1
|
de Bruin ACM, Funk M, Spronken MI, Gultyaev AP, Fouchier RAM, Richard M. Hemagglutinin Subtype Specificity and Mechanisms of Highly Pathogenic Avian Influenza Virus Genesis. Viruses 2022; 14:1566. [PMID: 35891546 PMCID: PMC9321182 DOI: 10.3390/v14071566] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Highly Pathogenic Avian Influenza Viruses (HPAIVs) arise from low pathogenic precursors following spillover from wild waterfowl into poultry populations. The main virulence determinant of HPAIVs is the presence of a multi-basic cleavage site (MBCS) in the hemagglutinin (HA) glycoprotein. The MBCS allows for HA cleavage and, consequently, activation by ubiquitous proteases, which results in systemic dissemination in terrestrial poultry. Since 1959, 51 independent MBCS acquisition events have been documented, virtually all in HA from the H5 and H7 subtypes. In the present article, data from natural LPAIV to HPAIV conversions and experimental in vitro and in vivo studies were reviewed in order to compile recent advances in understanding HA cleavage efficiency, protease usage, and MBCS acquisition mechanisms. Finally, recent hypotheses that might explain the unique predisposition of the H5 and H7 HA sequences to obtain an MBCS in nature are discussed.
Collapse
Affiliation(s)
- Anja C. M. de Bruin
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Mathis Funk
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Alexander P. Gultyaev
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
- Group Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, 2300 RA Leiden, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| |
Collapse
|
2
|
Crisci E. From Open Access to Circular Health: Ilaria Capua's Journey through Science and Politics. Viruses 2022; 14:v14061296. [PMID: 35746767 PMCID: PMC9227757 DOI: 10.3390/v14061296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/01/2023] Open
Abstract
This paper highlights the career of an exceptional woman virologist, Dr. Ilaria Capua. It recollects her major achievements, awards and noteworthy events that have shaped her scientific and political career. It retraces Dr. Capua’s major contributions to the study of viral zoonoses, in particular influenza virus, and her strong commitment to an open, more ethical science at the service of society in its broadest sense. It describes how she became the long-term champion of “Open Access” and “Data Sharing” for virus genetic sequences and introduces her new concept of “Circular Health”, where health becomes a circular system that represents a central and vital connection hub between humans and nature. This paper features Dr. Capua’s value as a role model for young women scientists and their empowerment.
Collapse
Affiliation(s)
- Elisa Crisci
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
3
|
Dupré G, Hoede C, Figueroa T, Bessière P, Bertagnoli S, Ducatez M, Gaspin C, Volmer R. Phylodynamic Study of the Conserved RNA Structure Encompassing the Hemagglutinin Cleavage Site Encoding Region of H5 and H7 Low Pathogenic Avian Influenza Viruses. Virus Evol 2021; 7:veab093. [PMID: 35299790 PMCID: PMC8923263 DOI: 10.1093/ve/veab093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Highly Pathogenic Avian Influenza Viruses (HPAIV) evolve from Low Pathogenic Avian Influenza Viruses (LPAIV) of the H5 and H7 subtypes. This evolution is characterized by the acquisition of a multi-basic cleavage site (MBCS) motif in the hemagglutinin (HA) that leads to an extended viral tropism and severe disease in poultry. One key unanswered question is whether the risk of transition to HPAIV is similar for all LPAIV H5 or H7 strains, or whether specific determinants in the HA sequence of some H5 or H7 LPAIV strains correlate with a higher risk of transition to HPAIV. Here we determined if specific features of the conserved RNA stem loop located at the hemagglutinin cleavage site-encoding region could be detected along the LPAIV to HPAIV evolutionary pathway. Analysis of the thermodynamic stability of the predicted RNA structures showed no specific patterns common to HA sequences leading to HPAIV and distinct from those remaining LPAIV. However, RNA structure clustering analysis revealed that most of the American lineage ancestors leading to H7 emergences via recombination shared the same vRNA structure topology at the HA1/HA2 boundary region. Our study thus identified predicted secondary RNA structures present in the HA of H7 viruses, which could promote genetic recombination and acquisition of a MBCS.
Collapse
Affiliation(s)
- Gabriel Dupré
- Ecole nationale vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Claire Hoede
- INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, Plateforme GenoToul BioInfo, F-31326 Castanet-Tolosan, France
| | - Thomas Figueroa
- Ecole nationale vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Pierre Bessière
- Ecole nationale vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Stéphane Bertagnoli
- Ecole nationale vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Mariette Ducatez
- Ecole nationale vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Christine Gaspin
- INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, Plateforme GenoToul BioInfo, F-31326 Castanet-Tolosan, France
| | - Romain Volmer
- Ecole nationale vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| |
Collapse
|
4
|
Preferential Selection and Contribution of Non-Structural Protein 1 (NS1) to the Efficient Transmission of Panzootic Avian Influenza H5N8 Virus Clades 2.3.4.4A and B in Chickens and Ducks. J Virol 2021; 95:e0044521. [PMID: 34160261 DOI: 10.1128/jvi.00445-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Highly pathogenic avian influenza virus H5N8 clade 2.3.4.4 caused outbreaks in poultry at an unprecedented global scale. The virus was spread by wild birds in Asia in two waves: clade 2.3.4.4A in 2014/2015 and clade 2.3.4.4B from 2016 up to today. Both clades were highly virulent in chickens, but only clade B viruses exhibited high virulence in ducks. Viral factors which contribute to virulence and transmission of these panzootic H5N8 2.3.4.4 viruses are largely unknown. The NS1 protein, typically composed of 230 amino acids (aa), is a multifunctional protein which is also a pathogenicity factor. Here, we studied the evolutionary trajectory of H5N8 NS1 proteins from 2013 to 2019 and their role in the fitness of H5N8 viruses in chickens and ducks. Sequence analysis and in vitro experiments indicated that clade 2.3.4.4A and clade 2.3.4.4B viruses have a preference for NS1 of 237 aa and 217 aa, respectively, over NS1 of 230 aa. NS217 was exclusively seen in domestic and wild birds in Europe. The extension of the NS1 C terminus (CTE) of clade B virus reduced virus transmission and replication in chickens and ducks and partially impaired the systemic tropism to the endothelium in ducks. Conversely, lower impact on fitness of clade A virus was observed. Remarkably, the NS1 of clade A and clade B, regardless of length, was efficient in blocking interferon (IFN) induction in infected chickens, and changes in the NS1 C terminus reduced the efficiency for interferon antagonism. Together, the NS1 C terminus contributes to the efficient transmission and high fitness of H5N8 viruses in chickens and ducks. IMPORTANCE The panzootic H5N8 highly pathogenic avian influenza viruses of clade 2.3.4.4A and 2.3.4.4B devastated the poultry industry globally. Clade 2.3.4.4A was predominant in 2014/2015 while clade 2.3.4.4B was widely spread in 2016/2017. The two clades exhibited different pathotypes in ducks. Virus factors contributing to virulence and transmission are largely unknown. The NS1 protein is typically composed of 230 amino acids (aa) and is an essential interferon (IFN) antagonist. Here, we found that the NS1 protein of clade 2.3.4.4A preferentially evolved toward long NS1 with 237 aa, while clade 2.3.4.4B evolved toward shorter NS1 with 217 aa (exclusively found in Europe) due to stop codons in the C terminus (CTE). We showed that the NS1 CTE of H5N8 is required for efficient virus replication, transmission, and endotheliotropism in ducks. In chickens, H5N8 NS1 evolved toward higher efficiency to block IFN response. These findings may explain the preferential pattern for short NS1 and high fitness of the panzootic H5N8 in birds.
Collapse
|
5
|
Blaurock C, Blohm U, Luttermann C, Holzerland J, Scheibner D, Schäfer A, Groseth A, Mettenleiter TC, Abdelwhab EM. The C-terminus of non-structural protein 1 (NS1) in H5N8 clade 2.3.4.4 avian influenza virus affects virus fitness in human cells and virulence in mice. Emerg Microbes Infect 2021; 10:1760-1776. [PMID: 34420477 PMCID: PMC8432360 DOI: 10.1080/22221751.2021.1971568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Avian influenza viruses (AIV) H5N8 clade 2.3.4.4 pose a public health threat but the viral factors relevant for its potential adaptation to mammals are largely unknown. The non-structural protein 1 (NS1) of influenza viruses is an essential interferon antagonist. It commonly consists of 230 amino acids, but variations in the disordered C-terminus resulted in truncation or extension of NS1 with a possible impact on virus fitness in mammals. Here, we analysed NS1 sequences from 1902 to 2020 representing human influenza viruses (hIAV) as well as AIV in birds, humans and other mammals and with an emphasis on the panzootic AIV subtype H5N8 clade 2.3.4.4A (H5N8-A) from 2013 to 2015 and clade 2.3.4.4B (H5N8-B) since 2016. We found a high degree of prevalence for short NS1 sequences among hIAV, zoonotic AIV and H5N8-B, while AIV and H5N8-A had longer NS1 sequences. We assessed the fitness of recombinant H5N8-A and H5N8-B viruses carrying NS1 proteins with different lengths in human cells and in mice. H5N8-B with a short NS1, similar to hIAV or AIV from a human or other mammal-origins, was more efficient at blocking apoptosis and interferon-induction without a significant impact on virus replication in human cells. In mice, shortening of the NS1 of H5N8-A increased virus virulence, while the extension of NS1 of H5N8-B reduced virus virulence and replication. Taken together, we have described the biological impact of variation in the NS1 C-terminus in hIAV and AIV and shown that this affects virus fitness in vitro and in vivo.
Collapse
Affiliation(s)
- Claudia Blaurock
- Institute of Molecular Virology and Cell Biology, Federal Research Institute for Animal Health Greifswald-Insel Riems, Germany
| | - Ulrike Blohm
- Institute of Immunology, Federal Research Institute for Animal Health Greifswald-Insel Riems, Germany
| | - Christine Luttermann
- Institute of Immunology, Federal Research Institute for Animal Health Greifswald-Insel Riems, Germany
| | - Julia Holzerland
- Institute of Molecular Virology and Cell Biology, Federal Research Institute for Animal Health Greifswald-Insel Riems, Germany
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Federal Research Institute for Animal Health Greifswald-Insel Riems, Germany
| | - Alexander Schäfer
- Institute of Immunology, Federal Research Institute for Animal Health Greifswald-Insel Riems, Germany
| | - Allison Groseth
- Institute of Molecular Virology and Cell Biology, Federal Research Institute for Animal Health Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health Greifswald-Insel Riems, Germany
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Federal Research Institute for Animal Health Greifswald-Insel Riems, Germany
| |
Collapse
|
6
|
Mettier J, Marc D, Sedano L, Da Costa B, Chevalier C, Le Goffic R. Study of the host specificity of PB1-F2-associated virulence. Virulence 2021; 12:1647-1660. [PMID: 34125653 PMCID: PMC8205076 DOI: 10.1080/21505594.2021.1933848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Influenza A viruses cause important diseases in both human and animal. The PB1-F2 protein is a virulence factor expressed by some influenza viruses. Its deleterious action for the infected host is mostly described in mammals, while the available information is scarce in avian hosts. In this work, we compared the effects of PB1-F2 in avian and mammalian hosts by taking advantage of the zoonotic capabilities of an avian H7N1 virus. In vitro, the H7N1 virus did not behave differently when PB1-F2 was deficient while a H3N2 virus devoid of PB1-F2 was clearly less inflammatory. Likewise, when performing in vivo challenges of either chickens or embryonated eggs, with the wild-type or the PB1-F2 deficient virus, no difference could be observed in terms of mortality, host response or tropism. PB1-F2 therefore does not appear to play a major role as a virulence factor in the avian host. However, when infecting NF-κB-luciferase reporter mice with the H7N1 viruses, a massive PB1-F2-dependent inflammation was quantified, highlighting the host specificity of PB1-F2 virulence. Surprisingly, a chimeric 7:1 H3N2 virus harboring an H7N1-origin segment 2 (i.e. expressing the avian PB1-F2) induced a milder inflammatory response than its PB1-F2-deficient counterpart. This result shows that the pro-inflammatory activity of PB1-F2 is governed by complex mechanisms involving components from both the virus and its infected host. Thus, a mere exchange of segment 2 between strains is not sufficient to transmit the deleterious character of PB1-F2.
Collapse
Affiliation(s)
- Joëlle Mettier
- Université Paris-Saclay, INRAE, UVSQ, UMR892 VIM, Jouy-en-Josas, France
| | - Daniel Marc
- UMR1282 Infectiologie Et Santé Publique, INRAE, Nouzilly, France
| | - Laura Sedano
- Université Paris-Saclay, INRAE, UVSQ, UMR892 VIM, Jouy-en-Josas, France
| | - Bruno Da Costa
- Université Paris-Saclay, INRAE, UVSQ, UMR892 VIM, Jouy-en-Josas, France
| | | | - Ronan Le Goffic
- Université Paris-Saclay, INRAE, UVSQ, UMR892 VIM, Jouy-en-Josas, France
| |
Collapse
|
7
|
Trapp S, Soubieux D, Lidove A, Esnault E, Lion A, Guillory V, Wacquiez A, Kut E, Quéré P, Larcher T, Ledevin M, Nadan V, Camus-Bouclainville C, Marc D. Major contribution of the RNA-binding domain of NS1 in the pathogenicity and replication potential of an avian H7N1 influenza virus in chickens. Virol J 2018; 15:55. [PMID: 29587792 PMCID: PMC5870492 DOI: 10.1186/s12985-018-0960-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/11/2018] [Indexed: 11/10/2022] Open
Abstract
Background Non-structural protein NS1 of influenza A viruses harbours several determinants of pathogenicity and host-range. However it is still unclear to what extent each of its two structured domains (i.e. RNA-binding domain, RBD, and effector domain, ED) contribute to its various activities. Methods To evaluate the respective contributions of the two domains, we genetically engineered two variants of an H7N1 low pathogenicity avian influenza virus harbouring amino-acid substitutions that impair the functionality of either domain. The RBD- and ED-mutant viruses were compared to their wt- counterpart in vivo and in vitro, notably in chicken infection and avian cell culture models. Results The double substitution R38A-K41A in the RBD dramatically reduced the pathogenicity and replication potential of the virus, whereas the substitution A149V that was considered to abrogate the IFN-antagonistic activity of the effector domain entailed much less effects. While all three viruses initiated the viral life cycle in avian cells, replication of the R38A-K41A virus was severely impaired. This defect was associated with a delayed synthesis of nucleoprotein NP and a reduced accumulation of NS1, which was found to reach a concentration of about 30 micromol.L− 1 in wt-infected cells at 8 h post-infection. When overexpressed in avian lung epithelial cells, both the wt-NS1 and 3841AA-NS1, but not the A149V-NS1, reduced the poly(I:C)-induced activation of the IFN-sensitive chicken Mx promoter. Unexpectedly, the R38A-K41A substitution in the recombinant RBD did not alter its in vitro affinity for a model dsRNA. When overexpressed in avian cells, both the wt- and A149V-NS1s, as well as the individually expressed wt-RBD to a lesser extent, enhanced the activity of the reconstituted viral RNA-polymerase in a minireplicon assay. Conclusions Collectively, our data emphasized the critical importance and essential role of the RNA-binding domain in essential steps of the virus replication cycle, notably expression and translation of viral mRNAs.
Collapse
Affiliation(s)
- Sascha Trapp
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Denis Soubieux
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Alexandra Lidove
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Evelyne Esnault
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Adrien Lion
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Vanaique Guillory
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Alan Wacquiez
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Emmanuel Kut
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Pascale Quéré
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Thibaut Larcher
- INRA UMR 703, APEX, Oniris-La Chantrerie, F-44307, Nantes, France.,LUNAM Université, École Nationale Vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Nantes, France
| | - Mireille Ledevin
- INRA UMR 703, APEX, Oniris-La Chantrerie, F-44307, Nantes, France.,LUNAM Université, École Nationale Vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Nantes, France
| | - Virginie Nadan
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | | | - Daniel Marc
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France. .,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France.
| |
Collapse
|
8
|
Affiliation(s)
- Daniel Marc
- a ISP, INRA, Université Tours , Nouzilly , France
| |
Collapse
|
9
|
Abdelwhab ESM, Veits J, Breithaupt A, Gohrbandt S, Ziller M, Teifke JP, Stech J, Mettenleiter TC. Prevalence of the C-terminal truncations of NS1 in avian influenza A viruses and effect on virulence and replication of a highly pathogenic H7N1 virus in chickens. Virulence 2016; 7:546-57. [PMID: 26981790 DOI: 10.1080/21505594.2016.1159367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Highly pathogenic (HP) avian influenza viruses (AIV) evolve from low pathogenic (LP) precursors after circulation in poultry by reassortment and/or single mutations in different gene segments including that encoding NS1. The carboxyl terminal end (CTE) of NS1 exhibits deletions between amino acid 202 and 230 with still unknown impact on virulence of AIV in chickens. In this study, NS1 protein sequences of all AIV subtypes in birds from 1902 to 2015 were analyzed to study the prevalence and distribution of CTE truncation (ΔCTE). Thirteen different ΔCTE forms were observed in NS1 proteins from 11 HA and 8 NA subtypes with high prevalences in H9, H7, H6 and H10 and N9, N2, N6 and N1 subtypes particularly in chickens and minor poultry species. With 88% NS217 lacking amino acids 218-230 was the most common ΔCTE form followed by NS224 (3.6%). NS217 was found in 10 and 8 different HA and NA subtypes, respectively, whereas NS224 was detected exclusively in the Italian HPAIV H7N1 suggesting relevance for virulence. To test this assumption, 3 recombinant HPAIV H7N1 were constructed carrying wild-type HP NS1 (Hp-NS224), NS1 with extended CTE (Hp-NS230) or NS1 from LPAIV H7N1 (Hp-NSLp), and tested in-vitro and in-vivo. Extension of CTE in Hp NS1 significantly decreased virus replication in chicken embryo kidney cells. Truncation in the NS1 decreased the tropism of Hp-NS224 to the endothelium, central nervous system and respiratory tract epithelium without significant difference in virulence in chickens. This study described the variable forms of ΔCTE in NS1 and indicated that CTE is not an essential virulence determinant particularly for the Italian HPAIV H7N1 but may be a host-adaptation marker required for efficient virus replication.
Collapse
Affiliation(s)
- El-Sayed M Abdelwhab
- a Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Jutta Veits
- a Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Angele Breithaupt
- b Department of Experimental Animal Facilities and Biorisk Management , Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Sandra Gohrbandt
- a Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Mario Ziller
- c Biomathematics Working Group, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Jens P Teifke
- b Department of Experimental Animal Facilities and Biorisk Management , Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Jürgen Stech
- a Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Thomas C Mettenleiter
- a Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| |
Collapse
|
10
|
Munoz O, De Nardi M, van der Meulen K, van Reeth K, Koopmans M, Harris K, von Dobschuetz S, Freidl G, Meijer A, Breed A, Hill A, Kosmider R, Banks J, Stärk KDC, Wieland B, Stevens K, van der Werf S, Enouf V, Dauphin G, Dundon W, Cattoli G, Capua I. Genetic Adaptation of Influenza A Viruses in Domestic Animals and Their Potential Role in Interspecies Transmission: A Literature Review. ECOHEALTH 2016; 13:171-198. [PMID: 25630935 DOI: 10.1007/s10393-014-1004-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 06/04/2023]
Abstract
In December 2011, the European Food Safety Authority awarded a Grant for the implementation of the FLURISK project. The main objective of FLURISK was the development of an epidemiological and virological evidence-based influenza risk assessment framework (IRAF) to assess influenza A virus strains circulating in the animal population according to their potential to cross the species barrier and cause infections in humans. With the purpose of gathering virological data to include in the IRAF, a literature review was conducted and key findings are presented here. Several adaptive traits have been identified in influenza viruses infecting domestic animals and a significance of these adaptations for the emergence of zoonotic influenza, such as shift in receptor preference and mutations in the replication proteins, has been hypothesized. Nonetheless, and despite several decades of research, a comprehensive understanding of the conditions that facilitate interspecies transmission is still lacking. This has been hampered by the intrinsic difficulties of the subject and the complexity of correlating environmental, viral and host factors. Finding the most suitable and feasible way of investigating these factors in laboratory settings represents another challenge. The majority of the studies identified through this review focus on only a subset of species, subtypes and genes, such as influenza in avian species and avian influenza viruses adapting to humans, especially in the context of highly pathogenic avian influenza H5N1. Further research applying a holistic approach and investigating the broader influenza genetic spectrum is urgently needed in the field of genetic adaptation of influenza A viruses.
Collapse
Affiliation(s)
- Olga Munoz
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy.
| | - Marco De Nardi
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
- SAFOSO AG, Bern, Switzerland
| | - Karen van der Meulen
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Kristien van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Marion Koopmans
- Laboratory for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kate Harris
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | - Sophie von Dobschuetz
- Royal Veterinary College (RVC), London, UK
- Food and Agricultural Organization of the United Nations (FAO), Rome, Italy
| | - Gudrun Freidl
- Laboratory for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adam Meijer
- Laboratory for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Andrew Breed
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | - Andrew Hill
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | | | - Jill Banks
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | | | | | | | - Sylvie van der Werf
- Unit of Molecular Genetics of RNA viruses, National Influenza Center (Northern France), Institut Pasteur, UMR3569 CNRS, University Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Vincent Enouf
- Unit of Molecular Genetics of RNA viruses, National Influenza Center (Northern France), Institut Pasteur, UMR3569 CNRS, University Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Gwenaelle Dauphin
- Food and Agricultural Organization of the United Nations (FAO), Rome, Italy
| | - William Dundon
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
| | - Giovanni Cattoli
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
| | - Ilaria Capua
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
| |
Collapse
|
11
|
Hasan NH, Ignjatovic J, Peaston A, Hemmatzadeh F. Avian Influenza Virus and DIVA Strategies. Viral Immunol 2016; 29:198-211. [PMID: 26900835 DOI: 10.1089/vim.2015.0127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vaccination is becoming a more acceptable option in the effort to eradicate avian influenza viruses (AIV) from commercial poultry, especially in countries where AIV is endemic. The main concern surrounding this option has been the inability of the conventional serological tests to differentiate antibodies produced due to vaccination from antibodies produced in response to virus infection. In attempts to address this issue, at least six strategies have been formulated, aiming to differentiate infected from vaccinated animals (DIVA), namely (i) sentinel birds, (ii) subunit vaccine, (iii) heterologous neuraminidase (NA), (iv) nonstructural 1 (NS1) protein, (v) matrix 2 ectodomain (M2e) protein, and (vi) haemagglutinin subunit 2 (HA2) glycoprotein. This short review briefly discusses the strengths and limitations of these DIVA strategies, together with the feasibility and practicality of the options as a part of the surveillance program directed toward the eventual eradication of AIV from poultry in countries where highly pathogenic avian influenza is endemic.
Collapse
Affiliation(s)
- Noor Haliza Hasan
- 1 School of Animal and Veterinary Sciences, The University of Adelaide , Adelaide, Australia .,2 Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah , Sabah, Malaysia
| | - Jagoda Ignjatovic
- 3 School of Veterinary and Agricultural Sciences, The University of Melbourne , Melbourne, Australia
| | - Anne Peaston
- 1 School of Animal and Veterinary Sciences, The University of Adelaide , Adelaide, Australia
| | - Farhid Hemmatzadeh
- 1 School of Animal and Veterinary Sciences, The University of Adelaide , Adelaide, Australia
| |
Collapse
|
12
|
Fusaro A, Tassoni L, Hughes J, Milani A, Salviato A, Schivo A, Murcia PR, Bonfanti L, Cattoli G, Monne I. Evolutionary trajectories of two distinct avian influenza epidemics: Parallelisms and divergences. INFECTION GENETICS AND EVOLUTION 2015; 34:457-66. [PMID: 26003682 DOI: 10.1016/j.meegid.2015.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/05/2015] [Accepted: 05/19/2015] [Indexed: 11/27/2022]
Abstract
Influenza A virus can quickly acquire genetic mutations that may be associated with increased virulence, host switching or antigenic changes. To provide new insights into the evolutionary dynamics and the adaptive strategies of distinct avian influenza lineages in response to environmental and host factors, we compared two distinct avian influenza epidemics caused by the H7N1 and H7N3 subtypes that circulated under similar epidemiological conditions, including the same domestic species reared in the same densely populated poultry area for similar periods of time. The two strains appear to have experienced largely divergent evolution: the H7N1 viruses evolved into a highly pathogenic form, while the H7N3 did not. However, a more detailed molecular and evolutionary analysis revealed several common features: (i) the independent acquisition of 32 identical mutations throughout the entire genome; (ii) the evolution and persistence of two sole genetic groups with similar genetic characteristics; (iii) a comparable pattern of amino acid variability of the HA proteins during the low pathogenic epidemics; and (iv) similar rates of nucleotide substitutions. These findings suggest that the evolutionary trajectories of viruses with the same virulence level circulating in analogous epidemiological conditions may be similar. In addition, our deep sequencing analysis of 15 samples revealed that 17 of the 32 parallel mutations were already present at the beginning of the two epidemics, suggesting that fixation of these mutations may occur with different mechanisms, which may depend on the fitness gain provided by each mutation. This highlighted the difficulties in predicting the acquisition of mutations that can be correlated to viral adaptation to specific epidemiological conditions or to changes in virus virulence.
Collapse
Affiliation(s)
- Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy.
| | - Luca Tassoni
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| | - Joseph Hughes
- MRC-University of Glasgow Center for Virus Research, 464 Bearsden Road, Glasgow, United Kingdom
| | - Adelaide Milani
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| | - Annalisa Salviato
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| | - Alessia Schivo
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| | - Pablo R Murcia
- MRC-University of Glasgow Center for Virus Research, 464 Bearsden Road, Glasgow, United Kingdom
| | - Lebana Bonfanti
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| | - Giovanni Cattoli
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| |
Collapse
|
13
|
Sandbulte MR, Spickler AR, Zaabel PK, Roth JA. Optimal Use of Vaccines for Control of Influenza A Virus in Swine. Vaccines (Basel) 2015; 3:22-73. [PMID: 26344946 PMCID: PMC4494241 DOI: 10.3390/vaccines3010022] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/09/2015] [Accepted: 01/19/2015] [Indexed: 12/29/2022] Open
Abstract
Influenza A virus in swine (IAV-S) is one of the most important infectious disease agents of swine in North America. In addition to the economic burden of IAV-S to the swine industry, the zoonotic potential of IAV-S sometimes leads to serious public health concerns. Adjuvanted, inactivated vaccines have been licensed in the United States for over 20 years, and there is also widespread usage of autogenous/custom IAV-S vaccines. Vaccination induces neutralizing antibodies and protection against infection with very similar strains. However, IAV-S strains are so diverse and prone to mutation that these vaccines often have disappointing efficacy in the field. This scientific review was developed to help veterinarians and others to identify the best available IAV-S vaccine for a particular infected herd. We describe key principles of IAV-S structure and replication, protective immunity, currently available vaccines, and vaccine technologies that show promise for the future. We discuss strategies to optimize the use of available IAV-S vaccines, based on information gathered from modern diagnostics and surveillance programs. Improvements in IAV-S immunization strategies, in both the short term and long term, will benefit swine health and productivity and potentially reduce risks to public health.
Collapse
Affiliation(s)
- Matthew R Sandbulte
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Anna R Spickler
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Pamela K Zaabel
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - James A Roth
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
14
|
Iqbal M, Reddy KB, Brookes SM, Essen SC, Brown IH, McCauley JW. Virus pathotype and deep sequencing of the HA gene of a low pathogenicity H7N1 avian influenza virus causing mortality in Turkeys. PLoS One 2014; 9:e87076. [PMID: 24489838 PMCID: PMC3904975 DOI: 10.1371/journal.pone.0087076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/18/2013] [Indexed: 11/19/2022] Open
Abstract
Low pathogenicity avian influenza (LPAI) viruses of the H7 subtype generally cause mild disease in poultry. However the evolution of a LPAI virus into highly pathogenic avian influenza (HPAI) virus results in the generation of a virus that can cause severe disease and death. The classification of these two pathotypes is based, in part, on disease signs and death in chickens, as assessed in an intravenous pathogenicity test, but the effect of LPAI viruses in turkeys is less well understood. During an investigation of LPAI virus infection of turkeys, groups of three-week-old birds inoculated with A/chicken/Italy/1279/99 (H7N1) showed severe disease signs and died or were euthanised within seven days of infection. Virus was detected in many internal tissues and organs from culled birds. To examine the possible evolution of the infecting virus to a highly pathogenic form in these turkeys, sequence analysis of the haemagglutinin (HA) gene cleavage site was carried out by analysing multiple cDNA amplicons made from swabs and tissue sample extracts employing Sanger and Next Generation Sequencing. In addition, a RT-PCR assay to detect HPAI virus was developed. There was no evidence of the presence of HPAI virus in either the virus used as inoculum or from swabs taken from infected birds. However, a small proportion (<0.5%) of virus carried in individual tracheal or liver samples did contain a molecular signature typical of a HPAI virus at the HA cleavage site. All the signature sequences were identical and were similar to HPAI viruses collected during the Italian epizootic in 1999/2000. We assume that the detection of HPAI virus in tissue samples following infection with A/chicken/Italy/1279/99 reflected amplification of a virus present at very low levels within the mixed inoculum but, strikingly, we observed no new HPAI virus signatures in the amplified DNA analysed by deep-sequencing.
Collapse
Affiliation(s)
- Munir Iqbal
- Avian Viral Diseases Programme, The Pirbright Institute, Compton Laboratory, Compton, Newbury, Berkshire, United Kingdom
- * E-mail:
| | - Kolli B. Reddy
- Avian Viral Diseases Programme, The Pirbright Institute, Compton Laboratory, Compton, Newbury, Berkshire, United Kingdom
| | - Sharon M. Brookes
- Avian Virology, Animal Health and Veterinary Laboratories Agency-Weybridge, Addlestone, Surrey, United Kingdom
| | - Steve C. Essen
- Avian Virology, Animal Health and Veterinary Laboratories Agency-Weybridge, Addlestone, Surrey, United Kingdom
| | - Ian H. Brown
- Avian Virology, Animal Health and Veterinary Laboratories Agency-Weybridge, Addlestone, Surrey, United Kingdom
| | - John W. McCauley
- Division of Virology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| |
Collapse
|
15
|
Capua I, Marangon S. Control of avian influenza infections in poultry with emphasis on vaccination. Expert Rev Anti Infect Ther 2014; 4:751-7. [PMID: 17140352 DOI: 10.1586/14787210.4.5.751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Avian influenza is a World Organization for Animal Heath-listed disease that has become of great importance both for animal and human health. The increased relevance of avian influenza in the fields of animal and human health has highlighted the lack of scientific information on several aspects of the disease, which has hampered the adequate management of some of the recent crises. Millions of animals have died and there is growing concern over the loss of human lives and over the management of the pandemic potential. This special report will review the control methods for avian influenza infections in poultry that are currently available. The application of control policies, ranging from stamping out to emergency and prophylactic vaccination, are discussed on the basis of data generated from recent outbreaks, in the light of new regulations and also in view of the maintenance of animal welfare. Poultry veterinarians working for the industry or for the public sector represent the first line of defense against the pandemic threat and for the prevention and control of this infection in poultry and in wild birds.
Collapse
Affiliation(s)
- Ilaria Capua
- Istituto Zooprofilattico Sperimentale delle Venezie, OIE, FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, Viale dell'Università 10, 35020 Legnaro, Padova, Italy.
| | | |
Collapse
|
16
|
Abstract
Respiratory infections are the third highest cause of death worldwide and influenza has the highest mortality rate among lower respiratory tract infections (LRTIs). Diagnosis of LRTIs relies mostly on clinical symptoms and is not fully satisfactory. Influenza laboratory diagnosis improves the efficiency of prophylaxis or treatment of influenza by antiviral molecules and has a strong impact on the cost-effectiveness of curative treatment. Inappropriate treatment of patients may result in spreading of resistant strains. Molecular diagnostics play a central role in the surveillance and response of pandemic influenza due to highly pathogenic strains. Real-time assays can be used for diagnosis or surveillance purposes in humans and animals, and microarrays can be used to identify and monitor the spread of dangerous variants. Molecular assays are also useful to identify and distinguish influenza, other respiratory viruses and bacteria, although their cost-effectiveness must be proven on a large scale. As new antiviral options will be available to clinicians, a better treatment choice will benefit the patient and community. Recent progress in molecular techniques will be reviewed. Examples of real-time assays for the detection of influenza viruses, including the highly pathogenic influenza A strains H5N1 and H7N7, will be discussed. Promising new techniques that allow detailed genotyping of viruses or multiplex detection of several respiratory pathogens from a unique specimen will also be discussed. These techniques will, in the near future, significantly improve the quality of diagnosis and surveillance of respiratory pathogens.
Collapse
Affiliation(s)
- Guy Vernet
- BioMérieux, Emerging Pathogens R&D Department, Marcy-l'Etoile, 69280, France.
| |
Collapse
|
17
|
Kapoor S, Dhama K. Prevention and Control of Influenza Viruses. INSIGHT INTO INFLUENZA VIRUSES OF ANIMALS AND HUMANS 2014. [PMCID: PMC7121144 DOI: 10.1007/978-3-319-05512-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The 2003–2004 outbreaks of highly pathogenic avian influenza (HPAI) have proven to be disastrous to the regional poultry industry in Asia, and have raised serious worldwide public health apprehension regarding the steps that should be taken to urgently control HPAI. Control measures must be taken based on the principles of biosecurity and disease management and at the same time making public aware of the precautionary measures at the verge of outbreak. Creation of protection and surveillance zones, various vaccination strategies viz. routine, preventive, emergency, mass and targeted vaccination programmes using live, inactivated and recombinant vaccines are the common strategies adopted in different parts of the globe. The new generation vaccines include recombinant vaccines and recombinant fusion vaccine. The pro-poor disease control programmes, giving compensation and subsidies to the farmers along with effective and efficient Veterinary Services forms integral part of control of HPAI. Following biosecurity principles and vaccination forms integral part of control programme against swine and equine influenza as well. Use of neuraminidase (NA) inhibitors (Zanamivir and Oseltamivir) for the treatment of human influenza has been widely accepted worldwide. The threat of increasing resistance of the flu viruses to these antivirals has evoked interest in the development of novel antiviral drugs for influenza virus such as inhibitors of cellular factors and host signalling cascades, cellular miRNAs, siRNA and innate immune peptides (defensins and cathelicidins). Commercial licensed inactivated vaccines for humans against influenza A and B viruses are available consisting of three influenza viruses: influenza type A subtype H3N2, influenza type A subtype H1N1 (seasonal) virus strain and influenza type B virus strain. As per WHO, use of tetravaccine consisting of antigens of influenza virus serotypes H3N2, H1N1, B and H5 is the most promising method to control influenza pandemic. All healthy children in many countries are required to be vaccinated between 6 and 59 months of age. The seasonal vaccines currently used in humans induce strain-specific humoral immunity as the antibodies. Universal influenza virus vaccines containing the relatively conserved ectodomain of M2 (M2e), M1, HA fusion peptide and stalk domains, NA, NP alone or in combination have been developed which have been shown to induce cross-protection. The T cell-based vaccines are another recent experimental approach that has been shown to elicit broad-spectrum heterosubtypic immunity in the host. As far as HPAI is concerned, various pandemic preparedness strategies have been documented.
Collapse
Affiliation(s)
- Sanjay Kapoor
- Department of Veterinary Microbiology, LLR University of Veterinary and Animal Sciences, Hisar, 125004 Haryana India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, 243122 Uttar Pradesh India
| |
Collapse
|
18
|
Soubies SM, Hoffmann TW, Croville G, Larcher T, Ledevin M, Soubieux D, Quéré P, Guérin JL, Marc D, Volmer R. Deletion of the C-terminal ESEV domain of NS1 does not affect the replication of a low-pathogenic avian influenza virus H7N1 in ducks and chickens. J Gen Virol 2012; 94:50-58. [PMID: 23052391 DOI: 10.1099/vir.0.045153-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H7N1 viruses caused a series of epizootics in Italy between 1999 and 2001. The emergence of these HPAI viruses coincided with the deletion of the six amino acids R(225)VESEV(230) at the C terminus of NS1. In order to assess how the truncation of NS1 affected virus replication, we used reverse genetics to generate a wild-type low-pathogenic avian influenza (LPAI) H7N1 virus with a 230aa NS1 (H7N1(230)) and a mutant virus with a truncated NS1 (H7N1(224)). The 6aa truncation had no impact on virus replication in duck or chicken cells in vitro. The H7N1(230) and H7N1(224) viruses also replicated to similar levels and induced similar immune responses in ducks or chickens. No significant histological lesions were detected in infected ducks, regardless of the virus inoculated. However, in chickens, the H7N1(230) virus induced a more severe interstitial pneumonia than did the H7N1(224) virus. These findings indicate that the C-terminal extremity of NS1, including the PDZ-binding motif ESEV, is dispensable for efficient replication of an LPAI virus in ducks and chickens, even though it may increase virulence in chickens, as revealed by the intensity of the histological lesions.
Collapse
Affiliation(s)
- Sébastien M Soubies
- INRA, UMR 1225, Ecole nationale vétérinaire de Toulouse, F-31076 Toulouse, France.,Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| | - Thomas W Hoffmann
- Equipe BioVA, INRA UMR1282, Infectiologie et Santé Publique, ISP, F-37380 Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Guillaume Croville
- INRA, UMR 1225, Ecole nationale vétérinaire de Toulouse, F-31076 Toulouse, France.,Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| | - Thibaut Larcher
- INRA UMR 703, APEX, Oniris-La Chantrerie, F-44307 Nantes, France
| | - Mireille Ledevin
- INRA UMR 703, APEX, Oniris-La Chantrerie, F-44307 Nantes, France
| | - Denis Soubieux
- Equipe BioVA, INRA UMR1282, Infectiologie et Santé Publique, ISP, F-37380 Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Pascale Quéré
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France.,Equipe PIA, INRA UMR1282, Infectiologie et Santé Publique, ISP, F-37380 Nouzilly, France
| | - Jean-Luc Guérin
- INRA, UMR 1225, Ecole nationale vétérinaire de Toulouse, F-31076 Toulouse, France.,Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| | - Daniel Marc
- Equipe BioVA, INRA UMR1282, Infectiologie et Santé Publique, ISP, F-37380 Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Romain Volmer
- INRA, UMR 1225, Ecole nationale vétérinaire de Toulouse, F-31076 Toulouse, France.,Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| |
Collapse
|
19
|
Henriques AM, Fagulha T, Barros SC, Ramos F, Duarte M, Luís T, Fevereiro M. Multiyear surveillance of influenza A virus in wild birds in Portugal. Avian Pathol 2012; 40:597-602. [PMID: 22107094 DOI: 10.1080/03079457.2011.618943] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
This report presents the results of a multiyear (2005 to 2009) study of avian influenza virus (AIV) occurrence in wild birds in Portugal. A total of 5691 samples from wild birds belonging to 13 different orders were examined. Ninety-three samples tested positive for AIV by matrix reverse transcriptase-polymerase chain reaction, giving a total prevalence of 1.63%. Twenty-one viruses were successfully cultured in embryonated chicken eggs, which represent a rate of viral infectivity of 22.6% in the samples. Nine subtypes of haemagglutinin (H1, H3 to H7, H9 to H11) and eight subtypes of neuraminidase (N1 to N4, N6 to N9) were identified in 20 different combinations. The most prevalent subtypes of haemagglutinin detected were H5, H1 and H4, while for neuraminidase subtypes N2 and N6 were the most common. The subtype combinations H4N6 and H1N1 were predominant (15.1%). All H5 and H7 viruses detected in the present study were low pathogenic for poultry as determined by the sequence of amino acids at the cleavage site of haemagglutinin. The full-length nucleotide sequences of five H5, one H7 and five N3 genes were analysed phylogenetically. The Bayesian analysis revealed that all but one of the strains analysed were closely related to isolates detected in the same period in North and Central European countries. Three H5N3 isolates, all from 2007, formed a separate cluster in both H5 and N3 phylogenetic trees. This study provides evidence that various subtypes of AIV, including subtypes H5 and H7, circulate in Portugal, which may pose a risk to industrial poultry.
Collapse
Affiliation(s)
- Ana M Henriques
- Departamento de Virologia, Laboratório Nacional de Investigação Veterinária, Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
20
|
Variability among the neuraminidase, non-structural 1 and PB1-F2 proteins in the influenza A virus genome. Virus Genes 2012; 44:363-73. [PMID: 22261818 DOI: 10.1007/s11262-012-0714-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/04/2012] [Indexed: 11/26/2022]
|
21
|
Bavagnoli L, Dundon WG, Garbelli A, Zecchin B, Milani A, Parakkal G, Baldanti F, Paolucci S, Volmer R, Tu Y, Wu C, Capua I, Maga G. The PDZ-ligand and Src-homology type 3 domains of epidemic avian influenza virus NS1 protein modulate human Src kinase activity during viral infection. PLoS One 2011; 6:e27789. [PMID: 22110760 PMCID: PMC3215730 DOI: 10.1371/journal.pone.0027789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/25/2011] [Indexed: 01/29/2023] Open
Abstract
The Non-structural 1 (NS1) protein of avian influenza (AI) viruses is important for pathogenicity. Here, we identify a previously unrecognized tandem PDZ-ligand (TPL) domain in the extreme carboxy terminus of NS1 proteins from a subset of globally circulating AI viruses. By using protein arrays we have identified several human PDZ-cellular ligands of this novel domain, one of which is the RIL protein, a known regulator of the cellular tyrosine kinase Src. We found that the AI NS1 proteins bind and stimulate human Src tyrosine kinase, through their carboxy terminal Src homology type 3-binding (SHB) domain. The physical interaction between NS1 and Src and the ability of AI viruses to modulate the phosphorylation status of Src during the infection, were found to be influenced by the TPL arrangement. These results indicate the potential for novel host-pathogen interactions mediated by the TPL and SHB domains of AI NS1 protein.
Collapse
Affiliation(s)
- Laura Bavagnoli
- Institute of Molecular Genetics National Research Council, Pavia, Italy
| | - William G. Dundon
- World Organization for Animal Health, Food and Agriculture Organization and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Anna Garbelli
- Institute of Molecular Genetics National Research Council, Pavia, Italy
| | - Bianca Zecchin
- World Organization for Animal Health, Food and Agriculture Organization and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Adelaide Milani
- World Organization for Animal Health, Food and Agriculture Organization and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Geetha Parakkal
- Institute of Molecular Genetics National Research Council, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Virology and Microbiology, Fondazione Istituto Ricovero e Cura a Carattere Scientifico Policlinico S. Matteo, Pavia, Italy
| | - Stefania Paolucci
- Molecular Virology Unit, Virology and Microbiology, Fondazione Istituto Ricovero e Cura a Carattere Scientifico Policlinico S. Matteo, Pavia, Italy
| | - Romain Volmer
- Université de Toulouse, Institut National Polytechnique, Ecole Nationale de Veterinaire, Unitè Mixte de Recherche 1225, Interactions Hotes-Agents Pathogènes, Toulouse, France
| | - Yizeng Tu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ilaria Capua
- World Organization for Animal Health, Food and Agriculture Organization and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics National Research Council, Pavia, Italy
| |
Collapse
|
22
|
Length variations in the NA stalk of an H7N1 influenza virus have opposite effects on viral excretion in chickens and ducks. J Virol 2011; 86:584-8. [PMID: 22013034 DOI: 10.1128/jvi.05474-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A deletion of ∼20 amino acids in the stalk of neuraminidase is frequently observed upon transmission of influenza A viruses from waterfowl to domestic poultry. A pair of recombinant H7N1 viruses bearing either a short- or long-stalk neuraminidase was genetically engineered. Inoculation of the long-stalk-neuraminidase virus resulted in a higher cloacal excretion in ducks and led conversely to lower-level oropharyngeal excretion in chickens, associated with a higher-level local immune response and better survival. Therefore, a short-stalk neuraminidase is a determinant of viral adaptation and virulence in chickens but is detrimental to virus replication and shedding in ducks.
Collapse
|
23
|
Genetic analysis of the matrix and non-structural genes of equine influenza virus (H3N8) from epizootic of 2008–2009 in India. Vet Microbiol 2011; 152:169-75. [DOI: 10.1016/j.vetmic.2011.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 04/02/2011] [Accepted: 04/14/2011] [Indexed: 11/23/2022]
|
24
|
Penski N, Härtle S, Rubbenstroth D, Krohmann C, Ruggli N, Schusser B, Pfann M, Reuter A, Gohrbandt S, Hundt J, Veits J, Breithaupt A, Kochs G, Stech J, Summerfield A, Vahlenkamp T, Kaspers B, Staeheli P. Highly pathogenic avian influenza viruses do not inhibit interferon synthesis in infected chickens but can override the interferon-induced antiviral state. J Virol 2011; 85:7730-41. [PMID: 21613402 PMCID: PMC3147912 DOI: 10.1128/jvi.00063-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 05/17/2011] [Indexed: 01/13/2023] Open
Abstract
From infection studies with cultured chicken cells and experimental mammalian hosts, it is well known that influenza viruses use the nonstructural protein 1 (NS1) to suppress the synthesis of interferon (IFN). However, our current knowledge regarding the in vivo role of virus-encoded NS1 in chickens is much more limited. Here, we report that highly pathogenic avian influenza viruses of subtypes H5N1 and H7N7 lacking fully functional NS1 genes were attenuated in 5-week-old chickens. Surprisingly, in diseased birds infected with NS1 mutants, the IFN levels were not higher than in diseased birds infected with wild-type virus, suggesting that NS1 cannot suppress IFN gene expression in at least one cell population of infected chickens that produces large amounts of the cytokine in vivo. To address the question of why influenza viruses are highly pathogenic in chickens although they strongly activate the innate immune system, we determined whether recombinant chicken alpha interferon (IFN-α) can inhibit the growth of highly pathogenic avian influenza viruses in cultured chicken cells and whether it can ameliorate virus-induced disease in 5-week-old birds. We found that IFN treatment failed to confer substantial protection against challenge with highly pathogenic viruses, although it was effective against viruses with low pathogenic potential. Taken together, our data demonstrate that preventing the synthesis of IFN is not the primary role of the viral NS1 protein during infection of chickens. Our results further suggest that virus-induced IFN does not contribute substantially to resistance of chickens against highly pathogenic influenza viruses.
Collapse
Affiliation(s)
- Nicola Penski
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Sonja Härtle
- Department of Veterinary Sciences, University of Munich, Munich, Germany
| | | | - Carsten Krohmann
- Department of Veterinary Sciences, University of Munich, Munich, Germany
| | - Nicolas Ruggli
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| | - Benjamin Schusser
- Department of Veterinary Sciences, University of Munich, Munich, Germany
| | - Michael Pfann
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Antje Reuter
- Department of Virology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology, Freiburg, Germany
| | | | - Jana Hundt
- Friedrich-Loeffler-Institut, Isle of Riems, Germany
| | - Jutta Veits
- Friedrich-Loeffler-Institut, Isle of Riems, Germany
| | | | - Georg Kochs
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Jürgen Stech
- Friedrich-Loeffler-Institut, Isle of Riems, Germany
| | - Artur Summerfield
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| | | | - Bernd Kaspers
- Department of Veterinary Sciences, University of Munich, Munich, Germany
| | - Peter Staeheli
- Department of Virology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Intracellular distribution of NS1 correlates with the infectivity and interferon antagonism of an avian influenza virus (H7N1). J Virol 2010; 84:11858-65. [PMID: 20844052 DOI: 10.1128/jvi.01011-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Highly pathogenic avian influenza viruses of subtype H7N1 that emerged during an outbreak in 1999 and 2000 in Italy differ from their low-pathogenicity precursor viruses by changes in several genes, including three mutations in the NS1 protein. Two of them involve amino acid exchanges located within or closely adjacent to the nuclear export signal of NS1. The third mutation resulted in a new stop codon and thereby a C-terminal truncation of the NS1 protein of the highly pathogenic viruses. To find out whether these mutations contribute to the phenotypic differences between the highly pathogenic and low pathogenic viruses, we generated recombinants of the highly pathogenic A/ostrich/Italy/984/00 strain that contained the nuclear export signal and/or the extended C terminus of NS1 of a low pathogenic virus (A/chicken/Italy/1082/99). Using these recombinants we could demonstrate that replication rate and spread of infection in chicken fibroblast cultures, as well as infectivity for chicken embryos is reduced, whereas the mean death time for chicken embryos is increased, when the highly pathogenic virus acquires the NS1 motifs of the low pathogenic virus. Analysis of beta interferon transcription in chicken fibroblasts infected with the recombinants revealed that the mutations observed in the nuclear export signal of the highly pathogenic viruses were responsible for the enhanced interferon antagonism of these viruses. Cell fractionation and immunofluorescence studies in chicken fibroblasts showed that the nuclear export signal of the highly pathogenic viruses is responsible for cytoplasmic accumulation of NS1, whereas the C-terminal truncation promotes transport into the nucleoli. Comparative analysis in human A549 cells indicated that intracellular distribution of NS1 is host specific. Taken together, these observations support the concept that compartmentalization of NS1 within the cell contributes to the pathogenicity of avian influenza viruses.
Collapse
|
26
|
Campanini G, Piralla A, Paolucci S, Rovida F, Percivalle E, Maga G, Baldanti F. Genetic divergence of influenza A NS1 gene in pandemic 2009 H1N1 isolates with respect to H1N1 and H3N2 isolates from previous seasonal epidemics. Virol J 2010; 7:209. [PMID: 20809948 PMCID: PMC2936903 DOI: 10.1186/1743-422x-7-209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 09/01/2010] [Indexed: 11/17/2022] Open
Abstract
Background The Influenza A pandemic sustained by a new H1N1 variant (H1N1v) started in Mexico and the USA at the end of April 2009 spreading worldwide in a few weeks. In this study we investigate the variability of the NS1 gene of the pandemic H1N1v strain with respect to previous seasonal strains circulating in humans and the potential selection of virus variants through isolation in cell culture. Methods During the period April 27th 2009-Jan 15th 2010, 1633 potential 2009 H1N1v cases have been screened at our center using the CDC detection and typing realtime RT-PCR assays. Virus isolation on MDCK cells was systematically performed in 1/10 positive cases. A subset of 51 H1N1v strains isolated in the period May-September 2009 was selected for NS1 gene sequencing. In addition, 15 H1N1 and 47 H3N2 virus isolates from three previous seasonal epidemics (2006-2009) were analyzed in parallel. Results A low variability in the NS1 amino acid (aa) sequence among H1N1v isolates was shown (aa identity 99.5%). A slightly higher NS1 variability was observed among H1N1 and H3N2 strains from previous epidemics (aa identity 98.6% and 98.9%, respectively). The H1N1v strains were closely related (aa identity 92.1%) to swine reference strain (A/swine/Oklahoma/042169/2008). In contrast, substantial divergence (aa identity 83.4%) with respect to human reference strain A/Brevig Mission/1/1918 and previous epidemic strains H1N1 and H3N2 (aa identity 78.9% and 77.6%, respectively) was shown. Specific sequence signatures of uncertain significance in the new virus variant were a C-terminus deletion and a T215P substitution. Conclusions The H1N1v NS1 gene was more conserved than that of previous epidemic strains. In addition, a closer genetic identity of H1N1v with the swine than the human reference strains was shown. Hot-spots were shown in the H1N1v NS1 aa sequence whose biologic relevance remains to be investigated.
Collapse
Affiliation(s)
- Giulia Campanini
- Molecular Virology Unit, Virology and Microbiology Dept, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Abbas MA, Spackman E, Swayne DE, Ahmed Z, Sarmento L, Siddique N, Naeem K, Hameed A, Rehmani S. Sequence and phylogenetic analysis of H7N3 avian influenza viruses isolated from poultry in Pakistan 1995-2004. Virol J 2010; 7:137. [PMID: 20576101 PMCID: PMC2901269 DOI: 10.1186/1743-422x-7-137] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/24/2010] [Indexed: 11/22/2022] Open
Abstract
Background Avian influenza virus (AIV) infections have caused heavy economic losses to the poultry industry in Pakistan as well as numerous other regions worldwide. The first introduction of H7N3 AIV to Pakistan occurred during 1995, since then H7N3, H9N2 and H5N1 AIVs have each been sporadically isolated. This report evaluates the genetic origin of the H7N3 viruses from Pakistan collected 1995-2004 and how they disseminated within the country. To accomplish this we produced whole genome sequences for 6 H7N3 viruses and data for the HA and NA genes of an additional 7 isolates. All available sequence from H7N3 AIV from Pakistan was included in the analysis. Results Phylogenetic analysis revealed that there were two introductions of H7 into Pakistan and one N3 introduction. Only one of the H7 introductions appears to have become established in poultry in Pakistan, while the other was isolated from two separate outbreaks 6 years apart. The data also shows that reassortment has occurred between H7N3 and H9N2 viruses in the field, likely during co-infection of poultry. Also, with the exception of these few reassortant isolates, all 8 genes in the predominant H7N3 virus lineage have evolved to be phylogenetically distinct. Conclusions Although rigorous control measures have been implemented in commercial poultry in Pakistan, AIV is sporadically transmitted to poultry and among the different poultry industry compartments (broilers, broiler breeders, table egg layers). Since there is one primary H7 lineage which persists and that has reassorted with the H9N2 AIV in poultry, it suggests that there is a reservoir with some link commercial poultry. On a general level, this offers insight into the molecular ecology of AIV in poultry where the virus has persisted despite vaccination and biosecurity. This data also illustrates the importance of sustained surveillance for AIVs in poultry.
Collapse
Affiliation(s)
- Muhammad A Abbas
- National Reference Laboratory for Poultry Diseases, ASI, NARC, Islamabad 45500, Pakistan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Species-specific contribution of the four C-terminal amino acids of influenza A virus NS1 protein to virulence. J Virol 2010; 84:6733-47. [PMID: 20410267 DOI: 10.1128/jvi.02427-09] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Large-scale sequence analyses of influenza viruses revealed that nonstructural 1 (NS1) proteins from avian influenza viruses have a conserved C-terminal ESEV amino acid motif, while NS1 proteins from typical human influenza viruses have a C-terminal RSKV motif. To test the influence of the C-terminal domains of NS1 on the virulence of an avian influenza virus, we generated a wild-type H7N1 virus with an ESEV motif and a mutant virus with an NS1 protein containing a C-terminal RSKV motif by reverse genetics. We compared the phenotypes of these viruses in vitro in human, mouse, and duck cells as well as in vivo in mice and ducks. In human cells, the human C-terminal RSKV domain increased virus replication. In contrast, the avian C-terminal ESEV motif of NS1 increased virulence in mice. We linked this increase in pathogenicity in mice to an increase in virus replication and to a more severe lung inflammation associated with a higher level of production of type I interferons. Interestingly, the human C-terminal RSKV motif of NS1 increased viral replication in ducks. H7N1 virus with a C-terminal RSKV motif replicated to higher levels in ducks and induced higher levels of Mx, a type I interferon-stimulated gene. Thus, we identify the C-terminal domain of NS1 as a species-specific virulence domain.
Collapse
|
29
|
Uttenthal A, Parida S, Rasmussen TB, Paton DJ, Haas B, Dundon WG. Strategies for differentiating infection in vaccinated animals (DIVA) for foot-and-mouth disease, classical swine fever and avian influenza. Expert Rev Vaccines 2010; 9:73-87. [PMID: 20021307 DOI: 10.1586/erv.09.130] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The prophylactic use of vaccines against exotic viral infections in production animals is undertaken exclusively in regions where the disease concerned is endemic. In such areas, the infection pressure is very high and so, to assure optimal protection, the most efficient vaccines are used. However, in areas considered to be free from these diseases and in which there is the possibility of only limited outbreaks, the use of Differentiation of Infected from Vaccinated Animals (DIVA) or marker vaccines allows for vaccination while still retaining the possibility of serological surveillance for the presence of infection. This literature review describes the current knowledge on the use of DIVA diagnostic strategies for three important transboundary animal diseases: foot-and-mouth disease in cloven-hoofed animals, classical swine fever in pigs and avian influenza in poultry.
Collapse
Affiliation(s)
- Ase Uttenthal
- National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark.
| | | | | | | | | | | |
Collapse
|
30
|
van der Goot JA, Engel B, van de Water SGP, Buist W, de Jong MCM, Koch G, van Boven M, Stegeman A. Validation of diagnostic tests for detection of avian influenza in vaccinated chickens using Bayesian analysis. Vaccine 2009; 28:1771-7. [PMID: 20025919 DOI: 10.1016/j.vaccine.2009.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 11/27/2009] [Accepted: 12/02/2009] [Indexed: 11/30/2022]
Abstract
Vaccination is an attractive tool for the prevention of outbreaks of highly pathogenic avian influenza in domestic birds. It is known, however, that under certain circumstances vaccination may fail to prevent infection, and that the detection of infection in vaccinated birds can be problematic. Here, we investigate the characteristics of three serological tests (immunofluorescent antibody test (iIFAT), neuraminidase inhibition (NI) assay, and NS1 ELISA) that are able to differentiate infected from vaccinated animals. To this end, data of H7N7 infection experiments are analyzed using Bayesian methods of inference. These Bayesian methods enable validation of the tests in the absence of a gold standard, and allow one to take into account that infected birds do not always develop antibodies after infection. The results show that the N7 iIFAT and the NI assay have sensitivities for detecting antibodies of 0.95 (95% CI: 0.89-0.98) and 0.93 (95% CI: 0.78-0.99), but substantially lower sensitivities for detecting infection: 0.64 (95% CI: 0.52-0.75) and 0.63 (95% CI: 0.49-0.75). The NS1 ELISA has a low sensitivity for both detecting antibodies 0.55 (95% CI: 0.34-0.74) and infection 0.42 (95% CI: 0.28-0.56). The estimated specificities of the N7 iIFAT and the NI assay are 0.92 (95% CI: 0.87-0.95) and 0.91 (95% CI: 0.85-0.95), and 0.82 (95% CI: 0.74-0.87) for the NS1 ELISA. Additionally, our analyses suggest a strong association between the duration of virus excretion of infected birds and the probability to develop antibodies.
Collapse
Affiliation(s)
- Jeanet A van der Goot
- Central Veterinary Institute, Wageningen University & Research Center, PO Box 65, 8200 AB Lelystad, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Briand FX, Le Gall-Recule G, Guillou-Cloarec C, Ogor K, Jestin V. Phylogeny and genotyping of recent avian low-pathogenic H5 subtype influenza viruses from French ducks. J Gen Virol 2009; 91:960-70. [DOI: 10.1099/vir.0.016733-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
32
|
Dundon WG, Capua I. A Closer Look at the NS1 of Influenza Virus. Viruses 2009; 1:1057-72. [PMID: 21994582 PMCID: PMC3185538 DOI: 10.3390/v1031057] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/13/2009] [Accepted: 11/25/2009] [Indexed: 11/16/2022] Open
Abstract
The Non-Structural 1 (NS1) protein is a multifactorial protein of type A influenza viruses that plays an important role in the virulence of the virus. A large amount of what we know about this protein has been obtained from studies using human influenza isolates and, consequently, the human NS1 protein. The current global interest in avian influenza, however, has highlighted a number of sequence and functional differences between the human and avian NS1. This review discusses these differences in addition to describing potential uses of NS1 in the management and control of avian influenza outbreaks.
Collapse
Affiliation(s)
- William G Dundon
- OIE/FAO and National Reference Laboratory for Avian influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell' Università, 10, Legnaro (PD), 35020, Italy; E-Mail:
| | | |
Collapse
|
33
|
Iqbal M, Xiao H, Baillie G, Warry A, Essen SC, Londt B, Brookes SM, Brown IH, McCauley JW. Within-host variation of avian influenza viruses. Philos Trans R Soc Lond B Biol Sci 2009; 364:2739-47. [PMID: 19687042 PMCID: PMC2865086 DOI: 10.1098/rstb.2009.0088] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The emergence and spread of H5N1 avian influenza viruses from Asia through to Europe and Africa pose a significant animal disease problem and have raised concerns that the virus may pose a pandemic threat to humans. The epizootological factors that have influenced the wide distribution of the virus are complex, and the variety of viruses currently circulating reflects these factors. Sequence analysis of the virus genes sheds light on the H5N1 virus evolution during its emergence and spread, but the degree of virus variation at the level of an individual infected bird has been described in only a few studies. Here, we describe some results of a study in which turkeys, ducks and chickens were infected with either one of two H5N1 or one of three H7N1 viruses, and the degree of sequence variation within an individual infected avian host was examined. We developed 'deep amplicon' sequence analysis for this work, and the methods and results provide a background framework for application to disease outbreaks in the field.
Collapse
Affiliation(s)
- Munir Iqbal
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK
| | - Hiaxia Xiao
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Greg Baillie
- Department of Veterinary Medicine, Cambridge Infectious Diseases Consortium, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Andrew Warry
- BBSRC Bioscience IT Services, West Common, Harpenden, Herts AL5 2JE, UK
| | - Steve C. Essen
- Avian Virology, Veterinary Laboratories Agency—Weybridge, Addlestone, Surrey KT15 3NB, UK
| | - Brandon Londt
- Avian Virology, Veterinary Laboratories Agency—Weybridge, Addlestone, Surrey KT15 3NB, UK
| | - Sharon M. Brookes
- Avian Virology, Veterinary Laboratories Agency—Weybridge, Addlestone, Surrey KT15 3NB, UK
| | - Ian H. Brown
- Avian Virology, Veterinary Laboratories Agency—Weybridge, Addlestone, Surrey KT15 3NB, UK
| | - John W. McCauley
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
34
|
Iqbal M, Yaqub T, Reddy K, McCauley JW. Novel genotypes of H9N2 influenza A viruses isolated from poultry in Pakistan containing NS genes similar to highly pathogenic H7N3 and H5N1 viruses. PLoS One 2009; 4:e5788. [PMID: 19517011 PMCID: PMC2690689 DOI: 10.1371/journal.pone.0005788] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 04/28/2009] [Indexed: 12/27/2022] Open
Abstract
The impact of avian influenza caused by H9N2 viruses in Pakistan is now significantly more severe than in previous years. Since all gene segments contribute towards the virulence of avian influenza virus, it was imperative to investigate the molecular features and genetic relationships of H9N2 viruses prevalent in this region. Analysis of the gene sequences of all eight RNA segments from 12 viruses isolated between 2005 and 2008 was undertaken. The hemagglutinin (HA) sequences of all isolates were closely related to H9N2 viruses isolated from Iran between 2004 and 2007 and contained leucine instead of glutamine at position 226 in the receptor binding pocket, a recognised marker for the recognition of sialic acids linked α2–6 to galactose. The neuraminidase (NA) of two isolates contained a unique five residue deletion in the stalk (from residues 80 to 84), a possible indication of greater adaptation of these viruses to the chicken host. The HA, NA, nucleoprotein (NP), and matrix (M) genes showed close identity with H9N2 viruses isolated during 1999 in Pakistan and clustered in the A/Quail/Hong Kong/G1/97 virus lineage. In contrast, the polymerase genes clustered with H9N2 viruses from India, Iran and Dubai. The NS gene segment showed greater genetic diversity and shared a high level of similarity with NS genes from either H5 or H7 subtypes rather than with established H9N2 Eurasian lineages. These results indicate that during recent years the H9N2 viruses have undergone extensive genetic reassortment which has led to the generation of H9N2 viruses of novel genotypes in the Indian sub-continent. The novel genotypes of H9N2 viruses may play a role in the increased problems observed by H9N2 to poultry and reinforce the continued need to monitor H9N2 infections for their zoonotic potential.
Collapse
Affiliation(s)
- Munir Iqbal
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, UK.
| | | | | | | |
Collapse
|
35
|
Zohari S, Gyarmati P, Ejdersund A, Berglöf U, Thorén P, Ehrenberg M, Czifra G, Belák S, Waldenström J, Olsen B, Berg M. Phylogenetic analysis of the non-structural (NS) gene of influenza A viruses isolated from mallards in Northern Europe in 2005. Virol J 2008; 5:147. [PMID: 19077274 PMCID: PMC2625346 DOI: 10.1186/1743-422x-5-147] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 12/12/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Although the important role of the non-structural 1 (NS) gene of influenza A in virulence of the virus is well established, our knowledge about the extent of variation in the NS gene pool of influenza A viruses in their natural reservoirs in Europe is incomplete. In this study we determined the subtypes and prevalence of influenza A viruses present in mallards in Northern Europe and further analysed the NS gene of these isolates in order to obtain a more detailed knowledge about the genetic variation of NS gene of influenza A virus in their natural hosts. RESULTS A total number of 45 influenza A viruses of different subtypes were studied. Eleven haemagglutinin- and nine neuraminidase subtypes in twelve combinations were found among the isolated viruses. Each NS gene reported here consisted of 890 nucleotides; there were no deletions or insertions. Phylogenetic analysis clearly shows that two distinct gene pools, corresponding to both NS allele A and B, were present at the same time in the same geographic location in the mallard populations in Northern Europe. A comparison of nucleotide sequences of isolated viruses revealed a substantial number of silent mutations, which results in high degree of homology in amino acid sequences. The degree of variation within the alleles is very low. In our study allele A viruses displays a maximum of 5% amino acid divergence while allele B viruses display only 2% amino acid divergence. All the viruses isolated from mallards in Northern Europe possessed the typical avian ESEV amino acid sequence at the C-terminal end of the NS1 protein. CONCLUSION Our finding indicates the existence of a large reservoir of different influenza A viruses in mallards population in Northern Europe. Although our phylogenetic analysis clearly shows that two distinct gene pools, corresponding to both NS allele A and B, were present in the mallards populations in Northern Europe, allele B viruses appear to be less common in natural host species than allele A, comprising only about 13% of the isolates sequenced in this study.
Collapse
Affiliation(s)
- Siamak Zohari
- Joint Research and Development Unit for Virology, Immunobiology, and Parasitology, of the National Veterinary Institute (SVA) and Swedish University of Agricultural Sciences (SLU), and Department of Biomedical Sciences and Public Health, Section of Parasitology and Virology, SLU, Ulls väg 2B, SE-751 89 Uppsala, Sweden
| | - Péter Gyarmati
- Joint Research and Development Unit for Virology, Immunobiology, and Parasitology, of the National Veterinary Institute (SVA) and Swedish University of Agricultural Sciences (SLU), and Department of Biomedical Sciences and Public Health, Section of Parasitology and Virology, SLU, Ulls väg 2B, SE-751 89 Uppsala, Sweden
| | - Anneli Ejdersund
- Unit for Virology, Immunobiology, and Parasitology, SVA, Ulls väg 2B, SE-751 89 Uppsala, Sweden
| | - Ulla Berglöf
- Unit for Virology, Immunobiology, and Parasitology, SVA, Ulls väg 2B, SE-751 89 Uppsala, Sweden
| | - Peter Thorén
- Unit for Virology, Immunobiology, and Parasitology, SVA, Ulls väg 2B, SE-751 89 Uppsala, Sweden
| | - Maria Ehrenberg
- Unit for chemistry, environment and feed safety of National Veterinary Institute (SVA) Ulls väg 2B, SE 751 89 Uppsala, Sweden
| | - György Czifra
- Unit for Virology, Immunobiology, and Parasitology, SVA, Ulls väg 2B, SE-751 89 Uppsala, Sweden
| | - Sándor Belák
- Joint Research and Development Unit for Virology, Immunobiology, and Parasitology, of the National Veterinary Institute (SVA) and Swedish University of Agricultural Sciences (SLU), and Department of Biomedical Sciences and Public Health, Section of Parasitology and Virology, SLU, Ulls väg 2B, SE-751 89 Uppsala, Sweden
| | - Jonas Waldenström
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University Hospital, SE 751 85 Uppsala, Sweden
- Section for Zoonotic Ecology and Epidemiology, Kalmar University, SE-321 85 Kalmar, Sweden
| | - Björn Olsen
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University Hospital, SE 751 85 Uppsala, Sweden
- Section for Zoonotic Ecology and Epidemiology, Kalmar University, SE-321 85 Kalmar, Sweden
| | - Mikael Berg
- Joint Research and Development Unit for Virology, Immunobiology, and Parasitology, of the National Veterinary Institute (SVA) and Swedish University of Agricultural Sciences (SLU), and Department of Biomedical Sciences and Public Health, Section of Parasitology and Virology, SLU, Ulls väg 2B, SE-751 89 Uppsala, Sweden
| |
Collapse
|
36
|
Marangon S, Cecchinato M, Capua I. Use of Vaccination in Avian Influenza Control and Eradication. Zoonoses Public Health 2008; 55:65-72. [DOI: 10.1111/j.1863-2378.2007.01086.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
|
38
|
Capua I, Marangon S. The challenge of controlling notifiable avian influenza by means of vaccination. Avian Dis 2007; 51:317-22. [PMID: 17494574 DOI: 10.1637/7560-033106r.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Avian influenza (AI) is an Office International des Epizooties listed disease that has become a disease of great importance both for animal and human health. The increased relevance of AI in animal and human health has highlighted the lack of scientific information on several aspects of the disease, which has hampered the adequate management of some of the recent crises. Millions of animals have died, and there is growing concern over the loss of human lives and over the management of the pandemic potential. The present article reviews the currently available control methods for notifiable AI infections in poultry. The application of control policies, ranging from stamping out to emergency and prophylactic vaccination, is discussed on the basis of data generated in recent outbreaks and in light of new regulations, also in view of the maintenance of animal welfare. Poultry veterinarians working for the industry or for the public sector represent the first line of defense against the pandemic threat and for the prevention and control of this infection in poultry and in wild birds.
Collapse
Affiliation(s)
- Ilaria Capua
- OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Padova, Italy
| | | |
Collapse
|
39
|
Dundon WG, Maniero S, Toffan A, Capua I, Cattoli G. Appearance of Serum Antibodies Against the Avian Influenza Nonstructural 1 Protein in Experimentally Infected Chickens and Turkeys. Avian Dis 2007; 51:209-12. [PMID: 17494555 DOI: 10.1637/7556-033106r.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In order to support eradication efforts of avian influenza (AI) infections in poultry, the implementation of "differentiation of infected from vaccinated animals" (DIVA) vaccination strategies has been recommended by international organizations. These systems enable the detection of field exposure in vaccinated flocks, and through this detection, infected flocks may be properly managed, thus interrupting the perpetuation of the infectious cycle. A promising system, based on the detection of antibodies to the nonstructural 1 (NS1) protein of AI, has been deemed a good candidate. However, there are presently no data available, in support of this DIVA system, with regard to the kinetics of antibody production against the NS1 proteins in poultry following infection. The present investigation was undertaken to establish the dynamics of the appearance of anti-NS1 antibodies in a naïve population. Following experimental infection of turkeys, antibodies to a peptide spanning the c-terminal of the NS1 protein were detected by enzyme-linked immunosorbent assay (ELISA) starting between day 3 and day 5 postinfection. In contrast, no antibodies to the NS1 peptide could be detected in chickens over the test period. In addition, the turkeys and chickens reacted differently at a clinical level to the infection by the H9N2 challenge virus. Taken together, these findings indicate that there is a significant difference in the viral replication in turkeys and chickens, resulting in a variation in the production of antibodies to NS1, as detected by the peptide-based ELISA used. This fact must be taken into consideration when using a DIVA system based on the identification of antibodies to the NS1 protein.
Collapse
Affiliation(s)
- William G Dundon
- OIE, FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Italy
| | | | | | | | | |
Collapse
|
40
|
Capua I, Marangon S. Control and prevention of avian influenza in an evolving scenario. Vaccine 2006; 25:5645-52. [PMID: 17169466 DOI: 10.1016/j.vaccine.2006.10.053] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 10/30/2006] [Indexed: 11/25/2022]
Abstract
Continuing outbreaks of highly pathogenic avian influenza (HPAI) across Eurasia and in Africa, caused by a type A influenza virus of the H5N1 subtype appear out of control and represent a serious risk for animal and public health worldwide. It is known that biosecurity represents the first line of defence against AI, although in certain circumstances strict hygienic measures appear to be inapplicable for social and economic conditions. The option of using vaccination against AI viruses of the H5 and H7 subtypes, has made its way in recent times--primarily as a tool to maximise the outcome of a series of control measures in countries that are currently infected, but also as a means of reducing the risk of introduction in areas at high risk of infection. In developing countries vaccination programmes in avian species have been recommended recently, however it will require concurrent management of local husbandry practices and industry compliance to eradicate the disease rather than the establishment of an endemic situation. Other key deliverables expected for this control strategy include maintaining a major source of food for rural communities and the preservation of the commercial viability of the local poultry industry. In developed countries vaccination is being used as a means of increasing resistance of susceptible animals to reduce the risk of introduction from the reservoir host or to reduce secondary spread in densely populated poultry areas. The recent joint OIE/FAO summits recommended applying vaccination, using the differentiating infected from vaccinated animals (DIVA) strategy when there is risk of major spread and depopulation is not feasible or desirable. Particularly in developing countries, stamping out of infected animals does not seem to be an appropriate means of reducing the spread of infection, if food supplies are to be guaranteed and economic consequences minimised. Crucial points to the success of a vaccination campaign are the implementation of complex territorial strategy involving upgraded biosecurity, monitoring vaccine efficacy, identification of field exposure and the appropriate management of infected flocks, regardless of vaccination status. Granting financial support for the compensation of farmers is also a key part of this strategy. Poultry veterinarians working for the industry or for the public sector represent the first line of defence against the pandemic threat and for the prevention and control of this infection in poultry and in wild birds.
Collapse
Affiliation(s)
- Ilaria Capua
- OIE, FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padova, Italy.
| | | |
Collapse
|
41
|
Abstract
Avian influenza, listed by the World Organization for Animal Health (OIE), has become a disease of great importance for animal and human health. Several aspects of the disease lack scientific information, which has hampered the management of some recent crises. Millions of animals have died, and concern is growing over the loss of human lives and management of the pandemic potential. On the basis of data generated in recent outbreaks and in light of new OIE regulations and maintenance of animal welfare, we review the available control methods for avian influenza infections in poultry, from stamping out to prevention through emergency and prophylactic vaccination.
Collapse
Affiliation(s)
- Ilaria Capua
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| | - Stefano Marangon
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| |
Collapse
|