1
|
Gao S, Zhao J, Liu X, Liu L, Chen R. Metabolomics reveals serum metabolic signatures in H-type hypertension based on mass spectrometry multi-platform. Eur J Clin Invest 2023; 53:e14063. [PMID: 37458276 DOI: 10.1111/eci.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND H-type hypertension (HHT) is a disease combined with hyperhomocysteinaemia and hypertension (HT). This study aims to find specific metabolic changes and reveal the pathophysiological mechanism of HHT, which provide the theoretical basis for the early prevention and treatment of HHT. METHODS Serum samples from three groups including 53 HHT patients, 36 HT patients and 46 healthy controls (HC) were collected. The targeted and untargeted metabolomics analyses were performed to determine the metabolic changes. Based on multivariate statistical analysis, the serum potential metabolites were screened and different metabolic pathways were explored. RESULTS Our results demonstrated that there were 28 important potential metabolites for distinguishing HT from HHT patients. Metabolic pathway analysis showed that the different metabolic pathways between HHT and HC group were arginine biosynthesis, arginine and proline metabolism, and tyrosine metabolism. The changed metabolic pathway of HT and HC group included linoleic acid metabolism. The specific metabolic pathways of HT-HHT comparison group had phenylalanine metabolism; phenylalanine, tyrosine and tryptophan biosynthesis; glycine, serine and threonine metabolism. CONCLUSIONS Metabolomics analysis by mass spectrometry multi-platform revealed the differences of metabolic profiles between HHT and HT subjects. This work laid the groundwork for understanding the aetiology of HHT, and these findings may provide the useful information for explaining the HHT metabolic alterations and try to prevent HHT.
Collapse
Affiliation(s)
- Siqi Gao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Jinhui Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiaowei Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Liyan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Rui Chen
- Department of Orthopedics, Jiangnan University Medical Center, Wuxi, China
| |
Collapse
|
2
|
Szlęzak D, Ufnal M, Drapała A, Samborowska E, Wróbel M. Urinary excretion of asymmetric (ADMA) and symmetric (SDMA) dimethylarginine is positively related to nitric oxide level in tissues of normotensive and hypertensive rats. Amino Acids 2023; 55:529-539. [PMID: 36802034 PMCID: PMC10140227 DOI: 10.1007/s00726-023-03246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Nitric oxide (NO) is one of the gaseous transmitters which play a very important role in the regulation of the circulatory system. Decreased NO availability is associated with hypertension, cardiovascular and kidney diseases. Endogenous NO is generated enzymatically by nitric oxide synthase (NOS) depending on the availability of the substrate, cofactors, or presence/absence of inhibitors, such as asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). The objective of this study was to evaluate the potential relationship between NO level in rat tissues (heart and kidneys) and the concentrations of endogenous metabolites related to NO in plasma and urine. The experiment was carried out with 16- and 60-week-old male Wistar Kyoto (WKY) and age-matched male Spontaneously Hypertensive Rats (SHR). NO level in tissue homogenates was determined by the colorimetric method. RT-qPCR was used to verify the expression of the eNOS (endothelial NOS) gene. Plasma and urine concentrations of arginine, ornithine, citrulline, and dimethylarginines were examined by the UPLC-MS/MS method. 16-week-old WKY rats had the highest tissue NO and plasma citrulline levels. Furthermore, 16-week-old WKY rats showed higher urinary excretion of ADMA/SDMA compared to other experimental groups, however, plasma concentrations of arginine, ADMA, and SDMA were comparable between the groups. In conclusion, our research shows that hypertension and aging decrease tissue NO levels and are associated with reduced urinary excretion of NOS inhibitors, i.e., ADMA and SDMA.
Collapse
Affiliation(s)
- Dominika Szlęzak
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St, 31-034, Kraków, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha St, 02-097, Warsaw, Poland
| | - Adrian Drapała
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha St, 02-097, Warsaw, Poland
| | - Emilia Samborowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawińskiego St, 02-106, Warsaw, Poland
| | - Maria Wróbel
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St, 31-034, Kraków, Poland.
| |
Collapse
|
3
|
Kisacam MA, Kocamuftuoglu GO, Ufat H, Ozan ST. The evaluation of early stage oxidative status in streptozotocin induced diabetes in rats. Arch Physiol Biochem 2022; 128:1474-1478. [PMID: 32521173 DOI: 10.1080/13813455.2020.1776736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Early-stage diabetes can be defined as the stages before absolute insulin deficiency in patients. In this study, the early stage oxidative effect of streptozotocin(STZ) induced diabetes mellitus was evaluated. 28 male adult Sprague-Dawley rats were divided into four groups; control group and 7th, 14th, 21st days diabetic groups. Diabetic groups received single 65 mg/kg STZ injection intraperitoneally. Rats were decapitated at 7th, 14th and 21st days, liver tissues were taken. Nitric oxide(NO), malondialdehyde(MDA) levels and catalase, arginase activities were measured. MDA and NO levels were increased (respectively p < .001 and p < .01), mainly 14 and 21 days after STZ administration; moreover, while liver catalase activity was progressively decreased (p < .001), oppositely arginase was increased in the same time period (p < .01). Results show that MDA and nitric oxide together with catalase and arginase switch at an early stage of diabetes and they may contribute to subsequent complications related to diabetes via increased oxidative damage.
Collapse
Affiliation(s)
- Mehmet Ali Kisacam
- Department of Biochemistry, Faculty of Veterinary Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Gonca Ozan Kocamuftuoglu
- Department of Biochemistry, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Hakan Ufat
- Department of Biochemistry, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Sema Temizer Ozan
- Department of Biochemistry, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
4
|
Ren Y, Li Z, Li W, Fan X, Han F, Huang Y, Yu Y, Qian L, Xiong Y. Arginase: Biological and Therapeutic Implications in Diabetes Mellitus and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2419412. [PMID: 36338341 PMCID: PMC9629921 DOI: 10.1155/2022/2419412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 09/21/2023]
Abstract
Arginase is a ubiquitous enzyme in the urea cycle (UC) that hydrolyzes L-arginine to urea and L-ornithine. Two mammalian arginase isoforms, arginase1 (ARG1) and arginase2 (ARG2), play a vital role in the regulation of β-cell functions, insulin resistance (IR), and vascular complications via modulating L-arginine metabolism, nitric oxide (NO) production, and inflammatory responses as well as oxidative stress. Basic and clinical studies reveal that abnormal alterations of arginase expression and activity are strongly associated with the onset and development of diabetes mellitus (DM) and its complications. As a result, targeting arginase may be a novel and promising approach for DM treatment. An increasing number of arginase inhibitors, including chemical and natural inhibitors, have been developed and shown to protect against the development of DM and its complications. In this review, we discuss the fundamental features of arginase. Next, the regulatory roles and underlying mechanisms of arginase in the pathogenesis and progression of DM and its complications are explored. Furthermore, we review the development and discuss the challenges of arginase inhibitors in treating DM and its related pathologies.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Zhuozhuo Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Wenqing Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Feifei Han
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Yaoyao Huang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yi Yu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Matsumoto T, Taguchi K, Kobayashi T. Relationships between advanced glycation end products (AGEs), vasoactive substances, and vascular function. J Smooth Muscle Res 2022; 57:94-107. [PMID: 35095032 PMCID: PMC8795595 DOI: 10.1540/jsmr.57.94] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) are major cell types that control vascular function, and hence dysfunction of these cells plays a key role in the development and progression of vasculopathies. Abnormal vascular responsiveness to vasoactive substances including vasoconstrictors and vasodilators has been observed in various arteries in diseases including diabetes, hypertension, chronic kidney diseases, and atherosclerosis. Several substances derived from ECs tightly control vascular function, such as endothelium-derived relaxing and contracting factors, and it is known that abnormal vascular signaling of these endothelium-derived substances is often observed in various diseases. Derangement of signaling in VSMCs and altered function influence vascular reactivity to vasoactive substances and tone, which are important determinants of vascular resistance and blood pressure. However, understanding the molecular mechanisms underlying abnormalities of vascular functions in pathological states is difficult because multiple substances interact in the development of these processes. Advanced glycation end products (AGEs), a heterogeneous group of bioactive compounds, are thought to contribute to vascular dysfunction, which in turn cause the development of several diseases including diabetes, hypertension, stroke, and atherosclerosis. A growing body of evidence suggests that AGEs could affect these cells and modulate vascular function. This study is focused on the link between AGEs and functions of ECs and VSMCs, particularly the modulative effects of AGEs on vascular reactivities to vasoactive substances.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
6
|
L-Citrulline supplementation attenuates aortic pulse pressure and wave reflection responses to cold stress in older adults. Exp Gerontol 2022; 159:111685. [PMID: 34990772 DOI: 10.1016/j.exger.2021.111685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/10/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Augmented aortic systolic blood pressure (SBP) and wave reflection via sympathetic-mediated vasoconstriction elevates the risk for adverse cardiovascular events in older adults. L-citrulline (L-CIT) supplementation has shown to reduce aortic SBP and pulse pressure (PP) responses to cold pressor test (CPT) induced sympathoactivation in young men. The aim of this study was to elucidate the efficacy of L-CIT supplementation to attenuate aortic hemodynamic responses to CPT in older adults. METHODS AND RESULTS Sixteen older adults were randomly assigned to placebo or L-CIT (6 g/day) for 14-days in a crossover, double-blind, placebo-controlled design. Brachial SBP and aortic SBP, PP, augmented pressure (AP), augmentation index standardized at 75 bpm (AIx@75), and pressure of the forward (Pf) and reflected (Pb) waves were evaluated at rest and during CPT pre- and post-intervention. Although no hemodynamic changes at rest, brachial SBP (Δ-12 ± 18 vs. Δ4 ± 14 mmHg; P = 0.008) and aortic SBP (Δ-10 ± 14 vs. Δ4 ± 12 mmHg; P = 0.005), PP (Δ-10 ± 12 vs. Δ4 ± 11 mmHg; P = 0.002), AP (Δ-4 ± 4 vs. Δ2 ± 7 mmHg; P = 0.004), AIx@75 (Δ-3.2 ± 7.2 vs. Δ2.2 ± 6.9%; P = 0.038), Pf (Δ-6 ± 10 vs. Δ3 ± 9 mmHg; P = 0.019), and Pb (Δ-4 ± 6 vs. Δ2 ± 6 mmHg; P = 0.008) responses to the CPT were significantly attenuated following L-CIT supplementation vs. placebo. CONCLUSIONS L-CIT supplementation attenuated aortic pulsatile pressure and pressure wave reflection responses to CPT in older adults, providing possible cardioprotection during cold-induced sympathoactivation in older adults.
Collapse
|
7
|
Identification of Potential Metabolic Markers of Hypertension in Chinese Children. Int J Hypertens 2021; 2021:6691734. [PMID: 34484817 PMCID: PMC8410451 DOI: 10.1155/2021/6691734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background Studies in adults have shown that several metabolites across multiple pathways are strongly associated with hypertension. However, as yet, to our knowledge, no study has investigated such association in childhood. We, therefore, compared the serum metabolite profile of children with normal and elevated blood pressure (BP) to identify potential metabolic markers and pathways that could be useful for the assessment of pediatric hypertension. Methods The study included 26 hypertensive children (age range, 6-11 years) and 26 age- and sex-matched ones with normal BP, who were recruited from the baseline survey of the Huantai Childhood Cardiovascular Health Cohort Study. Ultrahigh-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry was performed to assess the serum metabolite profile. Logistic regression analysis was used to select significant metabolites associated with hypertension after adjustment for body mass index, waist circumference, and lipid profile. Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaboAnalyst were utilized to search for the potential pathways of metabolites. Results A total of 45 and 34 metabolites were preliminarily screened in positive and negative modes, respectively (variable importance in the projection (VIP) > 1.0 and P < 0.05). After adjustment for the false discovery rate, 7 and 1 differential metabolites in the positive and negative modes, respectively, remained significant (VIP > 1.0 and q < 0.05). These metabolites were mainly involved in amino acid metabolism and glycerophospholipid metabolism. Among these, two significant metabolites including ethanolamine and 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate displayed an area under the curve value of 0.820 (95% confidence interval, 0.688-0.951), with a sensitivity of 0.846 and a specificity of 0.769. Conclusion The untargeted metabolomics approach effectively identified the differential serum metabolite profile in children with and without hypertension. Notably, two metabolites including ethanolamine and 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate exhibited a good discriminative ability to identify children with hypertension, providing new insights into potential mechanisms of pediatric hypertension.
Collapse
|
8
|
L-Citrulline: A Non-Essential Amino Acid with Important Roles in Human Health. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073293] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
L-Arginine (Arg) has been widely used due to its functional properties as a substrate for nitric oxide (NO) generation. However, L-citrulline (CIT), whose main natural source is watermelon, is a non-essential amino acid but which has important health potential. This review provides a comprehensive approach to different studies of the endogenous synthesis of CIT, metabolism, pharmacokinetics, and pharmacodynamics as well as its ergogenic effect in exercise performance. The novel aspect of this paper focuses on the different effects of CIT, citrulline malate and CIT from natural sources such as watermelon on several topics, including cardiovascular diseases, diabetes, erectile dysfunction, cancer, and exercise performance. CIT from watermelon could be a natural food-sourced substitute for pharmacological products and therefore the consumption of this fruit is promoted.
Collapse
|
9
|
Silva H, Lopes NMF. Cardiovascular Effects of Caffeic Acid and Its Derivatives: A Comprehensive Review. Front Physiol 2020; 11:595516. [PMID: 33343392 PMCID: PMC7739266 DOI: 10.3389/fphys.2020.595516] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Caffeic acid (CA) and its phenethyl ester (CAPE) are naturally occurring hydroxycinnamic acids with an interesting array of biological activities; e.g., antioxidant, anti-inflammatory, antimicrobial and cytostatic. More recently, several synthetic analogs have also shown similar properties, and some with the advantage of added stability. The actions of these compounds on the cardiovascular system have not been thoroughly explored despite presenting an interesting potential. Indeed the mechanisms underlying the vascular effects of these compounds particularly need clarifying. The aim of this paper is to provide a comprehensive and up-to-date review on current knowledge about CA and its derivatives in the cardiovascular system. Caffeic acid, CAPE and the synthetic caffeic acid phenethyl amide (CAPA) exhibit vasorelaxant activity by acting on the endothelial and vascular smooth muscle cells. Vasorelaxant mechanisms include the increased endothelial NO secretion, modulation of calcium and potassium channels, and modulation of adrenergic receptors. Together with a negative chronotropic effect, vasorelaxant activity contributes to lower blood pressure, as several preclinical studies show. Their antioxidant, anti-inflammatory and anti-angiogenic properties contribute to an important anti-atherosclerotic effect, and protect tissues against ischemia/reperfusion injuries and the cellular dysfunction caused by different physico-chemical agents. There is an obvious shortage of in vivo studies to further explore these compounds' potential in vascular physiology. Nevertheless, their favorable pharmacokinetic profile and overall lack of toxicity make these compounds suitable for clinical studies.
Collapse
Affiliation(s)
- Henrique Silva
- CBIOS – Universidade Lusófona’s Research Center for Biosciences and Health Technologies, Lisboa, Portugal
- Department of Pharmacological Sciences, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Miguel F. Lopes
- Department of Pharmacological Sciences, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Haydar D, Gonzalez R, Garvy BA, Garneau-Tsodikova S, Thamban Chandrika N, Bocklage TJ, Feola DJ. Myeloid arginase-1 controls excessive inflammation and modulates T cell responses in Pseudomonas aeruginosa pneumonia. Immunobiology 2020; 226:152034. [PMID: 33278710 DOI: 10.1016/j.imbio.2020.152034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/20/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022]
Abstract
Regulatory properties of macrophages associated with alternative activation serve to limit the exaggerated inflammatory response during pneumonia caused by Pseudomonas aeruginosa infection. Arginase-1 is an important effector of these macrophages believed to play an essential role in decreasing injury and promoting repair. We investigated the role of arginase-1 in the control of inflammatory immune responses to P. aeruginosa pneumonia in mice that exhibit different immunologic phenotypes. C57BL/6 mice with conditional knockout of the arginase-1 (Arg1) gene from myeloid cells (Arg1ΔM) or BALB/c mice treated with small molecule inhibitors of arginase were infected intratracheally with P. aeruginosa. Weight loss, mortality, bacterial clearance, and lung injury were assessed and compared, as were the characterization of immune cell populations over time post-infection. Myeloid arginase-1 deletion resulted in greater morbidity along with more severe inflammatory responses compared to littermate control mice. Arg1ΔM mice had greater numbers of neutrophils, macrophages, and lymphocytes in their airways and lymph nodes compared to littermate controls. Additionally, Arg1ΔM mice recovered from inflammatory lung injury at a significantly slower rate. Conversely, treatment of BALB/c mice with the arginase inhibitor S-(2-boronoethyl)-l-cysteine hydrochloride (BEC) did not change morbidity as defined by weight loss, but mice at day 10 post-infection treated with BEC had gained significantly more weight back than controls. Neutrophil and macrophage infiltration were similar between groups in the lung parenchyma, and neutrophil migration into the airways was reduced by BEC treatment. Differences seem to lie in the impact on T cell subset disposition. Arg1ΔM mice had increased total CD4+ T cell expansion in the lymph nodes, and increased T cell activation, IFNγ production, and IL-17 production in the lymph nodes, lung interstitium, and airways, while treatment with BEC had no impact on T cell activation or IL-17 production, but reduced the number of T cells producing IFNγ in the lungs. Lung injury scores were increased in the Arg1ΔM mice, but no differences were observed in the mice treated with pharmacologic arginase inhibitors. Overall, myeloid arginase production was demonstrated to be essential for control of damaging inflammatory responses associated with P. aeruginosa pneumonia in C57BL/6 mice, in contrast to a protective effect in the Th2-dominant BALB/c mice when arginase activity is globally inhibited.
Collapse
Affiliation(s)
- Dalia Haydar
- University of Kentucky, Department of Pharmacy Practice and Science, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Rene Gonzalez
- University of Kentucky, Department of Pharmacy Practice and Science, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Beth A Garvy
- University of Kentucky, College of Medicine, Department of Microbiology, Immunology and Molecular Genetics, 800 Rose Street, Lexington, KY 40536, USA.
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Nishad Thamban Chandrika
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Therese J Bocklage
- University of Kentucky Healthcare, Pathology and Laboratory Medicine, 800 Rose Street, Lexington, KY 40536, USA.
| | - David J Feola
- University of Kentucky, Department of Pharmacy Practice and Science, 789 S. Limestone Street, Lexington, KY 40536, USA.
| |
Collapse
|
11
|
Gonzalez AM, Trexler ET. Effects of Citrulline Supplementation on Exercise Performance in Humans: A Review of the Current Literature. J Strength Cond Res 2020; 34:1480-1495. [DOI: 10.1519/jsc.0000000000003426] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Abdallah HM, Hassan NA, El-Halawany AM, Mohamed GA, Safo MK, El-Bassossy HM. Major flavonoids from Psiadia punctulata produce vasodilation via activation of endothelial dependent NO signaling. J Adv Res 2020; 24:273-279. [PMID: 32382447 PMCID: PMC7200196 DOI: 10.1016/j.jare.2020.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/11/2022] Open
Abstract
Methanol extract of Psiadia punctulata (MAPP) produced a significant vasodilation. Chloroform fraction and its methylated flavonoids were responsible for this effect. Vasodilation is referred to endothelial nitric oxide and, Ca2+ dependent eNOS. Interference with calcium entrance is another possible mechanism of vasodilation.
Vasodilators are important pharmacologic agents for managing and/or treating hypertension. Medicinal plants are considered as valuable source of bioactive compounds. We used a bioguided approach to isolate, identify, and investigate the possible vasodilation activities and mechanism(s) of the prepared methanol extract from aerial parts of Psiadia punctulata (MAPP), its bioactive fraction and active compounds. Vascular effects of MAPP were studied using isolated artery technique in the presence or absence of specific candidate pathways inhibitors, and found to produce a significant vasodilation of phenylephrine preconstricted rat aortae. The bioactive chloroform fraction yielded five methoxylated flavonoids: umuhengerin (1), gardenin A (2), gardenin B (3), luteolin-3′,4′ -dimethyl ether (4), and 5,3′-dihydroxy-6,7,4′,5′-tetramethoxyflavone (5). Metabolites 1, 4, and 5 produced a significant vasodilation. Removal of the endothelium significantly inhibited MAPP vasodilation. Nitric oxide synthase inhibition and not prostacycline inhibition or K+ channel blocking, was found to cause the observed vasodilation inhibition. Both guanylate cyclase and adenylate cyclase inhibitions markedly inhibited MAPP vasodilation. In conclusion MAPP possesses vasodilation activities that is mediated through endothelial nitric oxide pathway, calcium dependent endothelial nitric oxide synthase activation, and interference with the depolarization process through calcium channel blocking activity.
Collapse
Key Words
- AC, adenylate cyclase
- Ca2+, calcium
- CaM, calmodulin
- CaMKII, Ca2+/calmodulin-dependent protein kinase II
- Endothelial nitric oxide
- Flavonoids
- GTP, guanosine triphosphate
- Hypertension
- L-NAME, Nω-nitro-L-arginine methyl ester
- MAPP, methanol extract from aerial parts of Psiadia punctulata
- MDL, cis-N-(2-Phenylcyclopentyl)azacyclotridec-1-en-2-amine.HCl (MDL-12, 330A)
- NO, nitric oxide
- NOS, nitric oxide synthase
- ODQ, 1H-(1,2,4)-oxadiazolo(4,3-a)quinoxalin-1-one
- PE, phenylephrine
- PI3K, phosphoinositide 3-kinase
- PKG, protein kinase G
- PP, Psiadia punctulata
- Psiadia punctulata
- TEA, tetraethylammonium chloride
- VSMCs, vascular smooth muscle cells
- Vasodilator
- cGMP, cyclic guanosine monophosphate
- eNOS, endothelial nitric oxide synthase
Collapse
Affiliation(s)
- Hossam M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Noura A Hassan
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ali M El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assuit Branch, Assuit 71524, Egypt
| | - Martin K Safo
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, VA 23219, USA
| | - Hany M El-Bassossy
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
13
|
Polis B, Samson AO. Role of the metabolism of branched-chain amino acids in the development of Alzheimer's disease and other metabolic disorders. Neural Regen Res 2020; 15:1460-1470. [PMID: 31997805 PMCID: PMC7059578 DOI: 10.4103/1673-5374.274328] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alzheimer’s disease is an incurable chronic neurodegenerative disorder and the leading cause of dementia, imposing a growing economic burden upon society. The disease progression is associated with gradual deposition of amyloid plaques and the formation of neurofibrillary tangles within the brain parenchyma, yet severe dementia is the culminating phase of the enduring pathology. Converging evidence suggests that Alzheimer’s disease-related cognitive decline is the outcome of an extremely complex and persistent pathophysiological process. The disease is characterized by distinctive abnormalities apparent at systemic, histological, macromolecular, and biochemical levels. Moreover, besides the well-defined and self-evident characteristic profuse neurofibrillary tangles, dystrophic neurites, and amyloid-beta deposits, the Alzheimer’s disease-associated pathology includes neuroinflammation, substantial neuronal loss, apoptosis, extensive DNA damage, considerable mitochondrial malfunction, compromised energy metabolism, and chronic oxidative stress. Likewise, distinctive metabolic dysfunction has been named a leading cause and a hallmark of Alzheimer’s disease that is apparent decades prior to disease manifestation. State-of-the-art metabolomics studies demonstrate that altered branched-chain amino acids (BCAAs) metabolism accompanies Alzheimer’s disease development. Lower plasma valine levels are correlated with accelerated cognitive decline, and, conversely, an increase in valine concentration is associated with reduced risk of Alzheimer’s disease. Additionally, a clear BCAAs-related metabolic signature has been identified in subjects with obesity, diabetes, and atherosclerosis. Also, arginine metabolism is dramatically altered in Alzheimer’s disease human brains and animal models. Accordingly, a potential role of the urea cycle in the Alzheimer’s disease development has been hypothesized, and preclinical studies utilizing intervention in the urea cycle and/or BCAAs metabolism have demonstrated clinical potential. Continual failures to offer a competent treatment strategy directed against amyloid-beta or Tau proteins-related lesions, which could face all challenges of the multifaceted Alzheimer’s disease pathology, led to the hypothesis that hyperphosphorylated Tau and deposited amyloid-beta proteins are just hallmarks or epiphenomena, but not the ultimate causes of Alzheimer’s disease. Therefore, approaches targeting amyloid-beta or Tau are not adequate to cure the disease. Accordingly, the modern scientific vision of Alzheimer’s disease etiology and pathogenesis must reach beyond the hallmarks, and look for alternative strategies and areas of research.
Collapse
Affiliation(s)
- Baruh Polis
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
14
|
Azizi S, Mahdavi R, Vaghef-Mehrabany E, Maleki V, Karamzad N, Ebrahimi-Mameghani M. Potential roles of Citrulline and watermelon extract on metabolic and inflammatory variables in diabetes mellitus, current evidence and future directions: A systematic review. Clin Exp Pharmacol Physiol 2019; 47:187-198. [PMID: 31612510 DOI: 10.1111/1440-1681.13190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/24/2019] [Accepted: 10/12/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Diabetes mellitus is a prevalent endocrine disorder worldwide. Citrulline is an α-amino acid, which is abundant in watermelon, and a precursor of arginine and nitric oxide. Decreased bioavailability of nitric oxide is associated with insulin resistance. The present systematic review focused on the existing evidence of citrulline and watermelon extract effects on metabolic and inflammatory parameters in diabetes mellitus. METHODS A systematic search of the databases PubMed, Scopus, EMBASE, ProQuest and Google Scholar was conducted for relevant papers published from inception until October 2018. All clinical trials, animal and in vitro studies published in the English language that assessed the role of citrulline and watermelon extract on diabetes mellitus, were eligible. Studies providing inadequate information were excluded. RESULTS Out of 1262 articles we found, only eight articles met the inclusion criteria for analysis. In three studies an increase in the synthesis of nitric oxide was reported with citrulline and watermelon extract supplementation. Four studies showed a significant reduction in blood glucose after supplementation with watermelon extract, and two studies reported a decrease in a number of inflammatory biomarkers following citrulline supplementation. Although citrulline intake caused a significant reduction in HOMA-IR in one study, inconsistent results were revealed on the effects of citrulline and watermelon extract on insulin levels and lipid profile. CONCLUSION Citrulline and watermelon extract could improve nitric oxide synthesis, glycaemic status and inflammation in diabetes mellitus. However, further studies are required to shed light on the underlying mechanisms.
Collapse
Affiliation(s)
- Samaneh Azizi
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Vaghef-Mehrabany
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Maleki
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Karamzad
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Mahdi A, Kövamees O, Pernow J. Improvement in endothelial function in cardiovascular disease - Is arginase the target? Int J Cardiol 2019; 301:207-214. [PMID: 31785959 DOI: 10.1016/j.ijcard.2019.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 01/30/2023]
Abstract
Endothelial dysfunction represents an early change in the vascular wall in areas prone to atherosclerotic plaque formation and is present in association with several risk factors for cardiovascular disease. The underlying mechanisms behind endothelial dysfunction are multifactorial and complex. Arginase has emerged as a key player in the regulation of endothelial integrity by the ability of reciprocally inhibits nitric oxide formation and promoting oxidative stress. A chain of evidence suggest that arginase is implicated in the pathogenesis underlying endothelial dysfunction induced by several cardiovascular risk factors and established cardiovascular disease including diabetes, hypercholesteremia, ischemia/reperfusion, atherosclerosis, obesity, ageing and hypertension. Recent data has unveiled a key role of arginase as one of the key mechanisms underlying endothelial dysfunction in diabetes and may serve as a potential therapeutic target in previously overlooked compartments including red blood cells. The current review is devoted to discuss arginase as a key mediator in endothelial dysfunction and the potential for therapeutic possibilities to target this enzyme in various diseases, especially type 2 diabetes, atherosclerosis and ischemia/reperfusion with focus on translational and clinical aspects. Moreover, approaches of how and in which patient group(s) arginase may be targeted in future clinical trials are discussed.
Collapse
Affiliation(s)
- Ali Mahdi
- Division of Cardiology, Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Oskar Kövamees
- Division of Cardiology, Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden; Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden; Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
16
|
Adefegha SA, Oboh G, Iyoha AE, Oyagbemi AA. Comparative effects of horseradish (Moringa oleifera) leaves and seeds on blood pressure and crucial enzymes relevant to hypertension in rat. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
L-arginine and Arginase Products Potentiate Dexmedetomidine-induced Contractions in the Rat Aorta. Anesthesiology 2019; 128:564-573. [PMID: 29251642 DOI: 10.1097/aln.0000000000002032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The α2-adrenergic sedative/anesthetic agent dexmedetomidine exerts biphasic effects on isolated arteries, causing endothelium-dependent relaxations at concentrations at or below 30 nM, followed by contractions at higher concentrations. L-arginine is a common substrate of endothelial nitric oxide synthase and arginases. This study was designed to investigate the role of L-arginine in modulating the overall vascular response to dexmedetomidine. METHODS Isometric tension was measured in isolated aortic rings of Sprague Dawley rats. Cumulative concentrations of dexmedetomidine (10 nM to 10 μM) were added to quiescent rings (with and without endothelium) after previous incubation with vehicle, N-nitro-L-arginine methyl ester hydrochloride (L-NAME; nitric oxide synthase inhibitor), prazosin (α1-adrenergic antagonist), rauwolscine (α2-adrenergic antagonist), L-arginine, (S)-(2-boronethyl)-L-cysteine hydrochloride (arginase inhibitor), N-hydroxy-L-arginine (arginase inhibitor), urea and/or ornithine. In some preparations, immunofluorescent staining, immunoblotting, or measurement of urea content were performed. RESULTS Dexmedetomidine did not contract control rings with endothelium but evoked concentration-dependent increases in tension in such rings treated with L-NAME (Emax 50 ± 4%) or after endothelium-removal (Emax 74 ± 5%; N = 7 to 12). Exogenous L-arginine augmented the dexmedetomidine-induced contractions in the presence of L-NAME (Emax 75 ± 3%). This potentiation was abolished by (S)-(2-boronethyl)-L-cysteine hydrochloride (Emax 16 ± 4%) and N-hydroxy-L-arginine (Emax 18 ± 4%). Either urea or ornithine, the downstream arginase products, had a similar potentiating effect as L-arginine. Immunoassay measurements demonstrated an upregulation of arginase I by L-arginine treatment in the presence of L-NAME (N = 4). CONCLUSIONS These results suggest that when vascular nitric oxide homeostasis is impaired, the potentiation of the vasoconstrictor effect of dexmedetomidine by L-arginine depends on arginase activity and the production of urea and ornithine.
Collapse
|
18
|
El-Fawal R, El Fayoumi HM, Mahmoud MF. Effects of diosmin and crocin on metabolic syndrome-associated cardio-vascular complications in rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1523-1536. [DOI: 10.1007/s00210-019-01700-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022]
|
19
|
Gaur N, Kumar K, Gupta CL, Saxena JK. Molecular characterization of recombinant arginase of Leishmania donovani. Protein Expr Purif 2019; 159:1-9. [PMID: 30831225 DOI: 10.1016/j.pep.2019.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 11/29/2022]
Abstract
Arginase catalyzes the first committed step in the biosynthesis of polyamines that enable cell growth and hence potential drug target for the treatment of leishmaniasis. The arginase from Leishmania donovani (LdARG) was cloned, overexpressed and characterized. Analysis of the deduced amino acid sequence of LdARG with homologous enzyme from other trypanosomatids arginases identified a non-conserved 12 residues long segment VWGLIERTFLSA from position 161-172. This counter segment in L. mexicana arginase exhibits a different conformation compared with human arginase I. The pH and temperature optima of LdARG were 9.0 and 37 °C, respectively. Biochemical studies revealed that the KM for the substrate L-arginine was 24.76 ± 0.06 mM. Molecular modeling of LdARG studies revealed that the glutamic acid residue at position 288 plays a role in substrate binding. The importance of this glutamic acid residue was validated by constructing a mutant variant of LdARG (E288Q-LdARG) by replacing glutamic acid with glutamine through site-directed mutagenesis. The KM value of mutant variant for L-arginine was found to be 107 ± 0.18 mM. The increase in KM value of E288Q-LdARG as compared to LdARG suggested that substrate binding was significantly affected which could be exploited further. Studies on biochemical and structural characterization of recombinant LdARG will help in evaluating this enzyme as a potential drug target for visceral leishmaniasis.
Collapse
Affiliation(s)
- Neha Gaur
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.
| | - Kishore Kumar
- Division of Biochemistry, Regional Research Institute of Unani Medicine, Bhadrak, 756100, Odisha, India
| | - Chhedi Lal Gupta
- Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Jitendra Kumar Saxena
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| |
Collapse
|
20
|
A combination of oral L-citrulline and L-arginine improved 10-min full-power cycling test performance in male collegiate soccer players: a randomized crossover trial. Eur J Appl Physiol 2019; 119:1075-1084. [PMID: 30847640 PMCID: PMC6469824 DOI: 10.1007/s00421-019-04097-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Oral L-citrulline (Cit) increases plasma L-arginine (Arg) concentration and the production of nitric oxide (NO). NO dilates blood vessels and potentially improves sports performance. The combination of oral Arg and Cit (Arg + Cit) immediately and synergistically increases plasma Arg and nitrite/nitrate (NOx) concentrations more than either Cit or Arg alone. This prompted us to assess the effects of oral Arg + Cit on 10-min cycling performance in a double-blind, randomized, placebo-controlled crossover trial. METHODS Twenty-four male soccer players ingested either Cit + Arg or placebo (both 1.2 g/day each) for 6 days. On day 7, they ingested Cit + Arg 1 h before performing a 10-min full-power pedaling test on a bicycle ergometer. Plasma NOx and amino acid levels were measured before and after the test, as well as the participants' subjective perception of physical exertion. RESULTS Power output was significantly greater with Cit + Arg than in the placebo group (242 ± 24 vs. 231 ± 21 W; p < 0.05). Plasma concentrations of post-exercise NOx (p < 0.05), Cit (p < 0.01) and Arg (p < 0.01) were significantly higher in the Cit + Arg than in the placebo group, whereas exercise upregulated plasma NOx concentrations in both groups (p < 0.05). Cit + Arg also gave improved post-exercise subjective perception of "leg muscle soreness" and "ease of pedaling" (both p < 0.05). CONCLUSION Seven days of oral Citrulline (1.2 g/d) and Arginine (1.2 g/d) ingestion improved 10-min cycling performance and the perception of physical exertion in male collegiate soccer players.
Collapse
|
21
|
Mourya A, Akhtar A, Ahuja S, Sah SP, Kumar A. Synergistic action of ursolic acid and metformin in experimental model of insulin resistance and related behavioral alterations. Eur J Pharmacol 2018; 835:31-40. [PMID: 30075220 DOI: 10.1016/j.ejphar.2018.07.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022]
Abstract
Chronic restraint stress (CRS) is known to cause metabolic and neurological complications in a number of ways. Prolonged exposure to stress evident by increased corticosterone level led to impaired altered insulin signaling and oxidative stress in mice, in the present study. Impaired insulin signaling or insulin resistance was characterized by hyperglycemia, hyperinsulinemia, hyperlipidemia, hypoadiponectinemia, increased glycosylated haemoglobin and HOMA-IR. It was also associated with increased proinflammatory cytokine TNF-α levels. CRS also caused significant increase in acetylcholinesterase activity and oxidative stress in brain along with cognitive impairment in behavioral test. Ursolic acid, metformin, gliclazide and their combinations when administered daily for 30 days significantly improved insulin sensitivity apart from behavioral and biochemical alterations in stressed mice. Treatment with drugs also decreased serum corticosterone and TNF-α levels. The findings of our study revealed that improvement in insulin sensitivity, learning and cognitive performance in stressed mice was attributed to attenuation of proinflammatory cytokines and oxidative stress. Moreover, combination of [Metformin (150 mg/kg) + Ursolic acid (10 mg/kg)] produced enhanced improvement in insulin sensitivity and cognitive impairment as compared to their individual effects, suggesting possibly the common mode of anti-inflammatory and antioxidant mechanisms.
Collapse
Affiliation(s)
- Ashish Mourya
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Ansab Akhtar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Swati Ahuja
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| |
Collapse
|
22
|
Peyton KJ, Liu XM, Shebib AR, Johnson FK, Johnson RA, Durante W. Arginase inhibition prevents the development of hypertension and improves insulin resistance in obese rats. Amino Acids 2018; 50:747-754. [PMID: 29700652 DOI: 10.1007/s00726-018-2567-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/09/2018] [Indexed: 01/12/2023]
Abstract
This study investigated the temporal activation of arginase in obese Zucker rats (ZR) and determined if arginase inhibition prevents the development of hypertension and improves insulin resistance in these animals. Arginase activity, plasma arginine and nitric oxide (NO) concentration, blood pressure, and insulin resistance were measured in lean and obese animals. There was a chronological increase in vascular and plasma arginase activity in obese ZR beginning at 8 weeks of age. The increase in arginase activity in obese animals was associated with a decrease in insulin sensitivity and circulating levels of arginine and NO. The rise in arginase activity also preceded the increase in blood pressure in obese ZR detected at 12 weeks of age. Chronic treatment of 8-week-old obese animals with an arginase inhibitor or L-arginine for 4 weeks prevented the development of hypertension and improved plasma concentrations of arginine and NO. Arginase inhibition also improved insulin sensitivity in obese ZR while L-arginine supplementation had no effect. In conclusion, arginase inhibition prevents the development of hypertension and improves insulin sensitivity while L-arginine administration only mitigates hypertension in obese animals. Arginase represents a promising therapeutic target in ameliorating obesity-associated vascular and metabolic dysfunction.
Collapse
Affiliation(s)
- Kelly J Peyton
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Xiao-Ming Liu
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Ahmad R Shebib
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Fruzsina K Johnson
- College of Osteopathic Medicine, William Cary University, Hattiesburg, MS, USA
| | - Robert A Johnson
- College of Osteopathic Medicine, William Cary University, Hattiesburg, MS, USA
| | - William Durante
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA.
| |
Collapse
|
23
|
Shosha E, Xu Z, Narayanan SP, Lemtalsi T, Fouda AY, Rojas M, Xing J, Fulton D, Caldwell RW, Caldwell RB. Mechanisms of Diabetes-Induced Endothelial Cell Senescence: Role of Arginase 1. Int J Mol Sci 2018; 19:ijms19041215. [PMID: 29673160 PMCID: PMC5979610 DOI: 10.3390/ijms19041215] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 12/17/2022] Open
Abstract
We have recently found that diabetes-induced premature senescence of retinal endothelial cells is accompanied by NOX2-NADPH oxidase-induced increases in the ureohydrolase enzyme arginase 1 (A1). Here, we used genetic strategies to determine the specific involvement of A1 in diabetes-induced endothelial cell senescence. We used A1 knockout mice and wild type mice that were rendered diabetic with streptozotocin and retinal endothelial cells (ECs) exposed to high glucose or transduced with adenovirus to overexpress A1 for these experiments. ABH [2(S)-Amino-6-boronohexanoic acid] was used to inhibit arginase activity. We used Western blotting, immunolabeling, quantitative PCR, and senescence associated β-galactosidase (SA β-Gal) activity to evaluate senescence. Analyses of retinal tissue extracts from diabetic mice showed significant increases in mRNA expression of the senescence-related proteins p16INK4a, p21, and p53 when compared with non-diabetic mice. SA β-Gal activity and p16INK4a immunoreactivity were also increased in retinal vessels from diabetic mice. A1 gene deletion or pharmacological inhibition protected against the induction of premature senescence. A1 overexpression or high glucose treatment increased SA β-Gal activity in cultured ECs. These results demonstrate that A1 is critically involved in diabetes-induced senescence of retinal ECs. Inhibition of arginase activity may therefore be an effective therapeutic strategy to alleviate diabetic retinopathy by preventing premature senescence.
Collapse
Affiliation(s)
- Esraa Shosha
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Zhimin Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - S Priya Narayanan
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
- Department of Occupational Therapy, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA.
| | - Tahira Lemtalsi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Abdelrahman Y Fouda
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Modesto Rojas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Ji Xing
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - R William Caldwell
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| |
Collapse
|
24
|
El-Bassossy HM, Neamatallah T, Balamash KS, Abushareb AT, Watson ML. Arginase overexpression and NADPH oxidase stimulation underlie impaired vasodilation induced by advanced glycation end products. Biochem Biophys Res Commun 2018; 499:992-997. [PMID: 29627571 DOI: 10.1016/j.bbrc.2018.04.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Advanced glycation endproducts (AGEs) play a major role in the development of many vascular complications that are mediated by endothelial dysfunction. The present work aimed to investigate the mechanism by which AGEs impair vasodilation. METHODS The effect of AGEs on vasodilation induced by acetylcholine or D NONOate was examined by incubating isolated rat aortae with different AGEs concentrations. ACh-induced nitric oxide generation was assessed using the fluorescent probe diaminofluorecein (DAF-FM). The effect of AGEs on expression of mRNA for arginase 2, NADPH oxidase and endothelial nitric oxide synthase (eNOS) were determined by real-time PCR. RESULTS One-hour in vitro incubation of rat aortae with AGEs impaired endothelial-dependent vasodilation produced by ACh, while increasing D NONOate-induced vasodilation. Preincubation of aortae with l-ornithine, an arginase 2-inhibitor, prevented the impairment effect induced by AGEs on endothelial-dependent vasodilation. Superoxide scavenging by tempol or NADPH oxidase inhibition by apocynin also blocked the effect of AGEs. AGEs decreased ACh-induced NO production and this was inhibited by both l-ornithine and apocynin. Furthermore, AGEs exposure increased arginase mRNA expression but decreased mRNA expression for eNOS in isolated rat aortae. CONCLUSION The present results indicate that AGEs impairs endothelial-dependent vasodilation, and this effect is mediated via arginase overexpression and NADPH oxidase stimulation.
Collapse
Affiliation(s)
- Hany M El-Bassossy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Egypt.
| | - Thikryat Neamatallah
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khadijah S Balamash
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Saudi Arabia
| | - Amani T Abushareb
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Saudi Arabia
| | | |
Collapse
|
25
|
El-Fawal R, El Fayoumi HM, Mahmoud MF. Diosmin and crocin alleviate nephropathy in metabolic syndrome rat model: Effect on oxidative stress and low grade inflammation. Biomed Pharmacother 2018; 102:930-937. [PMID: 29710548 DOI: 10.1016/j.biopha.2018.03.162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
Nephropathy is a serious complication of metabolic syndrome (MS), a global epidemic disorder. This study was undertaken to investigate the actions of diosmin and crocin, two natural ingredients, on diabetic nephropathy in a rat model of MS and the underlying mechanism(s). Metabolic syndrome was induced by the addition of 10% fructose to drinking water and placing the rats on high-salt diet for 16 weeks. Diosmin and Crocin were orally administrated daily for 10 weeks starting at week 6. At the end of study, arterial blood pressure was non-invasively recorded. Urine, serum and kidneys were collected for renal function, oxidative stress, glycemic parameters, inflammatory markers and histological analysis. Both Diosmin and Crocin improved insulin resistance, decreased blood pressure, uric acid, lipoproteins and blocked diabetic nephropathy as indicated by reduction of albumin excretion rate and albumin/creatinine ratio. They alleviated the impaired filtration in MS as indicated by increased creatinine clearance. They also ameliorated oxidative stress and the low-grade 1inflammation as indicated by reduction of serum TNF-α and inflammatory cells. These observations suggest that both Diosmin and Crocin alleviate metabolic syndrome and the associated nephropathy in rats, possibly, through inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Rania El-Fawal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, 44519, Egypt
| | - Hassan M El Fayoumi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, 44519, Egypt; Faculty of Pharmacy, Sinai University Qantara, El Arish - El Masaid, Egypt
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, 44519, Egypt.
| |
Collapse
|
26
|
Hassan NA, Bassossy HME, Fahmy A, Mahmoud MF. Limonin alleviates macro- and micro-vascular complications of metabolic syndrome in rats: A comparative study with azelnidipine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 43:92-102. [PMID: 29747759 DOI: 10.1016/j.phymed.2018.03.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/31/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Hypertension is a serious component of metabolic syndrome (MetS). HYPOTHESIS This research investigates the potential protective effect of limonin against MetS-associated hypertension in comparison with azelnidipine, a common calcium channel blocker. STUDY DESIGN MetS was induced in rats by 10% fructose in water and 3% salt in diet over a 16-week period. Limonin (50 mg/kg) and azelnidipine (5 mg/kg) were administered daily in the last four weeks METHODS: Non-invasive blood pressure (BP) was recorded in conscious animals. Concentration-response curves for phenylephrine (PE) and acetylcholine (ACh) were analysed in thoracic aorta (macrovessels) and kidney microvessels. Blood glucose level, serum insulin level, advanced glycation end products (AGEs), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA) and transforming growth factor-β1 (TGF-β1) were determined. RESULTS Limonin alleviated elevations in systolic and diastolic BP associated with MetS similar to levels associated with azelnidipine. Limonin prevented the MetS induced exaggerated macro- and micro-vascular contractility to PE and the impaired dilatation to ACh. However, in vitro incubation with limonin partially alleviated the deteriorated vascular reactivity of aorta isolated from MetS animals or AGEs injured aorta. Limonin did not have direct relaxant effect on the isolated vessel. On the other hand, limonin reduced the elevated serum levels of AGEs, TNF-α and MDA. Limonin suppressed the vascular fibrosis through reducing the elevated serum level of TGF-β1 and excessive aortic collagen deposition. Limonin decreased the elevated HOMA-IR in MetS animals. CONCLUSION Limonin offsets the hypertensive and vascular impairment associated with MetS via attenuation of inflammation and fibrosis. Its impact is comparable to that of azelnidipine.
Collapse
Affiliation(s)
- Noura A Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, 44519, Egypt.
| | - Hany M El Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, 44519, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, 21589, Kingdom of Saudi Arabia
| | - Ahmed Fahmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, 44519, Egypt
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, 44519, Egypt
| |
Collapse
|
27
|
Barakat W, Fahmy A, Askar M, El-Kannishy S. Effectiveness of arginase inhibitors against experimentally induced stroke. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:603-612. [PMID: 29600431 DOI: 10.1007/s00210-018-1489-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/22/2018] [Indexed: 01/28/2023]
Abstract
Stroke is a lethal disease, but it disables more than it kills. Stroke is the second leading cause of death and the most frequent cause of permanent disability in adults worldwide, with 90% of survivors having residual deficits. The pathophysiology of stroke is complex and involves a strong inflammatory response associated with oxidative stress and activation of several proteolytic enzymes. The current study was designed to investigate the effect of arginase inhibitors (L-citruline and L-ornithine) against ischemic stroke induced in rats by middle cerebral artery occlusion (MCAO). MCAO resulted in alteration in rat behavior, brain infarct, and edema associated with disruption of the blood-brain barrier (BBB). This was mediated through overexpression of arginase I and II, inducible NOS (iNOS), malondialdehyde (MDA), advanced glycation end products (AGEs), TNF-α, and IL-1β and downregulation of endothelial nitric oxide synthase (eNOS). Treatment with L-citruline and L-ornithine and the standard neuroprotective drug cerebrolysin ameliorated all the deleterious effects of stroke. These results indicate the possible use of arginase inhibitors in the treatment of stroke after suitable clinical trials are done.
Collapse
Affiliation(s)
- Waleed Barakat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabuk University, Tabuk, Kingdom of Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Ahmad Fahmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed Askar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Sherif El-Kannishy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabuk University, Tabuk, Kingdom of Saudi Arabia
- Analytical Toxicology - Emergency Hospital, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
28
|
El-Bassossy HM, Mahmoud MF, Eid BG. The vasodilatory effect of allopurinol mediates its antihypertensive effect: Effects on calcium movement and cardiac hemodynamics. Biomed Pharmacother 2018; 100:381-387. [PMID: 29454286 DOI: 10.1016/j.biopha.2018.02.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/27/2018] [Accepted: 02/09/2018] [Indexed: 11/19/2022] Open
Abstract
Despite the reported reduction in blood pressure in hypertensive patients treated with allopurinol, the mechanism of the allopurinol hypotensive effect is still unclear. In the current study, the hypotensive effect of allopurinol has been fully investigated in hypertensive rats. Hypertension was induced in rats by angiotensin II (120 ng/min/kg) infusion for two weeks. Rats were then subjected to real-time recording of blood pressure, left ventricular pressure and volume and surface ECG. After 10 min of basal recording, allopurinol was slowly injected into the femoral vein with a dose of 10 μmole/kg. Then, invasive blood pressure, cardiac hemodynamics and ECG were continuously recorded for an additional 20 min. In addition, the vasodilation effect of allopurinol was studied using the isolated artery technique. Allopurinol injection reduced systolic, diastolic and pulse blood pressure. Allopurinol suppressed both cardiac systolic and diastolic hemodynamics as is apparent from the reduction in the rate of rise and the rate of fall in left ventricular pressure. Allopurinol reduced the general cardiac output quickly. Allopurinol addition to the organ bath (10-1000 μM) produced significant vasodilation of PE pre-constricted aortae that was not affected by endothelium denudation, L-NAME or indomethacin. However, allopurinol ameliorated the calcium induced contraction of aorta pre-constricted with KCl in calcium-free media. Erk or ROCK inhibition did not attenuated allopurinol produced vasodilation. In conclusion, allopurinol has an antihypertensive effect that is mediated, probably, by reducing cardiac output and decreasing vascular resistance. The vasodilator effect of allopurinol is most likely mediated by calcium blocking activities.
Collapse
Affiliation(s)
- Hany M El-Bassossy
- Department of Pharmacology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Egypt.
| | - Mona F Mahmoud
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Egypt
| | - Basma G Eid
- Department of Pharmacology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Polis B, Samson AO. Arginase as a Potential Target in the Treatment of Alzheimer’s Disease. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/aad.2018.74009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Ademiluyi AO, Ogunsuyi OB, Adebayo AA, Oboh G. Effect of fermented legume seeds on some key enzymes relevant to erectile dysfunction in vitro. J Food Biochem 2017. [DOI: 10.1111/jfbc.12437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Adedayo O. Ademiluyi
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry; Federal University of Technology; Akure Nigeria
| | - Opeyemi B. Ogunsuyi
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry; Federal University of Technology; Akure Nigeria
- Department of Biomedical Technology; Federal University of Technology; Akure Nigeria
| | - Adeniyi A. Adebayo
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry; Federal University of Technology; Akure Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry; Federal University of Technology; Akure Nigeria
| |
Collapse
|
31
|
Ginger Ingredients Alleviate Diabetic Prostatic Complications: Effect on Oxidative Stress and Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6090269. [PMID: 28904557 PMCID: PMC5585679 DOI: 10.1155/2017/6090269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/28/2017] [Accepted: 06/12/2017] [Indexed: 12/17/2022]
Abstract
Prostatic complications are common in patients with diabetes. This study investigated the effect of different ginger ingredients: zingerone, geraniol, and 6-gingerol on the prostate in diabetic rats. Diabetes was induced in Wistar rats by streptozotocin intraperitoneal injection (50 mg/kg), and the rats were left for 10 weeks to develop prostatic complications. In diabetic treated groups, rats received daily oral zingerone, geraniol, and 6-gingerol in doses of 20, 200, and 75 mg/kg, respectively, in the last 8 weeks. Treatment with the compounds caused changes in the ventral prostate of diabetic animals as indicated by the columnar ductal epithelium and dense secretions. There was an amelioration of oxidative stress as evidenced by the lowering of prostate malondialdehyde and elevating prostate oxidized to reduced glutathione (GSH/GSSG) ratios by geraniol and 6-gingerol. None of the three ginger ingredients affected the hyperglycemia, reduction in body weight gain, and testosterone deficiency seen in diabetic animals. Interleukin-1β and interleukin-6 levels remained unchanged. However, zingerone and geraniol ameliorated the fibrosis in diabetic prostate through suppressing the elevated prostate transforming growth factor beta 1 (TGFβ1) and collagen IV. Therefore, ginger ingredients could be beneficial in alleviating diabetic prostatic complications through suppressing oxidative stress and tissue fibrosis.
Collapse
|
32
|
Chu P, Han G, Ahsan A, Sun Z, Liu S, Zhang Z, Sun B, Song Y, Lin Y, Peng J, Tang Z. Phosphocreatine protects endothelial cells from Methylglyoxal induced oxidative stress and apoptosis via the regulation of PI3K/Akt/eNOS and NF-κB pathway. Vascul Pharmacol 2017; 91:26-35. [PMID: 27590258 DOI: 10.1016/j.vph.2016.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/03/2016] [Accepted: 08/27/2016] [Indexed: 01/01/2023]
Abstract
Methylglyoxal (MGO), an active metabolite of glucose, can cause cellular injury which has an affinity for the progression of diabetes-associated atherosclerosis. Phosphocreatine (PCr) is a well-known high-energy phosphate compound. However, its protective effects and mechanism in the formation of a diabetes-associated atherosclerosis have not been clarified. In the present study, we investigated whether PCr could prevent MGO-induced apoptosis in human umbilical vascular endothelial cells (HUVECs) and explored the possible mechanisms. Cells were pre-treated with PCr and then stimulated with MGO. Cell morphology, cytotoxicity and apoptosis were assessed by light microscopy, MTT assay, and Annexin V-FITC respectively. Apoptotic-related proteins were evaluated by Western blotting. Reactive oxygen species (ROS) generation, intracellular calcium and mitochondrial membrane potential (MMP) were measured with fluorescent probes. Our results showed that PCr dose-dependently prevented MGO associated HUVEC cytotoxicity and suppressed MGO activated ROS generation as well as apoptotic biochemical changes such as lactate dehydrogenase, malondialdehyde leakage, loss of MMP, decreased Bcl-2/Bax protein ratio, levels of caspase-3 and 9. In addition, the antiapoptotic effect of PCr enhanced p-Akt/Akt protein ratio, NO synthase (eNOS) activation, NO production and cGMP levels and also was partially suppressed by a PI3K inhibitor (LY294002). Furthermore, PCr also inhibited MGO-induced transcriptional activity of Nuclear factor kappa B (NFκB). In conclusion, our data described that PCr exerts an antiapoptotic effect in HUVECs exposed to oxidative stress by MGO through the mitochondrial pathway and the modulation of PI3K/Akt/eNOS and NF-κB signaling pathway. Thus, it might be a candidate therapeutic agent for diabetic-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Peng Chu
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Guozhu Han
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Anil Ahsan
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Zhengwu Sun
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Shumin Liu
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Zonghui Zhang
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Bin Sun
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Yanlin Song
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Yuan Lin
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Zeyao Tang
- Pharmacology Department, Dalian Medical University, Dalian, China.
| |
Collapse
|
33
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 626] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
34
|
Zakaria EM, El-Bassossy HM, El-Maraghy NN, Ahmed AF, Ali AA. PARP-1 inhibition alleviates diabetic cardiac complications in experimental animals. Eur J Pharmacol 2016; 791:444-454. [DOI: 10.1016/j.ejphar.2016.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/04/2016] [Accepted: 09/05/2016] [Indexed: 10/21/2022]
|
35
|
Abdallah HM, El-Bassossy HM, Mohamed GA, El-halawany AM, Alshali KZ, Banjar ZM. Phenolics from Garcinia mangostana alleviate exaggerated vasoconstriction in metabolic syndrome through direct vasodilatation and nitric oxide generation. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:359. [PMID: 27618982 PMCID: PMC5020522 DOI: 10.1186/s12906-016-1340-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/05/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Exaggerated vasoconstriction plays a very important role in the hypertension, a major component of metabolic syndrome (MetS). In the current work, the potential protective effect of methanol extract of fruit hulls of Garcinia mangostana L. on the exaggerated vasoconstriction in MetS has been investigated. In addition, the bioactive fraction and compounds as well as the possible mechanism of action have been illustrated. METHODS The effect of methanol extract of G. mangostana (GMT) fruit hulls on the vascular reactivity of aorta isolated from animals with MetS was investigated through bioassay-guided fractionation procedures. GMT was partitioned with chloroform (I) and the remaining mother liquor was fractionated on a Diaion HP-20 with H2O, 50 and 100 % methanol to give fractions II, III, and IV, respectively. The effect of total extract (GMT), bioactive fraction and the bioactive compounds on the vasoconstriction were examined in aortae isolated from animals with MetS by incubation for 30 min before exposing aortae to cumulative concentrations of phenylephrine (PE). The direct relaxant effect was also examined by adding cumulative concentrations of the bioactive fraction and its bioactive compounds to PE precontracted vessels. In addition, aortic nitric oxide (NO) and reactive oxygen species (ROS) production was investigated. RESULTS Bioassay-guided fractionation of GMT revealed isolation of garcimangosone D (1), aromadendrin-8-C-β-D-glucopyranoside (2), 2,4,3'-trihydroxy benzophenone-6-O-β-D-glucopyranoside (3), maclurin-6-O-β-D-glucopyranoside (rhodanthenone) (4), epicatechin (5), and 2,3',4,5',6-pentahydroxy benzophenone (6). Only compounds 2, 4, and 5 significantly alleviated the exaggerated vasoconstriction of MetS aortae and in the same time showed significant vasodilation of PE pre-contracted aortae. To further illustrate the mechanism of action, the observed vasodilation was completely blocked by the nitric oxide (NO) synthase inhibitor, Nω-nitro-L-arginine methyl ester hydrochloride and inhibited by guanylate cyclase inhibitor, methylene blue. However, vasodilation was not affected by the potassium channel blocker, tetraethylammonium or the cyclooxygenase inhibitor, indomethacin. In addition, compounds 2, 4, and 5 stimulated NO generation from isolated aortae to levels comparable with acetylcholine. Furthermore, 4 and 5 inhibited reactive oxygen species generation in MetS aortae. CONCLUSION The phenolic compounds 2, 4, and 5 ameliorated the exaggerated vasoconstriction in MetS aortae through vasodilatation-NO generation mechanism.
Collapse
|
36
|
El-Bassossy HM, Elberry AA, Ghareib SA, Azhar A, Banjar ZM, Watson ML. Cardioprotection by 6-gingerol in diabetic rats. Biochem Biophys Res Commun 2016; 477:908-914. [DOI: 10.1016/j.bbrc.2016.06.157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 01/16/2023]
|
37
|
Al-Abbasi FA, Alghamdi EA, Baghdadi MA, Alamoudi AJ, El-Halawany AM, El-Bassossy HM, Aseeri AH, Al-Abd AM. Gingerol Synergizes the Cytotoxic Effects of Doxorubicin against Liver Cancer Cells and Protects from Its Vascular Toxicity. Molecules 2016; 21:molecules21070886. [PMID: 27399668 PMCID: PMC6274287 DOI: 10.3390/molecules21070886] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 06/25/2016] [Accepted: 07/01/2016] [Indexed: 01/04/2023] Open
Abstract
Hydroxyphenylalkanes and diarylheptanoids possess potential therapeutic value in different pathophysiological conditions, such as malignancy. In the current study, naturally isolated hydroxyphenylalkane and diarylheptanoid compounds were investigated for potential chemo-modulatory effects in addition to potential vascular protective roles with doxorubicin. Diarylheptanoids showed stronger antioxidant effects, in comparison to hydroxyphenylalkanes, as demonstrated by DPPH assay and amelioration of CCl4-induced disturbed intracellular GSH/GSSG balance. Shogaol and 4′-methoxygingerol showed considerable cytotoxic effects against HCT116, HeLa, HepG2 and MCF7 cells, with IC50 values ranging from 3.1 to 19.4 µM. Gingerol significantly enhanced the cytotoxic profile of doxorubicin against HepG2 and Huh7, cells decreasing its IC50s by 10- and 4-fold, respectively. Cell cycle distribution was studied using DNA cytometry. Doxorubicin alone induced cell accumulation at S-phase and G2/M-phase, while in combination with gingerol it significantly induced cell cycle arrest at the G2/M-phase. Additionally, the vascular protective effect of gingerol against doxorubicin (10 µM) was examined on isolated aortic rings. Co-incubation with 6-gingerol (30 µM) completely blocked the exaggerated vasoconstriction and impaired vascular relaxation induced by doxorubicin. In conclusion, despite its relatively weak antioxidant properties, gingerol protected from DOX-induced vascular damage, apparently not through a ROS scavenging mechanism. Besides, gingerol synergized the cytotoxic effects of DOX against liver cancer cells without influencing the cellular pharmacokinetics.
Collapse
Affiliation(s)
- Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21523, Saudi Arabia.
| | - Eman A Alghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21523, Saudi Arabia.
| | - Mohammed A Baghdadi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21523, Saudi Arabia.
- Research Centre, King Faisal Specialist Hospital and Research Centre, Jeddah 21499, Saudi Arabia.
| | - Abdulmohsin J Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ali M El-Halawany
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | | | - Ahmed M Al-Abd
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Department of Pharmacology, Medical Division, National Research Centre, Giza 12622, Egypt.
| |
Collapse
|
38
|
El-Bassossy H, Badawy D, Neamatallah T, Fahmy A. Ferulic acid, a natural polyphenol, alleviates insulin resistance and hypertension in fructose fed rats: Effect on endothelial-dependent relaxation. Chem Biol Interact 2016; 254:191-7. [PMID: 27287418 DOI: 10.1016/j.cbi.2016.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/18/2016] [Accepted: 06/06/2016] [Indexed: 11/26/2022]
Abstract
Ferulic acid (FER) is a polyphenolic compound contained in various types of fruits. It has a substantial therapeutic effect inhibitory activity against aldose reductase (AR) inhibition. In this study, we examined the effect of FER on fructose-fed rats in comparison to a standard AR inhibitor, zopolrestat (ZOP). We determined the protective role of FER against metabolic syndrome by examining serum insulin/Glucose levels, triglycerides (TGs), cholesterol and advanced glycation end product (AGE) in rats supplied with 10% fructose drinking water. In addition, blood pressure, vascular reactivity of isolated thoracic aortas and acetylcholine-induced NO were all evaluated to estimate the cardiovascular complications of metabolic syndrome (MetS) associated with fructose feeding. Animals were randomly divided into four groups: control, (+10% fructose, Fru), zopolrestat-treated fructose fed (Fru-zop) and ferulic acid-treated fructose fed rats (Fru-Fer). After 12 weeks of FER treatment, we found significant reduction in both hyperinsulinemia and elevated diastolic blood pressure associated with fructose-fed to levels comparable to those achieved with ZOP. Both FER and ZOP significantly augmented the impaired relaxation associated with fructose-fed, whereas neither showed any significant effect on the developed vasoconstriction. Isolated aortas from fructose-fed rats incubated with either FER or ZOP, reinstated normal relaxation response to acetylcholine (ACh). Furthermore, isolated aortas showed attenuated nitric oxide (NO) production following the addition of (ACh), while both FER and ZOP restored normal induction of NO. Taken together, the current study shows that, FER alleviated insulin resistance and hypertension associated with metabolic syndrome compared to the standard AR inhibitor (ZOP). This potential protective effect is at least mediated by restoring endothelial relaxation.
Collapse
Affiliation(s)
- Hany El-Bassossy
- Department of Pharmacology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Dina Badawy
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Thikryat Neamatallah
- Department of Pharmacology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Fahmy
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
39
|
Ghareib SA, El-Bassossy HM, Elberry AA, Azhar A, Watson ML, Banjar ZM, Alahdal AM. Protective effect of zingerone on increased vascular contractility in diabetic rat aorta. Eur J Pharmacol 2016; 780:174-9. [PMID: 27020549 DOI: 10.1016/j.ejphar.2016.03.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/18/2016] [Accepted: 03/24/2016] [Indexed: 01/27/2023]
Abstract
The aim of the present study was to investigate the effect and possible mechanism of action of zingerone, the main constituent of ginger, on vascular reactivity in isolated aorta from diabetic rats. The results show that incubation of aortae with zingerone alleviates the exaggerated vasoconstriction of diabetic aortae to phenylephrine, as well as the impaired relaxatory response to acetylcholine in a concentration-dependent manner. Furthermore, Zingerone directly relax phenylephrine-precontracted aortae. The vasorelaxatory response is significantly attenuated by the nitric oxide synthase inhibitor Nω-nitro-l-arginine methyl ester hydrochloride and the guanylate cyclase inhibitor methylene blue but no effect of either the potassium channels blocker tetraethylammonium chloride, or the cyclooxygenase inhibitor indomethacin was observed. Zingerone had no effect on advanced glycation end product formation as well. In conclusion, zingerone ameliorates enhanced vascular contraction in diabetic aortae which may be mediated by its vasodilator effect through NO- and guanylate cyclase stimulation.
Collapse
Affiliation(s)
- Salah A Ghareib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ahmed A Elberry
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Ahmad Azhar
- Department of Pediatric Cardiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Malcolm L Watson
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Zainy M Banjar
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman M Alahdal
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
40
|
Ghareib SA, El-Bassossy HM, Elberry AA, Azhar A, Watson ML, Banjar ZM. 6-Gingerol alleviates exaggerated vasoconstriction in diabetic rat aorta through direct vasodilation and nitric oxide generation. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:6019-26. [PMID: 26609223 PMCID: PMC4644177 DOI: 10.2147/dddt.s94346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of the present study is to investigate the effect and potential mechanism of action of 6-gingerol on alterations of vascular reactivity in the isolated aorta from diabetic rats. Male Wistar rats were divided into two experimental groups, control and diabetics. Diabetes was induced by a single intraperitoneal injection of streptozotocin (50 mg kg−1), and the rats were left for 10 weeks to develop vascular complications. The effect of in vitro incubation with 6-gingerol (0.3–3 μM) on the vasoconstrictor response of the isolated diabetic aortae to phenylephrine and the vasodilator response to acetylcholine was examined. Effect of 6-gingerol was also examined on aortae incubated with methylglyoxal as an advanced glycation end product (AGE). To investigate the mechanism of action of 6-gingerol, the nitric oxide synthase inhibitor Nω-nitro-l-arginine methyl ester hydrochloride (100 μM), guanylate cyclase inhibitor methylene blue (5 μM), calcium-activated potassium channel blocker tetraethylammonium chloride (10 mM), and cyclooxygenase inhibitor indomethacin (5 μM) were added 30 minutes before assessing the direct vasorelaxant effect of 6-gingerol. Moreover, in vitro effects of 6-gingerol on NO release and the effect of 6-gingerol on AGE production were examined. Results showed that incubation of aortae with 6-gingerol (0.3–10 μM) alleviated the exaggerated vasoconstriction of diabetic aortae to phenylephrine in a concentration-dependent manner with no significant effect on the impaired relaxatory response to acetylcholine. Similar results were seen in the aortae exposed to methylglyoxal. In addition, 6-gingerol induced a direct vasodilation effect that was significantly inhibited by Nω-nitro-l-arginine methyl ester hydrochloride and methylene blue. Furthermore, 6-gingerol stimulated aortic NO generation but had no effect on AGE formation. In conclusion, 6-gingerol ameliorates enhanced vascular contraction in diabetic aortae, which may be partially attributed to its ability to increase the production of NO and stimulation of cyclic guanosine monophosphate.
Collapse
Affiliation(s)
- Salah A Ghareib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia ; Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ahmed A Elberry
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia ; Department of Pharmacology, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
| | - Ahmad Azhar
- Department of Pediatric Cardiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Malcolm L Watson
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Zainy Mohammed Banjar
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
41
|
Targeting AGEs Signaling Ameliorates Central Nervous System Diabetic Complications in Rats. Adv Pharmacol Sci 2015; 2015:346259. [PMID: 26491434 PMCID: PMC4603311 DOI: 10.1155/2015/346259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/02/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a chronic endocrine disorder associated with several complications as hypertension, advanced brain aging, and cognitive decline. Accumulation of advanced glycation end products (AGEs) is an important mechanism that mediates diabetic complications. Upon binding to their receptor (RAGE), AGEs mediate oxidative stress and/or cause cross-linking with proteins in blood vessels and brain tissues. The current investigation was designed to investigate the effect of agents that decrease AGEs signaling, perindopril which increases soluble RAGE (sRAGE) and alagebrium which cleaves AGEs cross-links, compared to the standard antidiabetic drug, gliclazide, on the vascular and central nervous system (CNS) complications in STZ-induced (50 mg/kg, IP) diabetes in rats. Perindopril ameliorated the elevation in blood pressure seen in diabetic animals. In addition, both perindopril and alagebrium significantly inhibited memory decline (performance in the Y-maze), neuronal degeneration (Fluoro-Jade staining), AGEs accumulation in serum and brain, and brain oxidative stress (level of reduced glutathione and activities of catalase and malondialdehyde). These results suggest that blockade of AGEs signaling after diabetes induction in rats is effective in reducing diabetic CNS complications.
Collapse
|
42
|
Arginase as a Critical Prooxidant Mediator in the Binomial Endothelial Dysfunction-Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:924860. [PMID: 26064427 PMCID: PMC4434223 DOI: 10.1155/2015/924860] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/11/2014] [Indexed: 12/31/2022]
Abstract
Arginase is a metalloenzyme which hydrolyzes L-arginine to L-ornithine and urea. Since its discovery, in the early 1900s, this enzyme has gained increasing attention, as literature reports have progressively pointed to its critical participation in regulating nitric oxide bioavailability. Indeed, accumulating evidence in the following years would picture arginase as a key player in vascular health. Recent studies have highlighted the arginase regulatory role in the progression of atherosclerosis, the latter an essentially prooxidant state. Apart from the fact that arginase has been proven to impair different metabolic pathways, and also as a consequence of this, the repercussions of the actions of such enzyme go further than first thought. In fact, such metalloenzyme exhibits direct implications in multiple cardiometabolic diseases, among which are hypertension, type 2 diabetes, and hypercholesterolemia. Considering the epidemiological repercussions of these clinical conditions, arginase is currently seen under the spotlights of the search for developing specific inhibitors, in order to mitigate its deleterious effects. That said, the present review focuses on the role of arginase in endothelial function and its participation in the establishment of atherosclerotic lesions, discussing the main regulatory mechanisms of the enzyme, also highlighting the potential development of pharmacological strategies in related cardiovascular diseases.
Collapse
|
43
|
Johnson FK, Peyton KJ, Liu XM, Azam MA, Shebib AR, Johnson RA, Durante W. Arginase promotes endothelial dysfunction and hypertension in obese rats. Obesity (Silver Spring) 2015; 23:383-90. [PMID: 25557182 PMCID: PMC4310823 DOI: 10.1002/oby.20969] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study investigated whether arginase contributes to endothelial dysfunction and hypertension in obese rats. METHODS Endothelial function and arginase expression were examined in skeletal muscle arterioles from lean and obese Zucker rats (ZRs). Arginase activity, arginine bioavailability, and blood pressure were measured in lean and obese animals. RESULTS Arginase activity and expression was increased while global arginine bioavailability decreased in obese ZRs. Acetylcholine or luminal flow caused dilation of isolated skeletal muscle arterioles, but this was reduced or absent in vessels from obese ZRs. Treatment of arterioles with a nitric oxide synthase inhibitor blocked dilation in lean arterioles and eliminated differences among lean and obese vessels. In contrast, arginase inhibitors or l-arginine enhanced vasodilation in obese ZRs and abolished differences between lean and obese animals, while d-arginine had no effect. Finally, mean arterial blood pressure was significantly increased in obese ZRs. However, administration of l-arginine or arginase inhibitors lowered blood pressure in obese but not lean animals, and this was associated with an improvement in systemic arginine bioavailability. CONCLUSIONS Arginase promotes endothelial dysfunction and hypertension in obesity by reducing arginine bioavailability. Therapeutic approaches targeting arginase represent a promising approach in treating obesity-related vascular disease.
Collapse
Affiliation(s)
- Fruzsina K. Johnson
- Department of Molecular Sciences, Lincoln Memorial University, Harrogate, TN
| | - Kelly J. Peyton
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Xiao-ming Liu
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Mohammed A. Azam
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Ahmad R. Shebib
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Robert A. Johnson
- Department of Physiology and Pharmacology, Lincoln Memorial University, Harrogate, TN
| | - William Durante
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
44
|
El-Bassossy HM, Hassan N, Zakaria MN. Heme oxygenase-1 alleviates vascular complications associated with metabolic syndrome: Effect on endothelial dependent relaxation and NO production. Chem Biol Interact 2014; 223:109-15. [DOI: 10.1016/j.cbi.2014.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 11/29/2022]
|
45
|
El-Bassossy HM, Hassan NA, Mahmoud MF, Fahmy A. Baicalein protects against hypertension associated with diabetes: effect on vascular reactivity and stiffness. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1742-1745. [PMID: 25442285 DOI: 10.1016/j.phymed.2014.08.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/25/2014] [Accepted: 08/24/2014] [Indexed: 06/04/2023]
Abstract
The present work investigated the possible protective effect of baicalein, a natural lipoxygenase enzyme inhibitor, on both insulin deficiency (ID) and insulin resistance (IR)-induced macro-vascular impairment. ID and IR were induced by STZ or fructose for 8 or 12 weeks respectively while baicalein was administered in the last six weeks. Blood pressure (BP) was recorded and isolated aorta reactivity to phenylephrine (PE) and acetylcholine (ACh) were studied. Blood levels of glucose, insulin, advanced glycation end products (AGEs) and tumour necrosis factor-α (TNF-α) were determined. Aortic nuclear transcription factor-κB (NF-κB) activation was assessed. Both models resulted in elevated BP, increased vasoconstriction and impaired relaxation KCl, elevated TNF-α and AGEs, NF-κB activation, marked infiltration of leukocytes in the adventitia, pyknosis of endothelial cells and marked collagen deposition. Baicalein ameliorated elevations in BP in models, prevented exaggerated vasoconstriction IR model and improved relaxation in ID model. Baicalein reduced AGEs and TNF-α level, decreased NF-κB activation and inhibited histopathological changes in both models. Baicalein offsets the hypertensive and the vascular impairment associated with both diabetic models via ameliorating functional and structural derangements of blood vessels.
Collapse
Affiliation(s)
- Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Noura Ahmed Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mona Fouad Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ahmed Fahmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
46
|
Morita M, Hayashi T, Ochiai M, Maeda M, Yamaguchi T, Ina K, Kuzuya M. Oral supplementation with a combination of L-citrulline and L-arginine rapidly increases plasma L-arginine concentration and enhances NO bioavailability. Biochem Biophys Res Commun 2014; 454:53-7. [PMID: 25445598 DOI: 10.1016/j.bbrc.2014.10.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND Chronic supplementation with L-citrulline plus L-arginine has been shown to exhibit anti-atherosclerotic effects. However, the short-term action of this combination on the nitric oxide (NO)-cGMP pathway remains to be elucidated. The objective of the present study was to investigate the acute effects of a combination of oral L-citrulline and L-arginine on plasma L-arginine and NO levels, as well as on blood circulation. METHODS Rats or New Zealand white rabbits were treated orally with L-citrulline, or L-arginine, or a combination of each at half dosage. Following supplementation, plasma levels of L-arginine, NOx, cGMP and changes in blood circulation were determined sequentially. RESULTS L-Citrulline plus L-arginine supplementation caused a more rapid increase in plasma L-arginine levels and marked enhancement of NO bioavailability, including plasma cGMP concentrations, than with dosage with the single amino acids. Blood flow in the central ear artery in rabbits was also significantly increased by L-citrulline plus L-arginine administration as compared with the control. CONCLUSION Our data show for the first time that a combination of oral L-citrulline and L-arginine effectively and rapidly augments NO-dependent responses at the acute stage. This approach may have clinical utility for the regulation of cardiovascular function in humans.
Collapse
Affiliation(s)
- Masahiko Morita
- Function Research Group, Healthcare Products Development Center, KYOWA HAKKO BIO CO., LTD., 2, Miyukigaoka, Tsukuba, Ibaraki 305-0841, Japan
| | - Toshio Hayashi
- Department of Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Masayuki Ochiai
- Function Research Group, Healthcare Products Development Center, KYOWA HAKKO BIO CO., LTD., 2, Miyukigaoka, Tsukuba, Ibaraki 305-0841, Japan
| | - Morihiko Maeda
- Department of Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomoe Yamaguchi
- Department of Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Koichiro Ina
- Department of Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masafumi Kuzuya
- Department of Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
47
|
El-Bassossy HM, El-Fawal R, Fahmy A, Watson ML. Arginase inhibition alleviates hypertension in the metabolic syndrome. Br J Pharmacol 2014; 169:693-703. [PMID: 23441715 DOI: 10.1111/bph.12144] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE We have previously shown that arginase inhibition alleviates hypertension associated with in a diabetic animal model. Here, we investigated the protective effect of arginase inhibition on hypertension in metabolic syndrome. EXPERIMENTAL APPROACH Metabolic syndrome was induced in rats by administration of fructose (10% in drinking water) for 12 weeks to induce vascular dysfunction. Three arginase inhibitors (citrulline, norvaline and ornithine) were administered daily in the last 6 weeks of study before and tail BP was recorded in conscious animals. Concentration response curves for phenylephrine (PE), KCl and ACh in addition to ACh-induced NO generation were obtained in thoracic aorta rings. Serum glucose, insulin, uric acid and lipid profile were determined as well as reactive oxygen species (ROS) and arginase activity. KEY RESULTS Arginase activity was elevated in metabolic syndrome while significantly inhibited by citrulline, norvaline or ornithine treatment. Metabolic syndrome was associated with elevations in systolic and diastolic BP, while arginase inhibition significantly reduced elevations in diastolic and systolic BP. Metabolic syndrome increased vasoconstriction responses of aorta to PE and KCl and decreased vasorelaxation to ACh, while arginase inhibition completely prevented impaired responses to ACh. In addition, arginase inhibition prevented impaired NO generation and exaggerated ROS formation in metabolic syndrome. Furthermore, arginase inhibition significantly reduced hyperinsulinaemia and hypertriglyceridaemia without affecting hyperuricaemia or hypercholesterolaemia associated with metabolic syndrome. CONCLUSIONS AND IMPLICATIONS Arginase inhibition alleviates hypertension in metabolic syndrome directly through endothelial-dependent relaxation/NO signalling protection and indirectly through inhibition of insulin resistance and hypertriglyceridaemia.
Collapse
Affiliation(s)
- Hany M El-Bassossy
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | | | | | | |
Collapse
|
48
|
El-Bassossy HM, Abo-Warda SM, Fahmy A. Chrysin and luteolin alleviate vascular complications associated with insulin resistance mainly through PPAR-γ activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:1153-67. [PMID: 25169908 DOI: 10.1142/s0192415x14500724] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chrysin and luteolin are two flavonoids with Peroxisome proliferators-activated receptor γ (PPAR-γ) stimulating activity. Here, we investigated the protective effect of chrysin and luteolin from vascular complications associated with insulin resistance (IR). IR was induced in rats by drinking fructose for 12 weeks while chrysin and luteolin were given for 6 weeks with or without PPAR-γ antagonist, bisphenol A diglycidyl ether (BADGE). Then, blood pressure (BP) was recorded and serum levels of glucose, insulin, advanced glycation end products (AGEs) and lipids were measured. Concentration response curves for phenylephrine (PE), KCl, and acetylcholine (ACh) were obtained in thoracic aorta rings. Aortic reactive oxygen species (ROS) and nitric oxide (NO) generation were also studied. Chrysin and luteolin significantly alleviated systolic BP elevations caused by IR, while the co-administration of BADGE prevented chrysin alleviation. Although, neither chrysin nor luteolin affected ACh impaired vasodilatation, they both alleviated exaggerated vasoconstrictions to PE and KCl in IR animals. In addition, incubation of the aorta from IR animals with chrysin or luteolin prevented exaggerated vasoconstrictions to PE and KCl. On the other hand, co-administration of BADGE or co-incubation with GW9662, the selective PPAR-γ antagonist, prevented chrysin alleviation. Both chrysin and luteolin inhibited the developed hyperinsulinemia and increases in serum AGEs, lipids while, BADGE reduced the effect of chrysin on hyperinsulinemia and dyslipidemia. Chrysin and luteolin markedly inhibited elevated NO and ROS in IR aortae while BADGE did not change their effect on NO and ROS. In conclusion, chrysin and luteolin alleviate vascular complications associated with IR mainly through PPAR-γ dependent pathways.
Collapse
Affiliation(s)
- Hany M El-Bassossy
- Department of Pharmacology, Faculty of Pharmacy, King Abdulaziz University, Kingdom of Saudi Arabia , Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Egypt
| | | | | |
Collapse
|
49
|
El-Bassossy HM, Dsokey N, Fahmy A. Characterization of vascular complications in experimental model of fructose-induced metabolic syndrome. Toxicol Mech Methods 2014; 24:536-43. [PMID: 25046175 DOI: 10.3109/15376516.2014.945109] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vascular dysfunction is an important complication associated with metabolic syndrome (MS). Here we fully characterized vascular complications in a rat model of fructose-induced MS. MS was induced by adding fructose (10%) to drinking water to male Wistar rats of 6 weeks age. Blood pressure (BP) and isolated aorta responses phenylephrine (PE), KCl, acetylcholine (ACh), and sodium nitroprusside (SNP) were recorded after 6, 9, and 12 weeks of fructose administration. In addition, serum levels of glucose, insulin, uric acid, tumor necrosis factor α (TNFα), lipids, advanced glycation end products (AGEs), and arginase activity were determined. Furthermore, aortic reactive oxygen species (ROS) generation, hemeoxygenase-1 expression, and collagen deposition were examined. Fructose administration resulted in a significant hyperinslinemia after 6 weeks which continued for 12 weeks. It was also associated with a significant increase in BP after 6 weeks which was stable for 12 weeks. Aorta isolated from MS animals showed exaggerated contractility to PE and KCl and impaired relaxation to ACh compared with control after 6 weeks which were clearer at 12 weeks of fructose administration. In addition, MS animals showed significant increases in serum levels of lipids, uric acid, AGEs, TNFα, and arginase enzyme activity after 12 weeks of fructose administration. Furthermore, aortae isolated from MS animals were characterized by increased ROS generation and collagen deposition. In conclusion, adding fructose (10%) to drinking water produces a model of MS with vascular complications after 12 weeks that are characterized by insulin resistance, hypertension, disturbed vascular reactivity and structure, hyperuricemia, dyslipidemia, and low-grade inflammation.
Collapse
Affiliation(s)
- Hany M El-Bassossy
- Department of Pharmacology, Faculty of Pharmacy, King Abdulaziz University , Jeddah , Kingdom of Saudi Arabia and
| | | | | |
Collapse
|
50
|
Caffeic acid phenethyl ester, a 5-lipoxygenase enzyme inhibitor, alleviates diabetic atherosclerotic manifestations: effect on vascular reactivity and stiffness. Chem Biol Interact 2014; 213:28-36. [PMID: 24508943 DOI: 10.1016/j.cbi.2014.01.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/29/2013] [Accepted: 01/30/2014] [Indexed: 01/07/2023]
Abstract
Atherosclerosis is a major macrovascular complication of diabetes that increases the risks for myocardial infarction, stroke, and other vascular diseases. The effect of a selective 5-lipoxygenase enzyme inhibitor; caffeic acid phenethyl ester (CAPE) on diabetes-induced atherosclerotic manifestations was investigated. Insulin deficiency or resistance was induced by STZ or fructose respectively. Atherosclerosis developed when rats were left for 8 or 12 weeks subsequent STZ or fructose administration respectively. CAPE (30 mg kg(-1) day(-1)) was given in the last 6 weeks. Afterwards, blood pressure (BP) was recorded. Then, isolated aorta reactivity to KCl and phenylephrine (PE) was studied. Blood glucose level, serum levels of insulin, tumor necrosis factor α (TNF-α) as well as advanced glycation end products (AGEs) were determined. Moreover aortic haem oxygenase-1 (HO-1) protein expression and collagen deposition were also assessed. Insulin deficiency and resistance were accompanied with elevated BP, exaggerated response to KCl and PE, elevated serum TNF-α and AGEs levels. Both models showed marked increase in collagen deposition. However, CAPE alleviated systolic and diastolic BP elevations and the exaggerated vascular contractility to both PE and KCl in both models without affecting AGEs level. CAPE inhibited TNF-α serum level elevation, induced aortic HO-1 expression and reduced collagen deposition. CAPE prevented development of hyperinsulinemia in insulin resistance model without any impact on the developed hyperglycemia in insulin deficiency model. In conclusion, CAPE offsets the atherosclerotic changes associated with diabetes via amelioration of the significant functional and structural derangements in the vessels in addition to its antihyperinsulinemic effect in insulin resistant model.
Collapse
|