1
|
Rehill AM, McCluskey S, Ledwith AE, Ryan TAJ, Ünlü B, Leon G, Charles-Messance H, Gilbert EH, Klavina P, Day EA, Coppinger J, O’Sullivan JM, McMahon C, O’Donnell JS, Curtis AM, O’Neill LAJ, Sheedy FJ, Preston RJS. Trained immunity causes myeloid cell hypercoagulability. SCIENCE ADVANCES 2025; 11:eads0105. [PMID: 40053582 PMCID: PMC11887800 DOI: 10.1126/sciadv.ads0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
The pathogenic basis for increased thrombotic risk in individuals with inflammatory diseases is poorly understood. Myeloid cell "trained immunity" describes persistent innate immune cell memory arising from prior exposure to an inflammatory stimulus, leading to an enhanced immune response to subsequent unrelated stimuli. We identify enhanced myeloid cell prothrombotic activity as a maladaptive consequence of trained immunity. Lipopolysaccharide (LPS) stimulation of macrophages trained previously with β-glucan or heme exhibited significantly enhanced procoagulant activity compared to macrophages stimulated with LPS alone, which was mediated by enhanced acid sphingomyelinase-mediated tissue factor decryption. Furthermore, splenic monocytes isolated from β-glucan-trained mice revealed enhanced procoagulant activity up to 4 weeks after β-glucan administration compared to monocytes from control mice over the same time period. Moreover, hematopoietic progenitor cells and bone marrow interstitial fluid from β-glucan-trained mice had enhanced procoagulant activity compared to control mice. Trained immunity and associated metabolic perturbations may therefore represent an opportunity for targeted intervention in immunothrombotic disease development.
Collapse
Affiliation(s)
- Aisling M. Rehill
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
| | - Seán McCluskey
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
| | - Anna E. Ledwith
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Tristram A. J. Ryan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Betül Ünlü
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gemma Leon
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
| | | | - Edmund H. Gilbert
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paula Klavina
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
| | - Emily A. Day
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Judith Coppinger
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Jamie M. O’Sullivan
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Corrina McMahon
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
| | - James S. O’Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Annie M. Curtis
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Luke A. J. O’Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Frederick J. Sheedy
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Roger J. S. Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
| |
Collapse
|
2
|
Rajput S, Malviya R, Srivastava S, Ahmad I, Rab SO, Uniyal P. Cardiovascular disease and thrombosis: Intersections with the immune system, inflammation, and the coagulation system. ANNALES PHARMACEUTIQUES FRANÇAISES 2025; 83:228-250. [PMID: 39159826 DOI: 10.1016/j.pharma.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
The coagulation and immune system, both essential physiological systems in the human body, are intricately interconnected and play a critical role in determining the overall health of patients. These systems collaborate via various shared regulatory pathways, such as the Tissue Factor (TF) Pathway. Immunological cells that express TF and generate pro-inflammatory cytokines have the ability to affect coagulation. Conversely, coagulation factors and processes have a reciprocal effect on immunological responses by stimulating immune cells and regulating their functions. These interconnected pathways play a role in both preserving well-being and contributing to a range of pathological disorders. The close relationship between blood clotting and inflammation in the development of vascular disease has become a central focus of clinical study. This research specifically examines the crucial elements of this interaction within the contexts of cardiovascular disease and acute coronary syndrome. Tissue factor, the primary trigger of the extrinsic coagulation pathway, has a crucial function by inducing a proinflammatory reaction through the activation of coagulation factors. This, in turn, initiates coagulation and subsequent cellular signalling pathways. Protease-activated receptors establish the molecular connection between coagulation and inflammation by interacting with activated clotting factors II, X, and VII. Thrombosis, a condition characterised by the formation of blood clots, is the most dreaded consequence of cardiovascular disorders and a leading cause of death globally. Consequently, it poses a significant challenge to healthcare systems. Antithrombotic treatments efficiently target platelets and the coagulation cascade, but they come with the inherent danger of causing bleeding. Furthermore, antithrombotics are unable to fully eliminate thrombotic events, highlighting a treatment deficiency caused by a third mechanism that has not yet been sufficiently addressed, namely inflammation. Understanding these connections may aid in the development of novel approaches to mitigate the harmful mutual exacerbation of inflammation and coagulation. Gaining a comprehensive understanding of the intricate interaction among these systems is crucial for the management of diseases and the creation of efficacious remedies. Through the examination of these prevalent regulatory systems, we can discover novel therapeutic approaches that specifically target these complex illnesses. This paper provides a thorough examination of the reciprocal relationship between the coagulation and immune systems, emphasising its importance in maintaining health and understanding disease processes. This review examines the interplay between inflammation and thrombosis and its role in the development of thrombotic disorders.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India.
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai, Malaysia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
3
|
Subramaniam S, Jose A, Kenney D, O’Connell AK, Bosmann M, Douam F, Crossland N. Challenging the notion of endothelial infection by SARS-CoV-2: insights from the current scientific evidence. Front Immunol 2025; 16:1443932. [PMID: 39967675 PMCID: PMC11832389 DOI: 10.3389/fimmu.2025.1443932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Affiliation(s)
- Saravanan Subramaniam
- Department of Pharmacology and Toxicology, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
- Renal Section, Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Asha Jose
- Renal Section, Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Devin Kenney
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, United States
| | - Aoife K. O’Connell
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, United States
| | - Markus Bosmann
- Department of Medicine, Pulmonary Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Florian Douam
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, United States
| | - Nicholas Crossland
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States
| |
Collapse
|
4
|
Singh MV, Uddin MN, Covacevich Vidalle M, Sutton KR, Boodoo ZD, Peterson AN, Tyrell A, Tivarus ME, Wang HZ, Sahin B, Zhong J, Weber MT, Wang L, Qiu X, Maggirwar SB, Schifitto G. Non-classical monocyte levels correlate negatively with HIV-associated cerebral small vessel disease and cognitive performance. Front Cell Infect Microbiol 2024; 14:1405431. [PMID: 39507948 PMCID: PMC11537857 DOI: 10.3389/fcimb.2024.1405431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Background Despite antiretroviral treatment (cART), aging people living with HIV (PWH) are more susceptible to neurocognitive impairment (NCI) probably due to synergistic/additive contribution of traditional cerebrovascular risk factors. Specifically, transmigration of inflammatory CD16+ monocytes through the altered blood brain barrier (BBB) may exacerbate cerebral small vessel disease (CSVD), a known cause of vascular cognitive impairment. Methods PWH on cART (n=108) and age, sex, and Reynold's cardiovascular risk score-matched uninfected individuals (PWoH, n=111) were enrolled. This is a longitudinal observational study but only cross-sectional data from entry visit are reported. Neuropsychological testing and brain magnetic resonance imaging (MRI) were performed. CSVD was diagnosed by Fazekas score ≥1. Flow cytometric analyses of fresh whole blood were conducted to evaluate circulating levels of monocyte subsets (classical, intermediate, and non-classical) and markers of monocyte activation (CCR2, CD40, PSGL-1, TNFR2 and tissue factor). ELISAs were used to measure sCD14, ICAM, and Osteoprotegerin. Two-way analysis of variance (ANOVA), and linear regression models were performed to study the effects of HIV status, CSVD status, and their interaction to outcome variables such as cognitive score. Two-sample t-tests and correlation analyses were performed between and within PWoH with CSVD and PWH with CSVD participants. Results PWH with CSVD (n=81) had significantly lower total cognitive scores, higher levels of NCMs and soluble CD14 and intracellular adhesion molecule 1 (ICAM-1) as compared to PWoH with CSVD group (n=68). sCD14 and ICAM1 were positively correlated with each other indicating that monocyte and endothelial activation are associated with each other. Cognition was negatively correlated with NCMs, especially in the PWH with CSVD group. Among other blood biomarkers measured, osteoprotegerin levels showed mild negative correlation with cognitive performance in individuals with CSVD irrespective of HIV status. Conclusions Elevated levels of NCMs may contribute to neuroinflammation, CSVD and subsequent cognitive impairment. This finding is of particular relevance in aging PWH as both HIV and aging are associated with increased levels of NCMs. NCMs may serve as a potential biomarker to address these comorbidities. Further longitudinal studies are needed to evaluate whether changes in NCM levels are associated with changes in CSVD burden and cognitive impairment.
Collapse
Affiliation(s)
- Meera V. Singh
- Department of Neurology, University of Rochester, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Md Nasir Uddin
- Department of Neurology, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | | | - Karli R. Sutton
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Zachary D. Boodoo
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | | | - Alicia Tyrell
- Clinical and Translational Science Institute, University of Rochester, Rochester, NY, United States
| | - Madalina E. Tivarus
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Henry Z. Wang
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| | - Bogachan Sahin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Jianhui Zhong
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States
| | - Miriam T. Weber
- Department of Neurology, University of Rochester, Rochester, NY, United States
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, United States
| | - Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Sanjay B. Maggirwar
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester, Rochester, NY, United States
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| |
Collapse
|
5
|
Rehill AM, Leon G, McCluskey S, Schoen I, Hernandez-Santana Y, Annett S, Klavina P, Robson T, Curtis AM, Renné T, Hussey S, O'Donnell JS, Walsh PT, Preston RJS. Glycolytic reprogramming fuels myeloid cell-driven hypercoagulability. J Thromb Haemost 2024; 22:394-409. [PMID: 37865288 DOI: 10.1016/j.jtha.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Myeloid cell metabolic reprogramming is a hallmark of inflammatory disease; however, its role in inflammation-induced hypercoagulability is poorly understood. OBJECTIVES We aimed to evaluate the role of inflammation-associated metabolic reprogramming in regulating blood coagulation. METHODS We used novel myeloid cell-based global hemostasis assays and murine models of immunometabolic disease. RESULTS Glycolysis was essential for enhanced activated myeloid cell tissue factor expression and decryption, driving increased cell-dependent thrombin generation in response to inflammatory challenge. Similarly, inhibition of glycolysis enhanced activated macrophage fibrinolytic activity through reduced plasminogen activator inhibitor 1 activity. Macrophage polarization or activation markedly increased endothelial protein C receptor (EPCR) expression on monocytes and macrophages, leading to increased myeloid cell-dependent protein C activation. Importantly, inflammation-dependent EPCR expression on tissue-resident macrophages was also observed in vivo. Adipose tissue macrophages from obese mice fed a high-fat diet exhibited significantly enhanced EPCR expression and activated protein C generation compared with macrophages isolated from the adipose tissue of healthy mice. Similarly, the induction of colitis in mice prompted infiltration of EPCR+ innate myeloid cells within inflamed colonic tissue that were absent from the intestinal tissue of healthy mice. CONCLUSION Collectively, this study identifies immunometabolic regulation of myeloid cell hypercoagulability, opening new therapeutic possibilities for targeted mitigation of thromboinflammatory disease.
Collapse
Affiliation(s)
- Aisling M Rehill
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland. https://twitter.com/aislingrehill
| | - Gemma Leon
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland
| | - Sean McCluskey
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland
| | - Ingmar Schoen
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Yasmina Hernandez-Santana
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland; Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Stephanie Annett
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Paula Klavina
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Annie M Curtis
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Thomas Renné
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Seamus Hussey
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland; Department of Paediatrics, University College Dublin and Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Patrick T Walsh
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland; Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland.
| |
Collapse
|
6
|
Langer F, Quick H, Beitzen-Heineke A, Janjetovic S, Mäder J, Lehr C, Bokemeyer C, Kuta P, Renné T, Fiedler W, Beckmann L, Klingler F, Rolling CC. Regulation of coagulation activation in newly diagnosed AML by the heme enzyme myeloperoxidase. Thromb Res 2023; 229:155-163. [PMID: 37473552 DOI: 10.1016/j.thromres.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION Patients with acute myeloid leukemia (AML) are at increased risk of thrombohemorrhagic complications. Overexpressed tissue factor (TF) on AML blasts contributes to systemic coagulation activation. We have recently shown that the heme enzyme myeloperoxidase (MPO) negatively regulates TF procoagulant activity (PCA) on myelomonocytic cells in vitro. We now aimed to further characterize the functional interaction of MPO and TF in AML in vivo. METHODS We prospectively recruited 66 patients with newly diagnosed AML. TF PCA of isolated peripheral blood mononuclear cells (PBMC) was assessed by single-stage clotting assay in the presence or absence of inhibitors against MPO catalytic activity (ABAH) or against MPO-binding integrins (anti-CD18). MPO in plasma and in AML blasts was measured by ELISA, and plasma D-dimers and prothrombin fragment F1+2 were quantified by automated immunoturbidimetric and chemiluminescence assays, respectively. RESULTS Patients with AML had significantly higher MPO plasma levels compared to healthy controls and exhibited increased levels of D-dimers and F1+2. In vivo thrombin generation was mediated by TF PCA on circulating PBMC. Ex vivo incubation of isolated PBMC with ABAH or anti-CD18 antibody resulted in either increased or decreased TF PCA. The strong and robust correlation of F1+2 with TF PCA of circulating PBMC was abrogated at MPO plasma levels higher than 150 ng/mL, indicating a modulatory role for MPO on TF-mediated in vivo thrombin generation above this threshold. CONCLUSION Our study indicates that catalytically active MPO released by circulating myeloblasts regulates TF-dependent coagulation in patients with newly diagnosed AML in a CD18-dependent manner.
Collapse
Affiliation(s)
- Florian Langer
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Quick
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Beitzen-Heineke
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Snjezana Janjetovic
- Klinik für Hämatologie und Zelltherapie, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Jonathan Mäder
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carina Lehr
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Piotr Kuta
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Walter Fiedler
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Beckmann
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Klingler
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina C Rolling
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
7
|
Wilhelm G, Mertowska P, Mertowski S, Przysucha A, Strużyna J, Grywalska E, Torres K. The Crossroads of the Coagulation System and the Immune System: Interactions and Connections. Int J Mol Sci 2023; 24:12563. [PMID: 37628744 PMCID: PMC10454528 DOI: 10.3390/ijms241612563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The coagulation and immune systems, two vital systems in the human body, share intimate connections that fundamentally determine patient health. These systems work together through several common regulatory pathways, including the Tissue Factor (TF) Pathway. Immune cells expressing TF and producing pro-inflammatory cytokines can influence coagulation, while coagulation factors and processes reciprocally impact immune responses by activating immune cells and controlling their functions. These shared pathways contribute to maintaining health and are also involved in various pathological conditions. Dysregulated coagulation, triggered by infection, inflammation, or tissue damage, can result in conditions such as disseminated intravascular coagulation (DIC). Concurrently, immune dysregulation may lead to coagulation disorders and thrombotic complications. This review elucidates these intricate interactions, emphasizing their roles in the pathogenesis of autoimmune diseases and cancer. Understanding the complex interplay between these systems is critical for disease management and the development of effective treatments. By exploring these common regulatory mechanisms, we can uncover innovative therapeutic strategies targeting these intricate disorders. Thus, this paper presents a comprehensive overview of the mutual interaction between the coagulation and immune systems, highlighting its significance in health maintenance and disease pathology.
Collapse
Affiliation(s)
- Grzegorz Wilhelm
- Department of Plastic and Reconstructive Surgery and Microsurgery, Medical University of Lublin, 20-059 Lublin, Poland; (G.W.); (K.T.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Anna Przysucha
- Chair and Department of Didactics and Medical Simulation, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Jerzy Strużyna
- East Center of Burns Treatment and Reconstructive Surgery, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Kamil Torres
- Department of Plastic and Reconstructive Surgery and Microsurgery, Medical University of Lublin, 20-059 Lublin, Poland; (G.W.); (K.T.)
| |
Collapse
|
8
|
Luo L, Yang Y, Fu M, Luo J, Li W, Tu L, Dong R. 11,12-EET suppressed LPS induced TF expression and thrombus formation by accelerating mRNA degradation rate via strengthening PI3K-Akt signaling pathway and inhibiting p38-TTP pathway. Prostaglandins Other Lipid Mediat 2023; 167:106740. [PMID: 37119935 DOI: 10.1016/j.prostaglandins.2023.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Epoxyeicosatrienoic acids (EETs), which are synthesized from arachidonic acid by cytochrome P450 epoxygenases, function primarily as autocrine and paracrine effectors in the cardiovascular system. So far, most research has focused on the vasodilatory, anti-inflammatory, anti-apoptotic and mitogenic properties of EETs in the systemic circulation. However, whether EETs could suppress tissue factor (TF) expression and prevent thrombus formation remains unknown. Here we utilized in vivo and in vitro models to investigate the effects and underlying mechanisms of exogenously EETs on LPS induced TF expression and inferior vein cava ligation induced thrombosis. We observed that the thrombus formation rate and the size of the thrombus were greatly reduced in 11,12-EET treated mice,accompanied by decreased TF and inflammatory cytokines expression. Further in vitro studies showed that by enhancing p38 MAPK activation and subsequent tristetraprolin (TTP) phosphorylation, LPS strengthened the stability of TF mRNA and induced increased TF expression. However, by strengthening PI3K-dependent Akt phosphorylation, which acted as a negative regulator of p38-TTP signaling pathway,11,12-EET reduced LPS-induced TF expression in monocytes. In addition, 11,12-EET inhibited LPS-induced NF-κB nuclear translocation by activating the PI3K/Akt pathway. Further study indicated that the inhibitory effect of 11,12-EET on TF expression was mediated by antagonizing LPS-induced activation of thromboxane prostanoid receptor. In conclusion, our study demonstrated that 11,12-EET prevented thrombosis by reducing TF expression and targeting the CYP2J2 epoxygenase pathway may represent a novel approach to mitigate thrombosis related diseases.
Collapse
Affiliation(s)
- Liman Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Wuhan, Hubei, 430030, China
| | - Yan Yang
- Division of Endocrinology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Menglu Fu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Wuhan, Hubei, 430030, China
| | - Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Wuhan, Hubei, 430030, China
| | - Wenhua Li
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Wuhan, Hubei, 430030, China
| | - Ling Tu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Wuhan, Hubei, 430030, China
| | - Ruolan Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
9
|
Hassan N, Efing J, Kiesel L, Bendas G, Götte M. The Tissue Factor Pathway in Cancer: Overview and Role of Heparan Sulfate Proteoglycans. Cancers (Basel) 2023; 15:1524. [PMID: 36900315 PMCID: PMC10001432 DOI: 10.3390/cancers15051524] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Historically, the only focus on tissue factor (TF) in clinical pathophysiology has been on its function as the initiation of the extrinsic coagulation cascade. This obsolete vessel-wall TF dogma is now being challenged by the findings that TF circulates throughout the body as a soluble form, a cell-associated protein, and a binding microparticle. Furthermore, it has been observed that TF is expressed by various cell types, including T-lymphocytes and platelets, and that certain pathological situations, such as chronic and acute inflammatory states, and cancer, may increase its expression and activity. Transmembrane G protein-coupled protease-activated receptors can be proteolytically cleaved by the TF:FVIIa complex that develops when TF binds to Factor VII (PARs). The TF:FVIIa complex can activate integrins, receptor tyrosine kinases (RTKs), and PARs in addition to PARs. Cancer cells use these signaling pathways to promote cell division, angiogenesis, metastasis, and the maintenance of cancer stem-like cells. Proteoglycans play a crucial role in the biochemical and mechanical properties of the cellular extracellular matrix, where they control cellular behavior via interacting with transmembrane receptors. For TFPI.fXa complexes, heparan sulfate proteoglycans (HSPGs) may serve as the primary receptor for uptake and degradation. The regulation of TF expression, TF signaling mechanisms, their pathogenic effects, and their therapeutic targeting in cancer are all covered in detail here.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Janes Efing
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
| | - Gerd Bendas
- Pharmaceutical Department, University Bonn, An der Immenburg 4, 53225 Bonn, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
| |
Collapse
|
10
|
Chiang KC, Gupta A, Sundd P, Krishnamurti L. Thrombo-Inflammation in COVID-19 and Sickle Cell Disease: Two Faces of the Same Coin. Biomedicines 2023; 11:338. [PMID: 36830874 PMCID: PMC9953430 DOI: 10.3390/biomedicines11020338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/26/2023] Open
Abstract
People with sickle cell disease (SCD) are at greater risk of severe illness and death from respiratory infections, including COVID-19, than people without SCD (Centers for Disease Control and Prevention, USA). Vaso-occlusive crises (VOC) in SCD and severe SARS-CoV-2 infection are both characterized by thrombo-inflammation mediated by endothelial injury, complement activation, inflammatory lipid storm, platelet activation, platelet-leukocyte adhesion, and activation of the coagulation cascade. Notably, lipid mediators, including thromboxane A2, significantly increase in severe COVID-19 and SCD. In addition, the release of thromboxane A2 from endothelial cells and macrophages stimulates platelets to release microvesicles, which are harbingers of multicellular adhesion and thrombo-inflammation. Currently, there are limited therapeutic strategies targeting platelet-neutrophil activation and thrombo-inflammation in either SCD or COVID-19 during acute crisis. However, due to many similarities between the pathobiology of thrombo-inflammation in SCD and COVID-19, therapies targeting one disease may likely be effective in the other. Therefore, the preclinical and clinical research spurred by the COVID-19 pandemic, including clinical trials of anti-thrombotic agents, are potentially applicable to VOC. Here, we first outline the parallels between SCD and COVID-19; second, review the role of lipid mediators in the pathogenesis of these diseases; and lastly, examine the therapeutic targets and potential treatments for the two diseases.
Collapse
Affiliation(s)
| | - Ajay Gupta
- KARE Biosciences, Orange, CA 89128, USA
- Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI) School of Medicine, Irvine, CA 92868, USA
| | - Prithu Sundd
- Vascular Medicine Institute and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lakshmanan Krishnamurti
- Division of Pediatric Hematology-Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
11
|
Li L, Wei L, Wang H, Zeng Z, Tan J, Liu S, Hao G, Weng Y, Chen J. Proactive Hemocompatibility Platform Initiated by PAMAM Dendrimer Adapting to Key Components in Coagulation System. Mol Pharm 2022; 19:4685-4695. [PMID: 36278815 DOI: 10.1021/acs.molpharmaceut.2c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Surface modification manipulates the application performance of materials, and thrombosis caused by material contact is a key risk factor of biomaterials failure in blood-contacting/implanting devices. Therefore, building a safe and effective hemocompatibility platform is still urgent. Owing to the unique properties of polyamidoamine (PAMAM) dendrimers, in this study, modified surfaces with varying dendrimer densities were interacted with elements maintaining blood homeostasis. These included the plasma proteins bovine serum albumin and fibrinogen, cells in blood (platelets and erythrocyte), as well as endothelial cells (ECs), and the objective was to evaluate the blood compatibility of the chosen materials. Whole blood test and dynamic blood circulation experiment by the arteriovenous shunt mode of rabbit were also conducted, based on the complexity and fluidity of blood. The PAMAM-modified substrates, particularly that with a high density of PAMAM (N1.0), adsorbed proteins with lessened fibrinogen adsorption, reduced platelet activation and aggregation, and suppressed clotting in whole blood and dynamic blood testing. Furthermore, the designed PAMAM dendrimer densities were safe and showed negligible erythrocyte lysis. Concurrently, PAMAM modification could maintain EC growth and did not trigger the release of procoagulant factors. These results suggest that the PAMAM-modified materials are compatible for maintaining blood homeostasis. Thus, PAMAM dendrimers can work as excellent surface modifiers for constructing a hemocompatibility platform and even a primer layer for desired functional design, promoting the service performance of blood-contacting devices.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Huanran Wang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Zheng Zeng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Gangtong Hao
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| |
Collapse
|
12
|
Wuliangye Baijiu but not ethanol reduces cardiovascular disease risks in a zebrafish thrombosis model. NPJ Sci Food 2022; 6:55. [PMID: 36470888 PMCID: PMC9723178 DOI: 10.1038/s41538-022-00170-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Understanding how Baijiu facilitates blood circulation and prevents blood stasis is crucial for revealing the mechanism of Baijiu for cardiovascular disease (CVD) risk reduction. Here we established a zebrafish thrombosis model induced using arachidonic acid (AA) to quantitatively evaluate the antithrombotic effect of Wuliangye Baijiu. The prevention and reduction effects of aspirin, Wuliangye, and ethanol on thrombosis were compared using imaging and molecular characterization. Wuliangye Baijiu reduces thrombotic risks and oxidative stress in the AA-treated zebrafish, while ethanol with the same concentration has no similar effect. The prevention and reduction effects of Wuliangye on thrombosis are attributed to the change in the metabolic and signaling pathways related to platelet aggregation and adhesion, oxidative stress and inflammatory response.
Collapse
|
13
|
Fiestas Solórzano VE, de Lima RC, de Azeredo EL. The Role of Growth Factors in the Pathogenesis of Dengue: A Scoping Review. Pathogens 2022; 11:1179. [PMID: 36297236 PMCID: PMC9608673 DOI: 10.3390/pathogens11101179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 12/07/2022] Open
Abstract
Growth factors (GFs) have a role in tissue repair and in the modulation of the expression of inflammatory cells in damage caused by pathogens. This study aims to systematize the evidence on the role of GFs in the pathogenesis of dengue. This scoping review considered all published peer-reviewed studies in the MEDLINE and Embase databases. Ultimately, 58 studies that analyzed GFs in dengue patients, published between 1998 and 2021, were included. DENV-2 infection and secondary infection were more frequent in the patients studied. ELISA and multiplex immunoassay (Luminex) were the most used measurement techniques. Increased levels of vascular endothelial growth factor, granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, transforming growth factor beta, and hepatocyte growth factor as well as reduced levels of platelet-derived growth factor and epidermal growth factor were observed in severe dengue in most studies. Vascular endothelial growth factor and hepatocyte growth factor were identified as biomarkers of severity. In addition, there is evidence that the dengue virus can use the growth factor pathway to facilitate its entry into the cell and promote its viral replication. The use of tyrosine kinase inhibitors is an alternative treatment for dengue that is being studied.
Collapse
|
14
|
Inhibition of protein disulfide isomerase with PACMA-31 regulates monocyte tissue factor through transcriptional and posttranscriptional mechanisms. Thromb Res 2022; 220:48-59. [DOI: 10.1016/j.thromres.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
|
15
|
Booyens RM, Engelbrecht AM, Strauss L, Pretorius E. To clot, or not to clot: The dilemma of hormone treatment options for menopause. Thromb Res 2022; 218:99-111. [PMID: 36030662 DOI: 10.1016/j.thromres.2022.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 12/01/2022]
Abstract
Untreated menopause may have serious health implications, but treatments can have dangerous side effects. We evaluate menopausal symptoms as well as available treatments -the routes of administration and their effect on blood coagulation. Menopausal females may experience hot flushes, vulva- and vaginal atrophy and osteoporosis. Many treatments are available to relieve these symptoms such as Conjugated Equine Estrogen and bioidentical hormones. The routes of administration include oral and transdermal. Hormones that are administered orally undergo a hepatic first pass metabolism. The by-products have a lower efficacy and possibly enhanced side effects. Furthermore, hormone treatments influence the coagulation cascade through coagulation factors or their regulators. Increased coagulation poses a risk for venous thromboembolism. Currently a definite conclusion on whether the side effects from hormone treatments exceed the risk of untreated menopause cannot be made. However, a more individualised approach to hormone treatments may be the most feasible solution to this dilemma.
Collapse
Affiliation(s)
- Renata M Booyens
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Ledivia Strauss
- Functional Medicine Practice, A1 Polo Village Offices, Kliprug Minor Rd, Val De Vie Winelands Lifestyle Estate, 7646, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
16
|
Liang W, Lu H, Sun J, Zhao G, Wang H, Guo Y, Eitzman D, Chen YE, Fan Y, Zhang J. KLF11 Protects against Venous Thrombosis via Suppressing Tissue Factor Expression. Thromb Haemost 2022; 122:777-788. [PMID: 34428834 PMCID: PMC10468287 DOI: 10.1055/s-0041-1735191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Krüppel-like factors (KLFs) play essential roles in multiple biological functions, including maintaining vascular homeostasis. KLF11, a causative gene for maturity-onset diabetes of the young type 7, inhibits endothelial activation and protects against stroke. However, the role of KLF11 in venous thrombosis remains to be explored. Utilizing stasis-induced murine deep vein thrombosis (DVT) model and cultured endothelial cells (ECs), we identified an increase of KLF11 expression under prothrombotic conditions both in vivo and in vitro. The expression change of thrombosis-related genes was determined by utilizing gain- and loss-of-function approaches to alter KLF11 expression in ECs. Among these genes, KLF11 significantly downregulated tumor necrosis factor-α (TNF-α)-induced tissue factor (TF) gene transcription. Using reporter gene assay, chromatin immunoprecipitation assay, and co-immunoprecipitation, we revealed that KLF11 could reduce TNF-α-induced binding of early growth response 1 (EGR1) to TF gene promoter in ECs. In addition, we demonstrated that conventional Klf11 knockout mice were more susceptible to developing stasis-induced DVT. These results suggest that under prothrombotic conditions, KLF11 downregulates TF gene transcription via inhibition of EGR1 in ECs. In conclusion, KLF11 protects against venous thrombosis, constituting a potential molecular target for treating thrombosis.
Collapse
Affiliation(s)
- Wenying Liang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, Unites States
| | - Haocheng Lu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| | - Jinjian Sun
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| | - Guizhen Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| | - Huilun Wang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, Unites States
| | - Yanhong Guo
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| | - Daniel Eitzman
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, Unites States
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, Unites States
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| |
Collapse
|
17
|
Suppression of COX-2/PGE2 levels by carbazole-linked triazoles via modulating methylglyoxal-AGEs and glucose-AGEs – Induced ROS/NF-κB signaling in monocytes. Cell Signal 2022; 97:110372. [DOI: 10.1016/j.cellsig.2022.110372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022]
|
18
|
Jamuna S, Ashokkumar R, Devaraj SN. Amelioration of C-Reactive Protein and Lectin Like Oxidized Low Density Lipoprotein Receptor Complex Induced Endothelial Dysfunction by Oligomeric Proanthocyanidins. Appl Biochem Biotechnol 2022; 195:2664-2686. [PMID: 35357665 DOI: 10.1007/s12010-021-03792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 01/08/2023]
Abstract
C-reactive protein (CRP) is a well-established biochemical marker for atherosclerosis. Modification of LDL inside the artery wall favors the elevation of this acute phase protein. Hence, this mechanism is considered an important factor to trigger the monocyte to macrophages differentiation which results in the formation of foam cells. Therefore, this key event should be targeted and focused on how this complex (OxLDL + CRP) proceeds to endothelial dysfunction. Oligomeric proanthocyanidins (OPC) is a well-known cardioprotective flavon-3-ols. The present study is challenged between the cardioprotective roles of OPC against the deleterious effect of OxLDL + CRP complex upon endothelial cells. Protein-protein docking was carried out between CRP and LOX-1. This docked protein complex was again docked with OPC to show the inhibitory mechanism of CRP binding with LOX-1. OPC showed a promising inhibitory mechanism against OxLDL + CRP complex. Docking studies showed that in the absence of ligands (OPC), binding of CRP and LOX-1 was greater and vice versa in the presence of ligands. Based on these molecular docking results, in vitro studies have been carried out. The monolayer of endothelial cells was incubated with THP-1 monocytes for 48 h, induced with OxLDL (10 μg/ml) + CRP (15 μg/ml) and cotreated with OPC (100 μg/ml). Morphological changes, cell migration assay, and capillary tube forming assay were carried out. Myeloperoxidase levels were estimated to determine the adhesion of monocytes onto EC monolayer. RT-PCR analysis of L-Selectin was also done. The quantification of NO levels and analysis of mRNA expressions of eNOS was to determine the nitric oxide demand caused due to OxLDL + CRP complex. LOX-1, scavenger receptor levels were analyzed by mRNA expression. Proinflammatory markers such as IL-6, MCP-1, and IL-1β were studied. Accumulation of ROS levels was measured fluorimetrically using DCF-DA staining. Mitochondrial membrane potential was determined by JC-1 dye and cell cycle analysis was done by FACS analysis. To emphasis the results, the OPC-treated group showed decreased levels of proinflammatory markers, LOX-1 and L-selectin levels. Endothelial nitric oxide levels were increased upon OPC treatment and reduction in the ROS levels was also observed. Endothelial cells apoptosis was prevented by OPC. To conclude, OxLDL + CRP complex inhibitory effects of OPC could maintain the normal homeostasis.
Collapse
Affiliation(s)
- Sankar Jamuna
- Department of Biochemistry, University of Madras, Guindy campus, Chennai, 600025, India
| | - Rathinavel Ashokkumar
- Department of Biochemistry, University of Madras, Guindy campus, Chennai, 600025, India
| | | |
Collapse
|
19
|
Fang Y, Wang X, Lu J, Shi H, Huang L, Shao A, Zhang A, Liu Y, Ren R, Lenahan C, Tang J, Zhang J, Zhang JH, Chen S. Inhibition of caspase-1-mediated inflammasome activation reduced blood coagulation in cerebrospinal fluid after subarachnoid haemorrhage. EBioMedicine 2022; 76:103843. [PMID: 35101655 PMCID: PMC8822177 DOI: 10.1016/j.ebiom.2022.103843] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 12/03/2022] Open
Abstract
Background Neuroinflammation and blood coagulation responses in cerebrospinal fluid (CSF) contribute to the poor outcome associated with subarachnoid haemorrhage (SAH). We explored the role of caspase-1-mediated inflammasome activation on extrinsic blood coagulation in CSF after SAH. Methods Post-SAH proteomic changes and correlation between caspase-1 with extrinsic coagulation factors in human CSF after SAH were analysed. Time course and cell localisation of brain inflammasome and extrinsic coagulation proteins after SAH were explored in a rat SAH model. Pharmacological inhibition of caspase-1 via VX-765 was used to explore the role of caspase-1 in blood clearance and CSF circulation after SAH in rats. Primary astrocytes were used to evaluate the role of caspase-1 in haemoglobin-induced pyroptosis and tissue factor (TF) production/release. Findings Neuroinflammation and blood coagulation activated after SAH in human CSF. The caspase-1 levels significantly correlated with the extrinsic coagulation factors. The activated caspase-1 and extrinsic coagulation initiator TF was increased on astrocytes after SAH in rats. VX-765 attenuated neurological deficits by accelerating CSF circulation and blood clearance through inhibiting pyroptotic neuroinflammation and TF-induced fibrin deposition in the short-term, and improved learning and memory capacity by preventing hippocampal neuronal loss and hydrocephalus in the long-term after SAH in rats. VX-765 reduced haemoglobin-induced pyroptosis and TF production/release in primary astrocytes. Interpretation Inhibition of caspase-1 by VX-765 appears to be a potential treatment against neuroinflammation and blood coagulation in CSF after SAH. Funding This study was supported by National Institutes of Health of United States of America, and National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Hui Shi
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA 92354, United States; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Reng Ren
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Cameron Lenahan
- Department of Neurosurgery, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA 92354, United States; Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Jiping Tang
- Department of Neurosurgery, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA 92354, United States; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, United States
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA 92354, United States; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, United States.
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
20
|
Chiang KC, Rizk JG, Nelson DJ, Krishnamurti L, Subbian S, Imig JD, Khan I, Reddy ST, Gupta A. Ramatroban for chemoprophylaxis and treatment of COVID-19: David takes on Goliath. Expert Opin Ther Targets 2022; 26:13-28. [PMID: 35068281 PMCID: PMC10119876 DOI: 10.1080/14728222.2022.2031975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/17/2022] [Indexed: 01/08/2023]
Abstract
INTRODUCTION In COVID-19 pneumonia, there is a massive increase in fatty acid levels and lipid mediators with a predominance of cyclooxygenase metabolites, notably TxB2 ≫ PGE2 > PGD2 in the lungs, and 11-dehydro-TxB2, a TxA2 metabolite, in the systemic circulation. While TxA2 stimulates thromboxane prostanoid (TP) receptors, 11-dehydro-TxB2 is a full agonist of DP2 (formerly known as the CRTh2) receptors for PGD2. Anecdotal experience of using ramatroban, a dual receptor antagonist of the TxA2/TP and PGD2/DP2 receptors, demonstrated rapid symptomatic relief from acute respiratory distress and hypoxemia while avoiding hospitalization. AREAS COVERED Evidence supporting the role of TxA2/TP receptors and PGD2/DP2 receptors in causing rapidly progressive lung injury associated with hypoxemia, a maladaptive immune response and thromboinflammation is discussed. An innovative perspective on the dual antagonism of TxA2/TP and PGD2/DP2 receptor signaling as a therapeutic approach in COVID-19 is presented. This paper examines ramatroban an anti-platelet, immunomodulator, and antifibrotic agent for acute and long-haul COVID-19. EXPERT OPINION Ramatroban, a dual blocker of TP and DP2 receptors, has demonstrated efficacy in animal models of respiratory dysfunction, atherosclerosis, thrombosis, and sepsis, as well as preliminary evidence for rapid relief from dyspnea and hypoxemia in COVID-19 pneumonia. Ramatroban merits investigation as a promising antithrombotic and immunomodulatory agent for chemoprophylaxis and treatment.
Collapse
Affiliation(s)
| | - John G. Rizk
- Department of Pharmaceutical Health Services Research, University of Maryland School of Pharmacy, Baltimore, MD, USA
- Arizona State University, Edson College, Phoenix, AZ, USA
| | | | - Lakshmanan Krishnamurti
- Department of Pediatric Hematology and Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Selvakumar Subbian
- Rutgers University, New Jersey Medical School and Public Health Research Institute, Newark, NJ, USA
| | - John D. Imig
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Imran Khan
- Department of Pathology and Laboratory Medicine, the University of California at Davis, Sacramento, CA, USA
| | - Srinivasa T. Reddy
- Departments of Medicine, and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Toxicology Interdepartmental Degree Program, UCLA, Los Angeles, CA, USA
| | - Ajay Gupta
- Charak Foundation, Orange, CA
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine, Orange, CA, USA
| |
Collapse
|
21
|
Chiang KC, Imig JD, Kalantar-Zadeh K, Gupta A. Kidney in the net of acute and long-haul coronavirus disease 2019: a potential role for lipid mediators in causing renal injury and fibrosis. Curr Opin Nephrol Hypertens 2022; 31:36-46. [PMID: 34846312 DOI: 10.1097/mnh.0000000000000750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Severe COVID-19 disease is often complicated by acute kidney injury (AKI), which may transition to chronic kidney disease (CKD). Better understanding of underlying mechanisms is important in advancing therapeutic approaches. RECENT FINDINGS SARS-CoV-2-induced endothelial injury initiates platelet activation, platelet-neutrophil partnership and release of neutrophil extracellular traps. The resulting thromboinflammation causes ischemia-reperfusion (I/R) injury to end organs. Severe COVID-19 induces a lipid-mediator storm with massive increases in thromboxane A2 (TxA2) and PGD2, which promote thromboinflammation and apoptosis of renal tubular cells, respectively, and thereby enhance renal fibrosis. COVID-19-associated AKI improves rapidly in the majority. However, 15-30% have protracted renal injury, raising the specter of transition from AKI to CKD. SUMMARY In COVID-19, the lipid-mediator storm promotes thromboinflammation, ischemia-reperfusion injury and cytotoxicity. The thromboxane A2 and PGD2 signaling presents a therapeutic target with potential to mitigate AKI and transition to CKD. Ramatroban, the only dual antagonist of the thromboxane A2/TPr and PGD2/DPr2 signaling could potentially mitigate renal injury in acute and long-haul COVID. Urgent studies targeting the lipid-mediator storm are needed to potentially reduce the heavy burden of kidney disease emerging in the wake of the current pandemic.
Collapse
Affiliation(s)
| | - John D Imig
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, California, USA
| | - Ajay Gupta
- KARE Biosciences, Orange, California
- Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, California, USA
| |
Collapse
|
22
|
López-Jaime FJ, Fernández-Bello I, Martín-Téllez S, Doblas-Márquez A, Tesfay Y, Márquez-Gómez I, Reguera-Iglesias JM, Muñoz-Pérez MI, Montaño A. Clot Stiffness Measured By Seer Sonorheometry As a Marker Of Poor Prognosis In Hospitalized COVID-19 Patients. Clin Appl Thromb Hemost 2022; 28:10760296221112085. [PMID: 35903939 PMCID: PMC9340415 DOI: 10.1177/10760296221112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
A high risk of thrombotic complications has been observed among severely ill COVID-19 patients. Viscoelastic tests (VET) have shown a hypercoagulable profile in these patients, although so far there is no clear evidence on the use of these tools as predictors of risk in the clinical course of patients. In this study we aimed to evaluate the association between Quantra® sonorheometry VET parameters, standard coagulation tests and inflammatory markers in 69 patients with COVID-19 on hospital admission with disease severity and outcome. Inflammatory markers were elevated in a high percentage of patients, as were coagulation-related parameters such as fibrinogen and D-dimer levels. Quantra® sonorheometry analysis revealed increased clot stiffness (CS), especially due to increased fibrinogen contribution (FCS) in 63.7%. Analysis of clot stability to lysis (CSL) on the Quantra showed a value of 100%, suggesting hypofibrinolysis, in 32.4%. Age > 65 years, elevated values of fibrinogen, D-dimer, LDH, increased CS and CSL were significantly associated with worsening disease. The combination of elevated FCS and D-dimer values showed a particularly high prognostic value in distinguishing patients with severe symptomatology. In conclusion, FCS measured by Quantra® system and its combination with D-dimer could be established as a powerful tool to identify poor prognosis in COVID-19 patients on hospital admission.
Collapse
Affiliation(s)
| | - Ihosvany Fernández-Bello
- Unidad de Hemostasia y Trombosis, Hospital Universitario Regional de
Málaga, IBIMA, Málaga, Spain
| | - Sandra Martín-Téllez
- Unidad de Hemostasia y Trombosis, Hospital Universitario Regional de
Málaga, IBIMA, Málaga, Spain
| | - Alberto Doblas-Márquez
- Unidad de Hemostasia y Trombosis, Hospital Universitario Regional de
Málaga, IBIMA, Málaga, Spain
| | | | - Ignacio Márquez-Gómez
- Servicio de Enfermedades Infecciosas, Hospital Universitario Regional de
Málaga, Málaga, Spain
| | | | | | - Adrián Montaño
- Unidad de Hemostasia y Trombosis, Hospital Universitario Regional de
Málaga, IBIMA, Málaga, Spain
- Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
23
|
Bacitracin and Rutin Regulate Tissue Factor Production in Inflammatory Monocytes and Acute Myeloid Leukemia Blasts. Cancers (Basel) 2021; 13:cancers13163941. [PMID: 34439096 PMCID: PMC8393688 DOI: 10.3390/cancers13163941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Aberrant tissue factor (TF) expression by transformed myeloblasts and inflammatory monocytes contributes to coagulation activation in acute myeloid leukemia (AML). TF procoagulant activity (PCA) is regulated by protein disulfide isomerase (PDI), an oxidoreductase with chaperone activity, but its specific role in AML-associated TF biology is unclear. Here, we provide novel mechanistic insights into this interrelation. We show that bacitracin and rutin, two pan-inhibitors of the PDI family, prevent lipopolysaccharide (LPS)-induced monocyte TF production under inflammatory conditions and constitutive TF expression by THP1 cells and AML blasts, thus exerting promising anticoagulant activity. Downregulation of the TF protein was mainly restricted to its non-coagulant, cryptic pool and was at least partially regulated on the mRNA level in LPS-stimulated monocytes. Collectively, our study indicates a complex role of thiol isomerases in the regulation of myeloid TF PCA, with the most abundant PDI being a promising therapeutic target in the management of AML-associated coagulopathies. Abstract Aberrant expression of tissue factor (TF) by transformed myeloblasts and inflammatory monocytes drives coagulation activation in acute myeloid leukemia (AML). Although regulation of TF procoagulant activity (PCA) involves thiol-disulfide exchange reactions, the specific role of protein disulfide isomerase (PDI) and other thiol isomerases in AML-associated TF biology is unclear. THP1 cells and peripheral blood mononuclear cells (PBMCs) from healthy controls or AML patients were analyzed for thiol isomerase-dependent TF production under various experimental conditions. Total cellular and membrane TF antigen, TF PCA and TF mRNA were analyzed by ELISA, flow cytometry, clotting or Xa generation assay and qPCR, respectively. PBMCs and THP1 cells showed significant insulin reductase activity, which was inhibited by bacitracin or rutin. Co-incubation with these thiol isomerase inhibitors prevented LPS-induced TF production by CD14-positive monocytes and constitutive TF expression by THP1 cells and AML blasts. Downregulation of the TF antigen was mainly restricted to the cryptic pool of TF, efficiently preventing phosphatidylserine-dependent TF activation by daunorubicin, and at least partially regulated on the mRNA level in LPS-stimulated monocytes. Our study thus delineates a complex role of thiol isomerases in the regulation of myeloid TF PCA, with PDI being a promising therapeutic target in the management of AML-associated coagulopathies.
Collapse
|
24
|
Koenis DS, Beegun I, Jouvene CC, Aguirre GA, Souza PR, Gonzalez-Nunez M, Ly L, Pistorius K, Kocher HM, Ricketts W, Thomas G, Perretti M, Alusi G, Pfeffer P, Dalli J. Disrupted Resolution Mechanisms Favor Altered Phagocyte Responses in COVID-19. Circ Res 2021; 129:e54-e71. [PMID: 34238021 PMCID: PMC8336787 DOI: 10.1161/circresaha.121.319142] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Resolution mechanisms are central in both the maintenance of homeostasis and the return to catabasis following tissue injury and infections. Among the proresolving mediators, the essential fatty acid-derived specialized proresolving lipid mediators (SPM) govern immune responses to limit disease severity. Notably, little is known about the relationship between the expression and activity of SPM pathways, circulating phagocyte function and disease severity in patients infected with the novel severe acute respiratory syndrome coronavirus 2 leading to coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Duco Steven Koenis
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Issa Beegun
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Charlotte Camille Jouvene
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Gabriel Amador Aguirre
- Barts Cancer Institute (G.A.A., H.M.K.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Patricia Regina Souza
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Maria Gonzalez-Nunez
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Lucy Ly
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Kimberly Pistorius
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Hemant M Kocher
- Barts Cancer Institute (G.A.A., H.M.K.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - William Ricketts
- Department of Respiratory Medicine, Barts Health NHS Trust, London, United Kingdom (W.R., G.T., P.P.)
| | - Gavin Thomas
- Department of Respiratory Medicine, Barts Health NHS Trust, London, United Kingdom (W.R., G.T., P.P.)
| | - Mauro Perretti
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, United Kingdom (M.P., J.D.)
| | - Ghassan Alusi
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Paul Pfeffer
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.,Department of Respiratory Medicine, Barts Health NHS Trust, London, United Kingdom (W.R., G.T., P.P.)
| | - Jesmond Dalli
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, United Kingdom (M.P., J.D.)
| |
Collapse
|
25
|
Myeloid cell-derived coagulation tissue factor is associated with renal tubular damage in mice fed an adenine diet. Sci Rep 2021; 11:12159. [PMID: 34108522 PMCID: PMC8190319 DOI: 10.1038/s41598-021-91586-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/13/2021] [Indexed: 02/04/2023] Open
Abstract
Patients with chronic kidney disease (CKD) commonly exhibit hypercoagulability. Increased levels of uremic toxins cause thrombogenicity by increasing tissue factor (TF) expression and activating the extrinsic coagulation cascade. TF is induced in monocytes and macrophages under pathological conditions, such as inflammatory diseases. However, the role of monocyte myeloid cell TF in CKD progression remains unclear. We aimed to clarify this issue, and the present study found that patients with CKD had elevated levels of D-dimer, a marker of fibrin degradation, which was associated with decreased estimated glomerular filtration rate and increased serum levels of uremic toxins, such as indoxyl sulfate. In vitro studies showed that several uremic toxins increased cellular TF levels in monocytic THP-1 cells. Mice with TF specifically deleted in myeloid cells were fed an adenine diet to cause uremic kidney injury. Myeloid TF deletion reduced tubular injury and pro-inflammatory gene expression in the kidneys of adenine-induced CKD but did not improve renal function as measured by plasma creatinine or blood urea nitrogen. Collectively, our findings suggest a novel concept of pathogenesis of coagulation-mediated kidney injury, in which elevated TF levels in monocytes under uremic conditions is partly involved in the development of CKD.
Collapse
|
26
|
Cimmino G, Conte S, Morello A, Pellegrino G, Marra L, Calì G, Golino P, Cirillo P. Colchicine inhibits the prothrombotic effects of oxLDL in human endothelial cells. Vascul Pharmacol 2021; 137:106822. [PMID: 33232770 DOI: 10.1016/j.vph.2020.106822] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/26/2020] [Accepted: 11/18/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Tissue Factor (TF) plays a pivotal role in coronary thrombosis. Oxidized low-density lipoproteins (oxLDL) are crucial in development of atherosclerosclerosis. Moreover, oxLDL are known to induce TF expression on several cell types including endothelial cells. The lectin-type oxidized LDL receptor 1 (LOX-1) represent the oxLDL receptor. Colchicine is an anti-mitotic drug recently proven to have beneficial effects in cardiovascular disease via unknown mechanisms. Thus, we aim at investigating colchicine effects on TF expression in oxLDL stimulated human vascular endothelial cells (HUVEC). Some molecular mechanism(s) potentially involved were investigated. METHODS HUVEC were pre-incubated with colchicine 10 μM for 1 h and then stimulated with oxLDL (50 μg/mL). TF gene (RT-PCR), protein (western blot), surface expression (FACS) and procoagulant activity (FXa generation assay) were measured. TF translocation to cell surface was investigated by immunofluorescence. NF-κB/IκB axis was examined by western blot analysis and translocation assay. Finally, LOX-1 expression was also investigated. RESULTS Colchicine significantly reduced TF gene and protein expression as well as its procoagulant activity in oxLDL-treated HUVEC. These effects seem to be related mainly to action of colchicine on microtubules that, in turn, modulate TF trafficking in the cytoplasm, NF-κB/IκB pathway and LOX-1 expression. CONCLUSIONS Data of the present study, although in vitro, indicate that one of the hypothetical mechanisms by which colchicine exert protective cardiovascular effects might be its ability to inhibit the pro-thrombotic activity of oxLDL.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Stefano Conte
- Department of Advanced Biomedical Sciences, Division of Cardiology, University of Naples, "Federico II", Naples, Italy
| | - Andrea Morello
- Department of Advanced Biomedical Sciences, Division of Cardiology, University of Naples, "Federico II", Naples, Italy; UOC Laboratorio Analisi, Azienda Sanitaria Regionale Molise, PO "Antonio Cardarelli", Campobasso, Italy
| | - Grazia Pellegrino
- Department of Advanced Biomedical Sciences, Division of Cardiology, University of Naples, "Federico II", Naples, Italy
| | - Laura Marra
- SC Cell Biology and Biotherapy, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Gaetano Calì
- Endocrinology and Experimental Oncology Institute, CNR, Naples, Italy
| | - Paolo Golino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Plinio Cirillo
- Department of Advanced Biomedical Sciences, Division of Cardiology, University of Naples, "Federico II", Naples, Italy.
| |
Collapse
|
27
|
Kim AS, Khorana AA, McCrae KR. Mechanisms and biomarkers of cancer-associated thrombosis. Transl Res 2020; 225:33-53. [PMID: 32645431 PMCID: PMC8020882 DOI: 10.1016/j.trsl.2020.06.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer-associated thrombosis is a leading cause of non-cancer death in cancer patients and is comprised of both arterial and venous thromboembolism (VTE). There are multiple risk factors for developing VTE, including cancer type, stage, treatment, and other medical comorbidities, which suggests that the etiology of thrombosis is multifactorial. While cancer-associated thrombosis can be treated with anticoagulation, benefits of therapy must be balanced with the increased bleeding risks seen in patients with cancer. Although risk models exist for primary and recurrent VTE, additional predictors are needed to improve model performance and discrimination of high-risk patients. This review will outline the diverse mechanisms driving thrombosis in cancer patients, as well as provide an overview of biomarkers studied in thrombosis risk and important considerations when selecting candidate biomarkers.
Collapse
Affiliation(s)
- Ann S Kim
- Taussig Cancer Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Alok A Khorana
- Taussig Cancer Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Keith R McCrae
- Taussig Cancer Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
28
|
Bray MA, Sartain SE, Gollamudi J, Rumbaut RE. Microvascular thrombosis: experimental and clinical implications. Transl Res 2020; 225:105-130. [PMID: 32454092 PMCID: PMC7245314 DOI: 10.1016/j.trsl.2020.05.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023]
Abstract
A significant amount of clinical and research interest in thrombosis is focused on large vessels (eg, stroke, myocardial infarction, deep venous thrombosis, etc.); however, thrombosis is often present in the microcirculation in a variety of significant human diseases, such as disseminated intravascular coagulation, thrombotic microangiopathy, sickle cell disease, and others. Further, microvascular thrombosis has recently been demonstrated in patients with COVID-19, and has been proposed to mediate the pathogenesis of organ injury in this disease. In many of these conditions, microvascular thrombosis is accompanied by inflammation, an association referred to as thromboinflammation. In this review, we discuss endogenous regulatory mechanisms that prevent thrombosis in the microcirculation, experimental approaches to induce microvascular thrombi, and clinical conditions associated with microvascular thrombosis. A greater understanding of the links between inflammation and thrombosis in the microcirculation is anticipated to provide optimal therapeutic targets for patients with diseases accompanied by microvascular thrombosis.
Collapse
Key Words
- adamts13, a disintegrin-like and metalloproteinase with thrombospondin type 1 motif 13
- ap, alternate pathway
- apc, activated protein c
- aps, antiphospholipid syndrome
- caps, catastrophic aps
- asfa, american society for apheresis
- atp, adenosine triphosphate
- cfh, complement factor h
- con a, concavalin a
- cox, cyclooxygenase
- damp, damage-associated molecular pattern
- dic, disseminated intravascular coagulation
- gbm, glomerular basement membrane
- hellp, hemolysis, elevated liver enzymes, low platelets
- hitt, heparin-induced thrombocytopenia and thrombosis
- hlh, hemophagocytic lymphohistiocytosis
- hus, hemolytic-uremic syndrome
- isth, international society for thrombosis and haemostasis
- ivig, intravenous immunoglobulin
- ldh, lactate nos, nitric oxide synthase
- net, neutrophil extracellular trap
- pai-1, plasminogen activator inhibitor 1
- pf4, platelet factor 4
- prr, pattern recognition receptor
- rbc, red blood cell
- scd, sickle cell disease
- sle, systemic lupus erythematosus
- tlr, toll-like receptor
- tf, tissue factor
- tfpi, tissue factor pathway inhibitor
- tma, thrombotic microangiopathy
- tnf-α, tumor necrosis factor-α
- tpe, therapeutic plasma exchange
- ulc, ultra large heparin-pf4 complexes
- ulvwf, ultra-large von willebrand factor
- vwf, von willebrand factor
Collapse
Affiliation(s)
- Monica A Bray
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Sarah E Sartain
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Jahnavi Gollamudi
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Rolando E Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
29
|
Katz JM, Libman RB, Wang JJ, Filippi CG, Sanelli P, Zlochower A, Gribko M, Pacia SV, Kuzniecky RI, Najjar S, Azhar S. COVID-19 Severity and Stroke: Correlation of Imaging and Laboratory Markers. AJNR Am J Neuroradiol 2020; 42:257-261. [PMID: 33122216 DOI: 10.3174/ajnr.a6920] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/02/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE Coronavirus disease 2019 (COVID-19) appears to be an independent risk factor for stroke. We hypothesize that patients who develop stroke while hospitalized for severe COVID-19 will have higher inflammatory markers and distinct stroke imaging patterns compared with patients positive for COVID-19 with out-of-hospital stroke onset and milder or no COVID-19 symptoms. MATERIALS AND METHODS This is a retrospective case series of patients positive for COVID-19 on polymerase chain reaction testing with imaging-confirmed stroke treated within a large health care network in New York City and Long Island between March 14 and April 26, 2020. Clinical and laboratory data collected retrospectively included complete blood counts and creatinine, alanine aminotransferase, lactate dehydrogenase, C-reactive protein, ferritin, and D-dimer levels. All CT and MR imaging studies were independently reviewed by 2 neuroradiologists who recorded stroke subtype and patterns of infarction and intracranial hemorrhage. RESULTS Compared with patients with COVID-19 with outside-of-hospital stroke onset and milder or no COVID-19 symptoms (n = 45, 52.3%), patients with stroke already hospitalized for severe COVID-19 (n = 41, 47.7%) had significantly more frequent infarctions (95.1% versus 73.3%, P = .006), with multivascular distributions (56.4% versus 33.3%, P = .022) and associated hemorrhage (31.7% versus 4.4%, P = .001). Patients with stroke admitted with more severe COVID-19 had significantly higher C-reactive protein and ferritin levels, elevated D-dimer levels, and more frequent lymphopenia and renal and hepatic injury (all, P < .003). CONCLUSIONS Patients with stroke hospitalized with severe COVID-19 are characterized by higher inflammatory, coagulopathy, and tissue-damage biomarkers, supporting proposed pathogenic mechanisms of hyperinflammation activating a prothrombotic state. Cautious balancing of thrombosis and the risk of hemorrhagic transformation is warranted when considering anticoagulation.
Collapse
Affiliation(s)
- J M Katz
- From the Department of Neurology (J.M.K., R.B.L., M.G., S.V.P., R.I.K., S.N., S.A.)
| | - R B Libman
- From the Department of Neurology (J.M.K., R.B.L., M.G., S.V.P., R.I.K., S.N., S.A.)
| | - J J Wang
- Feinstein Institute for Medical Research at Northwell Health (J.J.W.), Manhasset, New York
| | - C G Filippi
- Radiology (C.G.F., P.S., A.Z.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - P Sanelli
- Radiology (C.G.F., P.S., A.Z.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - A Zlochower
- Radiology (C.G.F., P.S., A.Z.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - M Gribko
- From the Department of Neurology (J.M.K., R.B.L., M.G., S.V.P., R.I.K., S.N., S.A.)
| | - S V Pacia
- From the Department of Neurology (J.M.K., R.B.L., M.G., S.V.P., R.I.K., S.N., S.A.)
| | - R I Kuzniecky
- From the Department of Neurology (J.M.K., R.B.L., M.G., S.V.P., R.I.K., S.N., S.A.)
| | - S Najjar
- From the Department of Neurology (J.M.K., R.B.L., M.G., S.V.P., R.I.K., S.N., S.A.)
| | - S Azhar
- From the Department of Neurology (J.M.K., R.B.L., M.G., S.V.P., R.I.K., S.N., S.A.)
| |
Collapse
|
30
|
Allegra A, Innao V, Allegra AG, Musolino C. Coagulopathy and thromboembolic events in patients with SARS-CoV-2 infection: pathogenesis and management strategies. Ann Hematol 2020; 99:1953-1965. [PMID: 32671455 PMCID: PMC7363407 DOI: 10.1007/s00277-020-04182-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
In October 2019, a viral infectious disease appeared in the city of Wuhan in China. A new betacoronavirus, SARS-CoV-2, has been recognized as the responsible pathogen in this infection. Although coronavirus disease is principally expressed as a pulmonary infection, critical SARS-CoV-2 infection is frequently complicated with coagulopathy, and thromboembolic events are recognizable in several patients. Dehydration, acute inflammatory condition, protracted immobilization during disease, existence of multiple cardiovascular risk factors such as diabetes, obesity or hypertension, previous coronary artery disease, ischemic stroke, peripheral artery disease are frequent comorbidities in SARS-CoV-2 hospitalized subjects, which possibly augment thrombo-embolic risk. However, other causal factors can still be identified such as unrestricted angiotensin II action, the use of immunoglobulins, an increased production of adhesion molecules able to induce vascular inflammation and endothelial activation, complement stimulation, excessive production of neutrophil extracellular traps (NETs), and increased platelet count. Low-molecular-weight heparin should be chosen as early treatment because of its anti-inflammatory action and its ability to antagonize histones and so defend the endothelium. However, several therapeutic possibilities have also been proposed such as fibrinolytic treatment, drugs that target NETs, and complement inhibition. Nevertheless, although the violence of the pandemic may suggest the use of heroic treatments to reduce the frightening mortality that accompanies SARS-CoV-2 infection, we believe that experimental treatments should only be used within approved and controlled protocols, the only ones that can provide useful and specify information on the validity of the treatments.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125, Messina, Italy.
- COVID Centre AOU Policlinic G. Martino, Messina, Italy.
| | - Vanessa Innao
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125, Messina, Italy
| | - Caterina Musolino
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125, Messina, Italy
| |
Collapse
|
31
|
Najjar S, Najjar A, Chong DJ, Pramanik BK, Kirsch C, Kuzniecky RI, Pacia SV, Azhar S. Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J Neuroinflammation 2020; 17:231. [PMID: 32758257 PMCID: PMC7406702 DOI: 10.1186/s12974-020-01896-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious pandemic caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It frequently presents with unremitting fever, hypoxemic respiratory failure, and systemic complications (e.g., gastrointestinal, renal, cardiac, and hepatic involvement), encephalopathy, and thrombotic events. The respiratory symptoms are similar to those accompanying other genetically related beta-coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East Respiratory Syndrome CoV (MERS-CoV). Hypoxemic respiratory symptoms can rapidly progress to Acute Respiratory Distress Syndrome (ARDS) and secondary hemophagocytic lymphohistiocytosis, leading to multi-organ system dysfunction syndrome. Severe cases are typically associated with aberrant and excessive inflammatory responses. These include significant systemic upregulation of cytokines, chemokines, and pro-inflammatory mediators, associated with increased acute-phase proteins (APPs) production such as hyperferritinemia and elevated C-reactive protein (CRP), as well as lymphocytopenia. The neurological complications of SARS-CoV-2 infection are high among those with severe and critical illnesses. This review highlights the central nervous system (CNS) complications associated with COVID-19 attributed to primary CNS involvement due to rare direct neuroinvasion and more commonly secondary CNS sequelae due to exuberant systemic innate-mediated hyper-inflammation. It also provides a theoretical integration of clinical and experimental data to elucidate the pathogenesis of these disorders. Specifically, how systemic hyper-inflammation provoked by maladaptive innate immunity may impair neurovascular endothelial function, disrupt BBB, activate CNS innate immune signaling pathways, and induce para-infectious autoimmunity, potentially contributing to the CNS complications associated with SARS-CoV-2 infection. Direct viral infection of the brain parenchyma causing encephalitis, possibly with concurrent neurovascular endotheliitis and CNS renin angiotensin system (RAS) dysregulation, is also reviewed.
Collapse
Affiliation(s)
- Souhel Najjar
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA.
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY, USA.
| | - Amanda Najjar
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Derek J Chong
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Bidyut K Pramanik
- Department of Radiology, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Claudia Kirsch
- Department of Radiology, Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY, USA
| | - Ruben I Kuzniecky
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Steven V Pacia
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY, USA
| | - Salman Azhar
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| |
Collapse
|
32
|
Xu S, Pan X, Mao L, Pan H, Xu W, Hu Y, Yu X, Chen Z, Qian S, Ye Y, Huang Y, Pan J. Phospho-Tyr705 of STAT3 is a therapeutic target for sepsis through regulating inflammation and coagulation. Cell Commun Signal 2020; 18:104. [PMID: 32641132 PMCID: PMC7341624 DOI: 10.1186/s12964-020-00603-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Sepsis is an infection-induced aggressive and life-threatening organ dysfunction with high morbidity and mortality worldwide. Infection-associated inflammation and coagulation promote the progression of adverse outcomes in sepsis. Here, we report that phospho-Tyr705 of STAT3 (pY-STAT3), not total STAT3, contributes to systemic inflammation and coagulopathy in sepsis. METHODS Cecal ligation and puncture (CLP)-induced septic mice were treated with BP-1-102, Napabucasin, or vehicle control respectively and then assessed for systemic inflammation, coagulation response, lung function and survival. Human pulmonary microvascular endothelial cells (HPMECs) and Raw264.7 cells were exposed to lipopolysaccharide (LPS) with pharmacological or genetic inhibition of pY-STAT3. Cells were assessed for inflammatory and coagulant factor expression, cell function and signaling. RESULTS Pharmacological inhibition of pY-STAT3 expression by BP-1-102 reduced the proinflammatory factors, suppressed coagulation activation, attenuated lung injury, alleviated vascular leakage and improved the survival rate in septic mice. Pharmacological or genetic inhibition of pY-STAT3 diminished LPS-induced cytokine production in macrophages and protected pulmonary endothelial cells via the IL-6/JAK2/STAT3, NF-κB and MAPK signaling pathways. Moreover, the increase in procoagulant indicators induced by sepsis such as tissue factor (TF), the thrombin-antithrombin complex (TAT) and D-Dimer were down-regulated by pY-STAT3 inhibition. CONCLUSIONS Our results revealed a therapeutic role of pY-STAT3 in modulating the inflammatory response and defective coagulation during sepsis. Video Abstract.
Collapse
Affiliation(s)
- Shunyao Xu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang road, Wenzhou, Zhejiang 325000 P.R. China
| | - Xiaojun Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang road, Wenzhou, Zhejiang 325000 P.R. China
| | - Lingjie Mao
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang road, Wenzhou, Zhejiang 325000 P.R. China
| | - Hao Pan
- Wenzhou Medical University, Wenzhou, Zhejiang P.R. China
| | - Wenwei Xu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang road, Wenzhou, Zhejiang 325000 P.R. China
| | - Yufeng Hu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang road, Wenzhou, Zhejiang 325000 P.R. China
| | - Xueshu Yu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang road, Wenzhou, Zhejiang 325000 P.R. China
| | - Zhiqiang Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang road, Wenzhou, Zhejiang 325000 P.R. China
| | - Songzan Qian
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang road, Wenzhou, Zhejiang 325000 P.R. China
| | - Yincai Ye
- Department of Blood Transfusion, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang P.R. China
| | - Yueyue Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang road, Wenzhou, Zhejiang 325000 P.R. China
| | - Jingye Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang road, Wenzhou, Zhejiang 325000 P.R. China
| |
Collapse
|
33
|
Ranucci M, Ballotta A, Di Dedda U, Baryshnikova E, Dei Poli M, Resta M, Falco M, Albano G, Menicanti L. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost 2020; 18:1747-1751. [PMID: 32302448 PMCID: PMC9906332 DOI: 10.1111/jth.14854] [Citation(s) in RCA: 677] [Impact Index Per Article: 135.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Few observations exist with respect to the pro-coagulant profile of patients with COVID-19 acute respiratory distress syndrome (ARDS). Reports of thromboembolic complications are scarce but suggestive for a clinical relevance of the problem. OBJECTIVES Prospective observational study aimed to characterize the coagulation profile of COVID-19 ARDS patients with standard and viscoelastic coagulation tests and to evaluate their changes after establishment of an aggressive thromboprophylaxis. METHODS Sixteen patients with COVID-19 ARDS received a complete coagulation profile at the admission in the intensive care unit. Ten patients were followed in the subsequent 7 days, after increasing the dose of low molecular weight heparin, antithrombin levels correction, and clopidogrel in selected cases. RESULTS At baseline, the patients showed a pro-coagulant profile characterized by an increased clot strength (CS, median 55 hPa, 95% interquartile range 35-63), platelet contribution to CS (PCS, 43 hPa; interquartile range 24-45), fibrinogen contribution to CS (FCS, 12 hPa; interquartile range 6-13.5) elevated D-dimer levels (5.5 μg/mL, interquartile range 2.5-6.5), and hyperfibrinogenemia (794 mg/dL, interquartile range 583-933). Fibrinogen levels were associated (R2 = .506, P = .003) with interleukin-6 values. After increasing the thromboprophylaxis, there was a significant (P = .001) time-related decrease of fibrinogen levels, D-dimers (P = .017), CS (P = .013), PCS (P = .035), and FCS (P = .038). CONCLUSION The pro-coagulant pattern of these patients may justify the clinical reports of thromboembolic complications (pulmonary embolism) during the course of the disease. Further studies are needed to assess the best prophylaxis and treatment of this condition.
Collapse
Affiliation(s)
- Marco Ranucci
- Department of Cardiovascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | - Andrea Ballotta
- Department of Cardiovascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | - Umberto Di Dedda
- Department of Cardiovascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | - Ekaterina Baryshnikova
- Department of Cardiovascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Dei Poli
- Department of General Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Resta
- Department of General Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | - Mara Falco
- Department of Radiology, Koelliker Hospital, Turin, Italy
| | - Giovanni Albano
- Anesthesia and Intensive Care Department, Humanitas Gavazzeni Clinic, Bergamo, Italy
| | | |
Collapse
|
34
|
Zhu L, Zhang Y, Guo Z, Wang M. Cardiovascular Biology of Prostanoids and Drug Discovery. Arterioscler Thromb Vasc Biol 2020; 40:1454-1463. [PMID: 32295420 DOI: 10.1161/atvbaha.119.313234] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostanoids are a group of bioactive lipids that are synthesized de novo from membrane phospholipid-released arachidonic acid and have diverse functions in normal physiology and disease. NSAIDs (non-steroidal anti-inflammatory drugs), which are among the most commonly used medications, ameliorate pain, fever, and inflammation by inhibiting COX (cyclooxygenase), which is the rate-limiting enzyme in the biosynthetic cascade of prostanoids. The use of NSAIDs selective for COX-2 inhibition increases the risk of a thrombotic event (eg, myocardial infarction and stroke). All NSAIDs are associated with an increased risk of heart failure. Substantial variation in clinical responses to aspirin exists and is associated with cardiovascular risk. Limited clinical studies suggest the involvement of prostanoids in vascular restenosis in patients who received angioplasty intervention. mPGES (microsomal PG [prostaglandin] E synthase)-1, an alternative target downstream of COX, has the potential to be therapeutically targeted for inflammatory disease, with diminished thrombotic risk relative to selective COX-2 inhibitors. mPGES-1-derived PGE2 critically regulates microcirculation via its receptor EP (receptor for prostanoid E) 4. This review summarizes the actions and associated mechanisms for modulating the biosynthesis of prostanoids in thrombosis, vascular remodeling, and ischemic heart disease as well as their therapeutic relevance.
Collapse
Affiliation(s)
- Liyuan Zhu
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Yuze Zhang
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Ziyi Guo
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Miao Wang
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing.,Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| |
Collapse
|
35
|
Asada Y, Yamashita A, Sato Y, Hatakeyama K. Pathophysiology of atherothrombosis: Mechanisms of thrombus formation on disrupted atherosclerotic plaques. Pathol Int 2020; 70:309-322. [PMID: 32166823 PMCID: PMC7317428 DOI: 10.1111/pin.12921] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Atherothrombosis is a leading cause of cardiovascular mortality and morbidity worldwide. The underlying mechanisms of atherothrombosis comprise plaque disruption and subsequent thrombus formation. Arterial thrombi are thought to mainly comprise aggregated platelets as a result of high blood velocity. However, thrombi that develop on disrupted plaques comprise not only aggregated platelets, but also large amounts of fibrin, because plaques contain large amount of tissue factor that activate the coagulation cascade. Since not all thrombi grow large enough to occlude the vascular lumen, the propagation of thrombi is also critical in the onset of adverse vascular events. Various factors such as vascular wall thrombogenicity, local hemorheology, systemic thrombogenicity and fibrinolytic activity modulate thrombus formation and propagation. Although the activation mechanisms of platelets and the coagulation cascade have been intensively investigated, the underlying mechanisms of occlusive thrombus formation on disrupted plaques remain obscure. Pathological findings derived from humans and animal models of human atherothrombosis have uncovered pathophysiological processes during thrombus formation and propagation after plaque disruption, and novel factors have been identified that modulate the activation of platelets and the coagulation cascade. These findings have also provided insights into the development of novel drugs for atherothrombosis.
Collapse
Affiliation(s)
- Yujiro Asada
- Pathophysiology Section, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Yamashita
- Pathophysiology Section, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichiro Sato
- Department of Diagnostic Pathology, University of Miyazaki Hospital, University of Miyazaki, Miyazaki, Japan
| | - Kinta Hatakeyama
- Department of Diagnostic Pathology, Nara Medical University, Nara, Japan
| |
Collapse
|
36
|
Zeng Y, He X, Jiang W, Kou J, Yu B. Ten Representative Saponins on Tissue Factor Expression in Human Monocytes: Structure–Activity Relationships and Molecular Docking. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20913684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Saponins have significant bioactivities in treating cardiovascular disease. Whereas there is a lack of in-depth knowledge about how saponins prevent cardiovascular disease. Tissue factor (TF) is the major initiator of the coagulation cascade and plays an important role in hemostasis and thrombosis. However structure–activity relationships (SARs) of saponins inhibiting TF activity have not been discussed in detail at present. To further clarify the relationships between saponins and TF, in this study, 10 representative saponins were selected to study the inhibitory effect on TF procoagulant activity of monocytes by an improved chromogenic substrate method, and the possible SARs were preliminarily analyzed. Furthermore, molecular docking analysis suggested that 4 representative saponins had a good affinity with TF/FVIIa. In addition, a representative saponin, ruscogenin, decreased both messenger ribonucleic acid and protein levels of TF in human monocytes partly due to its downregulation of nuclear factor kappa-light-chain-enhancer of activated B cells and c-Jun N-terminal kinase pathways. In conclusion, this study provides further explanation for the cardiovascular protection of saponins, and the analysis of SARs between inhibiting TF activity and saponins will be helpful to explore the therapeutic TF inhibitors.
Collapse
Affiliation(s)
- Yongjiang Zeng
- Department of Pharmacy, School of Pharmaceutical Sciences, Guizhou University, Guiyang, P.R. China
| | - Xuhua He
- Department of Pharmacy, School of Pharmaceutical Sciences, Guizhou University, Guiyang, P.R. China
| | - Wenwen Jiang
- Department of Pharmacy, School of Pharmaceutical Sciences, Guizhou University, Guiyang, P.R. China
| | - Junping Kou
- Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, P.R. China
- Department of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Boyang Yu
- Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, P.R. China
- Department of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
37
|
Resolvin D4 attenuates the severity of pathological thrombosis in mice. Blood 2020; 134:1458-1468. [PMID: 31300403 DOI: 10.1182/blood.2018886317] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Deep vein thrombosis (DVT) is a common cardiovascular disease with a major effect on quality of life, and safe and effective therapeutic measures to efficiently reduce existent thrombus burden are scarce. Using a comprehensive targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics approach, we established temporal clusters of endogenously biosynthesized specialized proresolving mediators (SPMs) and proinflammatory and prothrombotic lipid mediators during DVT progression in mice. Administration of resolvin D4 (RvD4), an SPM that was enriched at the natural onset of thrombus resolution, significantly reduced thrombus burden, with significantly less neutrophil infiltration and more proresolving monocytes in the thrombus, as well as an increased number of cells in an early apoptosis state. Moreover, RvD4 promoted the biosynthesis of other D-series resolvins involved in facilitating resolution of inflammation. Neutrophils from RvD4-treated mice were less susceptible to an ionomycin-induced release of neutrophil extracellular traps (NETs), a meshwork of decondensed chromatin lined with histones and neutrophil proteins critical for DVT development. These results suggest that delivery of SPMs, specifically RvD4, modulates the severity of thrombo-inflammatory disease in vivo and improves thrombus resolution.
Collapse
|
38
|
Mir Seyed Nazari P, Marosi C, Moik F, Riedl J, Özer Ö, Berghoff AS, Preusser M, Hainfellner JA, Pabinger I, Zlabinger GJ, Ay C. Low Systemic Levels of Chemokine C-C Motif Ligand 3 (CCL3) are Associated with a High Risk of Venous Thromboembolism in Patients with Glioma. Cancers (Basel) 2019; 11:cancers11122020. [PMID: 31847343 PMCID: PMC6966639 DOI: 10.3390/cancers11122020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
A tight interplay between inflammation and hemostasis has been described as a potential driver for developing venous thromboembolism (VTE). Here, we investigated the association of systemic cytokine levels and risk of VTE in patients with glioma. This analysis was conducted within the prospective, observational Vienna Cancer and Thrombosis Study. Patients with glioma were included at time of diagnosis or progression and were observed for a maximum of two years. Primary endpoint was objectively confirmed VTE. At study entry, a single blood draw was performed. A panel of nine cytokines was measured in serum samples with the xMAP technology developed by Luminex. Results: Overall, 76 glioma patients were included in this analysis, and 10 (13.2%) of them developed VTE during the follow-up. Chemokine C-C motif ligand 3 (CCL3) levels were inversely associated with risk of VTE (hazard ratio [HR] per double increase, 95% confidence interval [CI]: 0.385, 95% CI: 0.161–0.925, p = 0.033), while there was no association between the risk of VTE and serum levels of interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-10, IL-11, tumor necrosis factor (TNF)-α and vascular endothelial growth factor (VEGF), respectively. In conclusion, low serum levels of CCL3 were associated with an increased risk of VTE. CCL3 might serve as a potential biomarker to predict VTE risk in patients with glioma.
Collapse
Affiliation(s)
- Pegah Mir Seyed Nazari
- Division of Hematology and Hemostaseology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (P.M.S.N.); (F.M.); (J.R.); (Ö.Ö.); (I.P.)
| | - Christine Marosi
- Division of Oncology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (C.M.); (A.S.B.); (M.P.)
| | - Florian Moik
- Division of Hematology and Hemostaseology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (P.M.S.N.); (F.M.); (J.R.); (Ö.Ö.); (I.P.)
| | - Julia Riedl
- Division of Hematology and Hemostaseology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (P.M.S.N.); (F.M.); (J.R.); (Ö.Ö.); (I.P.)
| | - Öykü Özer
- Division of Hematology and Hemostaseology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (P.M.S.N.); (F.M.); (J.R.); (Ö.Ö.); (I.P.)
| | - Anna Sophie Berghoff
- Division of Oncology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (C.M.); (A.S.B.); (M.P.)
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (C.M.); (A.S.B.); (M.P.)
| | - Johannes A. Hainfellner
- Institute of Neurology and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ingrid Pabinger
- Division of Hematology and Hemostaseology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (P.M.S.N.); (F.M.); (J.R.); (Ö.Ö.); (I.P.)
| | - Gerhard J. Zlabinger
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Cihan Ay
- Division of Hematology and Hemostaseology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (P.M.S.N.); (F.M.); (J.R.); (Ö.Ö.); (I.P.)
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- Correspondence:
| |
Collapse
|
39
|
Inflammation and coagulation crosstalk induced by BJcuL, a galactose-binding lectin isolated from Bothrops jararacussu snake venom. Int J Biol Macromol 2019; 144:296-304. [PMID: 31812742 DOI: 10.1016/j.ijbiomac.2019.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 01/15/2023]
Abstract
Inflammation and coagulopathies are important systemic events following snakebite. Snake venom galactoside-binding lectins (SVgalLs) are known modulators of the immune response with no direct effect on hemostasis. Considering the crosstalk between inflammation and coagulation, the present study investigated how BJcuL, a proinflammatory SVgalL isolated from Bothrops jararacussu venom, mediated the inflammation-induced procoagulant activity. We examined the proinflammatory cytokine production and procoagulant tissue factor (TF) activity in human whole blood and monocyte-rich cell suspension (MR-PBMC) treated with BJcuL. This lectin increased production of the cytokines TNF-α, IL-1β and IL-6, upregulated TF expression on the cell surface, and induced procoagulant activity. The proinflammatory behavior was mediated by the direct interaction between the lectin and toll-like receptor 4, via binding to β-galactoside-containing glycoconjugates on the cell surface, and activation of NFκ-B signaling. Interestingly, the BJcuL-induced inflammation was directly associated with the procoagulant activity of MR-PBMC cells. In whole blood culture, the lectin exhibited similar behavior, i.e. it induced cytokine production and MR-PBMC TF-mediated procoagulant activity. Therefore, the present study is the first report on the inflammation-induced procoagulant activity of SVgalLs, and it indicates that BJcuL is an important factor associated with coagulopathy in patients with snake envenomation.
Collapse
|
40
|
Targeting the COX2/MET/TOPK signaling axis induces apoptosis in gefitinib-resistant NSCLC cells. Cell Death Dis 2019; 10:777. [PMID: 31611604 PMCID: PMC6791885 DOI: 10.1038/s41419-019-2020-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
MET overactivation is one of the crucial reasons for tyrosine kinase inhibitor (TKI) resistance, but the mechanisms are not wholly clear. Here, COX2, TOPK, and MET expression were examined in EGFR-activating mutated NSCLC by immunohistochemical (IHC) analysis. The relationship between COX2, TOPK, and MET was explored in vitro and ex vivo. In addition, the inhibition of HCC827GR cell growth by combining COX2 inhibitor (celecoxib), TOPK inhibitor (pantoprazole), and gefitinib was verified ex vivo and in vivo. We found that COX2 and TOPK were highly expressed in EGFR-activating mutated NSCLC and the progression-free survival (PFS) of triple-positive (COX2, MET, and TOPK) patients was shorter than that of triple-negative patients. Then, we observed that the COX2-TXA2 signaling pathway modulated MET through AP-1, resulting in an inhibition of apoptosis in gefitinib-resistant cells. Moreover, we demonstrated that MET could phosphorylate TOPK at Tyr74 and then prevent apoptosis in gefitinib-resistant cells. In line with these findings, the combination of celecoxib, pantoprazole, and gefitinib could induce apoptosis in gefitinib-resistant cells and inhibit tumor growth ex vivo and in vivo. Our work reveals a novel COX2/MET/TOPK signaling axis that can prevent apoptosis in gefitinib-resistant cells and suggests that a triple combination of FDA-approved drugs would provide a low-cost and practical strategy to overcome gefitinib resistance.
Collapse
|
41
|
Gossart A, Letourneur D, Gand A, Regnault V, Ben Mlouka MA, Cosette P, Pauthe E, Ollivier V, Santerre JP. Mitigation of monocyte driven thrombosis on cobalt chrome surfaces in contact with whole blood by thin film polar/hydrophobic/ionic polyurethane coatings. Biomaterials 2019; 217:119306. [PMID: 31271854 DOI: 10.1016/j.biomaterials.2019.119306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022]
Abstract
Monocytes are active at the crossroads between inflammation and coagulation processes since they can secrete pro-inflammatory cytokines and express tissue factor (TF), a major initiator of coagulation. Cobalt-chrome (CoCr), a metal alloy, used as a biomaterial for vascular stents, has been shown to be potentially pro-thrombotic and pro-inflammatory. Research work with a polymer from a family of degradable-polar hydrophobic ionic polyurethanes (D-PHI), called HHHI, has been shown to exhibit anti-inflammatory responses from human monocytes. We have generated multifunctional polyurethane thin films (MPTF) based on the HHHI chemistry, as a thin coating for CoCr and have evaluated the reactivity of blood with MPTF-coated CoCr. The results showed that the coating of CoCr with MPTF derived from HHHI prevents thrombin generation, reduces coagulation activation, and suppresses fibrin formation in whole blood. Activation of monocytes was also suppressed at the surface of MPTF-coated CoCr and specifically the decrease in thrombin generation was accompanied by a significant decrease in TF and pro-inflammatory cytokine levels. Mass spectroscopy of the adsorbed proteins showed lower levels of fibrinogen, fibronectin and complement C3, C4, and C8 when compared to CoCr. We can conclude that MPTFs reduce the pro-thrombotic and pro-inflammatory phenotype of monocytes and macrophages on CoCr, and prevent clotting in whole blood.
Collapse
Affiliation(s)
- Audrey Gossart
- Laboratory for Vascular Translational Science (LVTS), Inserm U1148, Université Paris Diderot, Université Paris 13, Hôpital Bichat, Paris, France; Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe), Biomaterial for Health Research Group, Institut des Matériaux, Maison International de la Recherche, Université de Cergy-Pontoise, 95000 Neuville sur Oise, France; Translational Biology and Engineering Program, Ted Rodgers Centre for Heart Research, Institute of Biomaterials and Biomedical Engineering (IBBME) and the Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Didier Letourneur
- Laboratory for Vascular Translational Science (LVTS), Inserm U1148, Université Paris Diderot, Université Paris 13, Hôpital Bichat, Paris, France
| | - Adeline Gand
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe), Biomaterial for Health Research Group, Institut des Matériaux, Maison International de la Recherche, Université de Cergy-Pontoise, 95000 Neuville sur Oise, France
| | | | - Mohamed Amine Ben Mlouka
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Pascal Cosette
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Emmanuel Pauthe
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe), Biomaterial for Health Research Group, Institut des Matériaux, Maison International de la Recherche, Université de Cergy-Pontoise, 95000 Neuville sur Oise, France
| | - Véronique Ollivier
- Laboratory for Vascular Translational Science (LVTS), Inserm U1148, Université Paris Diderot, Université Paris 13, Hôpital Bichat, Paris, France.
| | - J Paul Santerre
- Translational Biology and Engineering Program, Ted Rodgers Centre for Heart Research, Institute of Biomaterials and Biomedical Engineering (IBBME) and the Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
42
|
Liang W, Fan Y, Lu H, Chang Z, Hu W, Sun J, Wang H, Zhu T, Wang J, Adili R, Garcia-Barrio MT, Holinstat M, Eitzman D, Zhang J, Eugene Chen Y. KLF11 (Krüppel-Like Factor 11) Inhibits Arterial Thrombosis via Suppression of Tissue Factor in the Vascular Wall. Arterioscler Thromb Vasc Biol 2019; 39:402-412. [PMID: 30602303 PMCID: PMC6393209 DOI: 10.1161/atvbaha.118.311612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/21/2018] [Indexed: 01/09/2023]
Abstract
Objective- Mutations in Krüppel like factor-11 ( KLF11), a gene also known as maturity-onset diabetes mellitus of the young type 7, contribute to the development of diabetes mellitus. KLF11 has anti-inflammatory effects in endothelial cells and beneficial effects on stroke. However, the function of KLF11 in the cardiovascular system is not fully unraveled. In this study, we investigated the role of KLF11 in vascular smooth muscle cell biology and arterial thrombosis. Approach and Results- Using a ferric chloride-induced thrombosis model, we found that the occlusion time was significantly reduced in conventional Klf11 knockout mice, whereas bone marrow transplantation could not rescue this phenotype, suggesting that vascular KLF11 is critical for inhibition of arterial thrombosis. We further demonstrated that vascular smooth muscle cell-specific Klf11 knockout mice also exhibited significantly reduced occlusion time. The expression of tissue factor (encoded by the F3 gene), a main initiator of the coagulation cascade, was increased in the artery of Klf11 knockout mice, as determined by real-time quantitative polymerase chain reaction and immunofluorescence. Furthermore, vascular smooth muscle cells isolated from Klf11 knockout mouse aortas showed increased tissue factor expression, which was rescued by KLF11 overexpression. In human aortic smooth muscle cells, small interfering RNA-mediated knockdown of KLF11 increased tissue factor expression. Consistent results were observed on adenovirus-mediated overexpression of KLF11. Mechanistically, KLF11 downregulates F3 at the transcriptional level as determined by reporter and chromatin immunoprecipitation assays. Conclusions- Our data demonstrate that KLF11 is a novel transcriptional suppressor of F3 in vascular smooth muscle cells, constituting a potential molecular target for inhibition of arterial thrombosis.
Collapse
Affiliation(s)
- Wenying Liang
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Haocheng Lu
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Ziyi Chang
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Wenting Hu
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Jinjian Sun
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Huilun Wang
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Tianqing Zhu
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Jintao Wang
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Reheman Adili
- Department of Pharmacology, University of Michigan, Ann
Arbor, MI
| | - Minerva T. Garcia-Barrio
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | | | - Daniel Eitzman
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| | - Y. Eugene Chen
- Cardiovascular Center, Department of Internal Medicine,
University of Michigan Medical Center, Ann Arbor, MI
| |
Collapse
|
43
|
Impacts of Cancer on Platelet Production, Activation and Education and Mechanisms of Cancer-Associated Thrombosis. Cancers (Basel) 2018; 10:cancers10110441. [PMID: 30441823 PMCID: PMC6266827 DOI: 10.3390/cancers10110441] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/31/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
Platelets are small anucleate cells that are traditionally described as the major effectors of hemostasis and thrombosis. However, increasing evidence indicates that platelets play several roles in the progression of malignancies and in cancer-associated thrombosis. A notable cross-communication exists between platelets and cancer cells. On one hand, cancer can “educate” platelets, influencing their RNA profiles, the numbers of circulating platelets and their activation states. On the other hand, tumor-educated platelets contain a plethora of active biomolecules, including platelet-specific and circulating ingested biomolecules, that are released upon platelet activation and participate in the progression of malignancy. The numerous mechanisms by which the primary tumor induces the production, activation and aggregation of platelets (also known as tumor cell induced platelet aggregation, or TCIPA) are directly related to the pro-thrombotic state of cancer patients. Moreover, the activation of platelets is critical for tumor growth and successful metastatic outbreak. The development or use of existing drugs targeting the activation of platelets, adhesive proteins responsible for cancer cell-platelet interactions and platelet agonists should be used to reduce cancer-associated thrombosis and tumor progression.
Collapse
|
44
|
Addi T, Poitevin S, McKay N, El Mecherfi KE, Kheroua O, Jourde-Chiche N, de Macedo A, Gondouin B, Cerini C, Brunet P, Dignat-George F, Burtey S, Dou L. Mechanisms of tissue factor induction by the uremic toxin indole-3 acetic acid through aryl hydrocarbon receptor/nuclear factor-kappa B signaling pathway in human endothelial cells. Arch Toxicol 2018; 93:121-136. [PMID: 30324315 DOI: 10.1007/s00204-018-2328-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is associated with high risk of thrombosis. Indole-3 acetic acid (IAA), an indolic uremic toxin, induces the expression of tissue factor (TF) in human umbilical vein endothelial cells (HUVEC) via the transcription factor aryl hydrocarbon receptor (AhR). This study aimed to understand the signaling pathways involved in AhR-mediated TF induction by IAA. We incubated human endothelial cells with IAA at 50 µM, the maximal concentration found in patients with CKD. IAA induced TF expression in different types of human endothelial cells: umbilical vein (HUVEC), aortic (HAoEC), and cardiac-derived microvascular (HMVEC-C). Using AhR inhibition and chromatin immunoprecipitation experiments, we showed that TF induction by IAA in HUVEC was controlled by AhR and that AhR did not bind to the TF promoter. The analysis of TF promoter activity using luciferase reporter plasmids showed that the NF-κB site was essential in TF induction by IAA. In addition, TF induction by IAA was drastically decreased by an inhibitor of the NF-κB pathway. IAA induced the nuclear translocation of NF-κB p50 subunit, which was decreased by AhR and p38MAPK inhibition. Finally, in a cohort of 92 CKD patients on hemodialysis, circulating TF was independently related to serum IAA in multivariate analysis. In conclusion, TF up-regulation by IAA in human endothelial cells involves a non-genomic AhR/p38 MAPK/NF-κB pathway. The understanding of signal transduction pathways related to AhR thrombotic/inflammatory pathway is of interest to find therapeutic targets to reduce TF expression and thrombotic risk in patients with CKD.
Collapse
Affiliation(s)
- Tawfik Addi
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Département de Biologie, Université d'Oran 1 Ahmed Benbella, LPNSA, Oran, Algeria
| | - Stéphane Poitevin
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Nathalie McKay
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Kamel Eddine El Mecherfi
- Département de Biologie, Université d'Oran 1 Ahmed Benbella, LPNSA, Oran, Algeria
- Université Mohamed Boudiaf USTO, Dpt génétique Moléculaire Appliquée (GMA), Oran, Algeria
| | - Omar Kheroua
- Département de Biologie, Université d'Oran 1 Ahmed Benbella, LPNSA, Oran, Algeria
| | - Noémie Jourde-Chiche
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France
| | - Alix de Macedo
- Service de Pédiatrie-Néonatologie, Hôpital Fondation Saint Joseph, Marseille, France
| | | | - Claire Cerini
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Philippe Brunet
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France
| | - Françoise Dignat-George
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Stéphane Burtey
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France
| | - Laetitia Dou
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
45
|
Prasad R, Banerjee S, Sen P. Contribution of allosteric disulfide in the structural regulation of membrane-bound tissue factor-factor VIIa binary complex. J Biomol Struct Dyn 2018; 37:3707-3720. [PMID: 30238846 DOI: 10.1080/07391102.2018.1526118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two distinct populations, active and cryptic forms of tissue factor (TF), reside on the cell surface. Apart from phospholipid contribution, various models have been introduced to explain decryption/encryption of TF. The proposed model, the switching of Cys186-Cys209 bond of TF, has become the matter of controversy. However, it is well accepted that this disulfide has an immense influence upon ligand factor VIIa (FVIIa) for its binding. However, molecular level understanding for this remains unveiled due to lack of detailed structural information. In this regard, we have performed the molecular dynamic study of membrane-bound TF/TF-FVIIa in both the forms (±Cys186-Cys209 allosteric disulfide bond), individually. Dynamic study depicts that disulfide bond provides structural rigidity of TF in both free and ligand-bound forms. This disulfide bond also governs the conformation of FVIIa structure as well as the binding affinity of FVIIa toward TF. Significant differences in lipid-protein interaction profiles of both the forms of TF in the complex were observed. Two forms of TF, oxidized and reduced, have different structural conformation and behave differentially toward its ligand FVIIa. This disulfide bond not only alters the conformation of GLA domain of FVIIa in the vicinity but allosterically regulates the conformation of the distantly located FVIIa protease domain. We suggest that the redox status of the disulfide bond also governs the lipid-mediated interactions with both TF and FVIIa. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ramesh Prasad
- a Department of Biological Chemistry , Indian Association for the Cultivation of Science , Jadavpur , Kolkata , India
| | - Suparna Banerjee
- a Department of Biological Chemistry , Indian Association for the Cultivation of Science , Jadavpur , Kolkata , India
| | - Prosenjit Sen
- a Department of Biological Chemistry , Indian Association for the Cultivation of Science , Jadavpur , Kolkata , India
| |
Collapse
|
46
|
Asada Y, Yamashita A, Sato Y, Hatakeyama K. Thrombus Formation and Propagation in the Onset of Cardiovascular Events. J Atheroscler Thromb 2018; 25:653-664. [PMID: 29887539 PMCID: PMC6099067 DOI: 10.5551/jat.rv17022] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ischemic cardiovascular disease is a major cause of morbidity and mortality worldwide and thrombus formation on disrupted atherosclerotic plaques is considered to trigger its onset. Although the activation of platelets and coagulation pathways has been investigated intensively, the mechanisms of thrombus formation on disrupted plaques have not been understood in detail. Platelets are thought to play a central role in the formation of arterial thrombus because of rapid flow conditions; however, thrombus that develops on disrupted plaques consistently includes large amounts of fibrin in addition to aggregated platelets. While, thrombus does not always become large enough to completely occlude the vascular lumen, indicating that the propagation of thrombus is also critical for the onset of cardiovascular events. Various factors, such as vascular wall thrombogenicity, altered blood flow and imbalanced blood hemostasis, modulate thrombus formation and propagation on disrupted plaques. Pathological findings derived from humans and experimental animal models of atherothrombosis have identified important factors that affect thrombus formation and propagation, namely platelets, extrinsic and intrinsic coagulation factors, proinflammatory factors, plaque hypoxia and blood flow alteration. These findings might provide insight into the mechanisms of thrombus formation and propagation on disrupted plaques that lead to the onset of cardiovascular events.
Collapse
Affiliation(s)
- Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki
| | - Yuichiro Sato
- Department of Diagnostic Pathology, University of Miyazaki Hospital, University of Miyazaki
| | | |
Collapse
|
47
|
Duan J, Liang S, Yu Y, Li Y, Wang L, Wu Z, Chen Y, Miller MR, Sun Z. Inflammation-coagulation response and thrombotic effects induced by silica nanoparticles in zebrafish embryos. Nanotoxicology 2018; 12:470-484. [PMID: 29658397 PMCID: PMC6157531 DOI: 10.1080/17435390.2018.1461267] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nowadays, nanotechnology environmental health and safety (nanoEHS) is gaining attention. We previously found that silica nanoparticles (SiNPs) could induce vascular endothelial damage. However, the subsequent toxicologic response to SiNPs-induced endothelial damage was still largely unknown. In this study, we explored the inflammation–coagulation response and thrombotic effects of SiNPs in endothelial cells and zebrafish embryos. For in vitro study, swollen mitochondria and autophagosome were observed in ultrastructural analysis. The cytoskeleton organization was disrupted by SiNPs in vascular endothelial cells. The release of proinflammatory and procoagulant cytokines including IL-6, IL-8, MCP-1, PECAM-1, TF and vWF, were markedly elevated in a dose-dependent manner. For in vivo study, based on the NOAEL for dosimetry selection, and using two transgenic zebrafish, Tg(mpo:GFP) and Tg(fli-1:EGFP), SiNPs-induced neutrophil-mediated inflammation and impaired vascular endothelial cells. With the dosage higher than NOAEL, SiNPs significantly decreased blood flow and velocity, exhibiting a blood hypercoagulable state in zebrafish embryos. The thrombotic effect was assessed by o-dianisidine staining, showed that an increasing of erythrocyte aggregation occurred in SiNPs-treated zebrafish. Microarray analysis was used to screen the possible genes for inflammation–coagulation response to SiNPs in zebrafish, and the JAK1/TF signaling pathway was further verified by qRT-PCR and Western blot assays. For in-deepth study, il6st was knocked down with specific morpholinos. The whole-mount in situ hybridization and qRT-PCR analysis showed that the expression jak1 and f3b were attenuated in il6st knockdown groups. In summary, our data demonstrated that SiNPs could induce inflammation–coagulation response and thrombotic effects via JAK1/TF signaling pathway.
Collapse
Affiliation(s)
- Junchao Duan
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Shuang Liang
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Yang Yu
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Yang Li
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Lijing Wang
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Zehao Wu
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Yueyue Chen
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Mark R Miller
- c BHF Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh , Edinburgh , UK
| | - Zhiwei Sun
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| |
Collapse
|
48
|
Cai G, Yan A, Fu N, Fu Y. Thromboxane A2 receptor antagonist SQ29548 attenuates SH‑SY5Y neuroblastoma cell impairments induced by oxidative stress. Int J Mol Med 2018; 42:479-488. [PMID: 29620149 DOI: 10.3892/ijmm.2018.3589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/21/2018] [Indexed: 11/05/2022] Open
Abstract
Thromboxane A2 receptor (TXA2R) serves a vital role in numerous neurological disorders. Our previous study indicated that SQ29548, an antagonist of TXA2R, attenuated the induced neuron damage in cerebral infarction animals; however, the underlying mechanism remains unknown. Certain studies revealed a new role of TXA2R in the regulation of oxidative stress, which is one of the basic pathological processes in neurological disorders. Thus, the present study attempted to examine whether the inhibition of TXA2R with SQ29548 helped to protect the nerve cells against oxidative stress. SQ29548 was utilized as a TXA2R antagonist, and relevant assays were performed to detect the cell viability, cellular reactive oxygen species (ROS) level, cell apoptosis, expression levels of superoxide dismutase‑2 (SOD2), catalase and caspases, and activation of mitogen‑activated protein kinase (MAPK) pathways. It was observed that hydrogen peroxide (H2O2) dose‑dependently reduced the viability of SH‑SY5Y cells. In addition, H2O2 raised the level of ROS in cells, inhibited the expression levels of SOD2 and catalase, and potentially enhanced cell apoptosis and the expression of caspases via activating the MAPK pathways. Pretreatment with SQ29548 not only rescued the viability of SH‑SY5Y cells, but also ameliorated the intracellular ROS level and the expression levels of SOD2 and catalase. Furthermore, it decreased the cell apoptosis and the expression of caspases, possibly via the inhibition of MAPK pathways. In conclusion, SQ29548, an antagonist of TXA2R, improved the antioxidant capacities of SH‑SY5Y cells and reduced the cell apoptosis through the inhibition of MAPK pathways.
Collapse
Affiliation(s)
- Gaoyu Cai
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Aijuan Yan
- Department of Neurology, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai 200082, P.R. China
| | - Ningzhen Fu
- Department of Pancreatic Surgery, Rui Jin College of Clinical Medicine, Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Yi Fu
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| |
Collapse
|
49
|
Keragala CB, Draxler DF, McQuilten ZK, Medcalf RL. Haemostasis and innate immunity - a complementary relationship: A review of the intricate relationship between coagulation and complement pathways. Br J Haematol 2017; 180:782-798. [PMID: 29265338 DOI: 10.1111/bjh.15062] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coagulation and innate immunity are linked evolutionary processes that orchestrate the host defence against invading pathogens and injury. The complement system is integral to innate immunity and shares numerous interactions with components of the haemostatic pathway, helping to maintain physiological equilibrium. The term 'immunothrombosis' was introduced in 2013 to embrace this process, and has become an area of much recent interest. What is less apparent in the literature however is an appreciation of the clinical manifestations of the coagulation-complement interaction and the consequences of dysregulation of either system, as seen in many inflammatory and thrombotic disease states, such as sepsis, trauma, atherosclerosis, antiphospholipid syndrome (APS), paroxysmal nocturnal haemoglobinuria (PNH) and some thrombotic microangiopathies to name a few. The growing appreciation of this immunothrombotic phenomenon will foster the drive for novel therapies in these disease states, including anticoagulants as immunomodulators and targeted molecular therapies.
Collapse
Affiliation(s)
- Charithani B Keragala
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Dominik F Draxler
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Zoe K McQuilten
- Transfusion Research Unit and Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Vic., Australia
| | - Robert L Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
50
|
Kakouros N, Gluckman TJ, Conte JV, Kickler TS, Laws K, Barton BA, Rade JJ. Differential Impact of Serial Measurement of Nonplatelet Thromboxane Generation on Long-Term Outcome After Cardiac Surgery. J Am Heart Assoc 2017; 6:JAHA.117.007486. [PMID: 29097390 PMCID: PMC5721801 DOI: 10.1161/jaha.117.007486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Systemic thromboxane generation, not suppressible by standard aspirin therapy and likely arising from nonplatelet sources, increases the risk of atherothrombosis and death in patients with cardiovascular disease. In the RIGOR (Reduction in Graft Occlusion Rates) study, greater nonplatelet thromboxane generation occurred early compared with late after coronary artery bypass graft surgery, although only the latter correlated with graft failure. We hypothesize that a similar differential association exists between nonplatelet thromboxane generation and long-term clinical outcome. METHODS AND RESULTS Five-year outcome data were analyzed for 290 RIGOR subjects taking aspirin with suppressed platelet thromboxane generation. Multivariable modeling was performed to define the relative predictive value of the urine thromboxane metabolite, 11-dehydrothromboxane B2 (11-dhTXB2), measured 3 days versus 6 months after surgery on the composite end point of death, myocardial infarction, revascularization or stroke, and death alone. 11-dhTXB2 measured 3 days after surgery did not independently predict outcome, whereas 11-dhTXB2 >450 pg/mg creatinine measured 6 months after surgery predicted the composite end point (adjusted hazard ratio, 1.79; P=0.02) and death (adjusted hazard ratio, 2.90; P=0.01) at 5 years compared with lower values. Additional modeling revealed 11-dhTXB2 measured early after surgery associated with several markers of inflammation, in contrast to 11-dhTXB2 measured 6 months later, which highly associated with oxidative stress. CONCLUSIONS Long-term nonplatelet thromboxane generation after coronary artery bypass graft surgery is a novel risk factor for 5-year adverse outcome, including death. In contrast, nonplatelet thromboxane generation in the early postoperative period appears to be driven predominantly by inflammation and did not independently predict long-term clinical outcome.
Collapse
Affiliation(s)
| | | | | | | | | | - Bruce A Barton
- University of Massachusetts Medical School, Worcester, MA
| | - Jeffrey J Rade
- University of Massachusetts Medical School, Worcester, MA .,Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|