1
|
Li H, Si D, Wang H, Jiang H, Li P, He Y. Cascading microbial regulation of autochthonous DOM stability in a picocyanobacteria-dominated estuarine reservoir. WATER RESEARCH 2025; 283:123752. [PMID: 40359894 DOI: 10.1016/j.watres.2025.123752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Estuaries serve as vital interfaces in the global carbon cycle by mediating land-ocean exchange and regulating dissolved organic matter (DOM) dynamics. However, the role of microbial communities in regulating autochthonous DOM under phosphorus-limited estuarine conditions remains insufficiently understood. This study explored the biogeochemical parameters, inorganic carbon dynamics, DOM optical properties, and algal-bacterial community composition in a picocyanobacteria-dominated estuarine reservoir subject to seasonal salinity and nutrient fluctuations. Samples were classified into three groups based on DOM compositional features: pristine autochthonous group (PG), high allochthonous group (HG), and balanced group (BG). In BG, picocyanobacteria, particularly Cyanobium PCC-6307, promoted the accumulation of labile tryptophan-like DOM (component C4), which was associated with the lowest autochthonous DOM stability ratios (AuSR). In HG, terrestrial runoff led to a decline in C4 and an increase in DOM stability, reflecting rapid microbial degradation and partial transformation. In BG, colder temperatures and elevated microbial α-diversity facilitated the conversion of DOM into more humified forms, as indicated by higher proportions of humic-like components and AuSR. Key microbial taxa showed substrate-specific metabolic traits related to amino acid, polysaccharide, and one-carbon compound processing. By integrating DOM-defined groupings, fluorescence-derived stability metrics, and microbial marker analysis, this study reveals a sequential cascade of microbial regulation in DOM production, transformation, and stabilization. These findings offer the first detailed evidence of such processes in a phosphorus-limited estuarine system and provide a new framework for linking DOM properties with microbial ecological functions in dynamic aquatic environments.
Collapse
Affiliation(s)
- Huimin Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Duanmiao Si
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Haoyan Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Haixia Jiang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Peng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
2
|
Shao M, Liu Z, Zeng S, Sun H, He H, Adnan M, Yan J, Shi L, Han Y, Lai C, Fang Y. Carbon sinks associated with biological carbon pump in karst surface waters: Progress, challenges, and prospects. ENVIRONMENTAL RESEARCH 2025; 267:120712. [PMID: 39733979 DOI: 10.1016/j.envres.2024.120712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/01/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
The biological carbon pump (BCP) associated with aquatic photosynthesis in karst surface waters converts dissolved inorganic carbon (DIC) into organic carbon. In the context of global climate change, BCP could be an important carbon sink mechanism, ultimately regulating atmospheric carbon dioxide (CO2) and mitigating climate change. Because of the high DIC and pH, and low dissolved CO2 [CO2 (aq)], the hydrochemical characteristics of karst surface water bodies cause C limitation in BCP efficiency. The effect of CO2 fertilization on water bodies can promote autochthonous production, thereby creating carbon sinks in such water bodies. The significant sink-enhancement potential of BCP in karst surface water bodies has attracted widespread attention. The stability of the autochthonous organic carbon (AOC) produced by BCP in karst aquatic ecosystems is key to the formation of long-term carbon sinks by carbonate weathering. In this review, we summarize recent progress in the carbonate weathering of carbon sinks in karst surface waters with coupled BCPs. Furthermore, we elucidated the possibility of using CO2 (aq) fertilization to achieve carbon sinks and its mechanism of action. On this basis, we propose three processes and mechanisms that could affect AOC stability and outline the challenge of accurately estimating carbonate weathering carbon sinks associated with BCP in karst surface waters. Our comprehensive analyses facilitated the identification of the role of karst surface aquatic ecosystems in the global carbon cycle by providing a reference and scientific basis.
Collapse
Affiliation(s)
- Mingyu Shao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zaihua Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Sibo Zeng
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing, 400700, China
| | - Hailong Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Haibo He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Muhammad Adnan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyao Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Liangxing Shi
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongqiang Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaowei Lai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yan Fang
- Xi'an Institute for Innovative Earth Environment Research, Institute of Earth Environment Chinese Academy of Sciences, Xi'an, 710061, China; Xi'an Institute for Innovative Earth Environment Research, Xi'an, 710061, China
| |
Collapse
|
3
|
Rehman A, Wang J, Yue H, Zhang X, Li Z. Algal organic matter alters protistan community structure and assembly processes in coastal sediments. Eur J Protistol 2025; 97:126134. [PMID: 39874905 DOI: 10.1016/j.ejop.2025.126134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Diatom blooms are a global ecological perturbation that releases algal organic matter (AOM), significantly affecting coastal ecosystems by altering microbial community dynamics. AOM, derived from algal cell lysis, may serve as a nutrient source influencing protistan communities. However, the effects of AOM on protistan ecology, including the community structure and assembly processes, remain largely unexplored in coastal sediments. In this study, we investigated the impact of AOM on the protistan community structure using macrogenomic analysis and high-throughput sequencing. The results revealed significant shifts in the protistan diversity (alpha and beta diversity) and community composition. Phototrophs and consumers were the primary functional groups affected, with their relative abundances significantly regulated by AOM, highlighting its functional-level impacts. Moreover, AOM influenced also the protistan community assembly, increasing the proportion of deterministic processes and altering the dynamic succession within the protistan co-occurrence network. Diatom blooms act as ecological filters, reducing diversity while promoting the dominance of specific functional groups. This study bridges the gap in understanding the AOM's role in shaping the ecological succession of protists in coastal sediments, offering valuable insights into the broader ecological impact of marine diatom blooms.
Collapse
Affiliation(s)
- Arbaz Rehman
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Hao Yue
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Xiuhong Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
4
|
Yang W, Min Z, Tao C, Jun Y. Exploration of forestry carbon sequestration practice path in Guizhou province-based on evolutionary game model. PLoS One 2024; 19:e0314805. [PMID: 39671450 PMCID: PMC11643302 DOI: 10.1371/journal.pone.0314805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/16/2024] [Indexed: 12/15/2024] Open
Abstract
Guizhou Province has abundant forest resources, and it has great economic value and social benefits to explore the practical path of forestry carbon sequestration. Based on the current situation of forestry carbon sequestration development in Guizhou Province, this paper innovatively integrates forestry carbon sequestration indicators into the existing Environmental, Social and Governance(ESG) evaluation system using an evolutionary game model. It analyzes the factors restricting forestry carbon sequestration and explores the influencing factors of forestry carbon sequestration benefit sharing bodies in Guizhou. Through regression analysis, the paper discusses the impact of enterprise ESG scores, government subsidy amounts, and forestry carbon sequestration costs on forestry carbon sequestration purchase volume. The research results show that enterprise ESG scores and government subsidy amounts have a significant positive impact on enterprise forestry carbon sequestration purchase volume, while forestry carbon sequestration costs have a significant negative impact. The results have passed the robustness test in different industries. The simulation analysis results show that the stable point of the evolutionary game is (1,0,1) and (1,1,0), which verifies that the ESG rating system with forestry carbon sequestration integration can promote enterprises to purchase more forestry carbon sequestration, i.e., the effectiveness of forestry carbon sequestration in activating the ESG rating system mechanism. Based on the research conclusions, the paper puts forward policy implications: the government should accelerate the construction of localized ESG rating systems, improve enterprise information disclosure and supervision, increase subsidies and reduce forestry carbon sequestration costs, and optimize carbon quota design.
Collapse
Affiliation(s)
- Wu Yang
- Guizhou Institute of Technology, School of Resources and Environmental Engineering, Guiyang, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Guiyang, China
| | - Zhang Min
- Guizhou Institute of Technology, School of Resources and Environmental Engineering, Guiyang, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Guiyang, China
| | - Cui Tao
- Guizhou Institute of Technology, School of Resources and Environmental Engineering, Guiyang, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Guiyang, China
| | - Yan Jun
- Guizhou Institute of Technology, School of Resources and Environmental Engineering, Guiyang, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Guiyang, China
| |
Collapse
|
5
|
Ma Y, Zhu X, Ni L, Du C, Sang W, Xu C, Shi J, Li Y, Li S, Zhang L. Carbon fate and potential carbon metabolism effects during in-situ cyanobacterial inhibition by artemisinin sustained-release algaecides. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136511. [PMID: 39549401 DOI: 10.1016/j.jhazmat.2024.136511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Carbon pools and microbial carbon metabolism can be significantly altered due to the diverse organic matter properties and low pH characteristics of artemisinin sustained-release algaecides (ASAs). These effects have still not been systematically studied, leading to uncertainty in the application of ASAs for cyanobacterial management in natural waters. This study assessed the effects of ASAs on carbon fate, carbon metabolism and potential ecological impacts during in-situ cyanobacterial inhibition. In the initial phase of ASAs-induced cyanobacterial inhibition (2-10 days), the carbon pool underwent significant changes due to the increased proportion of C4 plant-derived organic matter (97 %), humification level (FI =0.9-1.5), and inorganic carbon concentration (TIC = 80-110 mg/L). The cyanobacterial apoptosis triggered by ASAs produced particulate organic carbon, which provided a bioavailable carbon source for bacterial metabolism. ASAs enhanced the connection between bacteria and the carbon pool, as well as their carbon metabolism capabilities, by increasing the relative abundance of Proteobacteria (33.1 %-37.3 %), bacterial diversity, the proportion of Alphaproteobacteria and Betaproteobacteria (19.3 %-29.5 %) involved in carbon metabolism, and the complexity of the environment-bacteria co-occurrence network. These effects contributed to maintaining long-term ecosystem stability and resistance to cyanobacterial proliferation. Our findings elucidate the influence of bacterial carbon metabolism by ASAs as one of an important mechanism for achieving cyanobacterial inhibition in natural water, and emphasize the important role of bacteria in maintaining ecological stability during in situ cyanobacterial management.
Collapse
Affiliation(s)
- Yushen Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaoming Zhu
- CCCC Shanghai Waterway Engineering Design and Consulting Co.,Ltd., Shanghai 200120, China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Cunhao Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Wenlu Sang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Chu Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jiahui Shi
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyin Li
- College of Environment, Nanjing Normal University, Nanjing 210024, China
| | - Linyun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
6
|
Hao Z, Chen S, Zhang Q, Liu B. From reduction to rebalancing: Insights into the long-term effects of sediment dredging on nitrogen transformations in river ecosystems. WATER RESEARCH 2024; 267:122460. [PMID: 39306929 DOI: 10.1016/j.watres.2024.122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 11/28/2024]
Abstract
Although sediment dredging is a widely employed water management and restoration technique for the removal of internal nitrogen (N), the long-term effects of dredging on N transformation in dredged rivers remain largely undetermined. In this study, we investigated the effects of dredging on N transformation processes spanning three years at ten sites in the purple-soil watershed within the middle reaches of the Fu River Basin. We combined isotopic and molecular techniques to provide novel insights into the interactions associated with microbial utilization capacities between sediment and river water before, during, and after dredging. Initially, dredging was found to significantly reduce the total nitrogen content by approximately 75 %, although over time, there was a slight increase in concentrations. Secondly, significant reductions in microbial richness and diversity were detected in both river water and sediment, with 39 classes reduced, 12 new classes emerging, and an increase in archaea, reshaping the microbial community. Lastly, dredging was found to promote a significant shift in functional contributions, with increases in the abundance of key enzyme activities (1.7.5.1 and 1.7.2.5) and denitrification genes (nirK, norB, and nosZ). This enhancement notably promoted denitrification and dissimilatory nitrate reduction to ammonium (DNRA), accompanied by significant environmental changes in sediment and river water. These changes facilitated the removal of nitrates in the Xiangshuitan watershed. Our study overcomes the limitations associated with watershed and microenvironment scales, providing insights into the mechanisms where by dredging activities influence the interplay between external and internal N transformations.
Collapse
Affiliation(s)
- Zhuo Hao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shibo Chen
- Development Research Center of the Ministry of Water Resources of PR China, Beijing, 100038, China
| | - Qingwen Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bing Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
7
|
Qin C, Li SL, Wu Y, Bass AM, Luo W, Ding H, Yue FJ, Zhang P. High sensitivity of dissolved organic carbon transport during hydrological events in a small subtropical karst catchment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174090. [PMID: 38914338 DOI: 10.1016/j.scitotenv.2024.174090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/10/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024]
Abstract
Dissolved organic carbon (DOC) and discharge are often tightly coupled, though these relationships in karst environments remain poorly constrained. In this study, DOC dynamics over 13 hydrological events, alongside monthly monitoring over an entire hydrological year were monitored in a small karst catchment, SW China. The concurrent analyses of power-law model and hysteresis patterns reveal that DOC behavior is generally transport-limited due to flushing effects of increased discharge but highly variable at both intra- and inter-event scales. The initial discharge at event onset and discharge-weighted mean concentration of DOC ([DOC]DW) of individual events can explain 37.7 % and 19.9 % of the variance of DOC behavior among events, respectively. The sustained dry-cold antecedent conditions make DOC hysteresis behavior during the earliest event complex and different from subsequent events. At event scale, the variability in DOC export is primarily controlled by [DOC]DW (explaining 64.3 %) and the yield of total dissolved solutes (YTDS, explaining 30.4 %), reflecting the impacts of variable hydrological connectivity and intense soil-water-rock interactions in this karst catchment. On an annual scale, DOC yield (YDOC, 222.86 kg C km-2) was mostly derived during the wet season (98.19 %) under the hydrological driving force. The difference in annual YDOC between this karst catchment and other regions can be well explained by annual water yield (Ywater, explaining 24.2 %) and [DOC] (explaining 35.4 %), whereas the variance in DOC export efficiency among catchments is almost exclusively controlled by [DOC] alone, independent of drainage area and annual Ywater. This study highlights the necessity of high-frequency sampling for modeling carbon biogeochemical processes and the particularity of the earliest hydrological events occurred after a long cold-dry period in karst catchments. Under the changing climate, whether DOC dynamics in karst catchments will present source-limited patterns during more extreme hydrological events merits further study.
Collapse
Affiliation(s)
- Caiqing Qin
- Department of Earth & Environmental Science, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Yiping Wu
- Department of Earth & Environmental Science, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Adrian M Bass
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Weijun Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hu Ding
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Fu-Jun Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Pan Zhang
- Department of Earth & Environmental Science, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
8
|
Xia F, Liu Z, Zhang Y, Li Q, Zhao M, He H, Bao Q, Chen B, He Q, Lai C, He X, Ma Z, Zhou Y. Calcium regulates the interactions between dissolved organic matter and planktonic bacteria in Erhai Lake, Yunnan Province, China. WATER RESEARCH 2024; 261:121982. [PMID: 38936236 DOI: 10.1016/j.watres.2024.121982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
In recent years, the global carbon cycle has garnered significant research attention. However, details of the intricate relationship between planktonic bacteria, hydrochemistry, and dissolved organic matter (DOM) in inland waters remain unclear, especially their effects on lake carbon sequestration. In this study, we analyzed 16S rRNA, chromophoric dissolved organic matter (CDOM), and inorganic nutrients in Erhai Lake, Yunnan Province, China. The results revealed that allochthonous DOM (C3) significantly regulated the microbial community, and that autochthonous DOM, generated via microbial mineralization (C2), was not preferred as a food source by lake bacteria, and neither was allochthonous DOM after microbial mineralization (C4). Specifically, the correlation between the fluorescence index and functional genes (FAPRPTAX) showed that the degree of utilization of DOM was a critical factor in regulating planktonic bacteria associated with the carbon cycle. Further examination of the correlation between environmental factors and planktonic bacteria revealed that Ca2+ had a regulatory influence on the community structure of planktonic bacteria, particularly those linked to the carbon cycle. Consequently, the utilization strategy of DOM by planktonic bacteria was also determined by elevated Ca2+ levels. This in turn influenced the development of specific recalcitrant autochthonous DOM within the high Ca2+ environment of Erhai Lake. These findings are significant for the exploration of the stability of DOM within karst aquatic ecosystems, offering a new perspective for the investigation of terrestrial carbon sinks.
Collapse
Affiliation(s)
- Fan Xia
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Zaihua Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Yunling Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qiang Li
- Key Laboratory of Karst Dynamics, Ministry of Nature Resources/Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Min Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Haibo He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Qian Bao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, 610068, China
| | - Bo Chen
- Guizhou University of Finance and Economics, Guiyang 550025, China
| | - Qiufang He
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400700, China; Key Laboratory of Karst Dynamics, Ministry of Nature Resources/Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Chaowei Lai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Xuejun He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Zhen Ma
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Yongqiang Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
9
|
He H, Liu Z, Li D, Liu X, Han Y, Sun H, Zhao M, Shao M, Shi L, Hao P, Lai C. Effects of carbon limitation and carbon fertilization on karst lake-reservoir productivity. WATER RESEARCH 2024; 261:122036. [PMID: 38981350 DOI: 10.1016/j.watres.2024.122036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Nitrogen and phosphorus are universally recognized as limiting elements in the eutrophication processes affecting the majority of the world's lakes, reservoirs, and coastal ecosystems. However, despite extensive research spanning several decades, critical questions in eutrophication science remain unanswered. For example, there is still much to understand about the interactions between carbon limitation and ecosystem stability, and the availability of carbon components adds significant complexity to aquatic resource management. Mounting evidence suggests that aqueous CO2 could be a limiting factor, influencing the structure and succession of aquatic plant communities, especially in karstic lake and reservoir ecosystems. Moreover, the fertilization effect of aqueous CO2 has the potential to enhance carbon sequestration and phosphorus removal. Therefore, it is important to address these uncertainties to achieve multiple positive outcomes, including improved water quality and increased carbon sinks in karst lakes and reservoirs.
Collapse
Affiliation(s)
- Haibo He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China
| | - Zaihua Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Dongli Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xing Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqiang Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China
| | - Min Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China
| | - Mingyu Shao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China
| | - Liangxing Shi
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyun Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaowei Lai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China
| |
Collapse
|
10
|
Zhang Y, Liu C, Fu Z, Chen H, He C, Wang K, Li P. Optical properties and molecular compositions of dissolved organic matter in multiple runoff components during rainfalls on the karst hillslope. WATER RESEARCH 2024; 257:121664. [PMID: 38678836 DOI: 10.1016/j.watres.2024.121664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/25/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
Understanding the chemical composition, origin, and molecular structure of dissolved organic matter (DOM) in multi-interface runoff is essential for comprehending the fate of laterally transported DOM in complex soil-epikarst systems of karst hillslopes. Limited information, however, is available for the optical properties and molecular compositions of the transported OM in multiple runoff components on the karst hillslope in relation to land-uses and soil thicknesses. In this study, we conducted a study to observe the changes in the quantity and quality of DOM in multiple interface flow (surface, subsurface, and epikarst) during natural rainfall events in 2022 in karst hillslopes that are covered by different land uses (cropland and shrubland) and soil thicknesses (with mean depths of 66.0 cm for deeper soil and 35.4 cm for shallower soil) in the karst region of southwest China. chemcial compositions of runoff DOM were determined by optical analysis and microbial compositions in runoff were inferred with high-throughput sequencing. The results showed that the soil-epikarst structure was controlling the runoff DOM quantity and quality during rainfall events. A decrease in the aromaticity, humification, unsaturation, and oxidation degree and an increase in carbohydrate, aminosugars, protein, and lipid compounds were found from surface to epikarst flow, indicating that plant-and soil-derived carbon decreased, while the microbially-derived carbon increased. The results were further comfirmed by the higher bacterial richness and diversity, along with fungal diversity in the epikarst flow compared to other runoff components. The bio-labile protein materials (C2) were the most important component of runoff DOM output in karst hillslopes. In surface and subsurface flow, rainfall amount, runoff rate, and discharge significantly affected the DOM concentration and quality during rainfalls, indicating that the dynamics of DOM in runoff from karst hillslopes were predominantly influenced by hydrological processes. Furthermore, the runoff DOM quality in cropland was dominated by lower unsaturation and oxidation degrees and higher protein component, compared to those in shrubland. The compositions of DOM in runoff from hillslope plots with thicker soils were primarily characterized by microbially-derived materials. Our findings were conducive to understanding the mechanism governing the migration of DOM quality and quantity in discharge during multi-interface hydrological processes on karst hillslopes.
Collapse
Affiliation(s)
- Yuheng Zhang
- Department of Ecology, Jinan University, Guangzhou 510632, PR China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, PR China
| | - Chun Liu
- Department of Ecology, Jinan University, Guangzhou 510632, PR China.
| | - Zhiyong Fu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, PR China.
| | - Hongsong Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, PR China
| | - Chunhuan He
- Department of Ecology, Jinan University, Guangzhou 510632, PR China
| | - Kelin Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, PR China
| | - Ping Li
- Department of Ecology, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
11
|
Lai C, Liu Z, Yu Q, Sun H, Xia F, He X, Ma Z, Han Y, Liu X, Hao P, Bao Q, Shao M, He H. Control of carbon dioxide exchange fluxes by rainfall and biological carbon pump in karst river-lake systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173486. [PMID: 38796009 DOI: 10.1016/j.scitotenv.2024.173486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
As an important component of inland water, the primary factors affecting the carbon cycle in karst river-lake systems require further investigation. In particular, the impacts of climatic factors and the biological carbon pump (BCP) on carbon dioxide (CO2) exchange fluxes in karst rivers and lakes deserve considerable attention. Using quarterly sampling, field monitoring, and meteorological data collection, the spatiotemporal characteristics of CO2 exchange fluxes in Erhai Lake (a typical karst lake in Yunnan, SW China) and its inflow rivers were investigated and the primary influencing factors were analyzed. The average river CO2 exchange flux reached 346.80 mg m-2 h-1, compared to -6.93 mg m-2 h-1 for the lake. The carbon cycle in rivers was strongly influenced by land use within the basin; cultivated and construction land were the main contributors to organic carbon (OC) in the river (r = 0.66, p < 0.01) and the mineralization of OC was a major factor in CO2 oversaturation in most rivers (r = 0.76, p < 0.01). In addition, the BCP effect of aquatic plants and the high pH in karst river-lake systems enhance the ability of water body to absorb CO2, resulting in undersaturated CO2 levels in the lake. Notably, under rainfall regulation, riverine OC and dissolved inorganic carbon (DIC) flux inputs controlled the level of CO2 exchange fluxes in the lake (rOC = 0.78, p < 0.05; rDIC = 0.97, p < 0.01). We speculate that under future climate and human activity scenarios, the DIC and OC input from rivers may alleviate the CO2 limitation of BCP effects in karst eutrophication lakes, possibly enabling aquatic plants to convert more CO2 into OC for burial. The results of this research can help advance our understanding of CO2 emissions and absorption mechanisms in karst river-lake systems.
Collapse
Affiliation(s)
- Chaowei Lai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zaihua Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China.
| | - Qingchun Yu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hailong Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Fan Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejun He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Ma
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Yongqiang Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyun Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Qian Bao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610066, China
| | - Mingyu Shao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Haibo He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| |
Collapse
|
12
|
Zhao M, Li D, Liu Z, Bao Q, Xia F, Yan H, Chen B, Hu Y, Cai G, Lang R, Li H, Shi L, He H. Karst carbon sink mechanism and its contribution to carbon neutralization under land- use management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173381. [PMID: 38782274 DOI: 10.1016/j.scitotenv.2024.173381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/07/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The chemical weathering process of carbonate rocks consumes a large quantity of CO2. This has great potential as a carbon sink, and it is one of a significant pathway for achieving carbon neutrality. However, the control mechanisms of karst carbon sink fluxes are unclear, and there is a lack of effective and accurate accounting. We took the Puding Shawan karst water‑carbon cycle test site in China, which has identical initial conditions but different land use types, as the research subject. We used controlled experiments over six years to evaluate the mechanisms for the differences in hydrology, water chemistry, concentrations and fluxes of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC). We found that the transition from rock to bare soil to grassland led to increases in the DIC concentration by 0.08-0.62 mmol⋅L-1. The inorganic carbon sink flux (CSF) increased by 3.01-5.26 t⋅C⋅km-2⋅a-1, an increase amplitude of 30-70 %. The flux of dissolved organic carbon (FDOC) increase by 0.28 to 0.52 t⋅C⋅km-2⋅a-1, an increase amplitude of 34-90 %. We also assessed the contribution of land use modifications to regional carbon neutrality, it indicate that positive land use modification can significantly regulate the karst carbon sink, with grassland having the greatest carbon sequestration ability. Moreover, in addition to DOC from soil organic matter degradation, DOC production by chemoautotrophic microorganisms utilizing DIC in groundwater may also be a potential source. Thus, coupled studies of the conversion of DIC to DOC processes in groundwater are an important step in assessing karst carbon sink fluxes.
Collapse
Affiliation(s)
- Min Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China; Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, Chinese Academy of Sciences, Puding 562100, Guizhou, China.
| | - Dong Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China; University of Chinese Academy of Sciences, Beijing 100049, China; Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, Chinese Academy of Sciences, Puding 562100, Guizhou, China
| | - Zaihua Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China; Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, Chinese Academy of Sciences, Puding 562100, Guizhou, China.
| | - Qian Bao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu 610066, China
| | - Fan Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hao Yan
- International Center for Isotope Effects Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Bo Chen
- Guizhou University of Finance And Economics, Guiyang 550025, Guizhou, China
| | - Yundi Hu
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang 550025, Guizhou, China
| | - Guanxia Cai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China; University of Chinese Academy of Sciences, Beijing 100049, China; Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, Chinese Academy of Sciences, Puding 562100, Guizhou, China
| | - Rui Lang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China; University of Chinese Academy of Sciences, Beijing 100049, China; Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, Chinese Academy of Sciences, Puding 562100, Guizhou, China
| | - Hang Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China; University of Chinese Academy of Sciences, Beijing 100049, China; Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, Chinese Academy of Sciences, Puding 562100, Guizhou, China
| | - Liangxing Shi
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China; University of Chinese Academy of Sciences, Beijing 100049, China; Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, Chinese Academy of Sciences, Puding 562100, Guizhou, China
| | - Haibo He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China; Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, Chinese Academy of Sciences, Puding 562100, Guizhou, China
| |
Collapse
|
13
|
Huang H, Zan S, Shao K, Chen H, Fan J. Spatial distribution characteristics and interaction effects of DOM and microbial communities in kelp cultivation areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170511. [PMID: 38309352 DOI: 10.1016/j.scitotenv.2024.170511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The influence of macroalgae cultivation on aquaculture carbon sinks is significant, with microbial carbon (C) pumps contributing to a stable inert dissolved carbon pool in this context. Concurrently, dissolved organic matter (DOM) exchange at the marine sediment-water interface profoundly affects global ecosystem element cycling. However, the interactions between DOM and bacterial communities at the sediment-water interface in kelp cultivation areas, especially regarding microbial function prediction, have not been fully explored. This study analyzed the DOM characteristics, environmental factors, and bacterial community structure in the Tahewan kelp--Saccharina japonica cultivated area and compared them with those in non-cultivated areas. The results indicated significantly higher dissolved organic carbon (DOC) concentrations in the kelp culture area, particularly in surface seawater and overlying water. The dominant bacterial phyla in both regions included Pseudomonadota, Actinomycetota, and Bacteroidota in both regions, while Desulfobacterota was more prevalent in the sediment environment of the cultivated region. Parallel factor analysis (EEM-PARAFAC) was used to identify DOM components, among which component C2 (a microbial humic-like substance DOM) was highly resistant to microbial degradation. We infer that C2 has similar properties to recalcitrant dissolved organic matter (RDOM). Analysis of the predicted functional genes based on 16S rRNA gene data showed that methanol oxidation, methylotrophy, and methanotrophy were significant in the bottom seawater of the cultivation area. The carbon (C), nitrogen (N), and sulfur (S) cycle functional genes in the sediment environment of the kelp cultivation area were more active than those in other areas, especially in which sulfate reduction and denitrification were the two main processes. Furthermore, a DOM priming effect was identified in the cultivated sediment environment, where kelp-released labile dissolved organic matter (LDOM) stimulates rapid degradation of the original RDOM, potentially enhancing C sequestration.
Collapse
Affiliation(s)
- Huiling Huang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, China
| | - Shuaijun Zan
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Kuishuang Shao
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, China
| | - Hanjun Chen
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Jingfeng Fan
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, China.
| |
Collapse
|
14
|
Yang S, Huang T, Zhang H, Tang Y, Guo H, Hu R, Cheng Y. Promoting aerobic denitrification in reservoir water with iron-activated carbon: Enhanced nitrogen and organics removal efficiency, and biological mechanisms. ENVIRONMENTAL RESEARCH 2024; 240:117452. [PMID: 37865328 DOI: 10.1016/j.envres.2023.117452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Carbon scarcity limits denitrification in micropolluted water, especially in drinking water reservoirs. Therefore, a Fe-activated carbon (AC) carrier was used in this study to enhance the nitrogen removal capacity of aboriginal denitrification in drinking water reservoirs under aerobic conditions. Following carrier addition, total nitrogen (TN) and permanganate index (CODMn) removal efficiencies reached 81.89% and 72.66%, respectively, and were enhanced by 40.45% and 39.65%. Nitrogen balance analysis indicated that 77.86% of the initial TN was converted into gaseous nitrogen. Biolog analysis suggested that the metabolic activity of denitrifying bacteria was substantially enhanced. 16S rRNA gene sequencing indicated that organic degradation bacteria, hydrogen-consuming, Fe-oxidizing, and Fe-reducing denitrifying bacteria (e.g., Arenimonas, Hydrogenophaga, Zoogloea, Methylibium, and Piscinibacter) evolved into the dominant species. Additionally, napA, nirS, nirK, and nosZ genes were enriched by 3.17, 6.68, 0.40, and 6.70 folds, respectively, which is conducive to complete denitrification. These results provide a novel pathway for the use of Fe-AC to promote aerobic denitrification in micropolluted drinking water reservoirs.
Collapse
Affiliation(s)
- Shangye Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yun Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ruzhu Hu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ya Cheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
15
|
Zhang H, Zhou X, Li Z, Bartlam M, Wang Y. Anthropogenic original DOM is a critical factor affecting LNA bacterial community assembly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166169. [PMID: 37562635 DOI: 10.1016/j.scitotenv.2023.166169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
We investigated the geographical and environmental distance-decay relationships for both of the two bacteria in the Haihe River, Tianjin, China. HNA bacteria exhibited a stronger geographical variation-dependent pattern while LNA bacteria exhibited a stronger environmental variation-dependent pattern. Variance partition analysis (VPA), Mantel test, and partial mantel test validated the discrepant impacts of geographical distance and environmental factors on their two communities. The heterogeneous selection dominated community assembly of LNA bacteria demonstrates their greater sensitivity to environmental conditions. As the deterministic environmental factor, anthropogenic original dissolved organic matter (DOM) functions exclusively on LNA bacteria, and it is the critical factor leading to the discrepant biogeographical patterns of LNA and HNA bacteria. LNA bacteria interact with HNA bacteria and mediate the DOM driving total bacteria assembly. The LNA keystone taxa, Pseudomonas, Rheinheimera, Candidatus Aquiluna, and hgcl clade are capable to compete with HNA bacteria for anthropogenic original DOM, and are potential indicators of anthropogenic pollution. Our research reveals the non-negligible effect of the LNA bacteria in regulating the ecological response of total bacteria.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Xinzhu Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Zun Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Mark Bartlam
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300071, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China.
| |
Collapse
|
16
|
Kang W, Hu X, Feng R, Wei C, Yu F. DOM Associates with Greenhouse Gas Emissions in Chinese Rivers under Diverse Land Uses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15004-15013. [PMID: 37782146 DOI: 10.1021/acs.est.3c03826] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Growing evidence indicates that rivers are hotspots of greenhouse gas (GHG) emissions and play multiple roles in the global carbon budget. However, the roles of terrestrial carbon from land use in river GHG emissions remain largely unknown. We studied the microbial composition, dissolved organic matter (DOM) properties, and GHG emission responses to different landcovers in rivers (n = 100). The bacterial community was mainly constrained by land-use intensity, whereas the fungal community was mainly controlled by DOM chemical composition (e.g., terrestrial DOM with high photoreactivity). Anthropogenic stressors (e.g., land-use intensity, gross regional domestic product, and total population) were the main factors affecting chromophoric DOM (CDOM). DOM biodegradability exhibited a positive correlation with CDOM and contributed to microbial activity for DOM transformation. Variations in CO2 and CH4 emissions were governed by the biodegradation or photomineralization of dissolved organic carbon derived from autotrophic DOM and were indirectly affected by land use via changes in DOM properties and water chemistry. Because the GHG emissions of rivers offset some of the climatic benefits of terrestrial carbon (or ocean) sinks, intensified urban land use inevitably alters carbon cycling and changes the regional microclimate.
Collapse
Affiliation(s)
- Weilu Kang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruihong Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Changhong Wei
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fubo Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
17
|
Wang M, Liu X, Qu L, Wang T, Zhu L, Feng J. Untangling microbiota diversity and assembly patterns in the world's longest underground culvert water diversion canal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:981. [PMID: 37480396 DOI: 10.1007/s10661-023-11593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
The long-distance underground box culvert water transport system (LUBWT) is a crucial link between the source of drinking water and the consumers. It must ensure the stability of water quality during transportation. However, uncontrollable microbial growth can develop in the water delivery system during the long delivery process, posing a risk to health and safety. Therefore, we applied 16 s and 18 s gene sequence analysis in order to study microbial communities in box culvert waters sampled in 2021, as well as a molecular ecological network-based approach to decipher microbial interactions and stability. Our findings revealed that, in contrast to natural freshwater ecosystems, micro-eukaryotes in LUBWT have complex interactions such as predation, parasitism, and symbiosis due to their semi-enclosed box culvert environment. Total nitrogen may be the primary factor affecting bacterial community interactions in addition to temperature. Moreover, employing stability indicators such as robustness and vulnerability, we also found that microbial stability varied significantly from season to season, with summer having the higher stability of microbial communities. Not only that but also the stability of the micronuclei also varied greatly during water transport, which might also be related to the complex interactions among the micro-eukaryotes. To summarize, our study reveals the microbial interactions and stability in LUBWT, providing essential ecological knowledge to ensure the safety of LUBWT's water quality.
Collapse
Affiliation(s)
- Mengyao Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Xinyong Liu
- Tianjin Branch of China South to North Water Diversion Middle Route Construction Management Bureau, Tianjin, People's Republic of China.
| | - Liang Qu
- Tianjin Branch of China South to North Water Diversion Middle Route Construction Management Bureau, Tianjin, People's Republic of China
| | - Tongtong Wang
- Tianjin Branch of China South to North Water Diversion Middle Route Construction Management Bureau, Tianjin, People's Republic of China
| | - Lin Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Jianfeng Feng
- College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
18
|
Liu L, Zhai Y, Wang H, Liu X, Liu X, Wang Z, Zhou Y, Zhu Y, Xu M. Treatment of sewage sludge hydrothermal carbonization aqueous phase by Fe(II)/CaO 2 system: Oxidation behaviors and mechanism of organic compounds. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 158:164-175. [PMID: 36716656 DOI: 10.1016/j.wasman.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
The Fe(II)/CaO2 system with a stable oxidant and a low-cost homogeneous activating agent has been considered as a prospective process for the disposal of wastewater. The system was constructed to treat sewage sludge hydrothermal carbonization aqueous phase (HTC-AP) in this study. As the hydrothermal temperature increased, the organics in the HTC-AP were first decomposed and then cyclized, while the Maillard reaction occurs throughout the stage. The oxidation efficiency of the Fe(II)/CaO2 system was related to the composition of organics in HTC-AP, and the removal of dissolved organic carbon (DOC) by the system was 38.56 % in the HTC-AP obtained by hydrothermal treatment at 220 °C. Redundancy analysis showed that the low molecular weight organics, hydrophobic acids, and hydrophobic neutral components were beneficial to DOC removal, while Maillard products and cyclization products were hard to be oxidized to CO2 and H2O. The CN functional group of the protein facilitated DOC removal, and some organics in HTC-AP were oxidized to acids and phenols. The energy input to remove DOC in Fe(II)/CaO2 system was 27.74 MJ per kg carbon. This study provides a low-energy consumption Fe(II)/CaO2 system for the post-treatment of HTC-APs and explores the applicability of the system.
Collapse
Affiliation(s)
- Liming Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Hongxia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiangmin Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoping Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhexian Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yun Zhu
- Office of Scientific R& D, Hunan University, Changsha 410082, PR China
| | - Min Xu
- Chinese Academy of Environmental Planning, Beijing 100012, PR China
| |
Collapse
|
19
|
Chen Z, Wen Y, Xiao M, Yue F, Zhang W. Characteristics of Dissolved Organic Matter Impacted by Different Land Use in Haihe River Watershed, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2432. [PMID: 36767800 PMCID: PMC9915398 DOI: 10.3390/ijerph20032432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
It is important to explore characteristics of dissolved organic matter (DOM) in the riverine system due to its critical role in the carbon cycle. This study investigated the distribution characteristics and sources of DOM based on excitation emission matrix three-dimensional fluorescence technology and parallel factor (EEM-PARAFAC) analysis at two rivers in northern China strongly impacted by human activities. The results show that the fluorescence intensity of terrestrial humic-like substances increased during summer in Haihe River. The intensity was significantly higher than in spring due to terrestrial detritus from runoff conveyance. The fluorescence intensity of protein-like substances in spring was the highest and decreased in summer. This feature of DOM in the Duliujian River was related to the increase in precipitation and surface runoff in the wet season and the rapid degradation of mixed DOM in the dry season. An analysis of HIX, BIX and FI showed a low degree of DOM humification and more endogenous contributions from microbial and phytoplankton degradation. Seasonal variations of dissolved organic carbon (DOC) and chromophoric DOM (CDOM, a335, thereinto C1) suggest that chromophores, particularly terrestrial substances, regulate the temporal patterns of DOM in the two rivers. Combined with the analysis of the proportion of land use types in riparian buffers, tillage had a great impact on DOM content and hydrophobicity in Haihe River watershed. Domestic wastewater and industrial sewage discharge contribute more DOM to Duliujian River watershed, which was indicated by more abundant protein-like components (212.17 ± 94.63 QSU in Duliujian River;186.59 ± 238.72 QSU in Haihe River). This study highlights that different land use types resulted in distinctive sources and seasonal dynamics of DOM in rivers. Meanwhile, it should be considered that the estimation of carbon cycling should involve monitoring and evaluating anthropogenic inputs into rivers.
Collapse
Affiliation(s)
- Zhaochuan Chen
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China
| | - Yanan Wen
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China
| | - Min Xiao
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China
| | - Fujun Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wenxi Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
20
|
Zhang M, Qiu Y, Li C, Cui T, Yang M, Yan J, Yang W. A Habitable Earth and Carbon Neutrality: Mission and Challenges Facing Resources and the Environment in China-An Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1045. [PMID: 36673801 PMCID: PMC9859300 DOI: 10.3390/ijerph20021045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Since the Industrial Revolution, the impacts of human activities have changed the global climate system, and climate warming has had rapid and widespread effects on the planet. At present, the world is experiencing a series of natural disasters, such as climate change, environmental pollution, biodiversity loss, and sea level rise, which pose a serious threat to the livability of the Earth. An international consensus has been reached that achieving carbon neutrality is the key to tackling climate change; it is also crucial to building a livable planet. To achieve carbon neutrality, energy is the main aspect, for which technology regarding resources and the environment is essential. In this context, we collected data, performed an in-depth analysis of the basic and structural characteristics of the development of the coal industry and environmental remediation, studied and judged the trends in regional economic development and demand growth, and closely examined the requirements of China's development strategy, which focuses on the ideas of carbon peak and carbon neutralization in line with local development trends and economic system characteristics. We must build a livable Earth, promote the green and low-carbon transformation of regional energy, promote high-quality economic development, and ensure the safe supply of energy.
Collapse
Affiliation(s)
- Min Zhang
- Faculty of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550003, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Guiyang 550003, China
| | - Yan Qiu
- Faculty of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550003, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Guiyang 550003, China
| | - Chunling Li
- Faculty of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550003, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Guiyang 550003, China
| | - Tao Cui
- Faculty of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550003, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Guiyang 550003, China
| | - Mingxing Yang
- Faculty of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550003, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Guiyang 550003, China
| | - Jun Yan
- Faculty of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550003, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Guiyang 550003, China
| | - Wu Yang
- Faculty of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550003, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Guiyang 550003, China
| |
Collapse
|
21
|
Yang W, Min Z, Yang M, Yan J. Exploration of the Implementation of Carbon Neutralization in the Field of Natural Resources under the Background of Sustainable Development-An Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14109. [PMID: 36360986 PMCID: PMC9657269 DOI: 10.3390/ijerph192114109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 05/12/2023]
Abstract
On 15 March 2021, Chinese President Xi Jinping pointed out that "achieving carbon peak and carbon neutrality is a broad and profound economic and social systemic change" and called for "putting energy and resources conservation in the first place". Natural resources are the material basis, space carrier and energy source of high-quality development. The source of carbon emissions is resource utilization, and carbon reduction and removal also depend on resources. The improvement of carbon sink capacity is inseparable from natural resources. To achieve the goal of "double carbon", it is necessary to consolidate the carbon sink capacity of the ecosystem, as well as enhancing its carbon sink increment. Among natural resources, forest carbon sinks, soil carbon sinks and karst carbon sinks have significant emission reduction potential and cost advantages, representing important means to deal with climate change. This paper reviews the relevant research results at home and abroad, summarizes the carbon sink estimation, carbon sink potential, carbon sink influencing factors, ecological compensation mechanism and other aspects, analyzes the path selection of establishing carbon sink green development, and puts forward corresponding policies and suggestions, providing a theoretical reference for the achievement of the carbon neutrality goal in the field of natural resources in China.
Collapse
Affiliation(s)
- Wu Yang
- Faculty of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550003, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Guiyang 550003, China
| | - Zhang Min
- Faculty of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550003, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Guiyang 550003, China
| | - Mingxing Yang
- Faculty of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550003, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Guiyang 550003, China
| | - Jun Yan
- Faculty of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550003, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Guiyang 550003, China
| |
Collapse
|
22
|
He H, Wang Y, Liu Z, Bao Q, Wei Y, Chen C, Sun H. Lake metabolic processes and their effects on the carbonate weathering CO 2 sink: Insights from diel variations in the hydrochemistry of a typical karst lake in SW China. WATER RESEARCH 2022; 222:118907. [PMID: 35944408 DOI: 10.1016/j.watres.2022.118907] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/10/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The precipitation of carbonate minerals does not invariably result in CO2 emission to the atmosphere, because dissolved inorganic carbon (DIC) can be partially utilized by terrestrial aquatic phototrophs, thus generating an autochthonous organic carbon (AOC) sink. However, little is known about the potential effects of this mechanism on carbon cycles in DIC-rich lakes, mainly due to the lack of detailed documentation of the related processes, which limits our ability to accurately evaluate and predict the magnitude of this carbon sink. We conducted field observations in Fuxian Lake, a large and representative karst lake in the Yunnan-Guizhou Plateau, SW China. Continuous diel monitoring was conducted to quantitatively assess the coupled relationship between lake metabolism and DIC cycling and its influence on the carbonate weathering-related CO2 sink. We found that the diel physicochemical variations and isotopic characteristics were mainly controlled by the metabolism of aquatic phototrophs, evidenced by a significant relationship between net ecosystem production and diel DIC cycling, and demonstrating the significance of DIC fertilization in supporting high primary production in karst lakes. The data showed that a reduction in photosynthesis occurred in the afternoon of almost every day, which can be explained by the lower CO2/O2 ratio that increased the potential for the photorespiration of aquatic plants, thus reducing photosynthesis. We found that a net autotrophic ecosystem prevailed in Fuxian Lake, suggesting that the lake functions more as a sink than a source of atmospheric CO2. Considering carbonate weathering, the estimated AOC sink amounted to 650-704 t C km-2 yr-1, demonstrating both the potentially significant role of metabolism in lacustrine carbon cycling and the potential of the combination of photosynthesis and carbonate weathering for carbon sequestration. Our findings may help to quantitatively estimate the future impact of lake metabolism on carbon cycling, with implications for formulating management policies needed to regulate the magnitude of this carbon sink.
Collapse
Affiliation(s)
- Haibo He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), 99 Lincheng West Road, Guiyang 550081, China; Yunnan Key Laboratory of Earth System Science, Yunnan University, Kunming 650500, China
| | | | - Zaihua Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), 99 Lincheng West Road, Guiyang 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Qian Bao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), 99 Lincheng West Road, Guiyang 550081, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China of Ministry of Education, Sichuan Normal University, Chengdu 610066, China
| | - Yu Wei
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), 99 Lincheng West Road, Guiyang 550081, China
| | - Chongying Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), 99 Lincheng West Road, Guiyang 550081, China
| | - Hailong Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), 99 Lincheng West Road, Guiyang 550081, China
| |
Collapse
|