1
|
Jalili F, Moradi S, Talebi S, Mehrabani S, Ghoreishy SM, Wong A, Jalalvand AR, Kermani MAH, Jalili C, Jalili F. The effects of citrus flavonoids supplementation on endothelial function: A systematic review and dose-response meta-analysis of randomized clinical trials. Phytother Res 2024; 38:2847-2859. [PMID: 38561995 DOI: 10.1002/ptr.8190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/25/2024] [Accepted: 03/03/2024] [Indexed: 04/04/2024]
Abstract
The present systematic review and dose-response meta-analysis was conducted to synthesize existing data from randomized clinical trials (RCTs) concerning the impact of citrus flavonoids supplementation (CFS) on endothelial function. Relevant RCTs were identified through comprehensive searches of the PubMed, ISI Web of Science, and Scopus databases up to May 30, 2023. Weighted mean differences and their corresponding 95% confidence intervals (CI) were pooled utilizing a random-effects model. A total of eight eligible RCTs, comprising 596 participants, were included in the analysis. The pooled data demonstrated a statistically significant augmentation in flow-mediated vasodilation (FMD) (2.75%; 95% CI: 1.29, 4.20; I2 = 87.3%; p < 0.001) associated with CFS compared to the placebo group. Furthermore, the linear dose-response analysis indicated that each increment of 200 mg/d in CFS led to an increase of 1.09% in FMD (95% CI: 0.70, 1.48; I2 = 94.5%; p < 0.001). The findings from the nonlinear dose-response analysis also revealed a linear relationship between CFS and FMD (Pnon-linearity = 0.903, Pdose-response <0.001). Our findings suggest that CFS enhances endothelial function. However, more extensive RTCs encompassing longer intervention durations and different populations are warranted to establish more precise conclusions.
Collapse
Affiliation(s)
- Farnaz Jalili
- University of Adelaide Faculty of Medicine, Adelide, Australia
| | - Sajjad Moradi
- Department of Nutrition and Food Sciences, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Sepide Talebi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Mehrabani
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mojtaba Ghoreishy
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, School of Health Sciences, Arlington, Virginia, USA
| | - Ali R Jalalvand
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Ali Hojjati Kermani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faramarz Jalili
- School of Health Administration, Dalhousie University, Halifax, Canada
| |
Collapse
|
2
|
Liu C, Cheng T, Wang Y, Li G, Wang Y, Tian W, Feng L, Zhang S, Xu Y, Gao Y, Li J, Liu J, Cui J, Yan J, Cao L, Pan Z, Qi Z, Yang L. Syringaresinol Alleviates Early Diabetic Retinopathy by Downregulating HIF-1α/VEGF via Activating Nrf2 Antioxidant Pathway. Mol Nutr Food Res 2024; 68:e2200771. [PMID: 38356045 DOI: 10.1002/mnfr.202200771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 09/10/2023] [Indexed: 02/16/2024]
Abstract
SCOPE Early diabetic retinopathy (DR) is characterized by chronic inflammation, excessive oxidative stress, and retinal microvascular damage. Syringaresinol (SYR), as a natural polyphenolic compound, has been proved to inhibit many disease progression due to its antiinflammatory and antioxidant properties. The present study focuses on exploring the effect of SYR on hyperglycemia-induced early DR as well as the underlying mechanisms. METHODS AND RESULTS Wild-type (WT) and nuclear factor erythroid 2-related factor 2 (Nrf2)-knockout C57BL/6 mice of type 1 diabetes and high glucose (HG)-induced RF/6A cells are used as in vivo and in vitro models, respectively. This study finds that SYR protects the retinal structure and function in diabetic mice and reduces the permeability and apoptosis of HG-treated RF/6A cells. Meanwhile, SYR distinctly mitigates inflammation and oxidative stress in vivo and vitro. The retinal microvascular damages are suppressed by SYR via downregulating hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathway. Whereas, SYR-provided protective effects are diminished in Nrf2-knockout mice, indicating that SYR improves DR progression by activating Nrf2. Similarly, SYR cannot exert protective effects against HG-induced oxidative stress and endothelial injury in small interfering RNA (siRNA)-Nrf2-transfected RF/6A cells. CONCLUSION In summary, SYR suppresses oxidative stress via activating Nrf2 antioxidant pathway, which ameliorates retinal microvascular damage by downregulating HIF-1α/VEGF, thereby alleviating early DR progression.
Collapse
Affiliation(s)
- Chang Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
- Nankai University Eye Institute, Tianjin, 300071, China
| | - Tianwei Cheng
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Yufei Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Guangru Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Yachen Wang
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, 300020, China
| | - Wencong Tian
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, 300122, China
| | - Lifeng Feng
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Shengzheng Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Yang Xu
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Yang Gao
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Jing Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Jie Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Jianlin Cui
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Jie Yan
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Lei Cao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, 300122, China
| | - Zhongjie Pan
- Tianjin Union Medical Center, Tianjin, 300122, China
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
- Nankai University Eye Institute, Tianjin, 300071, China
- Tianjin Union Medical Center, Tianjin, 300122, China
- Xinjiang Production and Construction Corps Hospital, Xinjiang, 830002, China
| | - Liang Yang
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
- Tianjin Union Medical Center, Tianjin, 300122, China
| |
Collapse
|
3
|
El-Seedi HR, Salama S, El-Wahed AAA, Guo Z, Di Minno A, Daglia M, Li C, Guan X, Buccato DG, Khalifa SAM, Wang K. Exploring the Therapeutic Potential of Royal Jelly in Metabolic Disorders and Gastrointestinal Diseases. Nutrients 2024; 16:393. [PMID: 38337678 PMCID: PMC10856930 DOI: 10.3390/nu16030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Metabolic disorders, encompassing diabetes mellitus, cardiovascular diseases, gastrointestinal disorders, etc., pose a substantial global health threat, with rising morbidity and mortality rates. Addressing these disorders is crucial, as conventional drugs often come with high costs and adverse effects. This review explores the potential of royal jelly (RJ), a natural bee product rich in bioactive components, as an alternative strategy for managing metabolic diseases. RJ exhibits diverse therapeutic properties, including antimicrobial, estrogen-like, anti-inflammatory, hypotensive, anticancer, and antioxidant effects. This review's focus is on investigating how RJ and its components impact conditions like diabetes mellitus, cardiovascular disease, and gastrointestinal illnesses. Evidence suggests that RJ serves as a complementary treatment for various health issues, notably demonstrating cholesterol- and glucose-lowering effects in diabetic rats. Specific RJ-derived metabolites, such as 10-hydroxy-2-decenoic acid (10-HDA), also known as the "Queen bee acid," show promise in reducing insulin resistance and hyperglycemia. Recent research highlights RJ's role in modulating immune responses, enhancing anti-inflammatory cytokines, and suppressing key inflammatory mediators. Despite these promising findings, further research is needed to comprehensively understand the mechanisms underlying RJ's therapeutic effects.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 591, SE-751 24 Uppsala, Sweden
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 210024, China
| | - Suzy Salama
- Indigenous Knowledge and Heritage Center, Ghibaish College of Science and Technology, Ghibaish 51111, Sudan;
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.D.M.); (M.D.); (D.G.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.D.M.); (M.D.); (D.G.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China;
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.D.M.); (M.D.); (D.G.B.)
| | - Shaden A. M. Khalifa
- Psychiatry and Neurology Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
4
|
Feng J, Zhang Y. The potential benefits of polyphenols for corneal diseases. Biomed Pharmacother 2023; 169:115862. [PMID: 37979379 DOI: 10.1016/j.biopha.2023.115862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023] Open
Abstract
The cornea functions as the primary barrier of the ocular surface, regulating temperature and humidity while providing protection against oxidative stress, harmful stimuli and pathogenic microorganisms. Corneal diseases can affect the biomechanical and optical properties of the eye, resulting in visual impairment or even blindness. Due to their diverse origins and potent biological activities, plant secondary metabolites known as polyphenols offer potential advantages for treating corneal diseases owing to their anti-inflammatory, antioxidant, and antibacterial properties. Various polyphenols and their derivatives have demonstrated diverse mechanisms of action in vitro and in vivo, exhibiting efficacy against a range of corneal diseases including repair of tissue damage, treatment of keratitis, inhibition of neovascularization, alleviation of dry eye syndrome, among others. Therefore, this article presents a concise overview of corneal and related diseases, along with an update on the research progress of natural polyphenols in safeguarding corneal health. A more comprehensive understanding of natural polyphenols provides a novel perspective for secure treatment of corneal diseases.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
5
|
Pan D, Xu L, Guo M. The role of protein kinase C in diabetic microvascular complications. Front Endocrinol (Lausanne) 2022; 13:973058. [PMID: 36060954 PMCID: PMC9433088 DOI: 10.3389/fendo.2022.973058] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Protein kinase C (PKC) is a family of serine/threonine protein kinases, the activation of which plays an important role in the development of diabetic microvascular complications. The activation of PKC under high-glucose conditions stimulates redox reactions and leads to an accumulation of redox stress. As a result, various types of cells in the microvasculature are influenced, leading to changes in blood flow, microvascular permeability, extracellular matrix accumulation, basement thickening and angiogenesis. Structural and functional disorders further exacerbate diabetic microvascular complications. Here, we review the roles of PKC in the development of diabetic microvascular complications, presenting evidence from experiments and clinical trials.
Collapse
Affiliation(s)
- Deng Pan
- Xiyuan hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Lin Xu
- Gynecological Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ming Guo
- Xiyuan hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Yang H, Wang Y, Xu S, Ren J, Tang L, Gong J, Lin Y, Fang H, Su D. Hesperetin, a Promising Treatment Option for Diabetes and Related Complications: A Literature Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8582-8592. [PMID: 35801973 DOI: 10.1021/acs.jafc.2c03257] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The morbidity and mortality of diabetes have increased dramatically in recent decades. Novel strategies for treating diabetes and its complications with minimal side effects are in urgent need. New monomeric molecules extracted from herbal medicine, which is a form of alternative medicine, are being sought as drug candidates for the treatment of diabetes and its complications. Hesperetin (Hst), a citrus flavonoid, is of increasing interest in scientific studies recently due to its properties in combating diabetes and its complications, whereas existing studies are scattered and unsystematic. Here, we summarized the literature studies over the last 10 years to review the potential therapeutic role of Hst in the prevention and mitigation of diabetes and its complications, intending to provide promising strategies for the clinical management of diabetes and its complications.
Collapse
Affiliation(s)
- Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yujie Wang
- Department of Pharmacy, the Third Affiliated Hospital of Soochow University, the First Peoples's Hospital of Changzhou, Changzhou 213003, China
| | - Shan Xu
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Jie Ren
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China
| | - Lidan Tang
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Jinhong Gong
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Ying Lin
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Hufeng Fang
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Dan Su
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|
7
|
El-Demerdash FM, Talaat Y, Ghanem NF, Kang W. Actinidia deliciosa Mitigates Oxidative Stress and Changes in Pancreatic α-, β-, and δ-Cells and Immunohistochemical and Histological Architecture in Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5224207. [PMID: 35529919 PMCID: PMC9068294 DOI: 10.1155/2022/5224207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 04/18/2022] [Indexed: 12/30/2022]
Abstract
The present study evaluated the antioxidant capacity and antidiabetic effect of Actinidia deliciosa in diabetic rats. Rats were grouped as follows: control, Actinidia deliciosa aqueous extract (ADAE, 1 g/kg, daily and orally), streptozotocin (STZ, 50 mg/kg BW, single intraperitoneal dose), and STZ plus ADAE, respectively. Twenty-eight components were detected by GC-MS analysis with high phenolic contents and high DPPH scavenging activity. In vivo results revealed that rats treated with STZ showed a highly significant elevation in blood glucose and a decrease in insulin hormone levels. Thiobarbituric acid-reactive substances and hydrogen peroxide levels were elevated, while bodyweight, enzymatic, and nonenzymatic antioxidants were significantly decreased. Furthermore, histopathological and immunohistochemical insulin expression, besides ultrastructure microscopic variations (β-cells, α-cells, and δ-cells), were seen in pancreas sections supporting the obtained biochemical changes. Otherwise, rats supplemented with ADAE alone showed an improved antioxidant status and declined lipid peroxidation. Moreover, diabetic rats augmented with ADAE showed significant modulation in oxidative stress markers and different pancreatic tissue investigations compared to diabetic ones. Conclusively, ADAE has a potent antioxidant and hypoglycemic influence that may be utilized as a health-promoting complementary therapy in diabetes mellitus.
Collapse
Affiliation(s)
- Fatma M. El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Yousra Talaat
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Nora F. Ghanem
- Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| |
Collapse
|
8
|
Saurin S, Meineck M, Erkel G, Opatz T, Weinmann-Menke J, Pautz A. Drug Candidates for Autoimmune Diseases. Pharmaceuticals (Basel) 2022; 15:503. [PMID: 35631330 PMCID: PMC9143092 DOI: 10.3390/ph15050503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
Most of the immunosuppressive drugs used in the clinic to prevent organ rejection or to treat autoimmune disorders were originally isolated from fungi or bacteria. Therefore, in addition to plants, these are valuable sources for identification of new potent drugs. Many side effects of established drugs limit their usage and make the identification of new immunosuppressants necessary. In this review, we present a comprehensive overview of natural products with potent anti-inflammatory activities that have been tested successfully in different models of chronic inflammatory autoimmune diseases. Some of these candidates already have passed first clinical trials. The anti-inflammatory potency of these natural products was often comparable to those of established drugs, and they could be used at least in addition to standard therapy to reduce their dose to minimize unwanted side effects. A frequent mode of action is the inhibition of classical inflammatory signaling pathways, such as NF-κB, in combination with downregulation of oxidative stress. A drawback for the therapeutic use of those natural products is their moderate bioavailability, which can be optimized by chemical modifications and, in addition, further safety studies are necessary. Altogether, very interesting candidate compounds exist which have the potential to serve as starting points for the development of new immunosuppressive drugs.
Collapse
Affiliation(s)
- Sabrina Saurin
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Myriam Meineck
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Gerhard Erkel
- Department of Molecular Biotechnology and Systems Biology, Technical University, 67663 Kaiserslautern, Germany;
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, 55099 Mainz, Germany;
| | - Julia Weinmann-Menke
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
9
|
Khazeei Tabari MA, Mirjalili R, Khoshhal H, Shokouh E, Khandan M, Hasheminasabgorji E, Hafezi-Moghadam A, Bagheri A. Nature against Diabetic Retinopathy: A Review on Antiangiogenic, Antioxidant, and Anti-Inflammatory Phytochemicals. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4708527. [PMID: 35310030 PMCID: PMC8926515 DOI: 10.1155/2022/4708527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022]
Abstract
Background and Purpose. Diabetes mellitus (DM), hyperglycemia, and hypertension can result in diabetic retinopathy (DR), which is a major cause of blindness on a global scale. Development of DR is associated with decreased endothelial cells, increased basal membrane thickness, permeation of the retinal blood barrier, and neovascularization in patients. The purpose of the present review is to provide an overview of the findings regarding applications of phytochemicals for DR treatment and could be a beneficial resource for further clinical studies and also a basis for pharmaceutical purposes for drug design. Materials and Methods. A narrative literature review was performed from electronic databases including Web of Science, PubMed, and Scopus to analyze the effects of different phytochemicals to prevent or treat oxidation, angiogenesis, and inflammation in diabetic retinopathy. The inclusion criteria were original studies, which included the effects of different phytochemicals on diabetic retinopathy. The exclusion criteria included studies other than original articles, studies which assessed the effects of phytochemicals on nondiabetic retinopathy, and studies which used phytochemical-rich extracts. Results and Conclusions. Studies have shown that increased levels of inflammatory cytokines, angiogenic, and oxidative stress factors are involved in the progression and pathogenesis of DR. Therefore, phytochemicals with their anti-inflammatory, antiangiogenic, and antioxidant properties can prevent DR progression and retinal damage through various cellular mechanisms. It is also shown that some phytochemicals can simultaneously affect the inflammation, oxidation, and angiogenesis in DR.
Collapse
Affiliation(s)
- Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Razie Mirjalili
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hooman Khoshhal
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elahe Shokouh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohanna Khandan
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Hasheminasabgorji
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Hafezi-Moghadam
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
10
|
Lu Q, Kishi H, Zhang Y, Morita T, Kobayashi S. Hesperetin Inhibits Sphingosylphosphorylcholine-Induced Vascular Smooth Muscle Contraction by Regulating the Fyn/Rho-Kinase Pathway. J Cardiovasc Pharmacol 2022; 79:456-466. [PMID: 34983908 PMCID: PMC8983948 DOI: 10.1097/fjc.0000000000001210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Cardiovascular diseases are the leading cause of mortality and disability worldwide. We have previously found that sphingosylphosphorylcholine (SPC) is the key molecule leading to vasospasm. We have also identified the SPC/Src family protein tyrosine kinase Fyn/Rho-kinase (ROK) pathway as a novel signaling pathway for Ca2+ sensitization of vascular smooth muscle (VSM) contraction. This study aimed to investigate whether hesperetin can inhibit the SPC-induced contraction with little effect on 40 mM K+-induced Ca2+-dependent contraction and to elucidate the underlying mechanisms. Hesperetin significantly inhibited the SPC-induced contraction of porcine coronary artery smooth muscle strips with little effect on 40 mM K+-induced contraction. Hesperetin blocked the SPC-induced translocation of Fyn and ROK from the cytosol to the membrane in human coronary artery smooth muscle cells (HCASMCs). SPC decreased the phosphorylation level of Fyn at Y531 in both VSMs and HCASMCs and increased the phosphorylation levels of Fyn at Y420, myosin phosphatase target subunit 1 at T853, and myosin light chain (MLC) at S19 in both VSMs and HCASMCs, which were significantly suppressed by hesperetin. Our results indicate that hesperetin inhibits the SPC-induced contraction at least in part by suppressing the Fyn/ROK pathway, suggesting that hesperetin can be a novel drug to prevent and treat vasospasm.
Collapse
Affiliation(s)
- Qian Lu
- Department of Molecular and Cellular Physiology, Yamaguchi University Graduate School of Medicine, Ube, Japan ; and
| | - Hiroko Kishi
- Department of Molecular and Cellular Physiology, Yamaguchi University Graduate School of Medicine, Ube, Japan ; and
| | - Ying Zhang
- Department of Molecular and Cellular Physiology, Yamaguchi University Graduate School of Medicine, Ube, Japan ; and
| | - Tomoka Morita
- Department of Molecular and Cellular Physiology, Yamaguchi University Graduate School of Medicine, Ube, Japan ; and
| | - Sei Kobayashi
- Department of Advanced Preventive Medicine, School of Medicine, Yamaguchi University, Ube, Japan
| |
Collapse
|
11
|
|
12
|
Behl T, Kumar K, Singh S, Sehgal A, Sachdeva M, Bhatia S, Al-Harrasi A, Buhas C, Teodora Judea-Pusta C, Negrut N, Alexandru Munteanu M, Brisc C, Bungau S. Unveiling the role of polyphenols in diabetic retinopathy. J Funct Foods 2021. [DOI: https://doi.org/10.1016/j.jff.2021.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
13
|
Li Z, Yang Y, Liu M, Zhang C, Shao J, Hou X, Tian J, Cui Q. A comprehensive review on phytochemistry, bioactivities, toxicity studies, and clinical studies on Ficus carica Linn. leaves. Biomed Pharmacother 2021; 137:111393. [PMID: 33761610 DOI: 10.1016/j.biopha.2021.111393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
The leaves of Ficus carica Linn. (FC) have been widely used for medicine purposes since ancient times, and its decoction is consumed as tea. Many scientific papers have been published in the literature and the researchers across the world are still exploring the health benefits of FC leaves. In this review, we have collected the literature published since 2010 in the databases: Pubmed, Scopus, Web of Science, SciFinder, Google Scholar, Baidu Scholar and local classic herbal literature. The summary of the chemical constituents in FC leaves, biological activities, toxicity studies, and clinical studies carried out on FC leaves is provided in this review. In addition, the molecular mechanisms of the active constituents in FC leaves are also comprehended. FC leaves are reported to 126 constituents out of which the polyphenolic compounds are predominant. Many scientific studies have proven the antidiabetic, antioxidant, anti-inflammatory, anticancer, anticholinesterase, antimicrobial, hepatoprotective, and renoprotective activities. Many studies have carried out to provide the insights on molecular pathways involved in the biological activities of FC leaves. The toxicity studies have suggested that FC leaves exhibit toxicity only at very high doses. We believe this review serve as a comprehensive resource for those who are interested to understand the scientific evidence that support the medicinal values of FC leaves and also the research gaps to further improve the commercial value and health benefits of FC leaves.
Collapse
Affiliation(s)
- Zhongyuan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ying Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Miaomiao Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chenghua Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Junjing Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xuewen Hou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jingzhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Academy of Chinese Medicinal Sciences Shandong University of Traditional Chinese Medicine, Qingdao 266041, China.
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Academy of Chinese Medicinal Sciences Shandong University of Traditional Chinese Medicine, Qingdao 266041, China.
| |
Collapse
|
14
|
The Benefits of Flavonoids in Diabetic Retinopathy. Nutrients 2020; 12:nu12103169. [PMID: 33081260 PMCID: PMC7603001 DOI: 10.3390/nu12103169] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR), one of the most common complications of diabetes, is the leading cause of legal blindness among adults of working age in developed countries. After 20 years of diabetes, almost all patients suffering from type I diabetes mellitus and about 60% of type II diabetics have DR. Several studies have tried to identify drugs and therapies to treat DR though little attention has been given to flavonoids, one type of polyphenols, which can be found in high levels mainly in fruits and vegetables, but also in other foods such as grains, cocoa, green tea or even in red wine. Flavonoids have anti-inflammatory, antioxidant and antiviral effects. Since it is known that diabetes induces oxidative stress and inflammation in the retina leading to neuronal death in the early stages of the disease, the use of these compounds can prove to be beneficial in the prevention or treatment of DR. In this review, we summarize the molecular and cellular effects of flavonoids in the diabetic retina.
Collapse
|
15
|
Quan Y, Zhang QY, Lv BM, Xu RF, Zhang HY. Genome-wide pathogenesis interpretation using a heat diffusion-based systems genetics method and implications for gene function annotation. Mol Genet Genomic Med 2020; 8:e1456. [PMID: 32869547 PMCID: PMC7549611 DOI: 10.1002/mgg3.1456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Background Genetics is best dedicated to interpreting pathogenesis and revealing gene functions. The past decade has witnessed unprecedented progress in genetics, particularly in genome‐wide identification of disorder variants through Genome‐Wide Association Studies (GWAS) and Phenome‐Wide Association Studies (PheWAS). However, it is still a great challenge to use GWAS/PheWAS‐derived data to elucidate pathogenesis. Methods In this study, we used HotNet2, a heat diffusion‐based systems genetics algorithm, to calculate the networks for disease genes obtained from GWAS and PheWAS, with an attempt to get deeper insights into disease pathogenesis at a molecular level. Results Through HotNet2 calculation, significant networks for 202 (for GWAS) and 167 (for PheWAS) types of diseases were identified and evaluated, respectively. The GWAS‐derived disease networks exhibit a stronger biomedical relevance than PheWAS counterparts. Therefore, the GWAS‐derived networks were used for pathogenesis interpretation by integrating the accumulated biomedical information. As a result, the pathogenesis for 64 diseases was elucidated in terms of mutation‐caused abnormal transcriptional regulation, and 47 diseases were preliminarily interpreted in terms of mutation‐caused varied protein‐protein interactions. In addition, 3,802 genes (including 46 function‐unknown genes) were assigned with new functions by disease network information, some of which were validated through mice gene knockout experiments. Conclusions Systems genetics algorithm HotNet2 can efficiently establish genotype‐phenotype links at the level of biological networks. Compared with original GWAS/PheWAS results, HotNet2‐calculated disease‐gene associations have stronger biomedical significance, hence provide better interpretations for the pathogenesis of genome‐wide variants, and offer new insights into gene functions as well. These results are also helpful in drug development.
Collapse
Affiliation(s)
- Yuan Quan
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen, China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Qing-Ye Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Bo-Min Lv
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Rui-Feng Xu
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Mas-Capdevila A, Teichenne J, Domenech-Coca C, Caimari A, Del Bas JM, Escoté X, Crescenti A. Effect of Hesperidin on Cardiovascular Disease Risk Factors: The Role of Intestinal Microbiota on Hesperidin Bioavailability. Nutrients 2020; 12:E1488. [PMID: 32443766 PMCID: PMC7284956 DOI: 10.3390/nu12051488] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, hesperidin, a flavonone mainly present in citrus fruits, has emerged as a new potential therapeutic agent able to modulate several cardiovascular diseases (CVDs) risk factors. Animal and in vitro studies demonstrate beneficial effects of hesperidin and its derived compounds on CVD risk factors. Thus, hesperidin has shown glucose-lowering and anti-inflammatory properties in diabetic models, dyslipidemia-, atherosclerosis-, and obesity-preventing effects in CVDs and obese models, and antihypertensive and antioxidant effects in hypertensive models. However, there is still controversy about whether hesperidin could contribute to ameliorate glucose homeostasis, lipid profile, adiposity, and blood pressure in humans, as evidenced by several clinical trials reporting no effects of treatments with this flavanone or with orange juice on these cardiovascular parameters. In this review, we focus on hesperidin's beneficial effects on CVD risk factors, paying special attention to the high interindividual variability in response to hesperidin-based acute and chronic interventions, which can be partly attributed to differences in gut microbiota. Based on the current evidence, we suggest that some of hesperidin's contradictory effects in human trials are partly due to the interindividual hesperidin variability in its bioavailability, which in turn is highly dependent on the α-rhamnosidase activity and gut microbiota composition.
Collapse
Affiliation(s)
- Anna Mas-Capdevila
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, 43204 Reus, Spain; (A.M.-C.); (J.T.); (C.D.-C.); (A.C.); (J.M.D.B.)
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Spain
| | - Joan Teichenne
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, 43204 Reus, Spain; (A.M.-C.); (J.T.); (C.D.-C.); (A.C.); (J.M.D.B.)
| | - Cristina Domenech-Coca
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, 43204 Reus, Spain; (A.M.-C.); (J.T.); (C.D.-C.); (A.C.); (J.M.D.B.)
| | - Antoni Caimari
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, 43204 Reus, Spain; (A.M.-C.); (J.T.); (C.D.-C.); (A.C.); (J.M.D.B.)
- Eurecat, Technology Centre of Catalunya, Biotechnology Area and Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Josep M Del Bas
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, 43204 Reus, Spain; (A.M.-C.); (J.T.); (C.D.-C.); (A.C.); (J.M.D.B.)
| | - Xavier Escoté
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, 43204 Reus, Spain; (A.M.-C.); (J.T.); (C.D.-C.); (A.C.); (J.M.D.B.)
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Spain
| | - Anna Crescenti
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, 43204 Reus, Spain; (A.M.-C.); (J.T.); (C.D.-C.); (A.C.); (J.M.D.B.)
| |
Collapse
|
17
|
Liu Y, Zhang L, Dong L, Song Q, Guo P, Wang Y, Chen Z, Zhang M. Hesperetin improves diabetic coronary arterial vasomotor responsiveness by upregulating myocyte voltage‑gated K+ channels. Exp Ther Med 2020; 20:486-494. [PMID: 32509018 PMCID: PMC7271715 DOI: 10.3892/etm.2020.8670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 03/03/2020] [Indexed: 12/04/2022] Open
Abstract
Hesperetin (HSP) is a naturally occurring flavonoid. The present study aimed to investigate the potential vasomotor effects and mechanisms of HSP action on rat coronary arteries (RCAs) injured by diabetes or high glucose concentrations. HSP (100 mg/kg/day) was intragastrically administered to the rats for 8 weeks, which were rendered diabetic with a single intraperitoneal injection of 60 mg/kg streptozotocin (STZ). The vascular tone of RCAs was recorded using a wire myograph. The voltage-dependent K+ (Kv) currents were examined using patch clamping. The expression of Kv channels (Kv1.2 and Kv1.5) was examined by western blot analysis and reverse transcription-quantitative PCR (RT-qPCR). Diabetes induced contractile hypersensitivity and vasodilator hyposensitivity in RCAs, both of which were attenuated by the chronic administration of HSP. Patch clamp data revealed that chronic HSP treatment reduced diabetes-induced suppression of Kv currents in the myocytes. Western blot and RT-qPCR analyses revealed that chronic HSP administration increased the expression of Kv1.2, but not Kv1.5, in the RCAs of diabetic rats compared with those from non-diabetic rats. In vitro analysis showed that co-incubation with HSP ameliorated high-glucose-induced suppression of Kv currents and Kv 1.2 protein expression in the myocytes. Taken together, the present study demonstrated that HSP alleviated RCA vasomotor dysfunction as a result of diabetes in rats by upregulating the expression of myocyte Kv channels.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Lei Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Lina Dong
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Qiying Song
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Pengmei Guo
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yan Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Zhaoyang Chen
- Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Laboratory Animal Center of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Mingsheng Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
18
|
Amin AR, Kassab RB, Abdel Moneim AE, Amin HK. Comparison Among Garlic, Berberine, Resveratrol, Hibiscus sabdariffa, Genus Zizyphus, Hesperidin, Red Beetroot, Catha edulis, Portulaca oleracea, and Mulberry Leaves in the Treatment of Hypertension and Type 2 DM: A Comprehensive Review. Nat Prod Commun 2020; 15. [DOI: 10.1177/1934578x20921623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Diabetes mellitus (DM) and hypertension are 2 of the most prevalent diseases with poor impact on health status worldwide. In most cases, they coexist with other metabolic disorders as well as cardiac, micro- and macrovascular complications. Many plants are known for their hypotensive, cardioprotective, and/or antidiabetic activities. Their active ingredients either identified and isolated or still utilized as herbal preparations of certain plant parts. The use of medicinal plants comprises the main basis for most of the traditional medicine (TM) systems and procedures. As conventional medicines seem insufficient to control such progressive diseases, herbal agents from TM could be used as adjuvant with good impact on disease control and progression as well as other concomitant health conditions. The aim of this study is to compare the efficacy of 10 different herbal medicines of botanical origin or herbal preparations in the management of hypertension and its cardiovascular complications and type 2 DM along with various coexisting health disorders. These herbal medicines are garlic, berberine, resveratrol, Hibiscus sabdariffa, Zizyphus ( oxyphylla, mucronate, jujube, rugosa), hesperidin, red beetroot, Catha edulis, mulberry leaves, and Portulaca oleracea.
Collapse
Affiliation(s)
- Amira R. Amin
- Cardiology and Oncology Section, Nasser Institute for Research and Treatment, Cairo, Egypt
| | - Rami B. Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E. Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Hatem K. Amin
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Egypt
| |
Collapse
|
19
|
Zh G, R F, G H H, A D, A K, Z H. Histopathologic Evaluation of Radio-Protective Effect of Hesperidin on the Liver of Sprague Dawely Rats. J Biomed Phys Eng 2020; 10:7-14. [PMID: 32158707 PMCID: PMC7036407 DOI: 10.31661/jbpe.v0i0.832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/04/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Hesperidin is a bioflavonoid glycoside mainly found in citrus fruit and has been shown radio-protective potential in various measurement systems. OBJECTIVE In this article aims to investigate the radio-protective effect of hesperidin on the liver of Sprague Dawely rats. MATERIAL AND METHODS In this clinical study, 40 male rats were selected randomly and divided into 8 groups. Group 1 did not receive radiation and hesperidin (sham control). Group 2 received only 100 mg/kg body weight (b.w) of hesperidin for 7 consecutive days (HES group); group 3 exposed to dose of 2Gy whole body gamma radiation (2Gy group), and group 4 and 5 received 50 and 100 mg/kg b.w of HES for 7 consecutive days before 2 Gy gamma radiation, respectively.Group 6 exposed to dose of 8Gy gamma radiation (8Gy group); group 7 and 8 received 50 and 100 mg/kg b.w of HES for 7 days before 8Gy gamma irradiation, respectively. Histopathological evaluation was perfomred 24 hours after radiation. RESULTS Administration of hesperidin (50 mg/kg b.w, 7 days) before 2Gy of gamma irradiation led to remove inflammatory mononuclear cells in the portal space. Microscopic findings in the groups receiving two doses of hesperidin (50 and 100 mg/kg b.w, orally, 7 days), before 8Gy of gamma radiation, were similar in a way that extreme dilation of central veins to be seen, however, there was no capillarization. CONCLUSION HES can be offered as a suitable radio-protector in radiotherapy patients and radiation workers.
Collapse
Affiliation(s)
- Ghorbani Zh
- MSc, Radiology Department, School of Paramedicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fardid R
- PhD, Radiology Department, School of Paramedicine, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), School of Paramedicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haddadi G H
- PhD, Radiology Department, School of Paramedicine, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), School of Paramedicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Derakhshanfar A
- PhD, Diagnostic Laboratory Sciences and Technology Research Center, Basic Sciences in Infection Diseases Research Center, Center of Comparative & Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kouhpayeh A
- PhD, Department of Pharmacology, Fasa University of Medical Science, Fasa, Iran
| | - Haddadi Z
- MD, Medical student, Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
20
|
Pla-Pagà L, Companys J, Calderón-Pérez L, Llauradó E, Solà R, Valls RM, Pedret A. Effects of hesperidin consumption on cardiovascular risk biomarkers: a systematic review of animal studies and human randomized clinical trials. Nutr Rev 2019; 77:845-864. [PMID: 31271436 DOI: 10.1093/nutrit/nuz036] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
CONTEXT The cardioprotective effects of the flavonoid hesperidin, which is present in citrus products, are controversial and unclear. This systematic review was conducted in accordance with the PRISMA 2015 guidelines. OBJECTIVE To evaluate the current evidence from animal and human clinical studies and thus determine whether the consumption of hesperidin exerts beneficial effects on cardiovascular risk factors. DATA SOURCES PICOS (Population, Intervention, Comparison, Outcome, and Study Design) criteria defined the research question. Searches of the PubMed and Cochrane Plus databases were conducted and studies that met the inclusion criteria and were published in English in the last 15 years were included. DATA EXTRACTION The first author, year of publication, study design, characteristics of animals and humans, intervention groups, dose of hesperidin, route of administration, duration of the intervention, cardiovascular risk biomarkers assessed, and results observed were extracted from the included articles. RESULTS A total of 12 animal studies and 11 randomized clinical trials met the inclusion criteria. In the animal studies, the glucose, total and LDL cholesterol, and triglyceride levels decreased with chronic flavonoid consumption. In the human studies, endothelial function improved with flavonoid consumption, whereas no conclusive results were observed for the other biomarkers. CONCLUSIONS Animal studies have revealed that hesperidin and hesperetin consumption reduces glucose levels and various lipid profile parameters. However, a definitive conclusion cannot be drawn from the existing human clinical trials. Further research is needed to confirm whether the findings observed in animal models can also be observed in humans. SYSTEMATIC REVIEW REGISTRATION Prospero registration number CRD42018088942.
Collapse
Affiliation(s)
- L Pla-Pagà
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), Reus, Spain
- Hospital Universitari Sant Joan, Reus, Spain
| | - J Companys
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), Reus, Spain
| | - L Calderón-Pérez
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), Reus, Spain
| | - E Llauradó
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), Reus, Spain
| | - R Solà
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), Reus, Spain
- Hospital Universitari Sant Joan, Reus, Spain
| | - R M Valls
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), Reus, Spain
| | - A Pedret
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), Reus, Spain
| |
Collapse
|
21
|
Rossino MG, Dal Monte M, Casini G. Relationships Between Neurodegeneration and Vascular Damage in Diabetic Retinopathy. Front Neurosci 2019; 13:1172. [PMID: 31787868 PMCID: PMC6856056 DOI: 10.3389/fnins.2019.01172] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and constitutes a major cause of vision impairment and blindness in the world. DR has long been described exclusively as a microvascular disease of the eye. However, in recent years, a growing interest has been focused on the contribution of neuroretinal degeneration to the pathogenesis of the disease, and there are observations suggesting that neuronal death in the early phases of DR may favor the development of microvascular abnormalities, followed by the full manifestation of the disease. However, the mediators that are involved in the crosslink between neurodegeneration and vascular changes have not yet been identified. According to our hypothesis, vascular endothelial growth factor (VEGF) could probably be the most important connecting link between the death of retinal neurons and the occurrence of microvascular lesions. Indeed, VEGF is known to play important neuroprotective actions; therefore, in the early phases of DR, it may be released in response to neuronal suffering, and it would act as a double-edged weapon inducing both neuroprotective and vasoactive effects. If this hypothesis is correct, then any retinal stress causing neuronal damage should be accompanied by VEGF upregulation and by vascular changes. Similarly, any compound with neuroprotective properties should also induce VEGF downregulation and amelioration of the vascular lesions. In this review, we searched for a correlation between neurodegeneration and vasculopathy in animal models of retinal diseases, examining the effects of different neuroprotective substances, ranging from nutraceuticals to antioxidants to neuropeptides and others and showing that reducing neuronal suffering also prevents overexpression of VEGF and vascular complications. Taken together, the reviewed evidence highlights the crucial role played by mediators such as VEGF in the relationship between retinal neuronal damage and vascular alterations and suggests that the use of neuroprotective substances could be an efficient strategy to prevent the onset or to retard the development of DR.
Collapse
Affiliation(s)
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
22
|
Gupta SK, Sharma HP, Das U, Velpandian T, Saklani R. Effect of rutin on retinal VEGF, TNF-α, aldose reductase, and total antioxidant capacity in diabetic rats: molecular mechanism and ocular pharmacokinetics. Int Ophthalmol 2019; 40:159-168. [DOI: 10.1007/s10792-019-01165-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022]
|
23
|
Abbaszadeh H, Keikhaei B, Mottaghi S. A review of molecular mechanisms involved in anticancer and antiangiogenic effects of natural polyphenolic compounds. Phytother Res 2019; 33:2002-2014. [DOI: 10.1002/ptr.6403] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/21/2019] [Accepted: 05/19/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Cancer Research CenterAhvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Bijan Keikhaei
- Thalassemia and Hemoglobinopathy Research Center, Health InstituteAhvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Sayeh Mottaghi
- Department of PediatricsAhvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
24
|
Rossino MG, Casini G. Nutraceuticals for the Treatment of Diabetic Retinopathy. Nutrients 2019; 11:nu11040771. [PMID: 30987058 PMCID: PMC6520779 DOI: 10.3390/nu11040771] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/19/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus and is characterized by degeneration of retinal neurons and neoangiogenesis, causing a severe threat to vision. Nowadays, the principal treatment options for DR are laser photocoagulation, vitreoretinal surgery, or intravitreal injection of drugs targeting vascular endothelial growth factor. However, these treatments only act at advanced stages of DR, have short term efficacy, and cause side effects. Treatment with nutraceuticals (foods providing medical or health benefits) at early stages of DR may represent a reasonable alternative to act upstream of the disease, preventing its progression. In particular, in vitro and in vivo studies have revealed that a variety of nutraceuticals have significant antioxidant and anti-inflammatory properties that may inhibit the early diabetes-driven molecular mechanisms that induce DR, reducing both the neural and vascular damage typical of DR. Although most studies are limited to animal models and there is the problem of low bioavailability for many nutraceuticals, the use of these compounds may represent a natural alternative method to standard DR treatments.
Collapse
Affiliation(s)
| | - Giovanni Casini
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy.
| |
Collapse
|
25
|
Ekim Y, Kara S, Gencer B, Karaca T. Efficacy of Sunitinib, Sunitinib-Hesperetin, and Sunitinib-Doxycycline Combinations on Experimentally-Induced Corneal Neovascularization. Curr Eye Res 2019; 44:590-598. [PMID: 30803276 DOI: 10.1080/02713683.2019.1584320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose: To investigate the preventive effects of topical sunitinib, sunitinib-hesperetin and sunitinib-doxycycline combinations on corneal neovascularization (CNV), apoptosis and fibrosis in a corneal alkali burn model. Materials and Methods: The corneas of 32 Wistar albino rats were cauterized with silver nitrate to induce CNV. Four groups were created receiving artificial tears (sham), sunitinib (0.5 mg/ml), sunitinib-hesperetin (0.5 mg/ml-0.2 mg/ml), and sunitinib-doxycycline (0.5 mg/ml-20 mg/ml) treatments. Corneal photographs were taken on days 0, 7 and 15. Photographs of the cornea were digitally analyzed to measure the size of the neovascularization area in comparison to the total corneal surface area. On the 15th day, the animals were euthanized, and the eyes were enucleated for immunohistochemical staining to investigate neovascularization, apoptosis, and fibrosis. Results: CNV areas on the 7th day in the sunitinib (4.8% ± 0.07%) and sunitinib-hesperetin (1.1% ± 0.03%) groups were smaller than those in the sham group (33.9% ± 0.12%) (p = 0.001 and, p < 0.001 respectively). On the 15th day, the CNV area in the sunitinib-hesperetin (20.8% ± 0.37%) group was significantly smaller than that of the sham group (74.6% ± 0.32%) (p = 0.039). The combination groups had lower levels of VEGF, TUNEL and α-SMA positivity than the sunitinib monotherapy group. TUNEL positivity was lowest in the sunitinib-hesperetin and sunitinib-doxycycline groups, and α-SMA positivity was lowest in the sunitinib-hesperetin group. Conclusion: Topical sunitinib-hesperetin was more effective than sunitinib alone and the sunitinib-doxycycline combination in the treatment of CNV. The combination of sunitinib and hesperetin seems to be a promising treatment for preventing corneal fibrosis and apoptosis.
Collapse
Affiliation(s)
- Yeliz Ekim
- a Department of Ophthalmology , Canakkale State Hospital , Canakkale , Turkey
| | - Selcuk Kara
- b Dunyagoz Eye Hospitals , Istanbul , Turkey
| | | | - Turan Karaca
- c Faculty of Medicine, Department of Histology and Embryology , Trakya University , Edirne , Turkey
| |
Collapse
|
26
|
Perturbed Biochemical Pathways and Associated Oxidative Stress Lead to Vascular Dysfunctions in Diabetic Retinopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8458472. [PMID: 30962865 PMCID: PMC6431380 DOI: 10.1155/2019/8458472] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/26/2018] [Accepted: 01/27/2019] [Indexed: 02/08/2023]
Abstract
Diabetic retinopathy (DR) is a vascular insult that accompanies the hyperglycemic state. Retinal vasculature holds a pivotal role in maintaining the integrity of the retina, and any alteration to retinal vasculature affects retinal functions. The blood retinal barrier, a prerequisite to vision acuity, is most susceptible to damage during the progression of DR. This is a consequence of impaired biochemical pathways such as the polyol, advanced end glycation products (AGE), hexosamine, protein kinase C (PKC), and tissue renin-angiotensin system (RAS) pathways. Moreover, the role of histone modification and altered miRNA expression is also emerging as a major contributor. Epigenetic changes create a link between altered protein function and redox status of retinal cells, creating a state of metabolic memory. Although various biochemical pathways underlie the etiology of DR, the major insult to the retina is due to oxidative stress, a unifying factor of altered biochemical pathways. This review primarily focuses on the critical biochemical pathways altered in DR leading to vascular dysfunctions and discusses antioxidants as plausible treatment strategies.
Collapse
|
27
|
Xu Z, Chu Z, Li W, Sun T, Sun X. Grape seed extracts attenuate retinal Müller cell gliosis in streptozotocin-diabetic rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
28
|
Involvement of the TGFβ1- ILK-Akt signaling pathway in the effects of hesperidin in type 2 diabetic nephropathy. Biomed Pharmacother 2018; 105:766-772. [PMID: 29909344 DOI: 10.1016/j.biopha.2018.06.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy is one of the manifestations of systemic microangiopathy in diabetes. Hesperetin, a natural flavanone glycoside compound in citrus fruits, has been demonstrated to exert hypoglycemic effects and protect kidney in experimental diabetic animals. The current study was aimed to investigate the mechanisms underlying the hypoglycemic effects of hesperetin in high-fat/streptozocin (STZ)-induced diabetic nephropathy. The results showed that mice in whom hesperetin was administered for 4 weeks attenuated the increased fasting blood glucose and impaired glucose tolerance ability that was observed in high-fat/STZ mice. In addition, we found that hesperetin ameliorated the abnormalities of biochemical parameters in serum, liver, and kidney of mice with diabetic nephropathy. Hesperetin also rescued the irregular distortions in glomerular basement membrane and expanded mesangial regions. Moreover, hesperetin repaired the function of podocyte by increasing renal nephrin expression and decreasing renal alpha-smooth muscle actin expression. Furthermore, hesperetin inhibited the expression of transforming growth factor-β1 (TGF-β1) and its downstream effectors integrin-linked kinase (ILK) and Akt. In conclusion, our study implies that hesperetin produced protective effects in diabetic nephropathy possibly by suppressing TGF-β1-ILK-Akt signaling.
Collapse
|
29
|
Jayaraman R, Subramani S, Sheik Abdullah SH, Udaiyar M. Antihyperglycemic effect of hesperetin, a citrus flavonoid, extenuates hyperglycemia and exploring the potential role in antioxidant and antihyperlipidemic in streptozotocin-induced diabetic rats. Biomed Pharmacother 2017; 97:98-106. [PMID: 29080465 DOI: 10.1016/j.biopha.2017.10.102] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/16/2017] [Accepted: 10/21/2017] [Indexed: 12/25/2022] Open
Abstract
Diabetes is the major health problem in modern civilization which occurs due to inadequate metabolism of carbohydrate and lipid could cause tremendous changes in the metabolic activities of liver. In this study, we investigated the antihyperglycemic, antioxidant and antihyperlipidemic effects of hesperetin, a citrus flavonoid against streptozotocin (STZ)-induced experimental rats. To stimulate diabetes mellitus, rats were injected with STZ intraperitoneally at a single dose of 45mg/kg. STZ induced rats showed marked increase in the level of plasma glucose and significant reduction in the level of plasma insulin. The activities of carbohydrate metabolic enzymes, hepatic glycogen, lipid profiles, enzymic antioxidants in circulatory system and pancreas, hepatic and renal functional markers were explored. Supplementation with hesperetin (40mg/kg b.w) to STZ-induced experimental rats for 45days established a significant decline in plasma glucose and a marked improvement in plasma insulin and glycogen levels in STZ-induced rats. The altered activities of hepatic glucose metabolic enzymes, lipid profiles, enzymic antioxidants and serum biomarkers of liver and kidney toxicity were restored to almost normal. The acquired outcome were compared with glibenclamide (1mg/kg b.w), a standard oral hypoglycemic drug. Hesperetin treatment was found to be efficient in protecting the normal histological manifestation of hepatic, renal and insulin positive β-cells in STZ induced rats. On the basis of current experimental findings, we concluded that administration of hesperetin attenuates the hyperglycemia and dyslipidemia through ameliorating antioxidant competence in STZ-induced experimental rats.
Collapse
Affiliation(s)
- Revathy Jayaraman
- Research and Development Centre, Bharathiyar University, Coimbatore, Tamilnadu, India
| | - Srinivasan Subramani
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamilnadu, India; Postgraduate and Research Department of Biochemistry, Government Arts College for Women, Krishnagiri 635 002, Tamil Nadu, India.
| | - Shahul Hameed Sheik Abdullah
- Research and Development Centre, Bharathiyar University, Coimbatore, Tamilnadu, India; Department of Chemistry and Biosciences, Sastra University, Srinivasa Ramanujan Centre, Kumbakonam, Tamilnadu, India
| | - Muruganathan Udaiyar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamilnadu, India
| |
Collapse
|
30
|
Gong Y, Qin XY, Zhai YY, Hao H, Lee J, Park YD. Inhibitory effect of hesperetin on α-glucosidase: Molecular dynamics simulation integrating inhibition kinetics. Int J Biol Macromol 2017; 101:32-39. [DOI: 10.1016/j.ijbiomac.2017.03.072] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/02/2017] [Accepted: 03/14/2017] [Indexed: 12/21/2022]
|
31
|
Nakajima VM, Moala T, Caria CREP, Moura CS, Amaya-Farfan J, Gambero A, Macedo GA, Macedo JA. Biotransformed citrus extract as a source of anti-inflammatory polyphenols: Effects in macrophages and adipocytes. Food Res Int 2017; 97:37-44. [PMID: 28578062 DOI: 10.1016/j.foodres.2017.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 02/06/2023]
Abstract
Chronic non-communicable diseases such as obesity are preceded by increased macrophage infiltration in adipose tissue and greater secretion of pro-inflammatory cytokines. We evaluated the anti-inflammatory potential of Biotransformed extract, and two control extracts: In Natura and Autoclaved. The assays were performed using a cellular model with RAW264.7, 3T3-L1 cells, and RAW264.7 and 3T3-L1 co-culture. The innovation of the study was the use of Biotransformed extract, a unique phenolic extract of a bioprocessed citrus residue. LPS stimulated RAW264.7 cells treated with the Biotransformed extract exhibited lower secretion of TNF-α and NO and lower protein expression of NFκB. In RAW264.7 and 3T3-L1 co-culture, treatment with 1.0mg/mL of the Biotransformed extract reduced secretion of TNF-α (30.7%) and IL-6 (43.4%). Still, the Biotransformed extract caused higher increase in adiponectin in relation to control extracts. When the co-culture received a LPS stimulus, the Autoclaved extract at 1.0mg/mL reduced IL-6 and TNF-α concentrations, and raised adiponectin. However, it was noteworthy that the Biotransformed extract was also able to significantly reduce IL-6 concentration while the Natural extract was not. The Biotransformed citrus extract evaluated in this study showed anti-inflammatory activity in macrophages and in co-culture, indicating that bioprocess of citrus residue can contribute to new product development with anti-inflammatory potential.
Collapse
Affiliation(s)
- Vânia Mayumi Nakajima
- Department of Food and Nutrition, Faculty of Food Engineering, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, CP 6121, CEP 13083-862 Campinas, SP, Brazil.
| | - Tais Moala
- Department of Food and Nutrition, Faculty of Food Engineering, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, CP 6121, CEP 13083-862 Campinas, SP, Brazil
| | - Cintia Rabelo E Paiva Caria
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - Carolina Soares Moura
- Department of Food and Nutrition, Faculty of Food Engineering, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, CP 6121, CEP 13083-862 Campinas, SP, Brazil
| | - Jaime Amaya-Farfan
- Department of Food and Nutrition, Faculty of Food Engineering, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, CP 6121, CEP 13083-862 Campinas, SP, Brazil
| | - Alessandra Gambero
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - Gabriela Alves Macedo
- Department of Food and Nutrition, Faculty of Food Engineering, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, CP 6121, CEP 13083-862 Campinas, SP, Brazil
| | - Juliana Alves Macedo
- Department of Food and Nutrition, Faculty of Food Engineering, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, CP 6121, CEP 13083-862 Campinas, SP, Brazil
| |
Collapse
|
32
|
Lee J, Yang DS, Han SI, Yun JH, Kim IW, Kim SJ, Kim JH. Aqueous Extraction of Citrus unshiu Peel Induces Proangiogenic Effects Through the FAK and ERK1/2 Signaling Pathway in Human Umbilical Vein Endothelial Cells. J Med Food 2017; 19:569-77. [PMID: 27266341 DOI: 10.1089/jmf.2015.3584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Citrus unshiu peel has been used empirically as a traditional medicine to improve bronchial asthma and blood circulation in northeast Asian nations, including Korea, Japan, and China. In this study, we report the proangiogenic effects of the aqueous extract of Citrus unshiu peel (AECUP). In human umbilical vein endothelial cells, AECUP significantly induced cellular migration and capillary tube formation. We also demonstrated that AECUP markedly increased the phosphorylation of FAK and ERK1/2 through the integrin signaling pathway. Additionally, we identified that narirutin and hesperidin were major constituents of AECUP and both showed proangiogenic effects, but at different levels. Collectively, these results suggest that the AECUP may have potential as a therapeutic agent for improving angiogenic functions with reduced harmful side effects.
Collapse
Affiliation(s)
- Jungwhoi Lee
- 1 Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju National University , Jeju-do, Korea
| | - Dong-Shik Yang
- 1 Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju National University , Jeju-do, Korea
| | - Song-I Han
- 1 Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju National University , Jeju-do, Korea
| | - Jeong Hun Yun
- 1 Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju National University , Jeju-do, Korea
| | - Il-Woong Kim
- 1 Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju National University , Jeju-do, Korea
| | - Seung Jun Kim
- 2 Division of Strategic Research Planning and Assessment, Korea Research Institute of Bioscience & Biotechnology , Daejeon, Republic of Korea
| | - Jae Hoon Kim
- 1 Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju National University , Jeju-do, Korea.,3 Subtropical/Tropical Organism Gene Bank, Jeju National University , Jeju, Korea
| |
Collapse
|
33
|
Zhu C, Dong Y, Liu H, Ren H, Cui Z. Hesperetin protects against H 2O 2-triggered oxidative damage via upregulation of the Keap1-Nrf2/HO-1 signal pathway in ARPE-19 cells. Biomed Pharmacother 2017; 88:124-133. [PMID: 28103505 DOI: 10.1016/j.biopha.2016.11.089] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 12/31/2022] Open
Abstract
Age-related macular degeneration (AMD) is an irreversible vision loss disease that primarily results from oxidative stress that causes oxidative damage to the retinal pigment epithelial (RPE) cells. Hesperetin (Hesp) is a common flavanone glycoside compound that has been demonstrated to exhibit a variety of biological and pharmacological properties that include anti-inflammatory and antioxidant properties. The aim of this study is to explore the ability of Hesp to attenuate oxidative damage in hydrogen peroxide (H2O2)-stimulated ARPE-19 cells. The results indicated that Hesp treatment not only increased cell survival but also decreased reactive oxygen species (ROS) generation, whereas these roles were effectively enhanced the superoxide dismutase (SOD) and glutathione (GSH) levels, and reduced malondialdehyde (MDA) formation. Importantly, the level of heme oxygenase-1 (HO-1) expression was increased by Hesp exposure, which resulted in a decrease after the transfection of cells with Nrf2-siRNA. Additionally, further results revealed that Hesp treatment significantly elevated Keap-1 protein expression, Nrf2 nuclear translocation and ARE activities. These observations indicated that Hesp treatment effectively protected against H2O2-induced oxidative damage in ARPE-19 cells by inhibiting cell apoptosis, ROS overproduction and MDA formation as well as enhancing the SOD and GSH levels. The underlying mechanisms may be related to the activation of the Keap1-Nrf2/HO-1 signal pathway, which may provide biological evidence to further encourage the investigation of the protective effect of Hesp in AMD disease.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yuchen Dong
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun 130041, China
| | - Haile Liu
- Department of Ophthalmology, First Hospital of Jilin University, Changchun 130021, China, China
| | - Hua Ren
- Department of Ophthalmology, First Hospital of Jilin University, Changchun 130021, China, China.
| | - Zhihua Cui
- Department of Ophthalmology, First Hospital of Jilin University, Changchun 130021, China, China.
| |
Collapse
|
34
|
Zhou HY, Wang S, Zhang H, Wang L, Zhang WS. Inhibiting the effect of (90)Sr-(90)Y ophthalmic applicators on rat corneal neovascularization induced by sutures. Int J Ophthalmol 2016; 9:1251-4. [PMID: 27672586 DOI: 10.18240/ijo.2016.09.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/11/2016] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate a practical technique used to inhibit corneal angiogenesis with a (90)Sr-(90)Y ophthalmic applicator. METHODS A (90)Sr-(90)Y ophthalmic applicator was detected with a radioactive nuclide application treatment healthy protection standard. The applicator used was produced through medical dosimetry research; it had a concave applicator add measured the applicator temperature, serviceable humidity range, applicator appearance status, applicator radiation homogeneity, radioautography, and radiological safety of the original applicator surface. A vessel model was established using newborn rats, with sutures around the corneal limbus. Corneal neovascularization (CNV) were observed with a slit lamp. The new vessel length and response area were measured. RESULTS Low-dose radiation can inhibit CNV after corneal sutures. The absorbed dose of the applicator (0.046 Gy/s) was safe for the treatment of it. The lengths of new vessels and the areas of new vessels were lower than the new born vessel rat group (P<0.01). CONCLUSION The optimal radiation dose emitting from the applicator can be safe and potentially used in humans.
Collapse
Affiliation(s)
- Hong-Yan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Shuang Wang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Hong Zhang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Ling Wang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Wen-Song Zhang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
35
|
Bhattacharjee N, Barma S, Konwar N, Dewanjee S, Manna P. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update. Eur J Pharmacol 2016; 791:8-24. [PMID: 27568833 DOI: 10.1016/j.ejphar.2016.08.022] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 02/09/2023]
Abstract
Diabetic nephropathy (DN), a chronic complication of diabetes, is charecterized by glomerular hypertrophy, proteinuria, decreased glomerular filtration, and renal fibrosis resulting in the loss of renal function. Although the exact cause of DN remains unclear, several mechanisms have been postulated, such as hyperglycemia-induced renal hyper filtration and renal injury, AGEs-induced increased oxidative stress, activated PKC-induced increased production of cytokines, chemokines, and different inflammatory and apoptotic signals. Among various factors, oxidative stress has been suggested to play a major role underlying the onset and propagation of DN. It triggers several signaling pathways involved in DN, like AGEs, PKC cascade, JAK/STAT signaling, MAPK, mTOR, and SMAD. Oxidative stress-induced activation of both inflammatory and apoptotic signals are two major problems in the pathogenesis of DN. The FDA approved pharmacotherapeutic agents affecting against polyol pathway principally include anti-oxidants, like α-lipoic acid, vitamin E, and vitamin C. Kremezin and benfotiamine are the FDA approved AGEs inhibitors, another therapeutic target against DN. Ruboxistaurin, telmizartan, rapamycin, fenofibrate, aliskiren, and manidipine are some FDA approved pharmacotherapeutics effective against DN via diverse mechanisms. Beside this, some therapeutic agents are still waiting for FDA approval and few drugs without FDA approval are also prescribed in some countries for the management of DN. Despite the medications available in the market to treat DN, the involvement of multiple mechanisms makes it difficult to choose an optimum therapeutic agent. Therefore, much research is required to find out new therapeutic agent/strategies for an adequate pharmacotherapy of DN.
Collapse
Affiliation(s)
- Niloy Bhattacharjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India
| | - Sujata Barma
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India
| | - Nandita Konwar
- Biological Science and Technology Division, CSIR-NEIST, Jorhat, Assam 785006, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Prasenjit Manna
- Biological Science and Technology Division, CSIR-NEIST, Jorhat, Assam 785006, India.
| |
Collapse
|
36
|
Cardioprotective effects of rutin via alteration in TNF-α, CRP, and BNP levels coupled with antioxidant effect in STZ-induced diabetic rats. Mol Cell Biochem 2016; 420:65-72. [PMID: 27443845 DOI: 10.1007/s11010-016-2767-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/09/2016] [Indexed: 01/01/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a dreadful complication of diabetes responsible for 80 % mortality in diabetic patients, but unfortunately its pharmacotherapy is still incomplete. Rutin is a naturally occurring flavonoid having a long history of use in nutritional supplements for its action against oxidative stress, inflammation, and hyperglycemia, the key players involved in the progression of DCM, but remains unexplored for its role in DCM. This study was conducted to address this lacuna. It was performed in 4-week-old Streptozotocin-induced (45 mg/kg) diabetic rats for a period of 24 weeks to mimic the cardiotoxic effect of chronic hyperglycemia in diabetic patient's heart and to investigate the effect of rutin (50 mg/kg/day) in ameliorating these effects. Heart of the diabetic rats showed altered ECG parameters, reduced total antioxidant capacity, increased inflammatory assault, and degenerative changes. Interestingly, rutin treatment significantly ameliorated these changes with decrease in blood glucose level (p > 0.001), % HbA1c (p > 0.001) and reduced expression of TNF-α (p < 0.001), CRP (p < 0.001), and BNP (p < 0.01) compared to diabetic control rats. In addition, rutin provided significant protection against diabetes associated oxidative stress (p < 0.05), prevented degenerative changes in heart, and improved ECG parameters compared to diabetic control rats. The heart-to-body weight ratio was significantly reduced in rutin treatment group compared to diabetic control rats (p < 0.001). In conclusion, this study implicates that oxidative stress and inflammation are the central players involved in the progression of DCM and rutin ameliorates DCM through its antioxidant and anti-inflammatory actions on heart.
Collapse
|
37
|
Flavonoids as a scaffold for development of novel anti-angiogenic agents: An experimental and computational enquiry. Arch Biochem Biophys 2015; 577-578:35-48. [PMID: 25937258 DOI: 10.1016/j.abb.2015.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 12/21/2022]
Abstract
Relationship between structural diversity and biological activities of flavonoids has remained an important discourse in the mainstream of flavonoid research. In the current study anti-angiogenic, cytotoxic, antioxidant and cyclooxygenase (COX) inhibitory activities of diverse class of flavonoids including hydroxyl and methoxy substituted flavones, flavonones and flavonols have been evaluated in the light of developing flavonoids as a potential scaffold for designing novel anti-antiangiogenic agents. We demonstrate anti-angiogenic potential of flavonoids using in vivo chorioallantoic membrane model (CAM) and further elaborate the possible structural reasoning behind observed anti-angiogenic effect using in silico methods. Additionally, we report antioxidant potential and kinetics of free radical scavenging activity using DPPH and SOR scavenging assays. Current study indicates that selected flavonoids possess considerable COX inhibition potential. Furthermore, we describe cytotoxicity of flavonoids against selected cancer cell lines using MTT cell viability assay. Structural analysis of in silico docking poses and predicted binding free energy values are not only in accordance with the experimental anti-angiogenic CAM values from this study but also are in agreement with the previously reported literature on crystallographic data concerning EGFR and VEGFR inhibition.
Collapse
|
38
|
Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci 2015; 124:64-74. [PMID: 25625242 DOI: 10.1016/j.lfs.2014.12.030] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/09/2014] [Accepted: 12/31/2014] [Indexed: 01/27/2023]
Abstract
Hesperidin (Hsd) and its aglycone, hesperetin (Hst), are two flavonoids from citrus species that have various biological properties, particularly those for the prevention of cancer and cardiovascular diseases. Studies have shown both anti-cancer and cancer chemopreventive effects for Hsd and Hst. Cancer chemopreventive properties of Hsd and Hst are mainly associated with their antioxidant, radical scavenging and anti-inflammatory activities. In addition, Hsd and Hst interfere at different stages of cancer. Unlike conventional anti-cancer drugs, Hsd and Hst inhibit tumor growth by targeting multiple cellular protein targets at the same time, including caspases, Bcl-2 (B-cell lymphoma 2) and Bax (Bcl-2 associated X protein) for the induction of apoptosis, and COX-2 (cyclooxygenase-2), MMP-2 (matrix metalloproteinase-2) and MMP-9 for the inhibition of angiogenesis and metastasis. The results of the recent basic and clinical studies revealed the beneficial effects for Hst, Hsd and their derivatives in the treatment of heart failure and cardiac remodeling, myocardial ischemia and infarction, and hypertension. In addition, the valuable effects of Hst and Hsd in the treatment of diabetes and dyslipidemia with their anti-platelet and anticoagulant effects make them good candidates in the treatment of various cardiovascular diseases. In this review, new findings regarding the molecular targets of Hsd and Hst, animal studies and clinical trials are discussed.
Collapse
|
39
|
Polat N, Ciftci O, Cetin A, Yılmaz T. Toxic effects of systemic cisplatin on rat eyes and the protective effect of hesperidin against this toxicity. Cutan Ocul Toxicol 2015; 35:1-7. [PMID: 25594252 DOI: 10.3109/15569527.2014.999080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CONTEXT In the present study, cisplatin (CP) induced eye toxicity and the beneficial effect of hesperidin (HP) was investigated. METHODS Twenty-eight rats were equally divided into four groups; the first group was kept as control. In the second and third group, CP and HP were given at the doses of 7 mg/kg and 50 mg/kg/d, respectively. In the fourth group, CP and HP were given together at the same doses. Tissue samples were collected on day 14 of CP treatment. RESULTS The results demonstrated that CP caused a significant increase in thiobarbituric acid reactive substances (TBARS) levels and decrease of glutathione levels and antioxidant enzyme activity (catalase, superoxide dismutase and glutathione peroxidase) in eye tissues compared to other groups, HP prevented these effects of CP. Besides, CP led to histopathological damage in the retina and cornea. On the other hand, HP treatment prevented histopathological effects of CP. CONCLUSION CP had severe dose-limiting toxic effects and HP treatment can be beneficial against the toxic ocular effects of CP. Thus, it appears that co-administration of HP with CP may be a useful approach to attenuate the negative effects of CP on the eye.
Collapse
Affiliation(s)
| | | | - Aslı Cetin
- c Department of Histology and Embryology, Faculty of Medicine , University of Inonu , Malatya , Turkey
| | | |
Collapse
|
40
|
Zhang HT, Shi K, Baskota A, Zhou FL, Chen YX, Tian HM. Silybin reduces obliterated retinal capillaries in experimental diabetic retinopathy in rats. Eur J Pharmacol 2014; 740:233-9. [PMID: 25066112 DOI: 10.1016/j.ejphar.2014.07.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 02/06/2023]
Abstract
Silybin has been previously reported to possess anti-inflammatory properties, raising the possibility that it may reduce vascular damage in diabetic retinopathy. Present study was designed to investigate this potential effect of silybin and its underlying mechanisms in experimental diabetic retinopathy. Diabetes was induced with streptozotocin (STZ) plus high-fat diet in Sprague-Dawley rats, and silybin was administrated for 22 weeks after the induction of diabetes. Histochemical and immunofluorescence techniques were used to assess the obliterated retinal capillaries, leukostasis, and level of retinal intercellular adhesion molecule-1 (ICAM-1). Western blot was performed to quantitate the expression of retinal ICAM-1. Results showed that silybin treatment significantly prevented the development of obliterated retinal capillaries in diabetes, compared with vehicle treatment. In addition, leukostasis and level of the retinal ICAM-1 were found to decrease considerably in silybin-treated diabetic groups. In conclusion, these results indicate that silybin reduces obliterated retinal capillaries in experimental diabetes, and the recovered retinal vascular leukostasis and level of ICAM-1 at least partly contributes to the preventive effect of silybin.
Collapse
Affiliation(s)
- Hong-Tao Zhang
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, PR China
| | - Kai Shi
- Department of Ophthalmology, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, PR China
| | - Attit Baskota
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, PR China
| | - Fang-Li Zhou
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, PR China
| | - Ya-Xi Chen
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, PR China
| | - Hao-Ming Tian
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, PR China.
| |
Collapse
|
41
|
Liu Y, Niu L, Cui L, Hou X, Li J, Zhang X, Zhang M. Hesperetin inhibits rat coronary constriction by inhibiting Ca2+ influx and enhancing voltage-gated K+ channel currents of the myocytes. Eur J Pharmacol 2014; 735:193-201. [DOI: 10.1016/j.ejphar.2014.03.057] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/24/2014] [Accepted: 03/30/2014] [Indexed: 02/05/2023]
|
42
|
Yang Z, Liu Y, Deng W, Dai J, Li F, Yuan Y, Wu Q, Zhou H, Bian Z, Tang Q. Hesperetin attenuates mitochondria-dependent apoptosis in lipopolysaccharide-induced H9C2 cardiomyocytes. Mol Med Rep 2014; 9:1941-6. [PMID: 24604207 DOI: 10.3892/mmr.2014.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 02/27/2014] [Indexed: 11/06/2022] Open
Abstract
Apoptosis is closely associated with the occurrence and development of cardiovascular diseases and is considered as one of the crucial pathological processes of cardiomyopathy, sepsis, ischemia/reperfusion injury, myocardial infarction and heart failure. Hesperetin (HES), a flavanone glycoside found in citrus fruit peels, has been known to exhibit several key biological and pharmacological properties. Previous studies have demonstrated the anti-inflammatory, anti-oxidant and anti-tumor functions of HES. However, with regards to the pro- or anti-apoptotic functions of HES, there are several disagreements within the literature. To examine whether HES has protective effects in cardiac apoptosis, the present study examined the role of HES in lipopolysaccharide (LPS)-stimulated H9C2 cardiomyocytes, aiming to clarify the possible mechanisms underlying its effects. In the present study, HES reduced the percentage of viable apoptotic (VA) cells in a flow cytometry analysis. It had an anti-apoptosis function in LPS-stimulated H9C2 cells. To clarify whether HES alleviated LPS-stimulated apoptosis through the mitochondria-dependent intrinsic apoptotic pathway, certain indicators of this pathway were detected, including members of the caspase family. The data revealed that HES attenuated the activation of capase-3 and caspase-9. These results indicated HES has a mitochondria-dependent anti-apoptosis effect in LPS-stimulated H9C2 cells. To explore the possible mechanisms, the protein expression levels of certain markers in the possible signaling pathway were detected, including JNK and Bcl-2 family. As a result, HES downregulated the protein expression of Bax, upregulated the expression of Bcl-2 and attenuated the phosphorylation level of JNK. Therefore, the anti-apoptosis effects of HES were possibly mediated by the JNK/Bax signaling pathway. In conclusion, HES has a mitochondria-dependent anti-apoptosis effect in LPS-induced H9C2 cells via the JNK/Bax signaling pathway.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jia Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fangfang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhouyan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
43
|
Effects of Trigonella foenum-graecum (L.) on retinal oxidative stress, and proinflammatory and angiogenic molecular biomarkers in streptozotocin-induced diabetic rats. Mol Cell Biochem 2013; 388:1-9. [PMID: 24242137 DOI: 10.1007/s11010-013-1893-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/05/2013] [Indexed: 12/18/2022]
Abstract
The aim of the present study was to investigate the protective effects of Trigonella foenum-graecum Linn. (fenugreek) in Streptozotocin-induced diabetic rat retina. Fenugreek (100 and 200 mg/kg body weights) treatment was carried out for 24 weeks and evaluated for inflammatory [tumor necrosis factor (TNF)-α and interleukin (IL)-1β] and angiogenic [vascular endothelial growth factor (VEGF) and protein kinase C (PKC)-β] molecular biomarkers. Retinal oxidative stress was evaluated by estimating antioxidant (Glutathione, Superoxide dismutase, and Catalase) parameters. Fluorescein angiography was performed to detect retinal vascular leakage. Electron microscopy was performed to determine basement membrane thickness. In the present study, significant rises in the expressions of retinal inflammatory (TNF-α and IL-1β) and angiogenic (VEGF and PKC-β) molecular biomarkers were observed in diabetic retinae compared with normal retinae. However, fenugreek-treated retinae showed marked inhibition in the expression of inflammatory and angiogenic molecular biomarkers. Moreover, results from the present study showed positive modulatory effects of fenugreek on retinal oxidative stress. Fluorescein angiograms and fundus photographs obtained from diabetic retinae showed retinal vascular leakage. On the other hand, fenugreek-treated retinae did not show vascular leakage. Further, thickened BM was recorded in diabetic retina compared with normal retinae. However, fenugreek-treated retinae showed relatively lesser thickening of capillary BM. In conclusion, it may be postulated that fenugreek has great potential in preventing diabetes-induced retinal degeneration in humans after regular consumption in the specified dosage.
Collapse
|
44
|
Yang HJ, Hwang JT, Kwon DY, Kim MJ, Kang S, Moon NR, Park S. Yuzu extract prevents cognitive decline and impaired glucose homeostasis in β-amyloid-infused rats. J Nutr 2013; 143:1093-9. [PMID: 23719224 DOI: 10.3945/jn.112.173401] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Our preliminary study revealed that dementia induced by β-amyloid accumulation impairs peripheral glucose homeostasis (unpublished). We therefore evaluated whether long-term oral consumption of yuzu (Citrus junos Tanaka) extract improves cognitive dysfunction and glucose homeostasis in β-amyloid-induced rats. Male rats received hippocampal CA1 infusions of β-amyloid (25-35) [plaque forming β-amyloid; Alzheimer disease (AD)] or β-amyloid (35-25) [non-plaque forming β-amyloid; C (non-Alzheimer disease control)] at a rate of 3.6 nmol/d for 14 d. AD rats were divided into 2 dietary groups that received either 3% lyophilized 70% ethanol extracts of yuzu (AD-Y) or 3% dextrin (AD-C) in high-fat diets (43% energy as fat). The AD-C group exhibited greater hippocampal β-amyloid deposition, which was not detected in the C group, and attenuated hippocampal insulin signaling. Yuzu treatment prevented β-amyloid accumulation, increased tau phosphorylation, and attenuated hippocampal insulin signaling observed in AD-C rats. Consistent with β-amyloid accumulation, the AD-C rats experienced cognitive dysfunction, which was prevented by yuzu. AD-C rats gained less weight than did C rats due to decreased feed consumption, and yuzu treatment prevented the decrease in feed consumption. Serum glucose concentrations were higher in AD-C than in C rats at 40-120 min after glucose loading during an oral-glucose-tolerance test, but not at 0-40 min. Serum insulin concentrations were highly elevated in AD-C rats but not enough to lower serum glucose to normal concentrations, indicating that rats in the AD-C group had insulin resistance and a borderline diabetic state. Although AD-C rats were profoundly insulin resistant, AD-Y rats exhibited normal first and second phases of glucose tolerance and insulin sensitivity and secretion. In conclusion, yuzu treatment prevented the cognitive dysfunction and impaired energy and glucose homeostasis induced by β-amyloid infusion.
Collapse
Affiliation(s)
- Hye Jeong Yang
- Food Certification Center, Korean Food Research Institutes, Sungnam, South Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Diabetes research in Vascular Pharmacology - an overview of 2011-2012. Vascul Pharmacol 2013; 58:251-2. [PMID: 23428913 DOI: 10.1016/j.vph.2013.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/11/2013] [Indexed: 11/23/2022]
|
46
|
Kumar B, Gupta SK, Srinivasan BP, Nag TC, Srivastava S, Saxena R, Jha KA. Hesperetin rescues retinal oxidative stress, neuroinflammation and apoptosis in diabetic rats. Microvasc Res 2013; 87:65-74. [PMID: 23376836 DOI: 10.1016/j.mvr.2013.01.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 02/07/2023]
Abstract
The purpose of the study was to evaluate the effects of hesperetin (Hsp) on diabetes-induced retinal oxidative stress, neuroinflammation and apoptosis in rats. The Hsp treatment (100 mg/kg body weight) was carried for twenty four weeks in STZ-induced diabetic rats and evaluated for antioxidant (Superoxide dismutase; SOD, Catalase; CAT and glutathione; GSH) enzymes, inflammatory cytokines (TNF-α, IL-1β), caspase-3, glial fibrillary acidic protein (GFAP) and aquaporin-4(AQP4) expression. Histological changes were evaluated by light and transmission electron microscopic (LM and TEM) studies. Retinal GSH levels and anti-oxidant enzymes (SOD and CAT) activity were significantly decreased in diabetic group as compared to normal group. However, in Hsp-treated rats, retinal GSH levels were restored close to normal levels and positive modulation of anti-oxidant enzyme activity was observed. Diabetic retinae showed significantly increased expression of Pro-inflammatory cytokines (TNF-α and IL-1β) as compared to normal retinae. While Hsp-treated retinae showed significantly lower levels of cytokines as compared to diabetic retinae. Diabetic retinae showed increased caspase-3, GFAP and AQP4 expression. However, Hsp-treated retinae showed inhibitory effect on caspase-3, GFAP and AQP4 expression. LM images showed edematous Müller cell endfeet, and also degenerated photoreceptor layer; however, protective effect of Hsp was seen on Müller cell processes and photoreceptors. TEM study showed increased basement membrane (BM) thickness in diabetic retina, while relatively thin BM was recorded in Hsp-treated retina. It can be postulated that dietary flavanoids, like Hsp, can be effective for the prevention of diabetes induced neurovascular complications such as diabetic retinopathy.
Collapse
Affiliation(s)
- Binit Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences & Research, University of Delhi, New Delhi, India.
| | | | | | | | | | | | | |
Collapse
|
47
|
Kumar Gupta S, Kumar B, Srinivasan BP, Nag TC, Srivastava S, Saxena R, Aggarwal A. Retinoprotective effects of Moringa oleifera via antioxidant, anti-inflammatory, and anti-angiogenic mechanisms in streptozotocin-induced diabetic rats. J Ocul Pharmacol Ther 2012; 29:419-26. [PMID: 23215831 DOI: 10.1089/jop.2012.0089] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE The present study was aimed to evaluate the retinoprotective effects of Moringa oleifera (MO) in Streptozotocin-induced diabetic rats. METHODS The study was continued for 24 weeks and evaluated for inflammatory (tumor necrosis factor [TNF]-α and interleukin [IL]-1β, angiogenic (vascular endothelial growth factor [VEGF] and protein kinase C [PKC]-β) and antioxidant (Glutathione, Superoxide dismutase, and Catalase) parameters. Retinal leakage was checked by Fluorescein angiography (FA) and fundus photographs were evaluated for retinal vessel caliber (arteriolar and venular). Transmission electron microscopy was done to determine basement membrane (BM) thickness. RESULTS The results of the present study showed potential hypoglycemic and retinal antioxidant effects of MO. In the present study, a significant rise in the expression of retinal inflammatory (TNF-α and IL-1β) and angiogenic (VEGF and PKC-β) parameters was observed in diabetic retinae as compared to normal retinae. However, MO-treated retinae showed marked inhibition in the expression of inflammatory and angiogenic parameters. Further, in the present study, diabetic retinae showed dilated retinal vessels as compared to normal. However, MO-treated retinae showed marked prevention in the dilatation of retinal vessels. Fluorescein angiograms obtained from diabetic retinae showed leaky and diffused retinal vasculature. On the other hand, MO-treated retinae showed intact retinal vasculature. Further, results of the transmission electron microscopy study showed thickened capillary BM in the diabetic retina as compared to normal retinae. However, treatment with MO prevented thickening of capillary BM. CONCLUSION Our result suggests that MO may be useful in preventing diabetes induced retinal dysfunction.
Collapse
Affiliation(s)
- Suresh Kumar Gupta
- Ocular Pharmacology Laboratory, Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, University of Delhi, New Delhi, India.
| | | | | | | | | | | | | |
Collapse
|
48
|
|