [Indexed: 11/06/2022] Open
Abstract
Animal-derived RNA viruses frequently generate viral factories in infected cells. However, the details of how RNA viruses build such intracellular structures are poorly understood. In this study, we examined the structure and formation of the viral factories, called viral speckle of transcripts (vSPOTs), that are produced in the nuclei of host cells by Borna disease virus (BDV). Super-resolution microscopic analysis showed that BDV assembled vSPOTs as intranuclear cage-like structures with 59-180-nm pores. The viral nucleoprotein formed the exoskeletons of vSPOTs, whereas the other viral proteins appeared to be mainly localized within these structures. In addition, stochastic optical reconstruction microscopy revealed that filamentous structures resembling viral ribonucleoprotein complexes (RNPs) appeared to protrude from the outer surfaces of the vSPOTs. We also found that vSPOTs disintegrated into RNPs concurrently with the breakdown of the nuclear envelope during mitosis. These observations demonstrated that BDV generates viral replication factories whose shape and formation are regulated, suggesting the mechanism of the integrity of RNA virus persistent infection in the nucleus.
Collapse
Affiliation(s)
- Yuya Hirai
- From the Department of Biology, Osaka Dental University, Hirakata 573-1121.,the Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT)
| | - Yasuhiro Hirano
- the Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, and
| | - Atsushi Matsuda
- the Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, and.,the Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Yasushi Hiraoka
- the Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, and.,the Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Tomoyuki Honda
- the Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT)
| | - Keizo Tomonaga
- the Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), .,Departments of Molecular Virology, Graduate School of Medicine, and.,Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507
| |
Collapse
|
5
|
Expression and role of the TGF-β family in glial cells infected with Borna disease virus. Microbes Infect 2016; 18:128-36. [DOI: 10.1016/j.micinf.2015.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022]
|
6
|
Hirai Y, Honda T, Makino A, Watanabe Y, Tomonaga K. X-linked RNA-binding motif protein (RBMX) is required for the maintenance of Borna disease virus nuclear viral factories. J Gen Virol 2015; 96:3198-3203. [PMID: 26333388 DOI: 10.1099/jgv.0.000273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borna disease virus (BDV) is a non-segmented, negative-strand RNA virus that establishes persistent infection in the nucleus. Although BDV forms viral inclusion bodies, termed viral speckles of transcripts (vSPOTs), which are associated with chromatin in the nucleus, the host factors involved in the maintenance of vSPOTs remain largely unknown. In this study, we identified X-linked RNA-binding motif protein (RBMX) as a nuclear factor interacting with BDV nucleoprotein. Interestingly, knockdown of RBMX led to disruption of the formation of vSPOTs and reduced both transcription and replication of BDV. Our results indicate that RBMX is involved in the maintenance of the structure of the virus factory in the nucleus.
Collapse
Affiliation(s)
- Yuya Hirai
- Department of Biology, Osaka Dental University, Osaka, Japan.,Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Tomoyuki Honda
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Akiko Makino
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto, Japan.,Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Yuzo Watanabe
- Department of Proteomics Facility, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keizo Tomonaga
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto, Japan.,Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Makino A, Fujino K, Parrish NF, Honda T, Tomonaga K. Borna disease virus possesses an NF-ĸB inhibitory sequence in the nucleoprotein gene. Sci Rep 2015; 5:8696. [PMID: 25733193 PMCID: PMC4649702 DOI: 10.1038/srep08696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/02/2015] [Indexed: 02/06/2023] Open
Abstract
Borna disease virus (BDV) has a non-segmented, negative-stranded RNA genome and causes persistent infection in many animal species. Previous study has shown that the activation of the IκB kinase (IKK)/NF-κB pathway is reduced by BDV infection even in cells expressing constitutively active mutant IKK. This result suggests that BDV directly interferes with the IKK/NF-κB pathway. To elucidate the mechanism for the inhibition of NF-κB activation by BDV infection, we evaluated the cross-talk between BDV infection and the NF-κB pathway. Using Multiple EM for Motif Elicitation analysis, we found that the nucleoproteins of BDV (BDV-N) and NF-κB1 share a common ankyrin-like motif. When THP1-CD14 cells were pre-treated with the identified peptide, NF-κB activation by Toll-like receptor ligands was suppressed. The 20S proteasome assay showed that BDV-N and BDV-N-derived peptide inhibited the processing of NF-κB1 p105 into p50. Furthermore, immunoprecipitation assays showed that BDV-N interacted with NF-κB1 but not with NF-κB2, which shares no common motif with BDV-N. These results suggest BDV-N inhibits NF-κB1 processing by the 20S proteasome through its ankyrin-like peptide sequence, resulting in the suppression of IKK/NF-κB pathway activation. This inhibitory effect of BDV on the induction of the host innate immunity might provide benefits against persistent BDV infection.
Collapse
Affiliation(s)
- Akiko Makino
- 1] Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan [2] Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Kan Fujino
- Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan
| | | | - Tomoyuki Honda
- 1] Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan [2] Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Keizo Tomonaga
- 1] Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan [2] Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan [3] Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
8
|
Analysis of borna disease virus trafficking in live infected cells by using a virus encoding a tetracysteine-tagged p protein. J Virol 2013; 87:12339-48. [PMID: 24027309 DOI: 10.1128/jvi.01127-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Borna disease virus (BDV) is a nonsegmented, negative-stranded RNA virus characterized by noncytolytic persistent infection and replication in the nuclei of infected cells. To gain further insight on the intracellular trafficking of BDV components during infection, we sought to generate recombinant BDV (rBDV) encoding fluorescent fusion viral proteins. We successfully rescued a virus bearing a tetracysteine tag fused to BDV-P protein, which allowed assessment of the intracellular distribution and dynamics of BDV using real-time live imaging. In persistently infected cells, viral nuclear inclusions, representing viral factories tethered to chromatin, appeared to be extremely static and stable, contrasting with a very rapid and active trafficking of BDV components in the cytoplasm. Photobleaching (fluorescence recovery after photobleaching [FRAP] and fluorescence loss in photobleaching [FLIP]) imaging approaches revealed that BDV components were permanently and actively exchanged between cellular compartments, including within viral inclusions, albeit with a fraction of BDV-P protein not mobile in these structures, presumably due to its association with viral and/or cellular proteins. We also obtained evidence for transfer of viral material between persistently infected cells, with routing of the transferred components toward the cell nucleus. Finally, coculture experiments with noninfected cells allowed visualization of cell-to-cell BDV transmission and movement of the incoming viral material toward the nucleus. Our data demonstrate the potential of tetracysteine-tagged recombinant BDV for virus tracking during infection, which may provide novel information on the BDV life cycle and on the modalities of its interaction with the nuclear environment during viral persistence.
Collapse
|
9
|
Horie M, Kobayashi Y, Suzuki Y, Tomonaga K. Comprehensive analysis of endogenous bornavirus-like elements in eukaryote genomes. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120499. [PMID: 23938751 DOI: 10.1098/rstb.2012.0499] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bornaviruses are the only animal RNA viruses that establish a persistent infection in their host cell nucleus. Studies of bornaviruses have provided unique information about viral replication strategies and virus-host interactions. Although bornaviruses do not integrate into the host genome during their replication cycle, we and others have recently reported that there are DNA sequences derived from the mRNAs of ancient bornaviruses in the genomes of vertebrates, including humans, and these have been designated endogenous borna-like (EBL) elements. Therefore, bornaviruses have been interacting with their hosts as driving forces in the evolution of host genomes in a previously unexpected way. Studies of EBL elements have provided new models for virology, evolutionary biology and general cell biology. In this review, we summarize the data on EBL elements including what we have newly identified in eukaryotes genomes, and discuss the biological significance of EBL elements, with a focus on EBL nucleoprotein elements in mammalian genomes. Surprisingly, EBL elements were detected in the genomes of invertebrates, suggesting that the host range of bornaviruses may be much wider than previously thought. We also review our new data on non-retroviral integration of Borna disease virus.
Collapse
Affiliation(s)
- Masayuki Horie
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, , 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
10
|
Nucleocytoplasmic shuttling of viral proteins in borna disease virus infection. Viruses 2013; 5:1978-90. [PMID: 23965528 PMCID: PMC3761237 DOI: 10.3390/v5081978] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 12/20/2022] Open
Abstract
Nuclear import and export of viral RNA and proteins are critical to the replication cycle of viruses that replicate in the nucleus. Borna disease virus (BDV) is a nonsegmented, negative-strand RNA virus that belongs to the order Mononegavirales. BDV has several distinguishing features, one of the most striking being the site of its replication. BDV RNA is transcribed and replicated in the nucleus, while most other negative-strand RNA viruses replicate in the cytoplasm. Therefore, the nucleocytoplasmic trafficking of BDV macromolecules plays a key role in virus replication. Growing evidence indicates that several BDV proteins, including the nucleoprotein, phosphoprotein, protein X and large protein, contribute to the nucleocytoplasmic trafficking of BDV ribonucleoprotein (RNP). The directional control of BDV RNP trafficking is likely determined by the ratios of and interactions between the nuclear localization signals and nuclear export signals in the RNP. In this review, we present a comprehensive view of several unique mechanisms that BDV has developed to control its RNP trafficking and discuss the significance of BDV RNP trafficking in the replication cycle of BDV.
Collapse
|
11
|
Herrel M, Hoefs N, Staeheli P, Schneider U. Tick-borne Nyamanini virus replicates in the nucleus and exhibits unusual genome and matrix protein properties. J Virol 2012; 86:10739-47. [PMID: 22837209 PMCID: PMC3457285 DOI: 10.1128/jvi.00571-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 07/07/2012] [Indexed: 12/21/2022] Open
Abstract
Tick-borne Nyamanini virus (NYMV) is the prototypic member of a recently discovered genus in the order Mononegavirales, designated Nyavirus. The NYMV genome codes for six distinct genes. Sequence similarity and structural properties suggest that genes 1, 5, and 6 encode the nucleoprotein (N), the glycoprotein (G), and the viral polymerase (L), respectively. The function of the other viral genes has been unknown to date. We found that the third NYMV gene codes for a protein which, when coexpressed with N and L, can reconstitute viral polymerase activity, suggesting that it represents a polymerase cofactor. The second viral gene codes for a small protein that inhibits viral polymerase activity and further strongly enhances the formation of virus-like particles when coexpressed with gene 4 and the viral glycoprotein G. This suggests that two distinct proteins serve a matrix protein function in NYMV as previously described for members of the family Filoviridae. We further found that NYMV replicates in the nucleus of infected cells like members of the family Bornaviridae. NYMV is a poor inducer of beta interferon, presumably because the viral genome is 5' monophosphorylated and has a protruding 3' terminus as observed for bornaviruses. Taken together, our results demonstrate that NYMV possesses biological properties previously regarded as typical for filoviruses and bornaviruses, respectively.
Collapse
Affiliation(s)
- Marieke Herrel
- Department of Virology, University of Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
12
|
Bornavirus Closely Associates and Segregates with Host Chromosomes to Ensure Persistent Intranuclear Infection. Cell Host Microbe 2012; 11:492-503. [DOI: 10.1016/j.chom.2012.04.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/07/2012] [Accepted: 04/11/2012] [Indexed: 11/22/2022]
|
13
|
Karlin D, Belshaw R. Detecting remote sequence homology in disordered proteins: discovery of conserved motifs in the N-termini of Mononegavirales phosphoproteins. PLoS One 2012; 7:e31719. [PMID: 22403617 PMCID: PMC3293882 DOI: 10.1371/journal.pone.0031719] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/18/2012] [Indexed: 11/19/2022] Open
Abstract
Paramyxovirinae are a large group of viruses that includes measles virus and parainfluenza viruses. The viral Phosphoprotein (P) plays a central role in viral replication. It is composed of a highly variable, disordered N-terminus and a conserved C-terminus. A second viral protein alternatively expressed, the V protein, also contains the N-terminus of P, fused to a zinc finger. We suspected that, despite their high variability, the N-termini of P/V might all be homologous; however, using standard approaches, we could previously identify sequence conservation only in some Paramyxovirinae. We now compared the N-termini using sensitive sequence similarity search programs, able to detect residual similarities unnoticeable by conventional approaches. We discovered that all Paramyxovirinae share a short sequence motif in their first 40 amino acids, which we called soyuz1. Despite its short length (11-16aa), several arguments allow us to conclude that soyuz1 probably evolved by homologous descent, unlike linear motifs. Conservation across such evolutionary distances suggests that soyuz1 plays a crucial role and experimental data suggest that it binds the viral nucleoprotein to prevent its illegitimate self-assembly. In some Paramyxovirinae, the N-terminus of P/V contains a second motif, soyuz2, which might play a role in blocking interferon signaling. Finally, we discovered that the P of related Mononegavirales contain similarly overlooked motifs in their N-termini, and that their C-termini share a previously unnoticed structural similarity suggesting a common origin. Our results suggest several testable hypotheses regarding the replication of Mononegavirales and suggest that disordered regions with little overall sequence similarity, common in viral and eukaryotic proteins, might contain currently overlooked motifs (intermediate in length between linear motifs and disordered domains) that could be detected simply by comparing orthologous proteins.
Collapse
Affiliation(s)
- David Karlin
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | | |
Collapse
|
14
|
Abstract
Bornaviridae is an enveloped animal virus carrying an 8.9 kb non-segmented, negative-strand RNA genome. The genus bornavirus contains two members infecting vertebrates, Borna disease virus (BDV) and avian bornavirus (ABV), which could preferably infect the nervous systems. BDV causes classical Borna disease, a progressive meningoencephalomyelitis, in horses and sheep, and ABV is known to induce proventricular dilatation disease, a fatal disease characterized by a lymphocytic, plasmacytic inflammation of central and peripheral nervous tissues, in multiple avian species. Recent evidences have demonstrated that bornavirus is unique among RNA viruses as they not only establish a long-lasting, persistent infection in the nucleus, but also integrate their own DNA genome copy into the host chromosome. In this review, I outline the recent knowledge about the unique virological characteristics of bornaviruses, as well as the diseases caused by the infection of BDV and ABV.
Collapse
Affiliation(s)
- Keizo Tomonaga
- Department of Viral Oncology, Institute for Virus Research, Kyoto University
| |
Collapse
|
15
|
Abstract
Approximately 8% of our genome is made up of endogenous retroviral elements. Endogenous retrovirus is a fossil record of ancient retrovirus infection and, therefore, gives important insights into the evolutional relationship between retroviruses and their hosts. On the other hand, until recently, it has been believed that no endogenous non-retroviral viruses exist in animal genomes. We lately discovered endogenous elements homologous to the nucleoprotein of bornaviruses, a negative-strand RNA virus, in the genomes of many mammalian species, including humans. We also demonstrated that mRNA of extant mammalian bornavirus, Borna disease virus, is reverse-transcribed and integrated into the host genome DNA. These findings provided novel insights not only into the interaction between RNA viruses and their hosts, but also into the mechanism underlying the gain of novelty in mammalian genomes. In this review, we will briefly summarize our recent knowledge about endogenous bornavirus elements and also introduce some recent discoveries regarding endogenous elements of non-retroviral viruses in vertebrate genomes.
Collapse
|
16
|
Protein kinase C-dependent phosphorylation of Borna disease virus P protein is required for efficient viral spread. Arch Virol 2010; 155:789-93. [DOI: 10.1007/s00705-010-0645-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
|
17
|
Hock M, Kraus I, Schoehn G, Jamin M, Andrei-Selmer C, Garten W, Weissenhorn W. RNA induced polymerization of the Borna disease virus nucleoprotein. Virology 2010; 397:64-72. [DOI: 10.1016/j.virol.2009.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/29/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
|
18
|
Identification of host factors involved in borna disease virus cell entry through a small interfering RNA functional genetic screen. J Virol 2010; 84:3562-75. [PMID: 20071576 DOI: 10.1128/jvi.02274-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV), the prototypic member of the Bornaviridae family, within the order Mononegavirales, is highly neurotropic and constitutes an important model system for the study of viral persistence in the central nervous system (CNS) and associated disorders. The virus surface glycoprotein (G) has been shown to direct BDV cell entry via receptor-mediated endocytosis, but the mechanisms governing cell tropism and propagation of BDV within the CNS are unknown. We developed a small interfering RNA (siRNA)-based screening to identify cellular genes and pathways that specifically contribute to BDV G-mediated cell entry. Our screen relied on silencing-mediated increased survival of cells infected with rVSVDeltaG*/BDVG, a cytolytic recombinant vesicular stomatitis virus expressing BDV G that mimics the cell tropism and entry pathway of bona fide BDV. We identified 24 cellular genes involved in BDV G-mediated cell entry. Identified genes are known to participate in a broad range of distinct cellular functions, revealing a complex process associated with BDV cell entry. The siRNA-based screening strategy we have developed should be applicable to identify cellular genes contributing to cell entry mediated by surface G proteins of other viruses.
Collapse
|
19
|
Watanabe Y, Ohtaki N, Hayashi Y, Ikuta K, Tomonaga K. Autogenous translational regulation of the Borna disease virus negative control factor X from polycistronic mRNA using host RNA helicases. PLoS Pathog 2009; 5:e1000654. [PMID: 19893625 PMCID: PMC2766071 DOI: 10.1371/journal.ppat.1000654] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 10/13/2009] [Indexed: 11/24/2022] Open
Abstract
Borna disease virus (BDV) is a nonsegmented, negative-strand RNA virus that employs several unique strategies for gene expression. The shortest transcript of BDV, X/P mRNA, encodes at least three open reading frames (ORFs): upstream ORF (uORF), X, and P in the 5′ to 3′ direction. The X is a negative regulator of viral polymerase activity, while the P phosphoprotein is a necessary cofactor of the polymerase complex, suggesting that the translation of X is controlled rigorously, depending on viral replication. However, the translation mechanism used by the X/P polycistronic mRNA has not been determined in detail. Here we demonstrate that the X/P mRNA autogenously regulates the translation of X via interaction with host factors. Transient transfection of cDNA clones corresponding to the X/P mRNA revealed that the X ORF is translated predominantly by uORF-termination-coupled reinitiation, the efficiency of which is upregulated by expression of P. We found that P may enhance ribosomal reinitiation at the X ORF by inhibition of the interaction of the DEAD-box RNA helicase DDX21 with the 5′ untranslated region of X/P mRNA, via interference with its phosphorylation. Our results not only demonstrate a unique translational control of viral regulatory protein, but also elucidate a previously unknown mechanism of regulation of polycistronic mRNA translation using RNA helicases. All viruses rely on host cell factors to complete their life cycles. Therefore, the replication strategies of viruses may provide not only the understanding of virus pathogenesis but also useful models to disentangle the complex machinery of host cells. Translation regulation of viral mRNA is a good example of this. Borna disease virus (BDV) is a highly neurotropic RNA virus which is characterized by persistent infection. BDV expresses mRNAs as polycistronic coding transcripts. Among them, the 0.8 kb X/P mRNA encodes at least three open reading frames (ORFs), upstream ORF, X, and P. Although BDV X and P have opposing effects in terms of viral polymerase activity, the translational regulation of X/P polycistronic mRNA has not been elucidated. In this study, we show an ingenious strategy of translational control of viral regulatory protein using host factors. We demonstrate that host RNA helicases, mainly DDX21, can affect ribosomal reinitiation of X via interaction with the 5′ untranslated region (UTR) of X/P mRNA and that the downstream P protein autogenously controls the translation of X by interfering with the binding of DDX21 to the 5′ UTR. Our findings uncover not only a unique translational control of viral regulatory protein but also a previously unknown mechanism of translational regulation of polycistronic mRNA using RNA helicases.
Collapse
Affiliation(s)
- Yohei Watanabe
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
| | - Naohiro Ohtaki
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
| | - Yohei Hayashi
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
| | - Kazuyoshi Ikuta
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
- Section of Viral Infections, Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
| | - Keizo Tomonaga
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
- PRESTO, Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
20
|
Cell entry of Borna disease virus follows a clathrin-mediated endocytosis pathway that requires Rab5 and microtubules. J Virol 2009; 83:10406-16. [PMID: 19656886 DOI: 10.1128/jvi.00990-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV), the prototypic member of the Bornaviridae family within the order Mononegavirales, exhibits high neurotropism and provides an important and unique experimental model system for studying virus-cell interactions within the central nervous system. BDV surface glycoprotein (G) plays a critical role in virus cell entry via receptor-mediated endocytosis, and therefore, G is a critical determinant of virus tissue and cell tropism. However, the specific cell pathways involved in BDV cell entry have not been determined. Here, we provide evidence that BDV uses a clathrin-mediated, caveola-independent cell entry pathway. We also show that BDV G-mediated fusion takes place at an optimal pH of 6.0 to 6.2, corresponding to an early-endosome compartment. Consistent with this finding, BDV cell entry was Rab5 dependent but Rab7 independent and exhibited rapid fusion kinetics. Our results also uncovered a key role for microtubules in BDV cell entry, whereas the integrity and dynamics of actin cytoskeleton were not required for efficient cell entry of BDV.
Collapse
|
21
|
Protein X of Borna disease virus inhibits apoptosis and promotes viral persistence in the central nervous systems of newborn-infected rats. J Virol 2009; 83:4297-307. [PMID: 19211764 DOI: 10.1128/jvi.02321-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Borna disease virus (BDV) is a neurotropic member of the order Mononegavirales with noncytolytic replication and obligatory persistence in cultured cells and animals. Here we show that the accessory protein X of BDV represents the first mitochondrion-localized protein of an RNA virus that inhibits rather than promotes apoptosis induction. Rat C6 astroglioma cells persistently infected with wild-type BDV were significantly more resistant to death receptor-dependent and -independent apoptotic stimuli than uninfected cells or cells infected with a BDV mutant expressing reduced amounts of X. Confocal microscopy demonstrated that X colocalizes with mitochondria and expression of X from plasmid DNA rendered human 293T and mouse L929 cells resistant to apoptosis induction. A recombinant virus encoding a mutant X protein unable to associate with mitochondria (BDV-X(A6A7)) failed to block apoptosis in C6 cells. Furthermore, Lewis rats neonatally infected with BDV-X(A6A7) developed severe neurological symptoms and died around day 30 postinfection, whereas all animals infected with wild-type BDV remained healthy and became persistently infected. TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) staining revealed a significant increase in the number of apoptotic cells in the brain of BDV-X(A6A7)-infected animals, whereas the numbers of CD3(+) T lymphocytes were comparable to those detected in animals infected with wild-type BDV. Our data thus indicate that inhibition of apoptosis by X promotes noncytolytic viral persistence and is required for the survival of cells in the central nervous system of BDV-infected animals.
Collapse
|
22
|
Hayashi Y, Horie M, Daito T, Honda T, Ikuta K, Tomonaga K. Heat shock cognate protein 70 controls Borna disease virus replication via interaction with the viral non-structural protein X. Microbes Infect 2009; 11:394-402. [PMID: 19397879 DOI: 10.1016/j.micinf.2009.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 01/13/2009] [Accepted: 01/17/2009] [Indexed: 11/18/2022]
Abstract
Borna disease virus (BDV) is a non-segmented, negative-sense RNA virus and has the property of persistently infecting the cell nucleus. BDV encodes a 10-kDa non-structural protein, X, which is a negative regulator of viral polymerase activity but is essential for virus propagation. Recently, we have demonstrated that interaction of X with the viral polymerase cofactor, phosphoprotein (P), facilitates translocation of P from the nucleus to the cytoplasm. However, the mechanism by which the intracellular localization of X is controlled remains unclear. In this report, we demonstrate that BDV X interacts with the 71kDa molecular chaperon protein, Hsc70. Immunoprecipitation assays revealed that Hsc70 associates with the same region of X as P and, interestingly, that expression of P interferes competitively with the interaction between X and Hsc70. A heat shock experiment revealed that BDV X translocates into the nucleus, dependent upon the nuclear accumulation of Hsc70. Furthermore, we show that knockdown of Hsc70 by short interfering RNA decreases the nuclear localization of both X and P and markedly reduces the expression of viral genomic RNA in persistently infected cells. These data indicate that Hsc70 may be involved in viral replication by regulating the intracellular distribution of X.
Collapse
Affiliation(s)
- Yohei Hayashi
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Borna disease virus requires cholesterol in both cellular membrane and viral envelope for efficient cell entry. J Virol 2009; 83:2655-62. [PMID: 19129439 DOI: 10.1128/jvi.02206-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV), the prototypic member of the family Bornaviridae within the order Mononegavirales, provides an important model for the investigation of viral persistence within the central nervous system (CNS) and of associated brain disorders. BDV is highly neurotropic and enters its target cell via receptor-mediated endocytosis, a process mediated by the virus surface glycoprotein (G), but the cellular factors and pathways determining BDV cell tropism within the CNS remain mostly unknown. Cholesterol has been shown to influence viral infections via its effects on different viral processes, including replication, budding, and cell entry. In this work, we show that cell entry, but not replication and gene expression, of BDV was drastically inhibited by depletion of cellular cholesterol levels. BDV G-mediated attachment to BDV-susceptible cells was cholesterol independent, but G localized to lipid rafts (LR) at the plasma membrane. LR structure and function critically depend on cholesterol, and hence, compromised structural integrity and function of LR caused by cholesterol depletion likely inhibited the initial stages of BDV cell internalization. Furthermore, we also show that viral-envelope cholesterol is required for BDV infectivity.
Collapse
|
24
|
Werner-Keišs N, Garten W, Richt JA, Porombka D, Algermissen D, Herzog S, Baumgärtner W, Herden C. Restricted expression of Borna disease virus glycoprotein in brains of experimentally infected Lewis rats. Neuropathol Appl Neurobiol 2008; 34:590-602. [DOI: 10.1111/j.1365-2990.2008.00940.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Borna disease virus P protein affects neural transmission through interactions with gamma-aminobutyric acid receptor-associated protein. J Virol 2008; 82:12487-97. [PMID: 18815298 DOI: 10.1128/jvi.00877-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV) is one of the infectious agents that causes diseases of the central nervous system in a wide range of vertebrate species and, perhaps, in humans. The phosphoprotein (P) of BDV, an essential cofactor of virus RNA-dependent RNA polymerase, is required for virus replication. In this study, we identified the gamma-aminobutyric acid receptor-associated protein (GABARAP) with functions in neurobiology as one of the viral P protein-interacting cellular factors by using an approach of phage display-based protein-protein interaction analysis. Direct binding between GABARAP and P protein was confirmed by coimmunoprecipitation, protein pull-down, and mammalian two-hybrid analyses. GABARAP originally was identified as a linker between the gamma-aminobutyric acid receptor (GABAR) and the microtubule to regulate receptor trafficking and plays important roles in the regulation of the inhibitory neural transmitter gamma-aminobutyric acid (GABA). We showed that GABARAP colocalizes with P protein in the cells infected with BDV or transfected with the P gene, which resulted in shifting the localization of GABARAP from the cytosol to the nucleus. We further demonstrated that P protein blocks the trafficking of GABAR, a principal GABA-gated ion channel that plays important roles in neural transmission, to the surface of cells infected with BDV or transfected with the P gene. We proposed that during BDV infection, P protein binds to GABARAP, shifts the distribution of GABARAP from the cytoplasm to the nucleus, and disrupts the trafficking of GABARs to the cell membranes, which may result in the inhibition of GABA-induced currents and in the enhancement of hyperactivity and anxiety.
Collapse
|
26
|
Poenisch M, Staeheli P, Schneider U. Viral accessory protein X stimulates the assembly of functional Borna disease virus polymerase complexes. J Gen Virol 2008; 89:1442-1445. [PMID: 18474560 DOI: 10.1099/vir.0.2008/000638-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Borna disease virus (BDV) proteins X and P are translated from a bicistronic viral mRNA. Here, it was shown that the rescue of recombinant BDV from cDNA was enhanced approximately eightfold if reconstitution of the viral polymerase complex was performed with an expression vector encoding X and P rather than P alone. The results provide evidence that appropriate amounts of X reduce the previously reported high sensitivity of the BDV polymerase to imbalances between the viral proteins N and P. These data indicate that X buffers an unfavourable excess of P, thereby stimulating the assembly of functional BDV polymerase complexes.
Collapse
Affiliation(s)
- Marion Poenisch
- Department of Virology, University of Freiburg, D-79104 Freiburg, Germany
| | - Peter Staeheli
- Department of Virology, University of Freiburg, D-79104 Freiburg, Germany
| | - Urs Schneider
- Department of Virology, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
27
|
Implications for a regulated replication of Borna disease virus in brains of experimentally infected Lewis rats. Virus Genes 2008; 36:415-20. [PMID: 18273698 DOI: 10.1007/s11262-008-0210-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
Abstract
The neurotropic Borna disease virus (BDV) causes typically a persistent virus infection of the central nervous system. In order to investigate whether an adapted virus replication contributes to BDV persistence in vivo, a fast and reliable real-time RT-PCR assay was constructed to quantify the amounts of leader-containing (leBDV) as a marker for virus replication, genomic (vBDV) and nucleoprotein-(BDV-N +ssRNA)-specific RNA. Therefore, leBDV, vBDV and BDV-N +ssRNA values were determined in experimentally infected Lewis rats between 14 and 90 days post infection (dpi). Surprisingly low leBDV values were found compared to vBDV and the abundantly expressed BDV-N transcripts. vBDV multiplied only in the acute phase of infection followed by constant expression until 90 dpi. Ratios of vBDV to leBDV were 401:1 at 14 dpi and diminished to 209:1 at 90 dpi, indicating a regulated co-expression of replicative intermediates as a potential prerequisite for viral persistence.
Collapse
|
28
|
Peng G, Zhang F, Zhang Q, Wu K, Zhu F, Wu J. Borna disease virus P protein inhibits nitric oxide synthase gene expression in astrocytes. Virology 2007; 366:446-52. [PMID: 17543364 DOI: 10.1016/j.virol.2007.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
Borna disease virus (BDV) is one of the potential infectious agents involved in the development of central nervous system (CNS) diseases. Neurons and astrocytes are the main targets of BDV infection, but little is known about the roles of BDV infection in the biological effects of astrocytes. Here we reported that BDV inhibits the activation of inducible nitric oxide synthase (iNOS) in murine astrocytes induced by bacterial LPS and PMA. To determine which protein of BDV is responsible for the regulation of iNOS expression, we co-transfected murine astrocytes with reporter plasmid iNOS-luciferase and plasmid expressing individual BDV proteins. Results from analyses of reporter activities revealed that only the phosphoprotein (P) of BDV had an inhibitory effect on the activation of iNOS. In addition, P protein inhibits nitric oxide production through regulating iNOS expression. We also reported that the nuclear factor kappa B (NF-kappaB) binding element, AP-1 recognition site, and interferon-stimulated response element (ISRE) on the iNOS promoter were involved in the repression of iNOS gene expression regulated by the P protein. Functional analysis indicated that sequences from amino acids 134 to 174 of the P protein are necessary for the regulation of iNOS. These data suggested that BDV may suppress signal transduction pathways, which resulted in the inhibition of iNOS activation in astrocytes.
Collapse
Affiliation(s)
- Guiqing Peng
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Clemente R, de la Torre JC. Cell-to-cell spread of Borna disease virus proceeds in the absence of the virus primary receptor and furin-mediated processing of the virus surface glycoprotein. J Virol 2007; 81:5968-77. [PMID: 17376904 PMCID: PMC1900278 DOI: 10.1128/jvi.02426-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 03/08/2007] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV) is an enveloped virus with a nonsegmented negative-strand RNA genome whose organization is characteristic of Mononegavirales. BDV cell entry follows a receptor-mediated endocytosis pathway, which is initiated by the recognition of an as-yet-unidentified receptor at the cell surface by the virus glycoprotein G. BDV G is synthesized as a precursor (GPC) that is cleaved by the cellular protease furin to produce the mature glycoproteins GP1 and GP2, which have been implicated in receptor recognition and pH-dependent fusion events, respectively. BDV is highly neurotropic and its spread in cultured cells proceeds in the absence of detectable extracellular virus or syncytium formation. BDV spread has been proposed to be strictly dependent on the expression and correct processing of BDV G. Here we present evidence that cell-to-cell spread of BDV required neither the expression of cellular receptors involved in virus primary infection, nor the furin-mediated processing of BDV G. We also show that in furin-deficient cells, the release of BDV particles induced by the treatment of BDV-infected cells with hypertonic buffer was not significantly affected, while virion infectivity was dramatically impaired, correlating with the decreased incorporation of BDV G species into viral particles. These findings support the view that the propagation of BDV within the central nervous systems of infected hosts involves both a primary infection that follows a receptor-mediated endocytosis pathway and a subsequent cell-to-cell spread that is independent of the expression of the primary receptor and does not require the processing of BDV G into GP1 and GP2.
Collapse
Affiliation(s)
- Roberto Clemente
- Department of Molecular Integrative Neuroscience, The Scripps Research Institute, IMM6, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | |
Collapse
|
30
|
Ackermann A, Staeheli P, Schneider U. Adaptation of Borna disease virus to new host species attributed to altered regulation of viral polymerase activity. J Virol 2007; 81:7933-40. [PMID: 17522214 PMCID: PMC1951315 DOI: 10.1128/jvi.00334-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV) can persistently infect the central nervous system of a broad range of mammalian species. Mice are resistant to infections with primary BDV isolates, but certain laboratory strains can be adapted to replicate in mice. We determined the molecular basis of adaptation by studying mutations acquired by a cDNA-derived BDV strain during one brain passage in rats and three passages in mice. The adapted virus propagated efficiently in mouse brains and induced neurological disease. Its genome contained seven point mutations, three of which caused amino acid changes in the L polymerase (L1116R and N1398D) and in the polymerase cofactor P (R66K). Recombinant BDV carrying these mutations either alone or in combination all showed enhanced multiplication speed in Vero cells, indicating improved intrinsic viral polymerase activity rather than adaptation to a mouse-specific factor. Mutations R66K and L1116R, but not N1398D, conferred replication competence of recombinant BDV in mice if introduced individually. Virus propagation in mouse brains was substantially enhanced if both L mutations were present simultaneously, but infection remained mostly nonsymptomatic. Only if all three amino acid substitutions were combined did BDV replicate vigorously and induce early disease in mice. Interestingly, the virulence-enhancing effect of the R66K mutation in P could be attributed to reduced negative regulation of polymerase activity by the viral X protein. Our data demonstrate that BDV replication competence in mice is mediated by the polymerase complex rather than the viral envelope and suggest that altered regulation of viral gene expression can favor adaptation to new host species.
Collapse
Affiliation(s)
- Andreas Ackermann
- Department of Virology, University of Freiburg, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
31
|
Schneider U, Ackermann A, Staeheli P. A Borna disease virus vector for expression of foreign genes in neurons of rodents. J Virol 2007; 81:7293-6. [PMID: 17428876 PMCID: PMC1933307 DOI: 10.1128/jvi.02467-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An expression cassette for green fluorescent protein was successfully inserted at a site near the 5' end of the genome of Borna disease virus (BDV). When introduced into a mutant virus with highly active polymerase, the foreign gene was strongly expressed in neurons of infected rats. Since BDV can establish long-term persistence in the central nervous system of rodents, it may be used to engineer efficient vectors for specific delivery of foreign genes into highly differentiated neurons.
Collapse
Affiliation(s)
- Urs Schneider
- Department of Virology, University of Freiburg, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
32
|
Poenisch M, Wille S, Ackermann A, Staeheli P, Schneider U. The X protein of borna disease virus serves essential functions in the viral multiplication cycle. J Virol 2007; 81:7297-9. [PMID: 17428855 PMCID: PMC1933315 DOI: 10.1128/jvi.02468-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The X gene of Borna disease virus (BDV) encodes a nonstructural 10-kDa protein that can interact with viral polymerase cofactor P, thus regulating polymerase activity. It remained unknown whether X is essential for virus multiplication. All our attempts to generate mutant BDV with a nonfunctional X gene proved unsuccessful. However, a mutant virus with an inactive X gene was able to replicate in Vero cells if an artificial gene cassette encoding X was inserted at a site near the 5' end of the viral genome. These results indicate that X performs essential viral functions.
Collapse
Affiliation(s)
- Marion Poenisch
- Department of Virology, University of Freiburg, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
33
|
Schmid S, Mayer D, Schneider U, Schwemmle M. Functional characterization of the major and minor phosphorylation sites of the P protein of Borna disease virus. J Virol 2007; 81:5497-507. [PMID: 17376920 PMCID: PMC1900310 DOI: 10.1128/jvi.02233-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphoprotein P of Borna disease virus (BDV) is an essential cofactor of the viral RNA-dependent RNA polymerase. It is preferentially phosphorylated at serine residues 26 and 28 by protein kinase C epsilon (PKCepsilon) and, to a lesser extent, at serine residues 70 and 86 by casein kinase II (CKII). To determine whether P phosphorylation is required for viral polymerase activity, we generated P mutants lacking either the PKCepsilon or the CKII phosphate acceptor sites by replacing the corresponding serine residues with alanine (A). Alternatively, these sites were replaced by aspartic acid (D) to mimic phosphorylation. Functional characterization of the various mutants in the BDV minireplicon assay revealed that D substitutions at the CKII sites inhibited the polymerase-supporting activity of P, while A substitutions maintained wild-type activity. Likewise, D substitutions at the PKC sites did not impair the cofactor function of BDV-P, whereas A substitutions at these sites led to increased activity. Interestingly, recombinant viruses could be rescued only when P mutants with modified PKCepsilon sites were used but not when both CKII sites were altered. PKCepsilon mutant viruses showed a reduced capacity to spread in cell culture, while viral RNA and protein expression levels in persistently infected cells were almost normal. Further mutational analyses revealed that substitutions at individual CKII sites were, with the exception of a substitution of A for S86, detrimental for viral rescue. These data demonstrate that, in contrast to other viral P proteins, the cofactor activity of BDV-P is negatively regulated by phosphorylation.
Collapse
Affiliation(s)
- Sonja Schmid
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Hermann Herder Strasse 11, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
34
|
Chase G, Mayer D, Hildebrand A, Frank R, Hayashi Y, Tomonaga K, Schwemmle M. Borna disease virus matrix protein is an integral component of the viral ribonucleoprotein complex that does not interfere with polymerase activity. J Virol 2006; 81:743-9. [PMID: 17079312 PMCID: PMC1797437 DOI: 10.1128/jvi.01351-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have recently shown that the matrix protein M of Borna disease virus (BDV) copurifies with the affinity-purified nucleoprotein (N) from BDV-infected cells, suggesting that M is an integral component of the viral ribonucleoprotein complex (RNP). However, further studies were hampered by the lack of appropriate tools. Here we generated an M-specific rabbit polyclonal antiserum to investigate the intracellular distribution of M as well as its colocalization with other viral proteins in BDV-infected cells. Immunofluorescence analysis revealed that M is located both in the cytoplasm and in nuclear punctate structures typical for BDV infection. Colocalization studies indicated an association of M with nucleocapsid proteins in these nuclear punctate structures. In situ hybridization analysis revealed that M also colocalizes with the viral genome, implying that M associates directly with viral RNPs. Biochemical studies demonstrated that M binds specifically to the phosphoprotein P but not to N. Binding of M to P involves the N terminus of P and is independent of the ability of P to oligomerize. Surprisingly, despite P-M complex formation, BDV polymerase activity was not inhibited but rather slightly elevated by M, as revealed in a minireplicon assay. Thus, unlike M proteins of other negative-strand RNA viruses, BDV-M seems to be an integral component of the RNPs without interfering with the viral polymerase activity. We propose that this unique feature of BDV-M is a prerequisite for the establishment of BDV persistence.
Collapse
Affiliation(s)
- Geoffrey Chase
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Borna disease virus (BDV) is an enveloped virus that has a non-segmented, negative-strand RNA genome with the characteristic organization of the mononegaviruses. However, based on its unique genetic and biological features, BDV is considered to be the prototypic member of a new mononegavirus family, the Bornaviridae. BDV causes central nervous system (CNS) disease in a wide variety of mammals. This article discusses the recently developed reverse-genetics systems for BDV, and the implications for the elucidation of the molecular mechanisms underlying BDV-host interactions, including the basis of BDV persistence in the CNS and its associated diseases.
Collapse
Affiliation(s)
- Juan C de la Torre
- Molecular Integrative Neuroscience Department IMM-6, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
36
|
Martin A, Staeheli P, Schneider U. RNA polymerase II-controlled expression of antigenomic RNA enhances the rescue efficacies of two different members of the Mononegavirales independently of the site of viral genome replication. J Virol 2006; 80:5708-15. [PMID: 16731909 PMCID: PMC1472609 DOI: 10.1128/jvi.02389-05] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
De novo generation of negative-strand RNA viruses depends on the efficient expression of antigenomic RNA (cRNA) from cDNA. To improve the rescue system of Borna disease virus (BDV), a member of the Mononegavirales with a nuclear replication phase, we evaluated different RNA polymerase (Pol) promoters for viral cRNA expression. Human and mouse Pol I promoters did not increase the recovery rate of infectious BDV from cDNA compared to the originally employed T7 RNA polymerase system. In contrast, expression of viral cRNA under the control of an RNA Pol II promoter increased the rescue efficacy by nearly 20-fold. Similarly, rescue of measles virus (MV), a member of the Mononegavirales with a cytoplasmic replication phase, was strongly improved by Pol II-controlled expression of viral cRNA. Analysis of transcription levels derived from different promoters suggested that the rescue-enhancing function of the Pol II promoter was due mainly to enhanced cRNA synthesis from the plasmid. Remarkably, correct 5'-terminal processing of Pol II-transcribed cRNA by a hammerhead ribozyme was not necessary for efficient rescue of BDV or MV. The correct 5' termini were reconstituted during replication of the artificially prolonged cRNA, indicating that the BDV and MV replicase complexes are able to recognize internal viral replication signals.
Collapse
Affiliation(s)
- Arnold Martin
- Department of Virology, University of Freiburg, Hermann Herder Strasse 11, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
37
|
Yanai H, Hayashi Y, Watanabe Y, Ohtaki N, Kobayashi T, Nozaki Y, Ikuta K, Tomonaga K. Development of a novel Borna disease virus reverse genetics system using RNA polymerase II promoter and SV40 nuclear import signal. Microbes Infect 2006; 8:1522-9. [PMID: 16697679 DOI: 10.1016/j.micinf.2006.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 10/24/2022]
Abstract
Borna disease virus (BDV) is a noncytolytic, neurotropic RNA virus that replicates and transcribes in the nucleus of infected cells. Therefore, efficient synthesis of BDV RNA in the nucleus is critical for the development of a reverse genetics system for this virus. Here, we report the development of such a system using the RNA polymerase II (Pol II) promoter. The BDV minigenome cDNA was flanked by hammerhead ribozyme and hepatitis delta ribozyme sequences and inserted downstream of the Pol II promoter. To improve the efficacy of minigenome expression, we estimated the effects of several signal sequences within the minigenome constructs. We found that insertion of the SV40 nuclear import sequence into the Pol II constructs significantly enhances the replication of the minigenome even in cells lacking the SV40 large T antigen. This novel system is theoretically applicable to any mammalian cell line and would be valuable for analyzing host- or cell-type-dependent differences in BDV replication and production. We could demonstrate here the cell-type-dependent inhibitory effect of the viral protein X on BDV polymerase activity. This system may be useful for various research fields not only of BDV but also of other negative-sense RNA viruses.
Collapse
Affiliation(s)
- Hideyuki Yanai
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Volmer R, Monnet C, Gonzalez-Dunia D. Borna disease virus blocks potentiation of presynaptic activity through inhibition of protein kinase C signaling. PLoS Pathog 2006; 2:e19. [PMID: 16552443 PMCID: PMC1401496 DOI: 10.1371/journal.ppat.0020019] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 01/30/2006] [Indexed: 01/19/2023] Open
Abstract
Infection by Borna disease virus (BDV) enables the study of the molecular mechanisms whereby a virus can persist in the central nervous system and lead to altered brain function in the absence of overt cytolysis and inflammation. This neurotropic virus infects a wide variety of vertebrates and causes behavioral diseases. The basis of BDV-induced behavioral impairment remains largely unknown. Here, we investigated whether BDV infection of neurons affected synaptic activity, by studying the rate of synaptic vesicle (SV) recycling, a good indicator of synaptic activity. Vesicular cycling was visualized in cultured hippocampal neurons synapses, using an assay based on the uptake of an antibody directed against the luminal domain of synaptotagmin I. BDV infection did not affect elementary presynaptic functioning, such as spontaneous or depolarization-induced vesicular cycling. In contrast, infection of neurons with BDV specifically blocked the enhancement of SV recycling that is observed in response to stimuli-induced synaptic potentiation, suggesting defects in long-term potentiation. Studies of signaling pathways involved in synaptic potentiation revealed that this blockade was due to a reduction of the phosphorylation by protein kinase C (PKC) of proteins that regulate SV recycling, such as myristoylated alanine-rich C kinase substrate (MARCKS) and Munc18–1/nSec1. Moreover, BDV interference with PKC-dependent phosphorylation was identified downstream of PKC activation. We also provide evidence suggesting that the BDV phosphoprotein interferes with PKC-dependent phosphorylation. Altogether, our results reveal a new mechanism by which a virus can cause synaptic dysfunction and contribute to neurobehavioral disorders. The central nervous system is the target of many persistent viral infections that can induce diverse pathological manifestations. Besides causing meningitis or encephalitis, viruses can infect neurons without overt structural damage, but nevertheless alter cellular functioning by yet-undefined molecular mechanisms, thereby disturbing homeostasis and causing disease. Here, the authors have studied the infection by Borna disease virus, an RNA virus that persists in the brain of a wide variety of animals and causes behavioral disturbances. Using primary cultures of neurons, they show that Borna disease virus interferes specifically with the activity-dependent enhancement of synaptic activity, one form of synaptic plasticity that is believed to be essential for memory formation. This interference was correlated to a reduced phosphorylation of neuronal targets by protein kinase C (PKC), a kinase that plays important roles in the regulation of neuronal activity. The authors also provide evidence that the viral phosphoprotein may be responsible for this interference, possibly by competing with the phosphorylation of endogenous cellular PKC substrates. These results illustrate an intriguing aspect of viral interference with neuronal function and reveal a new mechanism whereby a virus can cause synaptic dysfunction and contribute to neurobehavioral disorders.
Collapse
Affiliation(s)
- Romain Volmer
- Avenir group, INSERM, U563, Toulouse, France
- Unité des Virus Lents, CNRS URA 1930, Département de Virologie, Institut Pasteur, Paris, France
| | | | - Daniel Gonzalez-Dunia
- Avenir group, INSERM, U563, Toulouse, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Gonzalez-Dunia D, Volmer R, Mayer D, Schwemmle M. Borna disease virus interference with neuronal plasticity. Virus Res 2005; 111:224-34. [PMID: 15885838 DOI: 10.1016/j.virusres.2005.04.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Viruses able to infect the central nervous system (CNS) are increasingly being recognized as important factors that can cause mental diseases by interfering with neuronal plasticity. The mechanisms whereby such infections disturb brain functions are beginning to emerge. Borna disease virus (BDV), which causes a persistent infection of neurons without direct cytolysis in several mammalian hosts, has recently gained interest as a unique model to study the mechanisms of viral interference with neuronal plasticity. This review will summarize several hypotheses that have been put forward to explain possible levels of BDV interference with brain function.
Collapse
Affiliation(s)
- Daniel Gonzalez-Dunia
- Avenir Group, Inserm U563, CPTP Bat B, CHU Purpan, BP 3028, 31024 Toulouse Cedex 3, France.
| | | | | | | |
Collapse
|