1
|
Wang X, Wei Y, Zhang Z, Cao M, Liang B, Yue X, Zhou A. Efficient anaerobic biodegradation of trimethoprim driven by electrogenic respiration: Optimizing bioelectro-characterization, elucidating biodegradation mechanism and fate of antibiotic resistance genes systematically. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138070. [PMID: 40168928 DOI: 10.1016/j.jhazmat.2025.138070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
In this study, a bioelectrochemical system, with trimethoprim (TMP) as the sole carbon source, was constructed to evaluate the bioelectrogenic respiration on the acceleration of TMP degradation. The bioelectro-characterization was comprehensively optimized. The results showed that the optimal removal efficiency of TMP was achieved (99.38 %) when the external resistance, pH, and concentration of phosphate buffer solution were 1000 Ω, 7, and 25 mM, respectively. The potential TMP degradation pathways were speculated based on Liquid Chromatography-Mass Spectrometry and density functional theory calculations, including demethylation, demethoxy, hydroxylation and methylene bridge cracking. The overall biotoxicity of TMP biodegradation products after electrogenic respiration treatment was generally reduced. Electroactive bacteria (3.85 %) and potential degraders (27.18 %) were markedly increased in bioelectrogenic anaerobic treatment system, where bioelectrogenic respiration played a crucial role in promoting TMP biodegradation. However, it was observed that under long-term toxic stress of TMP, there was an enrichment of antibiotic resistance genes (ARGs) among the TMP-degrading bacteria. Furthermore, the comprehensive interaction between microbial communities and environmental variables was extensively investigated, revealing that electroactive bacteria and potential degraders were strongly positively correlated with TMP removal and biomineralization efficiency. This study provides guidance and promising strategy for the effective treatment of antibiotic-containing wastewater in practical applications.
Collapse
Affiliation(s)
- Xue Wang
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yaoli Wei
- Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030800, China.
| | - Zenan Zhang
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Mengnan Cao
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Bin Liang
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiuping Yue
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| | - Aijuan Zhou
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
2
|
Wang Y, Gao J, Wang Z, Zhao Y, Wang H, Guo Y, Yuan Y, Chen H. Unignorable environmental risks: Insight into differential responses between biofilm and plastisphere in sulfur autotrophic denitrification system upon exposure to quaternary ammonium compounds. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137231. [PMID: 39827797 DOI: 10.1016/j.jhazmat.2025.137231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Concerns of quaternary ammonium compounds (QACs) and microplastics (MPs) as emerging containments accumulating in wastewater treatment plants (WWTPs) have attracted much attention. Plastisphere with distinctive microbial communities might also be the repository for pathogens and resistance genes (RGs). Thus, the effects of three representative QACs with different concentrations on biofilm and plastisphere were studied in sulfur autotrophic denitrification (SAD) system. Over 100 days, 1-5 mg/L QACs exerted few impacts on system stability, whereas 15 mg/L QACs seriously lowered the microbial activity and the inhibitory effects ranked: benzylalkyldimethylethyl ammonium compound > dialkyldimethyl ammonium compound > alkyltrimethyl ammonium compound. Dosing of QACs in SAD system not only altered the microbial community structure and assembly, but also induced higher levels of intracellular RGs and extracellular RGs in plastisphere than in biofilm. Although the free RGs abundances in water slightly lowered, they might also pose great ecological risks. Pathogens identified as the potential hosts of RGs were more prone to colocalizing in plastisphere. Mobile genetic elements directly contributed to the three-fraction RGs transmission in SAD system. This study offered new insights into the differential responses of biofilm and plastisphere under QACs stress and guided for the disinfectants and MPs pollution containment in WWTPs.
Collapse
Affiliation(s)
- Yuxuan Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Zhiqi Wang
- Institute of NBC Defence, PO Box 1048, Beijing 102205, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hanyi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yi Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yukun Yuan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hao Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Zhang Z, Li Z, Nan J, Ouyang J, Chen X, Wang H, Wang A. Evaluating advancements and opportunities in electro-assisted biodehalogenation of emerging halogenated contaminants. BIORESOURCE TECHNOLOGY 2025; 419:132011. [PMID: 39725360 DOI: 10.1016/j.biortech.2024.132011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Electro-assisted biodehalogenation (EASB) as a biostimulation strategy can accelerate the slow attenuation of emerging halogenated contaminants (EHCs) in anaerobic aqueous environments. A timely review is urgent to evaluate the knowledge gaps and potential opportunities, further facilitating its design and application. Till now, EASB achieves promising progress in accelerating biohalogenation rates, promoting the detoxification of EHCs to cope with unfavourable environments and mitigating greenhouse gas emissions. However, EASB of EHCs still faces several knowledge gaps. Exploring crucial microbes and deciphering insights into dehalogenase characteristics and extracellular electron transfer (EET) pathways remain the prominent task for EASB of EHCs. Moreover, microbial ecological relationships and intricate environmental factors affecting performances and applications are largely underexplored. The emergence of emerging tools holds promises for sorting the intricate changes and addressing these knowledge gaps. Judicious use of emerging tools will rejuvenate EASB strategy, from EET to scale-up, to purposefully and effectively address cascading EHCs.
Collapse
Affiliation(s)
- Zimeng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia Ouyang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xueqi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongcheng Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
4
|
Xu W, Wu L, Geng M, Zhou J, Bai S, Nguyen DV, Ma R, Wu D, Qian J. Biochar@MIL-88A(Fe) accelerates direct interspecies electron transfer and hydrogen transfer in waste activated sludge anaerobic digestion: Exploring electron transfer and biomolecular mechanisms. ENVIRONMENTAL RESEARCH 2025; 268:120810. [PMID: 39793869 DOI: 10.1016/j.envres.2025.120810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025]
Abstract
Adding additives exogenously is an effective strategy to enhance methanogenic activity and improve AD stability. Corn straw-based biochar@MIL-88A(Fe) (BM) was synthesized herewith and used as an exogenous additive to boost methane (CH4) production. After adding BM at 250 mg/g WAS VS, the accumulative CH4 production and maximum CH4 yield increased by 1.2 and 1.9 times, respectively, with CH₄ comprising 88% of the biogas. BM accelerated electron transfer through its unsaturated sites and surface functional groups, while also enhancing metabolic functions for facilitating enzymatic activities and converting organic substrates. The abundance of syntrophic bacteria and methanogen were higher after BM addition. BM-mediated DIET and IHT pathways effectively oxidized propionate and butyrate, promoting methane generation. Higher expression of key genes involved in methane production correlated with shifts in microbial structure and increased CH4 yield after BM dosage. The invention of BM may provide more solutions for addressing low energy recovery during AD.
Collapse
Affiliation(s)
- Weihang Xu
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mengqi Geng
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Junmei Zhou
- Sichuan Rongshi Environmental Protection Technology Co., Ltd, Chengdu, China
| | - Sai Bai
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Duc Viet Nguyen
- Center for Environmental Energy Research, Ghent University Global Campus, Incheon, South Korea; Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Rui Ma
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Di Wu
- Center for Environmental Energy Research, Ghent University Global Campus, Incheon, South Korea; Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Jin Qian
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China.
| |
Collapse
|
5
|
Yusim EJ, Zarecki R, Medina S, Carmi G, Mousa S, Hassanin M, Ronen Z, Wu Z, Jiang J, Baransi-Karkaby K, Avisar D, Sabbah I, Yanuka-Golub K, Freilich S. Integrated use of electrochemical anaerobic reactors and genomic based modeling for characterizing methanogenic activity in microbial communities exposed to BTEX contamination. ENVIRONMENTAL RESEARCH 2025; 268:120691. [PMID: 39746623 DOI: 10.1016/j.envres.2024.120691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
In soil polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX), oxygen is rapidly depleted by aerobic respiration, creating a redox gradient across the plume. Under anaerobic conditions, BTEX biodegradation is then coupled with fermentation and methanogenesis. This study aimed to characterize this multi-step process, focusing on the interactions and functional roles of key microbial groups involved. A reactor system, comprising an Anaerobic Bioreactor (AB) and two Microbial Electrolysis Cell (MEC) chambers, designed to represent different spatial zones along the redox gradient, operated for 160 days with intermittent exposure to BTEX. The functional differentiation of each chamber was reflected by the gas emission profiles: 50%, 12% and 84% methane in the AB, anode and cathode chambers, respectively. The taxonomic profiling, assessed using 16S amplicon sequencing, led to the identification chamber-characteristic taxonomic groups. To translate the taxonomic shift into a functional shift, community dynamics was transformed into a simulative platform based on genome scale metabolic models constructed for 21 species that capture both key functionalities and taxonomies. Representatives include BTEX degraders, fermenters, iron reducers acetoclastic and hydrogenotrophic methanogens. Functionality was inferred according to the identification of the functional gene bamA as a biomarker for anaerobic BTEX degradation, taxonomy and literature support. Comparison of the predicted performances of the reactor-specific communities confirmed that the simulation successfully captured the experimentally recorded functional variation. Variations in the predicted exchange profiles between chambers capture reported and novel competitive and cooperative interactions between methanogens and non-methanogens. Examples include the exchange profiles of hypoxanthine (HYXN) and acetate between fermenters and methanogens, suggesting mechanisms underlying the supportive/repressive effect of taxonomic divergence on methanogenesis. Hence, the platform represents a pioneering attempt to capture the full spectrum of community activity in methanogenic hydrocarbon biodegradation while supporting the future design of optimization strategies.
Collapse
Affiliation(s)
- Evgenia Jenny Yusim
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel; Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel; The Water Research Center, The Porter School of Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 66978, Israel.
| | - Raphy Zarecki
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
| | - Shlomit Medina
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
| | - Gon Carmi
- Bioinformatics Unit, Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization (ARO) - Volcani Institute, Ramat Yishay, Israel
| | - Sari Mousa
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Mahdi Hassanin
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Zeev Ronen
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer 8499000, Israel
| | - Zhiming Wu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Katie Baransi-Karkaby
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel; School of Environmental Sciences, University of Haifa, Haifa 3498838, Israel
| | - Dror Avisar
- The Water Research Center, The Porter School of Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 66978, Israel
| | - Isam Sabbah
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel; Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Keren Yanuka-Golub
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel.
| |
Collapse
|
6
|
Adhikari M, Wang L, Adhikari D, Khadka S, Ullah M, Mbituyimana B, Bukatuka CF, Shi Z, Yang G. Electric stimulation: a versatile manipulation technique mediated microbial applications. Bioprocess Biosyst Eng 2025; 48:171-192. [PMID: 39611964 DOI: 10.1007/s00449-024-03107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024]
Abstract
Electric stimulation (ES) is a versatile technique that uses an electric field to manipulate microorganisms individually. Over the past several decades, the capabilities of ES have expanded from bioremediation to the precise motion control of cells and microorganisms. However, there is limited information on the underlying mechanisms, latest advancement and broader microbial applications of ES in various fields, such as the production of extracellular polymers with upgraded properties. This review article summarizes recent advancements in ES and discusses it as a unique external manipulation technique for microorganisms with wide applications in bioremediation, industry, biofilm deactivation, disinfection, and controlled biosynthesis. One specific application of ES discussed in this review is the extracellular biosynthesis, regulation, and organization of extracellular polymers, such as bacterial cellulose nanofibrils, curdlan, and microbial nanowires. Overall, this review aims to provide a platform for microbial biotechnologists and synthetic biologists to leverage the manipulation of microorganisms using ES for bio-based applications, including the production of extracellular polymers with enhanced properties. Researchers can engineer, manipulate, and control microorganisms for various applications by harnessing the potential of electric fields.
Collapse
Affiliation(s)
- Manjila Adhikari
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li Wang
- Wuhan Branch of the National Science Library, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dhurba Adhikari
- Genomic Division, Faculty of Biosciences and Aquaculture, Nord University, NO-8049, Bodø, Norway
| | - Sujan Khadka
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Mati Ullah
- Department of Biotechnology, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Clemence Futila Bukatuka
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
7
|
Huang Y, Zheng X, Zhao Z, Tao J, Hu T, Han Z, Lin T. Integration of manganese ores with activated carbon into constructed wetland for greenhouse gas emissions reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124205. [PMID: 39935055 DOI: 10.1016/j.jenvman.2025.124205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/20/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
Manganese oxide and activated carbon (AC) are widely employed in constructed wetlands (CWs) to remove nutrients and reduce greenhouse gas (GHG) emissions, however, the effect and mechanism of AC combined with manganese ores (MO) on GHG emissions remain unclear. In this study, the mechanisms of nutrient removal and GHG emissions reduction were investigated by three vertical subsurface-flow CWs: gravel (CW-B), manganese ores (MO) uniformly mixing with gravel (CW-M), or activated carbon (CW-MC). The average removal efficiencies of chemical oxygen demand, total nitrogen and total phosphorus in CW-MC were markedly improved compared to CW-B and CW-M, reaching 82.72%, 95.72% and 93.43%, respectively. Moreover, the global warming potential (CO2 equivalent) of CW-MC was reduced by 52.80% and 36.88% relative to CW-B and CW-M, respectively. Mixing of MO with AC reduced the loss of manganese and further enhanced the manganese cycling process by X-ray photoelectron spectroscope and concentration of Mn(Ⅱ) in CWs analysis. The introduction of MO and AC enhanced the PN/PS ratio of extracellular polymeric substances and facilitated extracellular electron transfer (EET). Furthermore, metagenomic analysis showed that the abundances of denitrifying, manganese oxidizing and electroactive bacteria genera were enhanced in the CW-MC, which promoted the transformation of nitrogen and manganese. Meanwhile, high abundances of denitrification and EET related genes were observed in CW-MC, improving denitrification efficiency and reducing N2O emission. This study elucidated the impacts and mechanisms of MO and AC on GHG emissions, providing a new insight to improve manganese-based CW performance.
Collapse
Affiliation(s)
- Yu Huang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xiaoying Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zhilin Zhao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jiaqing Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Tianxing Hu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zongshuo Han
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
8
|
Lin XQ, Li ZL, Chen XQ, Wang L, Wang AJ. Simultaneous deep removal of nitrate and tetrabromobisphenol A in microbial electrochemical system-constructed wetland. BIORESOURCE TECHNOLOGY 2025; 416:131723. [PMID: 39477166 DOI: 10.1016/j.biortech.2024.131723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Microbial electrochemical system-constructed wetland (MES-CW) is environmentally friendly in removing organic contaminants from wastewater. Tetrabromobisphenol A (TBBPA) is an emerging pollutant that is inefficiently removed in conventional wastewater treatment. The feasibility of deep removal of TBBPA and nitrate and the related mechanism in MES-CW remains unclear. This study demonstrated the enhanced TBBPA detoxification in MES-CW accompanied by nitrate removal. Nitrate significantly suppressed the TBBPA reductive debromination and methane generation. It altered the microbial community and enriched Acinetobacter in the electrode, stimulating the TBBPA hydrolytic debromination and metabolite oxidation. The biocathode supplied electrons for dehalogenators in TBBPA reductive debromination, while the anode served as the electron acceptor for function bacteria in TBBPA metabolite oxidation. Nitrate and anodic electricity optimized the microbial community and provided electron acceptors for TBBPA metabolites oxidation in MES-CW, guiding the deep removal of nitrate and emerging pollutants in wastewater.
Collapse
Affiliation(s)
- Xiao-Qiu Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xue-Qi Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
9
|
Huang J, Yang C, Zhang X, Wu X. Characteristics and functional bacteria of an efficient benzocaine-mineralizing bacterial consortium. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135773. [PMID: 39270583 DOI: 10.1016/j.jhazmat.2024.135773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
The extensive use of pharmaceutical and personal care products (PPCPs) has led to widespread residual pollution, which increases the risk of the development of drug resistance in pathogenic microorganisms. Benzocaine is a PPCP that is widely used medical anesthesia and in sunscreen. Microorganisms are essential for the degradation of residual PPCPs. However, no studies have reported the microbial degradation of benzocaine. In this study, through continuous enrichment of the initial consortium HJ1, the highly efficient benzocaine-degrading consortium HJ7 was obtained, HJ7 exhibited a degradation rate that was 1.92 times greater than that of HJ1. Methyl 4-aminobenzoate and 4-aminobenzoic acid were identified as major intermediate products during benzocaine biodegradation by consortium HJ1 or HJ7. Methylobacillus (57.8 % ± 0.9 %) and Pseudomonas (22.1 % ± 0.7 %), which are thought to harbor essential species for benzocaine degradation, were significantly enriched in consortium HJ7. Two benzocaine-degrading strains, Pseudomonas sp. A8 and Microbacterium sp. A741, and one methyl 4-aminobenzoate-degrading strain, Achromobacter sp. A5, were isolated from consortium HJ7, and they synergistically mineralized benzocaine. These findings not only provide new insights into the biotransformation of benzocaine but also provide strain resources for the bioremediation of residual benzocaine in the environment.
Collapse
Affiliation(s)
- Junwei Huang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Chen Yang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Xiaohan Zhang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China.
| |
Collapse
|
10
|
Gong W, Zhang H, Xue M, Guo L, Jiang M, Zhao Y, Liang H. Electron-deficient wastewater treatment in membrane-aerated conductive biofilm reactor: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 413:131411. [PMID: 39277052 DOI: 10.1016/j.biortech.2024.131411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
A membrane-aerated conductive biofilm reactor (MA-CBR) was constructed for carbon-limited wastewater treatment and to reduce the stress of the electric field on nitrous oxide reductase (NosZ). Counter-diffusion with an embedded aerobic layer declined the effect of current on NosZ (K00376) for N2O reduction. Other coding genes for denitrification in cathodic membrane aerated biofilms, including K02568, K00368, K15864, K02305, and K04561, were also positively affected by the electric field and significantly accumulate in Thauera. NH4+-N oxidation can occur at the anode and cathode (membrane aeration biofilm). This cathodic synergistic NH4+-N oxidation provided more electrons to be directly utilized by the denitrifying bacteria at the cathode. Compared to the MABR, the total nitrogen removal efficiency of MA-CBR increased by 5.68 mg/L, 11.02 mg/L, and 15.63 mg/L at voltages of 0.25 V, 0.50 V, and 0.75 V, respectively.
Collapse
Affiliation(s)
- Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China.
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Minghao Xue
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Lin Guo
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Mengmeng Jiang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Yuzhou Zhao
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
11
|
Shi K, Xu JM, Cui HL, Cheng HY, Liang B, Wang AJ. Microbiome regulation for sustainable wastewater treatment. Biotechnol Adv 2024; 77:108458. [PMID: 39343082 DOI: 10.1016/j.biotechadv.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Sustainable wastewater treatment is essential for attaining clean water and sanitation, aligning with UN Sustainable Development Goals. Wastewater treatment plants (WWTPs) have utilized environmental microbiomes in biological treatment processes in this effort for over a century. However, the inherent complexity and redundancy of microbial communities, and emerging chemical and biological contaminants, challenge the biotechnology applications. Over the past decades, understanding and utilization of microbial energy metabolism and interaction relationships have revolutionized the biological system. In this review, we discuss how microbiome regulation strategies are being used to generate actionable performance for low-carbon pollutant removal and resource recovery in WWTPs. The engineering application cases also highlight the real feasibility and promising prospects of the microbiome regulation approaches. In conclusion, we recommend identifying environmental risks associated with chemical and biological contaminants transformation as a prerequisite. We propose the integration of gene editing and enzyme design to precisely regulate microbiomes for the synergistic control of both chemical and biological risks. Additionally, the development of integrated technologies and engineering equipment is crucial in addressing the ongoing water crisis. This review advocates for the innovation of conventional wastewater treatment biotechnology to ensure sustainable wastewater treatment.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jia-Min Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Han-Lin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
12
|
Du J, Wang Z, Xing Y, Gao X, Lu Z, Li D, Tian J. Long-Read Sequencing Revealing the Effectiveness of Captive Breeding Strategy for Improving the Gut Microbiota of Spotted Seal (Phoca largha). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:9. [PMID: 39589560 DOI: 10.1007/s10126-024-10397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
The spotted seal (Phoca largha) is the sole pinniped species that can reproduce in China and has been classified as the First-Grade State Protection animal. The conventional method for the protection and maintenance of the spotted seal population is the captive maintenance of the species in artificially controlled environments. Nevertheless, the efficacy of the captive strategy remains uncertain, with the potential to impact the health of spotted seals through alterations in gut microbiota. In this study, PacBio sequencing based on the full-length of the bacterial 16S rRNA gene was applied to faeces from captive and wild spotted seals, thereby providing a first reference for the gut microbiota profile of spotted seals at the species scale. The gut microbiota of captive spotted seals was found to be more diverse than that of the wild population. The gut microbiota of spotted seals exhibited notable variation due to captive breeding, with an enrichment of Firmicutes and a reduction in Proteobacteria. The results of the co-occurrence network analysis indicated that the gut microbiota of captive spotted seals exhibited a greater degree of complexity and stability in comparison to that observed in their wild counterparts. The analysis of community assembly mechanisms revealed an increased determinism for the gut microbiota of captive individuals, with a concomitant decrease in the contribution of drift. Furthermore, the results of the predicted functions indicated a reduction in stress responses and an enhanced ability to metabolise sugars in the gut microbiota of captive spotted seals. In conclusion, the results of this study provide evidence that the current captive breeding strategy is an effective approach for improving the gut microbiota of spotted seals. Furthermore, this study demonstrates the potential of monitoring the gut microbiota to assess the health of marine mammals and inform conservation strategies for endangered species.
Collapse
Affiliation(s)
- Jing Du
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Zhen Wang
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Yankuo Xing
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Xianggang Gao
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Zhichuang Lu
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Duohui Li
- Dalian Modern Agricultural Production Development Service Center, Dalian, 116023, Liaoning, China
| | - Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China.
| |
Collapse
|
13
|
Zhang Y, Jia X, Yuan P, Li B, Pan W, Liu J, Zhao W. Activated Sludge Combined with Pervious Concrete Micro-Ecosystem for Runoff Rainwater Collection and Pollutant Purification. TOXICS 2024; 12:838. [PMID: 39771053 PMCID: PMC11679453 DOI: 10.3390/toxics12120838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
This study investigated the purification of pollutants in runoff rainwater by constructing a micro-ecosystem using waste-activated sludge (WAS) and riverbed sludge (RBS) as inoculums in combination with pervious concrete. The research results showed that the best hydraulic retention time (HRT) was 9 h. The COD and ammonia nitrogen (NH4+-N) removal of the waste-activated sludge ecosystem (WASE) was 62.67% and 71.21%, respectively, while the riverbed sludge ecosystem (RBSE) showed COD and NH4+-N removal percentages of 46.05% and 66.55%, respectively. The analysis of the genetic metabolism of microbial genes showed that the system was microbially enhanced with extensive and diverse populations. At the phylum level, the microorganisms responsible for degrading organic matter were mainly Firmicutes and Actinobacteriota. At the genus level, the Trichococcus genus was dominant in the WASE, while the Dietzia, norank_f__Sporomusaceae and norank_f__norank_o__norank_c__BRH-c20a genera were the central bacterial populations in the RBSE. The proliferation of phylum-level bacteria in the WASE was relatively large, and the genus-level bacteria demonstrated a better removal efficiency for pollutants. The overall removal effect of the WASE was better than that of the RBSE. The application analyses showed that a WASE is capable of effectively accepting and treating all rainfall below rainstorm levels and at near-full rainstorm levels under optimal removal efficiency conditions. This study innovatively used wastewater plant waste-activated sludge combined with pervious concrete to construct a micro-ecosystem to remove runoff rainwater pollutants. The system achieved pollutant removal comparable to that of pervious concrete modified with adsorbent materials. An effective method for the collection and pollutant treatment of urban runoff rainwater is provided.
Collapse
Affiliation(s)
- Yongsheng Zhang
- School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China; (Y.Z.); (X.J.); (P.Y.); (B.L.); (W.P.); (J.L.)
| | - Xuechen Jia
- School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China; (Y.Z.); (X.J.); (P.Y.); (B.L.); (W.P.); (J.L.)
| | - Pengfei Yuan
- School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China; (Y.Z.); (X.J.); (P.Y.); (B.L.); (W.P.); (J.L.)
| | - Bingqi Li
- School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China; (Y.Z.); (X.J.); (P.Y.); (B.L.); (W.P.); (J.L.)
| | - Wenyan Pan
- School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China; (Y.Z.); (X.J.); (P.Y.); (B.L.); (W.P.); (J.L.)
| | - Jianfei Liu
- School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China; (Y.Z.); (X.J.); (P.Y.); (B.L.); (W.P.); (J.L.)
| | - Weilong Zhao
- School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China; (Y.Z.); (X.J.); (P.Y.); (B.L.); (W.P.); (J.L.)
- Henan Province Engineering Laboratory for Eco-Architecture and the Built Environment, Henan Polytechnic University, Jiaozuo 454000, China
| |
Collapse
|
14
|
Liao R, Song Z, Zhang X, Xiong X, Zhang Z, Zhao Z, Sun F. Versatile enhancement for anaerobic moving bed biofilm (AnMBBR) treating pretreated landfill leachate by hydrochar: Energy recovery, greenhouse gas emission reduction and underlying microbial mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175161. [PMID: 39111435 DOI: 10.1016/j.scitotenv.2024.175161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/28/2024] [Indexed: 08/19/2024]
Abstract
Hydrochars were prepared from fruit peels (HC-1) and vegetable waste (HC-2), and combined with fiber spheres, respectively, to form homogeneous biocompatible carriers, which were used for anaerobic moving bed biofilm reactor (AnMBBR) to enhance anaerobic digestion (AD) performance and energy recovery of landfill leachate treatment. Compared with the control AnMBBR with conventional fiber spheres as carriers, the chemical oxygen demand (COD) removal efficiency of the AnMBBR with HC-2 increased from 75 % to 88 %, methane yield increased from 77.7 mL/g-COD to 155.3 mL/g-COD, and achieved greenhouse gases (GHG) emission reductions of 1.74 t CO2 eq/a during long-term operation. HC-2-fiber sphere biocarriers provided more sites for attached-growth biomass (AGBS) and significantly enhanced the abundance of functional microbial community, with the relative abundance of methanogenic bacteria Methanothrix increased from 0.03 % to over 24.4 %. Moreover, the gene abundance of most the key enzymes encoding the hydrolysis, acidogenesis and methanogenesis pathways were up-regulated with the assistance of HC-2. Consequently, hydrochar-assisted AnMBBR were effective to enhance methanogenesis performance, energy recovery and carbon reduction for high-strength landfill leachate treatment.
Collapse
Affiliation(s)
- Runfeng Liao
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Zi Song
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiangyun Xiong
- Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China.
| | - Zumin Zhang
- College of Architecture and Environment, Ningxia Institute of Science and Technology, Shizuishan 753000, China
| | - Zilong Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
15
|
Zhu J, Li M, Yu H, Zheng Y, Yuan L, Cao Y, Liu X, Sun F, Chen C. Magnetic biochar enhanced microbial electrolysis cell with anaerobic digestion for complex organic matter degradation in landfill leachate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175013. [PMID: 39069178 DOI: 10.1016/j.scitotenv.2024.175013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Combining microbial electrolytic cells with anaerobic digestion (MEC-AD) was considered as an important method for enhancing complex organic matter degradation. However, the magnetic biochar (MBC) addition would be an effective approach for enhancing biodegradation in MEC-AD. By designing orthogonal experiments, the optimal parameters of MBC-enhanced MEC-AD system for landfill leachate treatment were determined. The results indicated that the optimal conditions were identified as HRT of 72 h, electrode spacing of 2.5 cm, and applied voltage of 0.8 V. Under these conditions, the COD removal efficiency reached a maximum of 54.7 %. Additionally, the UV-vis, 3D-EEM, and GC-MS indicated the macromolecules 13-Docosenamide (Z), Bis(2-ethylhexyl) benzene-1,4-dicarboxylate and bis(2-ethylhexyl) phthalate were degraded. 13-Docosenamide (Z) was almost completely removed under the conditions of 0.8 V applied voltage, 2.5 cm electrode spacing and 24 h HRT, with a removal efficiency of 99.91 %. Significant differences were observed in the microbial core genera among the MEC-AD systems. The core genera in the anodic and cathodic biofilms were primarily fermentative and electroactive bacteria, including Soehngenia (2.2 % - 32.1 %, 3.2 % - 26.4 %) and Desulfomicrobium (1.1 % - 10.2 %, 2.0 % - 29.3 %). Fermentative bacteria, norank_f__Bacteroidetes_vadinHA17, established cooperative relationships with electroactive bacteria Acinetobacter. The enrichment of electrochemically active bacteria optimized microbial interactions, thereby synergistically enhancing the biotransformation of complex organic matter in landfill leachate.
Collapse
Affiliation(s)
- Jiachen Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Mengmeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hang Yu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yi Zheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Luqi Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yanxiao Cao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xin Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, PR China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China.
| |
Collapse
|
16
|
Zhang LH, Li JN, Li YH, Min XZ, Kong DY, Han Y, Jiang C, Xiao H, Liang B, Zhang ZF. Tracing residual patterns and microbial communities of pharmaceuticals and personal care products from 17 urban landfills leachate in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135295. [PMID: 39047556 DOI: 10.1016/j.jhazmat.2024.135295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/07/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Landfill leachate contributes significantly to the presence of pharmaceuticals and personal care products (PPCPs) in the environment, and is a crucial source of contamination. To examine the occurrence of PPCPs and microbial communities, this study comprehensively investigated the concentrations of PPCPs and the abundance of microorganisms in the leachate from 17 municipal landfills across China. Generally, Lidocaine, Linear alkylbenzene sulfonate-C11, and Triclocarban, which are closely associated with human activities, exhibited a detection frequency of 100 % in the leachate. Driven by consumer demand, analgesic and antipyretic drugs have emerged as the most prominent PPCPs in leachate (accounting for 39.9 %). Notably, the Ibuprofen peaked at 56.3 μg/L. Regarding spatial distribution, the contamination of PPCPs in leachates from the eastern regions of China was significantly higher than that in other regions, owing to the level of economic development and demographic factors. Furthermore, the 16S rRNA results revealed significant differences in microbial communities among the leachates from different areas. Although the impact of PPCPs on microbial communities may not be as significant as that of environmental factors, most positive correlations between PPCPs and microorganisms indicate their potential role in providing nutrients and creating favorable conditions for microbial growth. Overall, this research offers new perspectives on the residual features of PPCPs and the microbial community structure in leachates from various regions in China.
Collapse
Affiliation(s)
- Lin-Hui Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - Jin-Nong Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - Yi-Hao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Xi-Ze Min
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - De-Yong Kong
- Liaoning HaiTianGe Environmental Protection Technology Co. Ltd., Fushun 113122, China
| | - Yue Han
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin 150028, China
| | - Chao Jiang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin 150028, China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
17
|
Wu Z, Ji Y, Liu G, Yu X, Shi K, Liang B, Freilich S, Jiang J. Electro-stimulation modulates syntrophic interactions in methanogenic toluene-degrading microbiota for enhanced functionality. WATER RESEARCH 2024; 260:121898. [PMID: 38865893 DOI: 10.1016/j.watres.2024.121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Syntrophy achieved via microbial cooperation is vital for anaerobic hydrocarbon degradation and methanogenesis. However, limited understanding of the metabolic division of labor and electronic interactions in electro-stimulated microbiota has impeded the development of enhanced biotechnologies for degrading hydrocarbons to methane. Here, compared to the non-electro-stimulated methanogenic toluene-degrading microbiota, electro-stimulation at 800 mV promoted toluene degradation and methane production efficiencies by 11.49 %-14.76 % and 75.58 %-290.11 %, respectively. Hydrocarbon-degrading gene bamA amplification and metagenomic sequencing analyses revealed that f_Syntrophobacteraceae MAG116 may act as a toluene degrader in the non-electro-stimulated microbiota, which was proposed to establish electron syntrophy with the acetoclastic methanogen Methanosarcina spp. (or Methanothrix sp.) through e-pili or shared acetate. In the electro-stimulated microbiota, 37.22 ± 4.33 % of Desulfoprunum sp. (affiliated f_Desulfurivibrionaceae MAG10) and 58.82 ± 3.74 % of the hydrogenotrophic methanogen Methanobacterium sp. MAG74 were specifically recruited to the anode and cathode, respectively. The potential electrogen f_Desulfurivibrionaceae MAG10 engaged in interspecies electron transfer with both syntroph f_Syntrophobacteraceae MAG116 and the anode, which might be facilitated by c-type cytochromes (e.g., ImcH, OmcT, and PilZ). Moreover, upon capturing electrons from the external circuit, the hydrogen-producing electrotroph Aminidesulfovibrio sp. MAG60 could share electrons and hydrogen with the methanogen Methanobacterium sp. MAG74, which uniquely harbored hydrogenase genes ehaA-R and ehbA-P. This study elucidates the microbial interaction mechanisms underlying the enhanced metabolic efficiency of the electro-stimulated methanogenic toluene-degrading microbiota, and emphasizes the significance of metabolic and electron syntrophic interactions in maintaining the stability of microbial community functionality.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yanhan Ji
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiping Liu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Yu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shiri Freilich
- Newe-Ya'ar Research Center, Agricultural Research Organization, Ministry of Agriculture, Israel
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
18
|
Wang H, Zhang L, Cui H, Ma X, Li Z, Liang B, Wang AJ. Mechanisms linking triclocarban biotransformation to functional response and antimicrobial resistome evolution in wastewater treatment systems. WATER RESEARCH 2024; 260:121909. [PMID: 38878310 DOI: 10.1016/j.watres.2024.121909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024]
Abstract
Evaluating the role of antimicrobials biotransformation in the regulation of metabolic functions and antimicrobial resistance evolution in wastewater biotreatment systems is crucial to ensuring water security. However, the associated mechanisms remain poorly understood. Here, we investigate triclocarban (TCC, one of the typical antimicrobials) biotransformation mechanisms and the dynamic evolution of systemic function disturbance and antimicrobial resistance risk in a complex anaerobic hydrolytic acidification (HA)-anoxic (ANO)/oxic (O) process. We mined key functional genes involved in the TCC upstream (reductive dechlorination and amide bonds hydrolysis) and downstream (chloroanilines catabolism) biotransformation pathways by metagenomic sequencing. Acute and chronic stress of TCC inhibit the production of volatile fatty acids (VFAs), NH4+ assimilation, and nitrification. The biotransformation of TCC via a single pathway cannot effectively relieve the inhibition of metabolic functions (e.g., carbon and nitrogen transformation and cycling) and enrichment of antimicrobial resistance genes (ARGs). Importantly, the coexistence of TCC reductive dechlorination and hydrolysis pathways and subsequent ring-opening catabolism play a critical role for stabilization of systemic metabolic functions and partial control of antimicrobial resistance risk. This study provides new insights into the mechanisms linking TCC biotransformation to the dynamic evolution of systemic functions and risks, and highlights critical regulatory information for enhanced control of TCC risks in complex biotreatment systems.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
19
|
Chen X, Hu J, Cao D, Yang W, Zhang Z, Zu Y, Chen F, Zhiling L, Aijie W. Construction of biochar-based organohalide-respiring bacterial agent for remediation of 2,4,6-trichlorophenol contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134438. [PMID: 38718504 DOI: 10.1016/j.jhazmat.2024.134438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024]
Abstract
Construction of an efficient bio-reductive dechlorination system remains challenging due to the narrow ecological niche and low-growth rate of organohalide-respiring bacteria during field remediation. In this study, a biochar-based organohalide-respiring bacterial agent was obtained, and its performance and effects on indigenous microbial composition, diversity, and inter-relationship in soil were investigated. A well-performing material, Triton X-100 modified biochar (BC600-TX100), was found to have the superior average pore size, specific surface area and hydrophicity, compared to other materials. Interestingly, Pseudomonas aeruginosa CP-1, which is capable of 2,4,6-TCP dechlorination, showed a 348 times higher colonization cell number on BC600-TX100 than that of BC600 after 7 d. Meanwhile, the dechlorination rate in soil showed the highest (0.732 d-1) in the BC600-TX100 bacterial agent than in the other agents. The long-term performance of the BC600-TX100 OHRB agent was also verified, with a stable dechlorination activity over six cycles. Soil microbial community analysis found the addition of the BC600-TX100 OHRB agent significantly increased the relative abundance of genus Pseudomonas from 1.53 % to 11.2 %, and Pseudomonas formed a close interaction relationship with indigenous microorganisms, creating a micro-ecological environment conducive to reductive dechlorination. This study provides a feasible bacterial agent for the in-situ bioremediation of soil contaminated organohalides. ENVIRONMENTAL IMPLICATION: Halogenated organic compounds are a type of toxic, refractory, and bio-accumulative persistent compounds widely existed in environment, widely detected in the air, water, and soil. In this study, we provide a feasible bacterial agent for the in-situ bioremediation of soil contaminated halogenated organic compounds. The application of biochar provides new insights for "Turning waste into treasure", which meets with the concept of green chemistry.
Collapse
Affiliation(s)
- Xueqi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jiatian Hu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Di Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wenxin Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zimeng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yunxia Zu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Li Zhiling
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Wang Aijie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| |
Collapse
|
20
|
Shi K, Liang B, Cheng HY, Wang HC, Liu WZ, Li ZL, Han JL, Gao SH, Wang AJ. Regulating microbial redox reactions towards enhanced removal of refractory organic nitrogen from wastewater. WATER RESEARCH 2024; 258:121778. [PMID: 38795549 DOI: 10.1016/j.watres.2024.121778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/28/2024]
Abstract
Biotechnology for wastewater treatment is mainstream and effective depending upon microbial redox reactions to eliminate diverse contaminants and ensure aquatic ecological health. However, refractory organic nitrogen compounds (RONCs, e.g., nitro-, azo-, amide-, and N-heterocyclic compounds) with complex structures and high toxicity inhibit microbial metabolic activity and limit the transformation of organic nitrogen to inorganic nitrogen. This will eventually result in non-compliance with nitrogen discharge standards. Numerous efforts suggested that applying exogenous electron donors or acceptors, such as solid electrodes (electrostimulation) and limited oxygen (micro-aeration), could potentially regulate microbial redox reactions and catabolic pathways, and facilitate the biotransformation of RONCs. This review provides comprehensive insights into the microbial regulation mechanisms and applications of electrostimulation and micro-aeration strategies to accelerate the biotransformation of RONCs to organic amine (amination) and inorganic ammonia (ammonification), respectively. Furthermore, a promising approach involving in-situ hybrid anaerobic biological units, coupled with electrostimulation and micro-aeration, is proposed towards engineering applications. Finally, employing cutting-edge methods including multi-omics analysis, data science driven machine learning, technology-economic analysis, and life-cycle assessment would contribute to optimizing the process design and engineering implementation. This review offers a fundamental understanding and inspiration for novel research in the enhanced biotechnology towards RONCs elimination.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hong-Cheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wen-Zong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing-Long Han
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
21
|
Hu W, Jin HY, Gao XY, Tang CC, Zhou AJ, Liu W, Ren YX, Li Z, He ZW. Biochar derived from alkali-treated sludge residue regulates anaerobic digestion: Enhancement performance and potential mechanisms. ENVIRONMENTAL RESEARCH 2024; 251:118578. [PMID: 38423498 DOI: 10.1016/j.envres.2024.118578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/24/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Biochar produced from bio-wastes has been widely used to promote the performance of anaerobic digestion. Waste activated sludge (WAS) is considered as a kind of popular precursor for biochar preparation, but the abundant resources in WAS were neglected previously. In this study, the roles of biochar prepared from raw, pretreated, and fermented sludge on anaerobic digestion were investigated. That is, parts of carbon sources and nutrients like polysaccharides, proteins, and phosphorus were firstly recovered after sludge pretreatment or fermentation, and then the sludge residuals were used as raw material to prepare biochar. The methane yield improved by 22.1% with adding the biochar (AK-BC) prepared by sludge residual obtained from alkaline pretreatment. Mechanism study suggested that the characteristics of AK-BC like specific surface area and defect levels were updated. Then, the conversion performance of intermediate metabolites and electro-activities of extracellular polymeric substances were up-regulated. As a result, the activity of electron transfer was increased with the presence of AK-BC, with increase ratio of 21.4%. In addition, the electroactive microorganisms like Anaerolineaceae and Methanosaeta were enriched with the presence of AK-BC, and the potential direct interspecies electron transfer was possibly established. Moreover, both aceticlastic and CO2-reducing methanogenesis pathways were improved by up-regulating related enzymes. Therefore, the proposed strategy can not only obtain preferred biochar but also recover abundant resources like carbon source, nutrients, and bioenergy.
Collapse
Affiliation(s)
- Wen Hu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hong-Yu Jin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiang-Yu Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
22
|
Tang CC, Hu YR, Zhang M, Chen SL, He ZW, Li ZH, Tian Y, Wang XC. Role of phosphate in microalgal-bacterial symbiosis system treating wastewater containing heavy metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123951. [PMID: 38604305 DOI: 10.1016/j.envpol.2024.123951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Phosphorus is one of the important factors to successfully establish the microalgal-bacterial symbiosis (MABS) system. The migration and transformation of phosphorus can occur in various ways, and the effects of phosphate on the MABS system facing environmental impacts like heavy metal stress are often ignored. This study investigated the roles of phosphate on the response of the MABS system to zinc ion (Zn2+). The results showed that the pollutant removal effect in the MABS system was significantly reduced, and microbial growth and activity were inhibited with the presence of Zn2+. When phosphate and Zn2+ coexisted, the inhibition effects of pollutants removal and microbial growth rate were mitigated compared to that of only with the presence of Zn2+, with the increasing rates of 28.3% for total nitrogen removal, 48.9% for chemical oxygen demand removal, 78.3% for chlorophyll-a concentration, and 13.3% for volatile suspended solids concentration. When phosphate was subsequently supplemented in the MABS system after adding Zn2+, both pollutants removal efficiency and microbial growth and activity were not recovered. Thus, the inhibition effect of Zn2+ on the MABS system was irreversible. Further analysis showed that Zn2+ preferentially combined with phosphate could form chemical precipitate, which reduced the fixation of MABS system for Zn2+ through extracellular adsorption and intracellular uptake. Under Zn2+ stress, the succession of microbial communities occurred, and Parachlorella was more tolerant to Zn2+. This study revealed the comprehensive response mechanism of the co-effects of phosphate and Zn2+ on the MABS system, and provided some insights for the MABS system treating wastewater containing heavy metals, as well as migration and transformation of heavy metals in aquatic ecosystems.
Collapse
Affiliation(s)
- Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Ya-Ru Hu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Min Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Sheng-Long Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhi-Hua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaochang C Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China
| |
Collapse
|
23
|
Fang S, Cao W, Wu Q, Cheng S, Jin H, Pang H, Zhou A, Feng L, Cao J, Luo J. Dynamic microbiome disassembly and evolution induced by antimicrobial methylisothiazolinone in sludge anaerobic fermentation for volatile fatty acids generation. WATER RESEARCH 2024; 251:121139. [PMID: 38237458 DOI: 10.1016/j.watres.2024.121139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 02/12/2024]
Abstract
In the post-COVID-19 pandemic era, various antimicrobials have emerged and concentrated in waste-activated sludge (WAS), affecting the biological treatment of WAS. However, there is still a knowledge gap in the dynamic response and adaptive mechanism of anaerobic microbiome under exogenous antimicrobial stress. This study found that methylisothiazolinone (MIT, as a typic antimicrobial) caused an interesting lag effect on the volatile fatty acids (VFAs) promotion in the WAS anaerobic fermentation process. MIT was effective to disintegrate the extracellular polymeric substances (EPS), and those functional anaerobic microorganisms were easily exposed and negatively impacted by the MIT interference after the loss of protective barriers. Correspondingly, the ecological interactions and microbial metabolic functions related to VFA biosynthesis (e.g., pyruvate metabolism) were downregulated at the initial stage. The syntrophic consortia gradually adapted to the interference and attenuated the MIT stress by activating chemotaxis and resistance genes (e.g., excreting, binding, and inactivating). Due to the increased bioavailable substrates in the fermentation systems, the dominant microorganisms (i.e., Clostridium and Caloramator) with both VFAs production and MIT-tolerance functions have been domesticated. Moreover, MIT disrupted the syntrophic interaction between acetogens and methanogens and totally suppressed methanogens' metabolic activities. The VFA production derived from WAS anaerobic fermentation was therefore enhanced due to the interference of antimicrobial MIT stress. This work deciphered dynamic changes and adaptive evolution of anaerobic syntrophic consortia in response to antimicrobial stress and provided guidance on the evaluation and control of the ecological risks of exogenous pollutants in WAS treatment.
Collapse
Affiliation(s)
- Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wangbei Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Song Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Hongqi Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi 'an University of Architecture and Technology, Xi 'an 710055, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
24
|
Wei Y, Zhang L, Liang B, Cui H, Shi K, Liu Z, Zhou A, Yue X. Synergistic Control of Trimethoprim and the Antimicrobial Resistome in Electrogenic Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2847-2858. [PMID: 38299532 DOI: 10.1021/acs.est.3c05870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Synergistic control of the risks posed by emerging antimicrobials and antibiotic resistance genes (ARGs) is crucial for ensuring ecological safety. Although electrogenic respiration can enhance the biodegradation of several antimicrobials and reduce ARGs accumulation, the association mechanisms of antimicrobial biodegradation (trimethoprim, TMP) with the fate of the antimicrobial resistome remain unclear. Here, the biotransformation pathway of TMP, microbial associations, and functional gene profiles (e.g., degradation, antimicrobial resistance, and electron transfer) were analyzed. The results showed that the microbial electrogenic respiration significantly enhanced the biodegradation of TMP, especially with a cosubstrate sodium acetate supply. Electroactive bacteria enriched in the electrode biofilm positively correlated with potential TMP degraders dominated in the planktonic communities. These cross-niche microbial associations may contribute to the accelerated catabolism of TMP and extracellular electron transfer. Importantly, the evolution and dissemination of overall ARGs and mobile genetic elements (MGEs) were significantly weakened due to the enhanced cometabolic biodegradation of TMP. This study provides a promising strategy for the synergistic control of the water ecological risks of antimicrobials and their resistome, while also highlighting new insights into the association of antimicrobial biodegradation with the evolution of the resistome in an electrically integrated biological process.
Collapse
Affiliation(s)
- Yaoli Wei
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
25
|
Zhao J, Duan G, Zhu D, Li J, Zhu Y. Microbial-influenced pesticide removal co-occurs with antibiotic resistance gene variation in soil-earthworm-maize system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123010. [PMID: 38012967 DOI: 10.1016/j.envpol.2023.123010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Within human-influenced landscapes, pesticides cooccur with a variety of antibiotic stressors. However, the relationship between pesticides removal process and antibiotic resistance gene variation are not well understood. This study explored pesticide (topramezone, TPZ) and antibiotic (polymyxin E, PME) co-contamination using liquid chromatography-tandem mass spectrometry (LC-MS/MS), bacterial-16 S rRNA sequencing and high-throughput quantitative polymerase chain reaction (HT-qPCR) in a soil-earthworm-maize system. After incubating soil for 28 days with TPZ and PME (10 mg kg-1 dry weight), earthworm weight-gain, mortality rates, and maize plant weight-gain only differed slightly, but height-gain significantly decreased. PME significantly increased TPZ-removal in the soil. Accumulation of TPZ in earthworm's tissues may pose potential risks in the food chain. Combined pollution altered the microbial community structure and increased the abundance of functional microorganisms involved in aromatic compound degradation. Furthermore, maize rhizosphere can raise resistance genes, however earthworms can reduce resistance genes. Co-contamination increased absolute abundance of mobile genetic elements (MGEs) in bulk-soil samples, antibiotic resistance genes (ARGs) in skin samples and number of ARGs in bulk-soil samples, while decreased absolute abundance of transposase gene in bulk-soil samples and number of ARGs in rhizosphere-soil samples. Potential hosts harbouring ARGs may be associated with the antagonistic effect during resistance and detoxification of TPZ and PMB co-occurrence. These findings provide insights into the mechanism underlining pesticide removal regarding occurrence of ARGs in maize agroecosystem.
Collapse
Affiliation(s)
- Jun Zhao
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guilan Duan
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Dong Zhu
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jianzhong Li
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongguan Zhu
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
26
|
Song Z, Liao R, Su X, Zhang X, Zhao Z, Sun F. Development of a novel three-dimensional biofilm-electrode system (3D-BES) loaded with Fe-modified biochars for enhanced pollutants removal in landfill leachate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166980. [PMID: 37699484 DOI: 10.1016/j.scitotenv.2023.166980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023]
Abstract
Different mass ratio iron (Fe)-loaded biochars (FeBCs) were prepared from food waste and used in the three-dimensional biofilm-electrode systems (3D-BES) as particular electrodes for landfill leachate treatment. Compared to the unmodified biochar (BC), specific surface area of Fe-loaded biochars (FeBC-3 with a Fe: biochar of 0.2:1) increased from 63.01 m2/g to 184.14 m2/g, and pore capacity increased from 0.038 cm3/g to 0.111 cm3/g. FeBCs provided more oxygen-containing functional groups and exhibited excellent redox properties. Installed with FeBC-3 as particular electrode, both NH4+-N and chemical oxygen demand COD removals in 3D-BESs were well fitted with the pseudo-first-order model, with the maximum removal efficiencies of 98.6 % and 95.5 %, respectively. The batch adsorption kinetics experiments confirmed that the maximum NH4+-N (7.5 mg/g) and COD (21.8 mg/g) adsorption capacities were associated closely with the FeBC-3 biochar. In contrast to the 3D-BES with the unmodified biochar, Fe-loaded biochars significantly increased the abundance of microorganisms being capable of removing organics and ammonia. Meanwhile, the increased content of dehydrogenase (DHA) and electron transport system activity (ETSA) evidenced that FeBCs could enhance microbial internal activities and regulate electron transfer process among functional microorganisms. Consequently, it is concluded that Fe-loaded biochar to 3D-BES is effective in enhancing pollutant removals in landfill leachate and provided a reliable and effective strategy for refractory wastewater treatment.
Collapse
Affiliation(s)
- Zi Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Runfeng Liao
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiaoli Su
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zilong Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
27
|
Guan X, Zhao Z, Jiang J, Fu L, Liu J, Pan Y, Gao S, Wang B, Chen Z, Wang X, Sun H, Jiang B, Dong Y, Zhou Z. Succession and assembly mechanisms of seawater prokaryotic communities along an extremely wide salinity gradient. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:545-556. [PMID: 37537784 PMCID: PMC10667648 DOI: 10.1111/1758-2229.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
Salinity is an important environmental factor in microbial ecology for affecting the microbial communities in diverse environments. Understanding the salinity adaptation mechanisms of a microbial community is a significant issue, while most previous studies only covered a narrow salinity range. Here, variations in seawater prokaryotic communities during the whole salt drying progression (salinity from 3% to 25%) were investigated. According to high-throughput sequencing results, the diversity, composition, and function of seawater prokaryotic communities varied significantly along the salinity gradient, expressing as decreased diversity, enrichment of some halophilic archaea, and powerful nitrate reduction in samples with high salt concentrations. More importantly, a sudden and dramatic alteration of prokaryotic communities was observed when salinity reached 16%, which was recognized as the change point. Combined with the results of network analysis, we found the increasing of complexity but decreasing of stability in prokaryotic communities when salinity exceeded the change point. Moreover, prokaryotic communities became more deterministic when salinity exceeded the change point due to the niche adaptation of halophilic species. Our study showed that substantial variations in seawater prokaryotic communities along an extremely wide salinity gradient, and also explored the underlying mechanisms regulating these changes.
Collapse
Affiliation(s)
- Xiaoyan Guan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Zelong Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Jingwei Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Lei Fu
- Dalian Salt Chemical Group Co., LtdDalianLiaoningPeople's Republic of China
| | - Jiaojiao Liu
- Dalian Salt Chemical Group Co., LtdDalianLiaoningPeople's Republic of China
| | - Yongjia Pan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Shan Gao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Bai Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Zhong Chen
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Xuda Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Hongjuan Sun
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Bing Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Ying Dong
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Zunchun Zhou
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| |
Collapse
|
28
|
Yang P, Gao Y, Wang N, Zhu Y, Xue L, Han Y, Liu J, He W, Feng Y. The restricted mass transfer inside the anode pore channel affects the electroactive biofilms formation, community composition and the power production in microbial electrochemical systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165448. [PMID: 37442459 DOI: 10.1016/j.scitotenv.2023.165448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Porous anodes improve system performance in microbial electrochemical systems by increasing the specific surface area for electroactive bacteria. In this study, multilayer anodes with different pore diameters were constructed to assess the impact of pore size and depth on anode performance. This layered structure makes detecting electroactive biofilms more accessible layer by layer, which is the first study to examine electroactive biofilms' molecular biology and electrochemical properties at different depths in pores with varied pore sizes. The millimeter-scale pores inside the bioanode have a limited effect in increasing power. The larger the pore diameter, the higher the maximum power density (Pmax) obtained. The Pmax of anodes with 4 mm pore (1.91 ± 0.15 W m-2) was 1.4 times higher than that of the non-perforated (1.37 ± 0.07 W m-2) and 0.5 mm pore anodes (1.39 ± 0.04 W m-2). Electricigens can colonize into pore channels for at least 10 mm with a pore diameter ≥3 mm and current densities >0.05 A m-2. However, in the pores channel with 0.5 mm diameter, electricigens can only colonize to a depth of 2 mm. The biofilm thickness, electricity output, metabolic activity, and biocommunity changed with pore depth and were restricted by the limited mass transfer. The Geobacter sp. was the dominant species in inter-pore biofilms, with 43.8 %-78.6 % in abundance and decreased in quantity as pore depth increased. The inter-pore biofilms on the outer layer contributed a current density of 0.17 ± 0.003 A m-2, while that of the inner layer was only 0.02 ± 0.01 A m-2. Further studies found that the pore edge mass transfer effect can contribute up to 75 % of the current. The mass transfer process at the pore edge region could be a multidirectional mass transfer rather than a pore channel mass transfer.
Collapse
Affiliation(s)
- Pinpin Yang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yaqian Gao
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Naiyu Wang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yujie Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lefei Xue
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yu Han
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| |
Collapse
|
29
|
Tang CC, Zhang BC, Yao XY, Sangeetha T, Zhou AJ, Liu W, Ren YX, Li Z, Wang A, He ZW. Natural zeolite enhances anaerobic digestion of waste activated sludge: Insights into the performance and the role of biofilm. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118704. [PMID: 37540982 DOI: 10.1016/j.jenvman.2023.118704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Anaerobic digestion is widely employed for the treatment of waste activated sludge (WAS) due to its advantages like simultaneous energy recovery and sludge stabilization, promoting carbon-neutral operation of wastewater treatment plants. Natural zeolite, a low-cost and eco-friendly additive, has the potential to improve methane production from anaerobic digestion. This study investigated the effects of natural zeolite on anaerobic digestion when the substrate was WAS. It was found that methane production potential in response to natural zeolite was dosage-dependent. The optimal dosage was 0.1 g zeolite/g volatile suspended solids (VSS), with a methane yield of 181.89 ± 6.75 mL/g VSS, which increased by 20.1% compared to that of the control. Although the methane yields with other dosages of natural zeolite were higher than that of control, they were lesser than that with 0.1 g zeolite/g VSS. Natural zeolite affected transfer and conversion of proteins much more than polysaccharides in liquid phase and extracellular polymeric substances. In anaerobic digestion, natural zeolite had with little effects on WAS solubilization, while it improved hydrolysis, acidification, and methanogenesis. The dosages of natural zeolite did have significant effects on bacterial communities in biofilm rather than suspension, while the archaeal communities in biofilm and suspension were all greatly related to natural zeolite dosages. The developed biofilms promoted richness and functionality of microbial communities. The syntrophic metabolism relationships between methanogens and bacteria were improved, which was proved by selective enrichment of Methanosarcina, Syntrophomonas, and Petrimonas. The findings of this work provided some new solutions for promoting methane production from WAS, and the roles of natural zeolite in anaerobic digestion.
Collapse
Affiliation(s)
- Cong-Cong Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Bao-Cai Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xing-Ye Yao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Thangavel Sangeetha
- Research Center of Energy Conservation for New Generation of Residential, Commercial, And Industrial Sectors, National Taipei University of Technology, Taipei, 10608, Taiwan, China; Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yong-Xiang Ren
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Zhang-Wei He
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
30
|
Song Z, Liao R, Zhang X, Su X, Wang M, Zeng H, Dong W, Sun F. Simultaneous methanogenesis and denitrification in an anaerobic moving bed biofilm reactor for landfill leachate treatment: Ameliorative effect of rhamnolipids. WATER RESEARCH 2023; 245:120646. [PMID: 37748343 DOI: 10.1016/j.watres.2023.120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/13/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
In this study, an anaerobic moving bed biofilm reactor (AnMBBR) was developed for simultaneous methanogenesis and denitrification (SMD) to treat high-strength landfill leachate for the first time. A novel strategy using biosurfactant to ameliorate the inhibition of landfill leachate on the SMD performance was proposed and the underlying mechanisms were explored comprehensively. With the help of rhamnolipids, the chemical oxygen demand (COD) removal efficiency of landfill leachate was improved from 86.0% ± 2.9% to 97.5% ± 1.6%, while methane yields increased from 50.1 mL/g-COD to 69.6 mL/g-COD, and the removal efficiency of NO3--N was also slightly increased from 92.5% ± 1.9% to 95.6% ± 1.0%. The addition of rhamnolipids increased the number of live cells and enhanced the secretion of extracellular polymeric substances (EPS) and key enzyme activity, indicating that the inhibitory effect was significantly ameliorated. Methanogenic and denitrifying bacteria were enhanced by 1.6 and 1.1 times, respectively. Analysis of the microbial metabolic pathways demonstrated that landfill leachate inhibited the expression of genes involved in methanogenesis and denitrification, and that their relative abundance could be upregulated with the assistance of rhamnolipids addition. Moreover, extended Deraguin - Landau - Verwery - Oxerbeek (XDLVO) theory analysis indicated that rhamnolipids reduced the repulsive interaction between biofilms and pollutants with a 57.0% decrease in the energy barrier, and thus accelerated the adsorption and uptake of pollutants onto biofilm biomass. This finding provides a low-carbon biological treatment protocol for landfill leachate and a reliable and effective strategy for its sustainable application.
Collapse
Affiliation(s)
- Zi Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Runfeng Liao
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiaoli Su
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mingming Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haojie Zeng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wenyi Dong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Feiyun Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
31
|
Xu W, Lu X, Tang X, Xu J, Ye Z. Mechanism of quinone mediators modified polyurethane foam for enhanced nitrobenzene reduction and denitrification. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:131830. [PMID: 37506643 DOI: 10.1016/j.jhazmat.2023.131830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/03/2023] [Accepted: 06/09/2023] [Indexed: 07/30/2023]
Abstract
The nitrobenzene (NB) reduction and denitrification performance of the immobilized biofilm (I-BF) reactors based on 9,10-anthraquinone-2-sulfonyl chloride (ASC) modified polyurethane foam (PUF-ASC) carriers were investigated. Experiments demonstrated that the quinone mediators enhanced NB reduction and denitrification performance. The NB reduction rates increased by 1.46, while the NO3--N removal rates increased by 1.55 times in the PUF-0.1ASC system. The quinone mediators promote extracellular polymeric substances (EPS) secretion. Electrochemical tests indicated that quinone mediators enhanced the electron transfer of biofilm systems. NADH generation was accelerated and microbial electron transport system activity (ETSA) was promoted. The abundance of genera with electrochemical activity, NB degradation and denitrification ability (Pseudomonas sp., Diaphorobate sp., and Acinetobacter sp.) increased. Metabolic pathways relating to NO3--N and NB reduction were uploaded. In conclusion, electron acquisition by NO3--N and NB was facilitated, bacterial community structure and metabolic pathways were affected by the quinone mediators.
Collapse
Affiliation(s)
- Wenjie Xu
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China; Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Xinyue Lu
- Technical research and development center, CNOOC Gas and Power Group Co., Ltd, Beijing 100028, China
| | - Xiaohui Tang
- No. 1 Engineering Design Institute, Academy of Environmental Planning and Design, Co., Ltd. Nanjing University, Nanjing 210003, China
| | - Jin Xu
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
32
|
Xia J, Li Y, Jiang X, Chen D, Shen J. Enhanced 4-bromophenol anaerobic biodegradation in electricity-stimulated anaerobic system: The key role of humic acid in reshaping microbial eco-interrelations and functions. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131426. [PMID: 37084513 DOI: 10.1016/j.jhazmat.2023.131426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Electricity-stimulated anaerobic system (ESAS) has shown great potential for halogenated organic pollutants removal. Exogenous redox mediators can improve electron transfer efficiency to enhance pollutants removal in ESAS. In this study, humic acid (HA), a low-cost electron mediator, was added into ESAS to enhance the simultaneous reductive debromination and mineralization of 4-bromophenol (4-BP). Results showed that the highest 4-BP removal efficiency at 48 h was 95.43 % with HA dosage of 30 mg/L at - 700 mV, which was 34.67 % higher than that without HA. The addition of HA decreased the requirement for electron donors and enriched Petrimonas and Rhodococcus for humus respiratory. HA addition regulated microbial interactions, and enhanced species cooperation between Petrimonas and dehalogenation species (Thauera and Desulfovibrio), phenol degradation-related species (Rhodococcus) as well as fermentative species (Desulfobulbus). Functional genes related to 4-BP degradation (dhaA/hemE/xylC/chnB/dmpN) and electron transfer (etfB/nuoA/qor/ccoN/coxA) were increased in abundance by HA addition. The enhanced microbial functions, as well as species cooperation and facilitation, all contributed to the improved 4-BP biodegradation in HA-added ESAS. This study provided a deep insight into microbial mechanism driven by HA and offered a promising strategy for improving halogenated organic pollutants removal from wastewater.
Collapse
Affiliation(s)
- Jiaohui Xia
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xinbai Jiang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
33
|
Tang CC, Zhang BC, Yao XY, Zhou AJ, Liu W, Ren YX, Li Z, Wang A, He ZW. Insights into response mechanism of anaerobic digestion of waste activated sludge to particle sizes of zeolite. BIORESOURCE TECHNOLOGY 2023:129348. [PMID: 37336456 DOI: 10.1016/j.biortech.2023.129348] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Anaerobic digestion has been proved as one promising strategy to simultaneously achieve resource recovery and environmental pollution control for biosolid treatment, and adding exogenous materials is a potential alternative to promote the above process. This study investigated response mechanisms of anaerobic digestion of waste activated sludge (WAS) to particle sizes of zeolite. Results showed that the methane production reached 186.75 ± 7.62 mL/g volatile suspended solids (VSS) with zeolite of the particle size of 0.2-0.5 mm and the additive dosage of 0.1 g/g VSS, which increased by 22% compared to that in control. Mechanism study revealed that zeolite could improve hydrolysis, acidification, and methanogenesis stages. Rapid consumption rates of soluble polysaccharides and proteins were observed, correspondingly, the accumulation of SCFAs were enhanced, and the compositions of SCFAs were optimized. Moreover, the activities of F420 increased by 28% with zeolite, and the syntrophic metabolism between bacteria and methanogens were promoted.
Collapse
Affiliation(s)
- Cong-Cong Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Bao-Cai Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xing-Ye Yao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yong-Xiang Ren
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhang-Wei He
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
34
|
Wang L, Liu C, Sangeetha T, Yan WM, Sun F, Li Z, Wang X, Pan K, Wang A, Bi X, Liu W. Integrated microbial electrolysis with high-alkali pretreated sludge digestion: Insight into the effect of voltage on methanogenesis and substrate metabolism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118007. [PMID: 37148763 DOI: 10.1016/j.jenvman.2023.118007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/11/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Integrated microbial electrolysis with anaerobic digestion is proved to be an effective way to improve methanogenesis efficiency of waste activated sludge (WAS). WAS requires pretreatment for efficient improvement of acidification or methanogenesis efficiency, but excessive acidification may inhibit the methanogenesis. In order to balance these two stages, a method for efficient WAS hydrolysis and methanogenesis has been proposed in this study by high-alkaline pretreatment integrated with microbial electrolysis system. The effects of pretreatment methods and voltage on the normal temperature digestion of WAS have also been further investigated with emphasis on the effects of voltage and substrate metabolism. The results show that compared to low-alkaline pretreatment (pH = 10), high-alkaline pretreatment (pH > 14) can double the SCOD release and promote the VFAs accumulation to 5657 ± 392 mg COD/L, but inhibit the methanogenesis process. Microbial electrolysis can alleviate this inhibition effectively through the rapid consumption of VFAs and speeding up of the methanogenesis process. The optimal methane yield of the integrated system is 120.4 ± 8.4 mL/g VSS at the voltage of 0.5 V. Enzyme activities, high-throughput and gene function prediction analysis reveal that the cathode and anode maintain the activity of methanogens under high substrate concentrations. Voltage positively responded to improved methane yield from 0.3 to 0.8 V, but higher than 1.1 V is found to be unfavorable for cathodic methanogenesis and results in additional power loss. These findings provide a perspective idea for rapid and maximum biogas recovery from WAS.
Collapse
Affiliation(s)
- Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150000, PR China
| | - Chang Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, PR China
| | - Thangavel Sangeetha
- Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei 10608, Taiwan; Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Wei Mon Yan
- Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei 10608, Taiwan; Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Fang Sun
- Heilongjiang Province Key Laboratory of Superhard Materials, Department of Physics, Mudanjiang Normal University, Mudanjiang, 157012, PR China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150000, PR China
| | - Xiaodong Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, PR China
| | - Kailing Pan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, PR China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150000, PR China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518000, PR China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, PR China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150000, PR China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518000, PR China.
| |
Collapse
|
35
|
Cui MH, Zhang Q, Justo Ambuchi J, Liu LY, Chen L, Niu SM, Zhang C, Liu HB, Tie C, Bi XJ, Liu H, Wang AJ. Evaluation of the Respective Contribution of Anode and Cathode for Triclosan Degradation in a Bioelectrochemical System. BIORESOURCE TECHNOLOGY 2023; 382:129121. [PMID: 37146695 DOI: 10.1016/j.biortech.2023.129121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
In this work, the bioelectrochemical system (BES) is a feasible alternative for successfully degrading typical refractory emerging contaminant triclosan (TCS). A single-chamber BES reactor with an initial TCS concentration of 1 mg/L, an applied voltage of 0.8 V, and a solution buffered with 50 mM PBS degraded 81.4±0.2% of TCS, exhibiting TCS degradation efficiency improvement to 90.6±0.2% with a biocathode formed from a reversed bioanode. Both bioanode and biocathode were able to degrade TCS with comparable efficiencies of 80.8±4.9% and 87.3±0.4%, respectively. Dechlorination and hydrolysis were proposed as the TCS degradation pathway in the cathode chamber, and another hydroxylation pathway was exclusive in the anode chamber. Microbial community structure analysis indicated Propionibacteriaceae was the predominant member in all electrode biofilms, and the exoelectrogen Geobacter was enriched in anode biofilms. This study comprehensively revealed the feasibility of operating BES technology for TCS degradation.
Collapse
Affiliation(s)
- Min-Hua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Qian Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Tai'an Water Conservancy Bureau, Tai'an 271299, PR China
| | - John Justo Ambuchi
- Department of Agronomy and Environmental Science, Rongo University, Rongo, Kenya
| | - Lan-Ying Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Lei Chen
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shi-Ming Niu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chao Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Hong-Bo Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chao Tie
- Jiangsu Zhonglin Environment Engineering Co., Ltd. Wuxi 214000, PR China
| | - Xue-Juan Bi
- Jiangsu Zhonglin Environment Engineering Co., Ltd. Wuxi 214000, PR China
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| |
Collapse
|
36
|
Shi K, Cheng H, Cornell CR, Wu H, Gao S, Jiang J, Liu T, Wang A, Zhou J, Liang B. Micro-aeration assisted with electrogenic respiration enhanced the microbial catabolism and ammonification of aromatic amines in industrial wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130943. [PMID: 36860074 DOI: 10.1016/j.jhazmat.2023.130943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Improvement of refractory nitrogen-containing organics biodegradation is crucial to meet discharged nitrogen standards and guarantee aquatic ecology safety. Although electrostimulation accelerates organic nitrogen pollutants amination, it remains uncertain how to strengthen ammonification of the amination products. This study demonstrated that ammonification was remarkably facilitated under micro-aerobic conditions through the degradation of aniline, an amination product of nitrobenzene, using an electrogenic respiration system. The microbial catabolism and ammonification were significantly enhanced by exposing the bioanode to air. Based on 16S rRNA gene sequencing and GeoChip analysis, our results indicated that aerobic aniline degraders and electroactive bacteria were enriched in suspension and inner electrode biofilm, respectively. The suspension community had a significantly higher relative abundance of catechol dioxygenase genes contributing to aerobic aniline biodegradation and reactive oxygen species (ROS) scavenger genes to protect from oxygen toxicity. The inner biofilm community contained obviously higher cytochrome c genes responsible for extracellular electron transfer. Additionally, network analysis indicated the aniline degraders were positively associated with electroactive bacteria and could be the potential hosts for genes encoding for dioxygenase and cytochrome, respectively. This study provides a feasible strategy to enhance nitrogen-containing organics ammonification and offers new insights into the microbial interaction mechanisms of micro-aeration assisted with electrogenic respiration.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Haoyi Cheng
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Carolyn R Cornell
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| | - Haiwei Wu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Jiandong Jiang
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Tiejun Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA; School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK 73019, USA; School of Computer Science, University of Oklahoma, Norman, OK 73019, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
37
|
Zhang L, Wang X, Chen Y, Zhang B, Xu H, Li C, Zhou Y. Medium-chain fatty acid production from thermal hydrolysed sludge without external electron donor supplementation. BIORESOURCE TECHNOLOGY 2023; 374:128805. [PMID: 36849100 DOI: 10.1016/j.biortech.2023.128805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
In this study, medium-chain fatty acid (MCFA) generation from mixed sludge (including primary sludge and waste activated sludge) was investigated without additional electron donors (EDs). 0.5 g COD/L of MCFAs was produced and the in situ generated ethanol could serve as the EDs during the anaerobic fermentation of mixed sludge without thermal hydrolysis process (THP) pretreatment. THP increased the MCFA production by approximately 128% in the anaerobic fermentation. During 102 days of operation, the fermentation of THP pre-treated mixed sludge stably generated 2.9 g COD/L MCFAs. The self-generated EDs could not maximize MCFA production, and external addition of ethanol improved MCFA yield. Caproiciproducens was the dominant chain-elongating bacteria. PICRUST2 revealed that both fatty acid biosynthesis and reverse β-oxidation pathways could participate in MCFA synthesis, and ethanol addition could enhance the contribution of the reverse β-oxidation pathway. Future studies should focus on the improvement of MCFA production from THP-assisted sludge fermentation.
Collapse
Affiliation(s)
- Liang Zhang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Xiuping Wang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Yun Chen
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Baorui Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Hui Xu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Chenchen Li
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
38
|
Shi K, Liang B, Feng K, Ning D, Cornell CR, Zhang Y, Xu W, Zhou M, Deng Y, Jiang J, Liu T, Wang A, Zhou J. Electrostimulation triggers an increase in cross-niche microbial associations toward enhancing organic nitrogen wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117301. [PMID: 36681035 DOI: 10.1016/j.jenvman.2023.117301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
As an efficient wastewater pretreatment biotechnology, electrostimulated hydrolysis acidification (eHA) has been used to accelerate the removal of refractory pollutants, which is closely related to the effects of electrostimulation on microbial interspecies associations. However, the ecological processes underpinning such linkages remain unresolved, especially for the microbial communities derived from different niches, such as the electrode surface and plankton. Herein, the principles of cross-niche microbial associations and community assembly were investigated using molecular ecological network and phylogenetic bin-based null model analysis (iCAMP) based on 16S rRNA gene sequences. The electrostimulated planktonic sludge and electrode biofilm displayed significantly (P < 0.05) 1.67 and 1.53 times higher organic nitrogen pollutant (azo dye Alizarin Yellow R) degradation efficiency than non-electrostimulation group, and the corresponding microbial community composition and structure were significantly (P < 0.05) changed. Electroactive bacteria and functional degraders were enriched in the electrode biofilm and planktonic sludge, respectively. Notably, electrostimulation strengthened the synergistic microbial associations (1.8 times more links) between sludge and biofilm members. Additionally, both electrostimulation and cross-niche microbial associations induced greater importance of deterministic assembly. Overall, this study highlights the specificity of cross-electrode surface microbial associations and ecological processes with electrostimulation and advances our understanding of the manipulation of sludge microbiomes in engineered wastewater treatment systems.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| | - Kai Feng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Daliang Ning
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Carolyn R Cornell
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | - Yanqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wenbin Xu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Min Zhou
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jiandong Jiang
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Tiejun Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA; School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA; School of Computer Science, University of Oklahoma, Norman, OK, 73019, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
39
|
Yang G, Xu H, Luo Y, Hei S, Song G, Huang X. Novel electro-assisted micro-aerobic cathode biological technology induces oxidative demethylation of N, N-dimethylformamide for efficient ammonification of refractory membrane-making wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130001. [PMID: 36152543 DOI: 10.1016/j.jhazmat.2022.130001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Recalcitrant and toxicological membrane-making wastewater displays negative impacts on environment, and this is difficult to treat efficiently using conventional hydrolytic acidification. In this study, a novel electro-assisted biological reactor with micro-aerobic cathode (EABR-MAC) was developed to improve the biodegradation and ammonification of N, N-dimethylformamide (DMF) in membrane-making wastewater, and the metabolic mechanism using metagenomic sequencing as comprehensively illustrated. The results showed that EABR-MAC significantly improved the ammonification of refractory organonitrogen and promoted DMF oxidative degradation by driving the electron transferred to the cathode. Additionally, the inhibition rates of oxygen uptake rate and nitrification in EABR-MAC were both lower under different cathode aeration frequency conditions. Microbial community analysis indicated that the functional fermentation bacteria and exoelectrogens, which were correlated with COD removal, ammonification, and detoxification, were significantly enriched upon electrostimulation, and the positive biological connections increased to form highly connected communities instead of competition. The functional genes revealed that EABR-MAC forcefully intervened with the metabolic pathway, so that DMF converted to formamide and ammonia by oxidative demethylation and formamide hydrolysis. The results of this study provide a promising strategy for efficient conversion of organonitrogen into ammonia nitrogen, and offer a new insight into the effects of electrostimulation on microbial metabolism.
Collapse
Affiliation(s)
- Guang Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yudong Luo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shengqiang Hei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guangqing Song
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
40
|
Xie J, Zou X, Chang Y, Xie J, Liu H, Cui MH, Zhang TC, Chen C. The microbial synergy and response mechanisms of hydrolysis-acidification combined microbial electrolysis cell system with stainless-steel cathode for textile-dyeing wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158912. [PMID: 36162577 DOI: 10.1016/j.scitotenv.2022.158912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Microbial electrolysis cell (MEC) has been existing problems such as poor applicability to real wastewater and lack of cost-effective electrode materials in the practical application of refractory wastewater. A hydrolysis-acidification combined MEC system (HAR-MECs) with four inexpensive stainless-steel and conventional carbon cloth cathodes for the treatment of real textile-dyeing wastewater, which was fully evaluated the technical feasibility in terms of parameter optimization, spectral analysis, succession and cooperative/competition effect of microbial. Results showed that the optimum performance was achieved with a 12 h hydraulic retention time (HRT) and an applied voltage of 0.7 V in the HAR-MEC system with a 100 μm aperture stainless-steel mesh cathode (SSM-100 μm), and the associated optimum BOD5/COD improvement efficiency (74.75 ± 4.32 %) and current density (5.94 ± 0.03 A·m-2) were increased by 30.36 % and 22.36 % compared to a conventional carbon cloth cathode. The optimal system had effective removal of refractory organics and produced small molecules by electrical stimulation. The HAR segment could greatly alleviate the imbalance between electron donors and electron acceptors in the real refractory wastewater and reduce the treatment difficulty of the MEC segment, while the MEC system improved wastewater biodegradability, amplified the positive and specific interactions between degraders, fermenters and electroactive bacteria due to the substrate complexity. The SSM-100 μm-based system constructed by phylogenetic molecular ecological network (pMEN) exhibited moderate complexity and significantly strong positive correlation between electroactive bacteria and fermenters. It is highly feasible to use HAR-MEC with inexpensive stainless-steel cathode for textile-dyeing wastewater treatment.
Collapse
Affiliation(s)
- Jiawei Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xinyi Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yaofeng Chang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Junxiang Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - He Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Min-Hua Cui
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, NE, USA
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
41
|
Zhang Y, Shi K, Cui H, Han J, Wang H, Ma X, Li Z, Zhang L, Nie S, Ma C, Wang A, Liang B. Efficient biodegradation of acetoacetanilide in hypersaline wastewater with a synthetic halotolerant bacterial consortium. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129926. [PMID: 36099740 DOI: 10.1016/j.jhazmat.2022.129926] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/27/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The high concentrations of salt and refractory toxic organics in industrial wastewater seriously restrict biological treatment efficiency and functional stability. However, how to construct a salt-tolerant biocatalytic community and realize the decarbonization coupled with detoxification toward green bio-enhanced treatment, has yet to be well elucidated. Here, acetoacetanilide (AAA), an important intermediate for many dyes and medicine synthesis, was used as the model amide pollutant to elucidate the directional enrichment of halotolerant degradative communities and the corresponding bacterial interaction mechanism. Combining microbial community composition and molecular ecological network analyses as well as the biodegradation efficiencies of AAA and its hydrolysis product aniline (AN) of pure strains, the core degradative bacteria were identified during the hypersaline AAA degradation process. A synthetic bacterial consortium composed of Paenarthrobacter, Rhizobium, Rhodococcus, Delftia and Nitratireductor was constructed based on the top-down strategy to treat AAA wastewater with different water quality characteristics. The synthetic halotolerant consortium showed promising treatment ability toward the simulated AAA wastewater (AAA 100-500 mg/L, 1-5% salinity) and actual AAA mother liquor. Additionally, the comprehensive toxicity of AAA mother liquor significantly reduced after biological treatment. This study provides a green biological approach for the treatment of hypersaline and high concentration of organics wastewater.
Collapse
Affiliation(s)
- Yanqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Shi
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinglong Han
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaodan Ma
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ling Zhang
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shichen Nie
- Shandong Hynar Water Environmental Protection Co., Ltd., Caoxian, China
| | - Changshui Ma
- Tai'an Hospital of Chinese Medicine, Tai'an 271000, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
42
|
Liu S, Wang Z, Feng X, Pyo SH. Refractory azo dye wastewater treatment by combined process of microbial electrolytic reactor and plant-microbial fuel cell. ENVIRONMENTAL RESEARCH 2023; 216:114625. [PMID: 36279915 DOI: 10.1016/j.envres.2022.114625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
An innovative design of microbial electrolytic reactor (MER) coupled with Ipomoea aquaticaForsk. plant microbial fuel cell (IAF-PMFC) was developed for azo dye wastewater treatment and electricity generation. This study aims to assess the sequential degradation of azo dye and the feasibility of energy self-sufficiency in the MER/IAF-PMFC system. The decomposition of azo dye into aromatic amines and dye decolorization occurred in the MER at high hydraulic loading of 0.28 m3/(m2·d), while dye intermediates were mainly mineralized in the IAF-PMFC at low hydraulic loading of 0.06 m3/(m2·d). The final decolorization efficiency and COD removal of the combined system reached 99.64% and 92.06% respectively, even at influent dye concentration of 1000 mg/L. The effects of open/closed circuit conditions, presence/absence of aquatic plant and different cathode areas on the performance of the IAF-PMFC for treating the effluent of the MER were systematically tested, and the results showed that closed-circuit condition, plant involvement and larger cathode area were more beneficial to decolorization, detoxification and mineralization of dye wastewater, bioelectricity output, plant growth and photosynthetic rate. The power consumption by the MER was 0.0163 kWh/m3 of dye wastewater, while the highest power generation of the IAF-PMFC reached 0.0183 kWh/m3. The current efficiency of the MER for dye decolorization was as high as 942.83%, while the maximum coulombic efficiency of the IAF-PMFC for intermediates metabolism was only 6.30%, which still had much space of bioelectricity generation promotion. The MER/IAF-PMFC technology can simultaneously realize refractory wastewater treatment and balance of electricity production and consumption.
Collapse
Affiliation(s)
- Shentan Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China; Biotechnology, Department of Chemistry, Faculty of Engineering, Lund University, SE-22100, Lund, Sweden
| | - Zuo Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| | - Xiaojuan Feng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China.
| | - Sang-Hyun Pyo
- Biotechnology, Department of Chemistry, Faculty of Engineering, Lund University, SE-22100, Lund, Sweden
| |
Collapse
|
43
|
Xie J, Zou X, Chang Y, Liu H, Cui MH, Zhang TC, Xi J, Chen C. A feasibility investigation of a pilot-scale bioelectrochemical coupled anaerobic digestion system with centric electrode module for real membrane manufacturing wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 368:128371. [PMID: 36423756 DOI: 10.1016/j.biortech.2022.128371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The large-scale application of bioelectrochemical coupled anaerobic digestion (BES-AD) is limited by the matching of electrode configuration and the applicability of real wastewater. In this study, a pilot-scale BES-AD system with an effective system volume of 5 m3 and a 1 m3 volume of a carbon fiber brush electrode module was constructed and tested for treatment of the membrane manufacturing wastewater. The results showed that the BOD5/COD of the wastewater was increased from 0.238 to 0.398 when the applied voltage was 0.9 V. The pollutants such as N, N-Dimethylacetamide and glycerol in wastewater were degraded significantly. The microorganisms in the electrode modules were spatially enriched. The fermenters (Norank_f__ML635J-40_aquatic_group, 6.55 %; unclassified_f__Propionibacteriaceae, 5.25 %) and degraders (Corynebacterium, 29.31 %) were mostly enriched at the bottom, while electroactive bacteria (Pseudomonas, 29.39 %, Geobacter, 7.86 %) were mostly enriched at the top. Combined with the economical construction and operation cost ($1708.8/m3 and $0.76/m3) of the BES-AD system.
Collapse
Affiliation(s)
- Jiawei Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xinyi Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yaofeng Chang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - He Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Min-Hua Cui
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, NE, USA
| | - Jiajian Xi
- Suzhou Sujing Environmental Engineering Co., Ltd, Suzhou 215200, PR China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
44
|
Wu Z, Liu G, Ji Y, Li P, Yu X, Qiao W, Wang B, Shi K, Liu W, Liang B, Wang D, Yanuka-Golub K, Freilich S, Jiang J. Electron acceptors determine the BTEX degradation capacity of anaerobic microbiota via regulating the microbial community. ENVIRONMENTAL RESEARCH 2022; 215:114420. [PMID: 36167116 DOI: 10.1016/j.envres.2022.114420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic degradation is the major pathway for microbial degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) under electron acceptor lacking conditions. However, how exogenous electron acceptors modulate BTEX degradation through shaping the microbial community structure remains poorly understood. Here, we investigated the effect of various exogenous electron acceptors on BTEX degradation as well as methane production in anaerobic microbiota, which were enriched from the same contaminated soil. It was found that the BTEX degradation capacities of the anaerobic microbiota gradually increased along with the increasing redox potentials of the exogenous electron acceptors supplemented (WE: Without exogenous electron acceptors < SS: Sulfate supplement < FS: Ferric iron supplement < NS: Nitrate supplement), while the complexity of the co-occurring networks (e.g., avgK and links) of the microbiota gradually decreased, showing that microbiota supplemented with higher redox potential electron acceptors were less dependent on the formation of complex microbial interactions to perform BTEX degradation. Microbiota NS showed the highest degrading capacity and the broadest substrate-spectrum for BTEX, and it could metabolize BTEX through multiple modules which not only contained fewer species but also different key microbial taxa (eg. Petrimonas, Achromobacter and Comamonas). Microbiota WE and FS, with the highest methanogenic capacities, shared common core species such as Sedimentibacter, Acetobacterium, Methanobacterium and Smithella/Syntrophus, which cooperated with Geobacter (microbiota WE) or Desulfoprunum (microbiota FS) to perform BTEX degradation and methane production. This study demonstrates that electron acceptors may alter microbial function by reshaping microbial community structure and regulating microbial interactions and provides guidelines for electron acceptor selection for bioremediation of aromatic pollutant-contaminated anaerobic sites.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Guiping Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Yanhan Ji
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Pengfa Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Xin Yu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Wenjing Qiao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Wenzhong Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Dong Wang
- Jiangsu Academy of Environmental Science and Technology Co., Ltd, Nanjing, 210095, China
| | - Keren Yanuka-Golub
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel.
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| |
Collapse
|
45
|
Liu B, Yao J, Ma B, Li S, Duran R. Disentangling biogeographic and underlying assembly patterns of fungal communities in metalliferous mining and smelting soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157151. [PMID: 35798111 DOI: 10.1016/j.scitotenv.2022.157151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Elucidating community assembly and their relevance to environmental variables are fundamental for understanding microbial diversity and functioning in terrestrial ecosystems, yet the geographical diversity and assembly patterns of the fungal community in metalliferous ecospheres associated with mining and smelting activities have received penurious understandings. Here, the fungal communities collected from three groups of soils around the mining and smelting sites were profiled by Internal Transcribed Spacer (ITS) sequencing, in order to understand the geographical distributions of fungal community diversities, structures, compositions, assembly processes and the occurrence patterns. The results suggested obvious biogeographic distribution patterns of fungal compositions among the three groups of soils. Among them, 15 fungal phyla including Ascomycota, Basidiomycota and Mortierellomycota were recognized across the samples. 12 abundant classes showing significantly different in relative abundances among the three groups of soils. Total metal(loid)s and level significantly decreased the fungal abundances and diversities. The community similarity demonstrated distance-decay pattern among the three sites. Metal(loid)s explained relatively higher fungal community variations (4.16 %) relative to other factors (1.89 %) and geography (1.21 %), though 83.32 % of the variations could not be explained. Stochastic dispersal limitation and undominated fraction were dominated relative to deterministic heterogeneous selection in total and individual site, respectively. These results highlighted the stochastic processes in governing the biogeography of fungal communities in mining and smelting ecospheres.
Collapse
Affiliation(s)
- Bang Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China
| | - Jun Yao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China.
| | - Bo Ma
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China
| | - Shuzhen Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
| | - Robert Duran
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China; Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| |
Collapse
|
46
|
Yuan Y, Zhang L, Chen T, Huang Y, Qian X, He J, Li Z, Ding C, Wang A. Simultaneous recovery of bio-sulfur and bio-methane from sulfate-rich wastewater by a bioelectrocatalysis coupled two-phase anaerobic reactor. BIORESOURCE TECHNOLOGY 2022; 363:127883. [PMID: 36067888 DOI: 10.1016/j.biortech.2022.127883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
The microbial electrolysis cell coupled the two-phase anaerobic digestion (MEC-TPAD) was developed for simultaneous recovery of bio-sulfur and bio-methane from sulfate-rich wastewater. In acidogenic phase, the produced sulfides were efficiently converted into bio-sulfur via anodic bio-oxidation, with a maximum recovery of 59 ± 5.5 %. The anode coupled acidogenesis produced more volatile fatty acids which were benefit for the subsequent methanogenesis. The cathode in methanogenic phase created a suitable pH condition and enhanced the methanogenesis. Correspondingly, the maximum bio-methane yield in MEC-TPAD was 2 times higher than that in TPAD. Microbial communities revealed that major functional consortia capable of sulfides oxidation (e.g. Alcaligenes) in anode biofilm, hydrogenotrophic methanogenesis (e.g. Methanobacterium) in cathode biofilm, and acetotrophic methanogenesis (e.g. Methanosaeta) in methanogenic sludge were enriched. Economic benefit could totally cover the cost of input electric energy. This work opens an appealing avenue for recovering nutrient and energy from wastewater.
Collapse
Affiliation(s)
- Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Lulu Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| | - Tianming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yutong Huang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xucui Qian
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Juan He
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhaoxia Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| | - Aijie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
47
|
Wang B, Liu W, Liang B, Jiang J, Wang A. Microbial fingerprints of methanation in a hybrid electric-biological anaerobic digestion. WATER RESEARCH 2022; 226:119270. [PMID: 36323204 DOI: 10.1016/j.watres.2022.119270] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/26/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Biomethane as a sustainable, alternative, and carbon-neutral renewable energy source to fossil fuels is highly needed to alleviate the global energy crisis and climate change. The conventional anaerobic digestion (AD) process for biomethane production from waste(water) streams has been widely employed while struggling with a low production rate, low biogas qualities, and frequent instability. The electric-biologically hybrid microbial electrochemical anaerobic digestion system (MEC-AD) prospects more stable and robust biomethane generation, which facilitates complex organic substrates degradation and mediates functional microbial populations by giving a small input power (commonly voltages < 1.0 V), mainly enhancing the communication between electroactive microorganisms and (electro)methanogens. Despite numerous bioreactor tests and studies that have been conducted, based on the MEC-AD systems, the integrated microbial fingerprints, and cooperation, accelerating substrate degradation, and biomethane production, have not been fully summarized. Herein, we present a comprehensive review of this novel developing biotechnology, beginning with the principles of MEC-AD. First, we examine the fundamentals, configurations, classifications, and influential factors of the whole system's performances (reactor types, applied voltages, temperatures, conductive materials, etc.,). Second, extracellular electron transfer either between diverse microbes or between microbes and electrodes for enhanced biomethane production are analyzed. Third, we further conclude (electro)methanogenesis, and microbial interactions, and construct ecological networks of microbial consortia in MEC-AD. Finally, future development and perspectives on MEC-AD for biomethane production are proposed.
Collapse
Affiliation(s)
- Bo Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China; Center for Electromicrobiology, Section for Microbiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark; Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Wenzong Liu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China.
| | - Bin Liang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China
| | - Jiandong Jiang
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Aijie Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| |
Collapse
|
48
|
Chen D, Zhao L, Wang Z, Li Y, Li Y, Yin M, Wang X, Yang Y. Successional dynamics of low C/N activated sludge system under salinity shock: Performance, nitrogen removal pathways, microbial community, and assembly. CHEMOSPHERE 2022; 307:135703. [PMID: 35842038 DOI: 10.1016/j.chemosphere.2022.135703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Limited carbon (low C/N) and salinity stress affect the stability of wastewater treatment plants. However, the effect of salinity shock on activated sludge systems with low C/N ratio wastewater remains unclear. An anaerobic/aerobic/anoxic sequencing batch reactor treating low C/N wastewater was established to investigate the effects of salinity shock on system performance, nitrogen removal pathways, microbial community, interactions, and assembly. The results showed that the effluent COD concentration could maintain a stable level, and the average COD removal efficiency was 94.9%. However, total nitrogen removal was significantly inhibited. With the addition of salinity, efficiencies of total nitrogen removal and simultaneous nitrification and denitrification decreased from 91.4 to 73.8% to 86.7 and 39.7%, respectively; however, nitrite reduction capacity increased by 25.4%. After removing salinity, ammonia oxidation capacity further deteriorated, evidenced by the increase in effluent NH4+-N from 8.0 to 11.8 mg/L. During the salinity shock, partial nitrification became the main nitrogen removal pathway because of the inhibition of Nitrospira and high nitrite accumulation ratio (>99.0%). Molecular ecological network analysis indicated that increased competition, decreased total modules, and disappearance of keystone taxa were related to the deterioration of ammonia oxidation capacity and simultaneous nitrification and denitrification. Moreover, the abundant denitrification module and increased denitrifiers contributed to the increase in nitrite reduction capacity. Salinity shock under low C/N conditions resulted in a stronger stochastic community assembly. This study provided information that can help enable stable operations for treating low C/N wastewater.
Collapse
Affiliation(s)
- Daying Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhimin Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Drainage Group Co., LTD, Beijing, 100061, China
| | - Yihan Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yang Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Meilin Yin
- School of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
49
|
Wang H, Yun H, Li M, Cui H, Ma X, Zhang Y, Pei X, Zhang L, Shi K, Li Z, Liang B, Wang A, Zhou J. Fate, toxicity and effect of triclocarban on the microbial community in wastewater treatment systems. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129796. [PMID: 36007371 DOI: 10.1016/j.jhazmat.2022.129796] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Triclocarban (TCC), one of the typical antimicrobial agents, is a contaminant of emerging concern commonly found in high concentration in water environments. However, the fate and toxicity of TCC in wastewater treatment systems remain poorly understood. Here, we investigated how TCC impacts chemical oxygen demand and inorganic nitrogen transformation in a hydrolytic anaerobic-anoxic/oxic process. In the anaerobic section, the transformation of TCC was dominated by reductive dechlorination and supplemented by two amid bonds hydrolysis. In the anoxic and oxic sections, the hydrolysis of amid bonds dominated. The toxicity was reduced after the treatment (IC50 from 0.09 to 0.54). TCC inhibited NH4+-N removal in the anaerobic section and led to the NO3--N accumulation (2.84-4.13 mg/L) after treatment, with the abundance of N-removal bacteria decreased by 6%. Furthermore, the original ecological niche was gradually replaced by TCC-resistant/degradative bacteria, formating new microbial modules to resist the TCC stress. Importantly, fourteen genera including Methanosaeta, Longilinea, Dokdonella and Mycobacterium as potential bioindicators warning TCC and its intermediates were proposed. Overall, this study provides new insights into the fate of TCC in biological wastewater treatment systems and suggests a great importance for TCC control to ensure the health and resilience of ecosystems.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Minghan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuanyuan Pei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
50
|
Wang J, Huang JJ, Zhou Y, Liao Y, Li S, Zhang B, Feng S. Synchronous N and P Removal in Carbon-Coated Nanoscale Zerovalent Iron Autotrophic Denitrification─The Synergy of the Carbon Shell and P Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13314-13326. [PMID: 36041071 DOI: 10.1021/acs.est.2c02376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fe0 is a promising electron donor for autotrophic denitrification in the simultaneous removal of nitrate and phosphorus in low C/N wastewater. However, P removal may inevitably inhibit bio-denitrification. It has not been well recognized and led to an overdose of iron materials. This study employed carbon-coated zerovalent iron (Fe0@C) to support autotrophic denitrification to mitigate the inhibition effects of P removal and enhance both N and P removal. The critical role of the carbon shell in Fe0@C was to block the direct contact between Fe0 and P and NO3--N, to maintain the Fe0 activity. Besides, P inhibited the chemical reduction of NO3--N by competing for Fe0 active sites. This indirectly boosted H2 generation and promoted bio-denitrification. P removal displayed negligible effects on microbial species but indirectly enhanced the nitrogen metabolic activities because of promoted H2 in Fe0@C-based autotrophic denitrification. Bio-denitrification, in turn, strengthened Fe-P co-precipitation by promoting the formation of ferric hydroxide as a secondary adsorbent for P removal. This study demonstrated an efficient method for simultaneous N and P removal in autotrophic denitrification and revealed the synergistic interactions among N and P removal processes.
Collapse
Affiliation(s)
- Jingshu Wang
- Sino-Canadian Joint R&D Center on Water and Environmental Safety/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, P.R. China
| | - Jinhui Jeanne Huang
- Sino-Canadian Joint R&D Center on Water and Environmental Safety/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, P.R. China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center on Water and Environmental Safety/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, P.R. China
| | - Song Li
- Sino-Canadian Joint R&D Center on Water and Environmental Safety/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, P.R. China
| | - Beichen Zhang
- Sino-Canadian Joint R&D Center on Water and Environmental Safety/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, P.R. China
| | - Shiteng Feng
- Sino-Canadian Joint R&D Center on Water and Environmental Safety/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, P.R. China
| |
Collapse
|