1
|
Withycombe JS, Bai J, Xiao C, Eldridge RC. Metabolomic Associations With Fatigue and Physical Function in Children With Cancer: A Pilot Study. Biol Res Nurs 2025:10998004251335639. [PMID: 40251999 DOI: 10.1177/10998004251335639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Background: Fatigue is a frequently reported symptom in children undergoing cancer treatment. Prior research shows an inverse relationship between fatigue and physical activity. Less is known about fatigue's relationship with physical function or the underlying biological mechanisms of fatigue. This study explored associations among fatigue, physical function, and associated metabolites. Methods: Children (7-18 years) provided serum samples and self-reports of fatigue and lower extremity physical function (mobility) using Pediatric Patient-Reported Outcomes Measurement Information System (PROMIS) surveys at two timepoints during cancer therapy. PROMIS scores were categorized as high/low per established cut points (high fatigue T >47.5; high physical function T >51.5). High-resolution liquid chromatography-mass spectrometry extracted 29 metabolites hypothesized a priori to be associated with fatigue or physical function. Descriptive statistics summarized PROMIS scores, and linear mixed effect models estimated metabolite associations adjusting for age, gender and steroid use. Results: Forty children participated (female, 53%; 7-12 years, 38%; 13-18 years 62%; Hodgkins Lymphoma, 33%; Acute Lymphoblastic/Lymphocytic Leukemia, 40%; Osteosarcoma, 10%; Other, 17%). Physical function and fatigue were inversely related: T1 (r = -0.64; p < .001) and T2 (r = -0.63; p < .001). One metabolite (indole-3-latic acid) differentiated between low and high fatigue. Five metabolites differentiated significantly between low and high physical function (4-Hydroxybenzoic acid, m-Coumaric acid, myoinositol, tryptophan, and tyrosine). Conclusions:These findings substantiate prior studies showing metabolites, particularly amino acids, significantly associated with fatigue and physical function. All significant metabolites were associated with the gut microbiome. Physical function was inversely corelated with fatigue providing another potential intervention for fatigue management.
Collapse
Affiliation(s)
- Janice S Withycombe
- School of Nursing, Clemson University, Clemson, SC, USA
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
- School of Medicine, Emory University, Atlanta, GA, USA
| | - Canhua Xiao
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Ronald C Eldridge
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
Zhao C, Xue H, Guo M, Yue H, Chen X, Gao J. Evaluating the impact of gut microbiota, circulating cytokines and plasma metabolites on febrile seizure risk in Mendelian randomization study. Sci Rep 2025; 15:13603. [PMID: 40253491 PMCID: PMC12009294 DOI: 10.1038/s41598-025-97759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
Febrile seizures (FS) is the most common type of convulsion in infants and preschool children. This study aimed to investigate the associations between gut microbiota abundance, plasma metabolites, circulating cytokines, and FS. Summary statistics of 211 gut microbiota traits, 1,400 plasma metabolite traits, 91 circulating cytokine traits, and FS were obtained from publicly available genome-wide association studies. Two-sample Mendelian randomization (MR) analysis and causality was inferred using Inverse variance-weighted (IVW), Weighted median, MR-Egger, simple mode-based estimate and weighted mode-based estimate 5 methods. Several sensitivity analyses were also used to ensure the robustness of the results. Furthermore, mediation analysis was used to determine the pathway from gut microbiota to FS mediated by plasma metabolites and circulating cytokines. MR revealed the associations of 1 gut microbiota (phylum Verrucomicrobia), 4 circulating cytokines and 50 plasma metabolites on FS. Based on the known pathogenic metabolites, we observed that the tryptophan, androgen, and sphingolipids pathways are associated with FS. Mediation analysis revealed 1 strongly documented plasma metabolite (Ascorbic acid 2-sulfate) as a mediator linking "gut microbiota to plasma metabolite to FS". Sensitivity analysis was represented no heterogeneity or pleiotropy in this study.Our study provides some causal evidence concerning the effects of the gut microbiota, circulating cytokines, and plasma metabolites on FS, which needs to be verified in randomized controlled trials. These biomarkers provide new insights into the underlying mechanisms of FS and contribute to its prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Chenyue Zhao
- Department of Cytogenetic Laboratory, Children's Hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, 030013, Shanxi, China
- Department of Pediatric Medicine, Shanxi Medical University, Taiyuan, China
| | - Huiqin Xue
- Department of Cytogenetic Laboratory, Children's Hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, 030013, Shanxi, China.
| | - Min Guo
- Department of Pediatric Medicine, Shanxi Medical University, Taiyuan, China
| | - Hao Yue
- Department of Pediatric Medicine, Shanxi Medical University, Taiyuan, China
| | - Xintong Chen
- Department of Pediatric Medicine, Shanxi Medical University, Taiyuan, China
| | - Jingbo Gao
- Department of Cytogenetic Laboratory, Children's Hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, 030013, Shanxi, China
| |
Collapse
|
3
|
Mendonça IP, Peixoto CA. The Double-Edged Sword: The Complex Function of Enteric Glial Cells in Neurodegenerative Diseases. J Neurochem 2025; 169:e70069. [PMID: 40265276 DOI: 10.1111/jnc.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Over the past two decades, a growing number of studies have been conducted on the role of bidirectional communication through the gut-brain axis in the development of neurodegenerative diseases. These studies were driven by the curious fact that all of these diseases present varying degrees of intestinal involvement included in their wide range of symptoms. A population of cells belonging to the ENS, called enteric glial cells (EGCs), appears to actively participate in this communication between the intestine and the brain, but acting in a dualistic manner, sometimes in reactive gliosis releasing inflammatory mediators, sometimes promoting homeostasis and resilience in the face of inflammatory injuries. To date, the intracellular mechanisms that define the transcriptional profile expressed in EGCs in each situation have not yet been elucidated. This review proposes a discussion on: (1) the complex role of distinct phenotypes of enteric glial cells involved in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and multiple sclerosis (MS); and (2) innovative strategies such as IDO/TDO inhibitors, Brazil nuts, caffeic acid, polyphenols, among others, that act on EGCs and have the potential to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil
- Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil
- Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, Brazil
| |
Collapse
|
4
|
Noroozi R, Tsai HH, Yu K, Bronson P, Samuel K, Trinh K, Wei R, Tsai E, Briggs FB, Bhargava P, Fitzgerald KC. Metabolic and lipid alterations in multiple sclerosis linked to disease severity. Mult Scler 2025; 31:433-443. [PMID: 40150792 DOI: 10.1177/13524585251325468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
BACKGROUND The circulating metabolome incorporates multiple levels of biological interactions and is an emerging field for biomarker discovery. However, few studies have linked metabolite levels with quantitative neurologic function assessments in people with multiple sclerosis (pwMS). OBJECTIVES We quantified metabolomic differences between pwMS and healthy controls (HCs) and assessed the association of metabolites with disease severity. METHODS We profiled 517 metabolites using liquid chromatography-mass spectrometry (Biocrates Inc.) for participants from the MS Partners Advancing Technology and Health Solutions (MS PATHS). We conducted a multicenter cross-sectional study and applied linear regression to assess the association between metabolites and neurological function measures in multiple sclerosis (MS), including walking speed, manual dexterity, and processing speed. RESULTS Among 1010 participants (837 MS; 71.2% relapsing-remitting MS; 173 HC; mean age: 44.5 (standard deviation (SD): 11.4); 73.9% female; 12.7% non-white), pwMS showed decreased levels of phosphatidylcholines (PCs) and different amino acids (AAs) but increased triglycerides (TGs). Metabolites showed an association with worse neurologic function; for instance, a 1-SD decrease in PC aa C36:6 was associated with 21.36% (95% confidence interval (CI): 11.07-30.46; p = 1.35E-04) slower walking speed. CONCLUSIONS This large study identified lipid alterations linked to MS severity. Future longitudinal studies will evaluate if these metabolite levels predict MS outcomes.
Collapse
Affiliation(s)
- Rezvan Noroozi
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | - Karunakar Samuel
- Department of Neuroimmunology, School of Medicine and Dentistry, University of Rochester, NY, USA
| | | | - Ru Wei
- Biogen, Cambridge, MA, USA
| | | | - Farren Bs Briggs
- Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Pavan Bhargava
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
5
|
Li L, Liu J, Wang D, Kwok LY, Li B, Guo S, Chen Y. Enhancing storage stability, antihypertensive properties, flavor and functionality of fermented milk through co-fermentation with Lactobacillus helveticus H11 adjunct culture. Food Chem 2025; 470:142574. [PMID: 39764886 DOI: 10.1016/j.foodchem.2024.142574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/29/2025]
Abstract
This study aimed to investigate the effects of fermented milk co-fermented with Lactobacillus (L.) helveticus and commercial starter during storage. Thus, systematic analysis revealed the changes with the determination of physicochemical characteristics, functional properties, and metabolome of fermented milk produced by commercial starter Mild 1.0, L. helveticus H11 (H11), and their combination. Co-fermentation with H11 significantly reduced fermentation time and enhanced pH, titratable acidity, viscosity, water-holding capacity, viable counts of H11, sensory attributes, angiotensin-converting enzyme inhibitory activity, valine-proline-proline and isoleucine-proline-proline levels, and storage stability. Additionally, co-fermentation with H11 enriched seven specific flavor compounds (5-tricosyl-1,3-benzenediol, didodecyl thiobispropanoate, glabrone, tuberoside, isomangiferin, indole-5,6-quinone, and luteone 7-glucoside) and five functional metabolites (indolelactic acid, glycine-histidine, stachyose, riboflavin, and asparagusic acid). These findings established H11 as a valuable adjunct culture for the application of commercial starter to produce functional fermented dairy products.
Collapse
Affiliation(s)
- Lu Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Junxia Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dandan Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bohai Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuai Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
6
|
Gupta VK, Janda GS, Pump HK, Lele N, Cruz I, Cohen I, Ruff WE, Hafler DA, Sung J, Longbrake EE. Alterations in Gut Microbiome-Host Relationships After Immune Perturbation in Patients With Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200355. [PMID: 39819054 PMCID: PMC11741292 DOI: 10.1212/nxi.0000000000200355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND AND OBJECTIVES Gut microbial symbionts have been shown to influence the development of autoimmunity in multiple sclerosis (MS). Emerging research points to an important relationship between the microbial-IgA interface and MS pathophysiology. IgA-secreting B cells are observed in the MS brain, and shifts in gut bacteria-IgA binding have been described in some patients with MS. However, the relationships between the gut microbiome and the host immune response, particularly regarding B-cell-depleting immunomodulation, remain underexplored. This study aimed to evaluate the composition of the gut microbiome in patients with newly diagnosed MS at baseline and after B-cell depletion, using long-read sequencing for enhanced taxonomic resolution. We further aimed to investigate the host/microbiome interface by evaluating microbe/immunoglobulin A relationships. METHODS We collected stool samples from 43 patients with newly diagnosed, untreated MS and 42 matched healthy controls. Nineteen patients with MS initiated anti-CD20 monoclonal antibody treatment and donated additional stool samples after 6 months of treatment. We evaluated the host-microbial interface using bacterial flow cytometry and long-read 16S rRNA gene amplicon sequencing. We used Immune Coating Scores to compare the proportions of bacteria identified in the IgA-coated vs IgA-uncoated bacterial fractions. RESULTS Patients with untreated, newly diagnosed MS showed significant reductions in IgA-bound fecal microbiota compared with controls. Using multiple linear regression models adjusted for potential confounders, we observed significant (p < 0.05) changes in the abundance and prevalence of various strain-level gut bacteria amplicon sequence variants (ASVs) within both total and IgA-coated bacterial fractions. Some changes (e.g., decreased relative abundance of a Faecalibacterium prausnitzii variant in MS) were consistent with previous reports, while others (e.g., increased relative abundance and prevalence of Monoglobus pectinyliticus in MS) were novel. Immune Coating Scores identified subsets of organisms for which normal IgA-coating patterns were disrupted at the onset of MS, as well as those (particularly Akkermansia muciniphila) whose IgA-coating became more aligned with controls after therapy. DISCUSSION This analysis of gut microbial ASVs reveals shifts in taxonomic strains induced by immune modulation in MS.
Collapse
Affiliation(s)
- Vinod K Gupta
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Guneet S Janda
- Yale School of Medicine Department of Neurology, New Haven, CT
| | - Heather K Pump
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN
| | - Nikhil Lele
- Yale School of Medicine Department of Neurology, New Haven, CT
| | - Isabella Cruz
- Yale School of Medicine Department of Neurology, New Haven, CT
| | - Inessa Cohen
- Yale School of Medicine Department of Neurology, New Haven, CT
| | - William E Ruff
- Yale School of Medicine Department of Neurology, New Haven, CT
| | - David A Hafler
- Yale School of Medicine Department of Neurology, New Haven, CT
- Yale School of Medicine Department of Immunobiology, New Haven, CT
| | - Jaeyun Sung
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic; and
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
7
|
Džidić Krivić A, Begagić E, Hadžić S, Bećirović A, Bećirović E, Hibić H, Tandir Lihić L, Kadić Vukas S, Bečulić H, Kasapović T, Pojskić M. Unveiling the Important Role of Gut Microbiota and Diet in Multiple Sclerosis. Brain Sci 2025; 15:253. [PMID: 40149775 PMCID: PMC11939953 DOI: 10.3390/brainsci15030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), characterized by neurodegeneration, axonal damage, demyelination, and inflammation. Recently, gut dysbiosis has been linked to MS and other autoimmune conditions. Namely, gut microbiota has a vital role in regulating immune function by influencing immune cell development, cytokine production, and intestinal barrier integrity. While balanced microbiota fosters immune tolerance, dysbiosis disrupts immune regulation, damages intestinal permeability, and heightens the risk of autoimmune diseases. The critical factor in shaping the gut microbiota and modulating immune response is diet. Research shows that high-fat diets rich in saturated fats are associated with disease progression. Conversely, diets rich in fruits, yogurt, and legumes may lower the risk of MS onset and progression. Specific dietary interventions, such as the Mediterranean diet (MD) and ketogenic diet, have shown potential to reduce inflammation, support neuroprotection, and promote CNS repair. Probiotics, by restoring microbial balance, may also help mitigate immune dysfunction noted in MS. Personalized dietary strategies targeting the gut microbiota hold promise for managing MS by modulating immune responses and slowing disease progression. Optimizing nutrient intake and adopting anti-inflammatory diets could improve disease control and quality of life. Understanding gut-immune interactions is essential for developing tailored nutritional therapies for MS patients.
Collapse
Affiliation(s)
- Amina Džidić Krivić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (A.D.K.); (L.T.L.)
- Department of Physiology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Emir Begagić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
- Department of Doctoral Studies, School of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Semir Hadžić
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
- Department of Physiology, School of Medicine, University of Tuzla, Univerzitetska 1, 75000 Tuzla, Bosnia and Herzegovina
| | - Amir Bećirović
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
| | - Emir Bećirović
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
| | - Harisa Hibić
- Department of Maxillofacial Surgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
| | - Lejla Tandir Lihić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (A.D.K.); (L.T.L.)
- Department of Neurology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Samra Kadić Vukas
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (A.D.K.); (L.T.L.)
- Department of Neurology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
- Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Tarik Kasapović
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany
| |
Collapse
|
8
|
Deng X, Gong X, Zhou D, Hong Z. Perturbations in gut microbiota composition in patients with autoimmune neurological diseases: a systematic review and meta-analysis. Front Immunol 2025; 16:1513599. [PMID: 39981228 PMCID: PMC11839609 DOI: 10.3389/fimmu.2025.1513599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Studies suggest that gut dysbiosis occurs in autoimmune neurological diseases, but a comprehensive synthesis of the evidence is lacking. Our aim was to systematically review and meta-analyze the correlation between the gut microbiota and autoimmune neurological disorders to inform clinical diagnosis and therapeutic intervention. We searched the databases of PubMed, Embase, Web of Science, and the Cochrane Library until 1 March 2024 for research on the correlation between gut microbiota and autoimmune neurological disorders. A total of 62 studies provided data and were included in the analysis (n = 3,126 patients, n = 2,843 healthy individuals). Among the included studies, 42 studies provided data on α-diversity. Regarding α-diversity, except for Chao1, which showed a consistent small decrease (SMD = -0.26, 95% CI = -0.45 to -0.07, p < 0.01), other indices demonstrated no significant changes. While most studies reported significant differences in β-diversity, consistent differences were only observed in neuromyelitis optica spectrum disorders. A decrease in short-chain fatty acid (SCFA)-producing bacteria, including Faecalibacterium and Roseburia, was observed in individuals with autoimmune encephalitis, neuromyelitis optica spectrum disorders, myasthenia gravis, and multiple sclerosis. Conversely, an increase in pathogenic or opportunistic pathogens, including Streptococcus and Escherichia-Shigella, was observed in these patients. Subgroup analyses assessed the confounding effects of geography and immunotherapy use. These findings suggest that disturbances of the gut flora are associated with autoimmune neurological diseases, primarily manifesting as non-specific and shared microbial alterations, including a reduction in SCFA-producing bacteria and an increase in pathogenic or opportunistic pathogens. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023410215.
Collapse
Affiliation(s)
- Xiaolin Deng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| | - Xue Gong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Polyák H, Galla Z, Rajda C, Monostori P, Klivényi P, Vécsei L. Plasma and Visceral Organ Kynurenine Metabolites Correlate in the Multiple Sclerosis Cuprizone Animal Model. Int J Mol Sci 2025; 26:976. [PMID: 39940744 PMCID: PMC11817772 DOI: 10.3390/ijms26030976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The cuprizone (CPZ) model of multiple sclerosis (MS) is excellent for studying the molecular differences behind the damage caused by poisoning. Metabolic differences in the kynurenine pathway (KP) of tryptophan (TRP) degradation are observed in both MS and a CPZ mouse model. Our goal was to analyze the kynurenine, serotonin, and indole pathways of TRP degradation on the periphery, in the neurodegenerative processes of inflammation. In our study, mice were fed with 0.2% CPZ toxin for 5 weeks. We examined the metabolites in the three pathways of TRP breakdown in urine, plasma, and relevant visceral organs with bioanalytical measurements. In our analyses, we found a significant increase in plasma TRP, 5-hydroxytryptophan (5-HTP), and indole-3-acetic acid (IAA) levels, while a decrease in the concentrations of 3-hydroxy-L-kynurenine (3-HK), xanthurenic acid (XA), kynurenic acid (KYNA), and quinaldic acid in the plasma of toxin-treated group was found. A marked decrease in the levels of 3-HK, XA, KYNA, quinaldic acid, and indole-3-lactic acid was also observed in the visceral organs by the end of the poisoning. Furthermore, we noticed a decrease in the urinary levels of the TRP, KYNA, and XA metabolites, while an increase in serotonin and 5-hydroxyindoleacetic acid in the CPZ group was noticed. The toxin treatment resulted in elevated tryptamine and indoxyl sulfate levels and reduced IAA concentration. Moreover, the urinary para-cresyl sulfate concentration also increased in the treated group. In the present study, we showed the differences in the three main metabolic pathways of TRP degradation in the CPZ model. We confirmed the relationship and correlation between the content of the kynurenine metabolites in the plasma and the tissues of the visceral organs. We emphasized the suppression of the KP and the activity of the serotonin and indole pathways with a particular regard to the involvement of the microbiome by the indole pathway. Consequently, this is the first study to analyze in detail the distribution of the kynurenine, serotonin, and indole pathways of TRP degradation in the periphery.
Collapse
Affiliation(s)
- Helga Polyák
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (H.P.); (C.R.); (P.K.)
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| | - Zsolt Galla
- Department of Pediatrics, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.G.); (P.M.)
| | - Cecilia Rajda
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (H.P.); (C.R.); (P.K.)
| | - Péter Monostori
- Department of Pediatrics, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.G.); (P.M.)
| | - Péter Klivényi
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (H.P.); (C.R.); (P.K.)
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (H.P.); (C.R.); (P.K.)
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
10
|
Jank L, Singh SS, Lee J, Dhukhwa A, Siavoshi F, Joshi D, Minney V, Gupta K, Ghimire S, Deme P, Schoeps VA, Soman K, Ladakis D, Smith M, Borkowski K, Newman J, Baranzini SE, Waubant EL, Fitzgerald KC, Mangalam A, Haughey N, Kornberg M, Chamling X, Calabresi PA, Bhargava P. Restoring the Multiple Sclerosis Associated Imbalance of Gut Indole Metabolites Promotes Remyelination and Suppresses Neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.27.620437. [PMID: 39554063 PMCID: PMC11565924 DOI: 10.1101/2024.10.27.620437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
In multiple sclerosis (MS) the circulating metabolome is dysregulated, with indole lactate (ILA) being one of the most significantly reduced metabolites. We demonstrate that oral supplementation of ILA impacts key MS disease processes in two preclinical models. ILA reduces neuroinflammation by dampening immune cell activation as well as infiltration; and promotes remyelination and in vitro oligodendrocyte differentiation through the aryl hydrocarbon receptor (AhR). Supplementation of ILA, a reductive indole metabolite, restores the gut microbiome's oxidative/reductive metabolic balance by lowering circulating indole acetate (IAA), an oxidative indole metabolite, that blocks remyelination and oligodendrocyte maturation. The ILA-induced reduction in circulating IAA is linked to changes in IAA-producing gut microbiota taxa and pathways that are also dysregulated in MS. Notably, a lower ILA:IAA ratio correlates with worse MS outcomes. Overall, these findings identify ILA as a potential anti-inflammatory remyelinating agent and provide insights into the role of gut dysbiosis-related metabolic alterations in MS progression.
Collapse
Affiliation(s)
- Larissa Jank
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saumitra S. Singh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Judy Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asmita Dhukhwa
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fatemeh Siavoshi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deepika Joshi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Veronica Minney
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kanak Gupta
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sudeep Ghimire
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Pragney Deme
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vinicius A. Schoeps
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Karthik Soman
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Dimitrios Ladakis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kamil Borkowski
- West Coast Metabolomics Center, University of California Davis, Davis, CA, USA
| | - John Newman
- Obesity and Metabolism Research, Agriculture Research Service, United States Department of Agriculture, Davis, CA, USA
| | - Sergio E. Baranzini
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Emmanuelle L. Waubant
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Kathryn C. Fitzgerald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashutosh Mangalam
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
| | - Norman Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Kornberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xitiz Chamling
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A. Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Jian J, Wei J. Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis. FRONT BIOSCI-LANDMRK 2025; 30:26265. [PMID: 39862079 DOI: 10.31083/fbl26265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 01/27/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS. Concurrently, the gut microbiota, known to affect systemic immunity and neurological health, emerges as an important regulator of iron homeostasis and inflammatory responses, thereby influencing ferroptotic pathways. This review investigates how gut microbiota dysbiosis and ferroptosis impact MS, emphasizing their potential as therapeutic targets. Through an integrated examination of mechanistic pathways and clinical evidence, we discuss how targeting these interactions could lead to novel interventions that not only modulate disease progression but also offer personalized treatment strategies based on gut microbiota profiling. This synthesis aims at deepening insights into the microbial contributions to ferroptosis and their implications in MS, setting the stage for future research and therapeutic exploration.
Collapse
Affiliation(s)
- Junjie Jian
- The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
- Department of Neurology, Yichang Central People's Hospital, 443003 Yichang, Hubei, China
| | - Jun Wei
- The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
- Department of Neurology, Yichang Central People's Hospital, 443003 Yichang, Hubei, China
| |
Collapse
|
12
|
Pan I, Issac PK, Rahman MM, Guru A, Arockiaraj J. Gut-Brain Axis a Key Player to Control Gut Dysbiosis in Neurological Diseases. Mol Neurobiol 2024; 61:9873-9891. [PMID: 37851313 DOI: 10.1007/s12035-023-03691-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Parkinson's disease is a chronic neuropathy characterised by the formation of Lewy bodies (misfolded alpha-synuclein) in dopaminergic neurons of the substantia nigra and other parts of the brain. Dopaminergic neurons play a vital role in generating both motor and non-motor symptoms. Finding therapeutic targets for Parkinson's disease (PD) is hindered due to an incomplete understanding of the disease's pathophysiology. Existing evidence suggests that the gut microbiota participates in the pathogenesis of PD via immunological, neuroendocrine, and direct neural mechanisms. Gut microbial dysbiosis triggers the loss of dopaminergic neurons via mitochondrial dysfunction. Gut dysbiosis triggers bacterial overgrowth in the small intestine, which increases the permeability barrier and induces systemic inflammation. It results in excessive stimulation of the innate immune system. In addition to that, activation of enteric neurons and enteric glial cells initiates the aggregation of alpha-synuclein. This alpha-synucleinopathy thus affects all levels of the brain-gut axis, including the central, autonomic, and enteric nervous systems. Though the neurobiological signaling cascade between the gut microbiome and the central nervous system is poorly understood, gut microbial metabolites may serve as a promising therapeutic strategy for PD. This article summarises all the known possible ways of bidirectional signal communication, i.e., the "gut-brain axis," where microbes from the middle gut interact with the brain and vice versa, and highlights a unique way to treat neurodegenerative diseases by maintaining homeostasis. The tenth cranial nerve (vagus nerve) plays a significant part in this signal communication. However, the leading regulatory factor for this axis is a diet that helps with microbial colonisation and brain function. Short-chain fatty acids (SCFAs), derived from microbially fermented dietary fibres, link host nutrition to maintain intestinal homeostasis. In addition to that, probiotics modulate cognitive function and the metabolic and behavioural conditions of the body. As technology advances, new techniques will emerge to study the tie-up between gut microbes and neuronal diseases.
Collapse
Affiliation(s)
- Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602105, India.
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
13
|
Barcutean L, Farczadi L, Manescu IB, Imre S, Maier S, Balasa R. Short and Medium Chain Fatty Acids in a Cohort of Naïve Multiple Sclerosis Patients: Pre- and Post-Interferon Beta Treatment Assessment. Biologics 2024; 18:349-361. [PMID: 39569059 PMCID: PMC11577435 DOI: 10.2147/btt.s489523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
Introduction Alterations in intestinal permeability and microbiota dysregulation have been linked to the development of multiple sclerosis (MS). Short-chain fatty acids (SCFA) and medium-chain fatty acids (MCFA) are products of gut bacteria fermentation which are involved in immune regulation processes. In MS, SCFA have important immunomodulatory properties both in the periphery and the central compartment. Interferon β (IFNβ) was the first disease-modifying therapy approved for the treatment of MS and its effects on the gut microbiota are not fully elucidated. Patients and Methods We performed a prospective observational study aimed to assess peripheral levels of SCFA and MCFA in 23 newly diagnosed, treatment-naïve MS patients (nMS) before and after one year of IFNβ treatment and 23 healthy controls (HC). We investigated their associations with inflammation, interleukin-10 (IL-10), and blood-brain barrier permeability, matrix metalloproteinase 9 (MMP9). Results No significant differences in SCFA/MCFA levels were observed between baseline and after IFNβ treatment. Caproic acid levels were significantly higher in nMS compared to HC (1.64 vs 1.27 µM, p=0.005). The butyric acid/caproic acid ratio was higher in HC compared to nMS (5.47 vs 2.55, p=0.005). Correlation analysis revealed associations between SCFA/MCFA levels and inflammatory biomarkers. Conclusion nMS have a higher gut-inflammatory activity as seen by the caproic acid ratio as opposed to HC. In this cohort, IFNβ does not appear to modify the peripheral SCFA/MCFA levels after one year of treatment. The quantifications of peripheral SCFA/MCFA may prove to be a useful biomarker for gut-brain axis disruption in MS patients.
Collapse
Affiliation(s)
- Laura Barcutean
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
- Neurology 1 Clinic, Mures County Emergency Clinical Hospital, Targu Mures, Romania
| | - Lenard Farczadi
- Chromatography and Mass Spectrometry Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Mures, 540139, Romania
| | - Ion-Bogdan Manescu
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
| | - Silvia Imre
- Chromatography and Mass Spectrometry Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Mures, 540139, Romania
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
| | - Smaranda Maier
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
- Neurology 1 Clinic, Mures County Emergency Clinical Hospital, Targu Mures, Romania
| | - Rodica Balasa
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
- Neurology 1 Clinic, Mures County Emergency Clinical Hospital, Targu Mures, Romania
| |
Collapse
|
14
|
Montgomery TL, Peipert D, Krementsov DN. Modulation of multiple sclerosis risk and pathogenesis by the gut microbiota: Complex interactions between host genetics, bacterial metabolism, and diet. Immunol Rev 2024; 325:131-151. [PMID: 38717158 PMCID: PMC11338732 DOI: 10.1111/imr.13343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, affecting nearly 2 million people worldwide. The etiology of MS is multifactorial: Approximately 30% of the MS risk is genetic, which implies that the remaining ~70% is environmental, with a number of factors proposed. One recently implicated risk factor for MS is the composition of the gut microbiome. Numerous case-control studies have identified changes in gut microbiota composition of people with MS (pwMS) compared with healthy control individuals, and more recent studies in animal models have begun to identify the causative microbes and underlying mechanisms. Here, we review some of these mechanisms, with a specific focus on the role of host genetic variation, dietary inputs, and gut microbial metabolism, with a particular emphasis on short-chain fatty acid and tryptophan metabolism. We put forward a model where, in an individual genetically susceptible to MS, the gut microbiota and diet can synergize as potent environmental modifiers of disease risk and possibly progression, with diet-dependent gut microbial metabolites serving as a key mechanism. We also propose that specific microbial taxa may have divergent effects in individuals carrying distinct variants of MS risk alleles or other polymorphisms, as a consequence of host gene-by-gut microbiota interactions. Finally, we also propose that the effects of specific microbial taxa, especially those that exert their effects through metabolites, are highly dependent on the host dietary intake. What emerges is a complex multifaceted interaction that has been challenging to disentangle in human studies, contributing to the divergence of findings across heterogeneous cohorts with differing geography, dietary preferences, and genetics. Nonetheless, this provides a complex and individualized, yet tractable, model of how the gut microbiota regulate susceptibility to MS, and potentially progression of this disease. Thus, we conclude that prophylactic or therapeutic modulation of the gut microbiome to prevent or treat MS will require a careful and personalized consideration of host genetics, baseline gut microbiota composition, and dietary inputs.
Collapse
Affiliation(s)
- Theresa L. Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Dan Peipert
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
15
|
Sun D, Zhang Y, Wang R, Du Q, Shi Z, Chen H, Wang X, Zhou H. Causal effects of gut microbiota on multiple sclerosis: A two-sample Mendelian randomization study. Brain Behav 2024; 14:e3593. [PMID: 38898610 PMCID: PMC11186842 DOI: 10.1002/brb3.3593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/13/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Gut microbiota alterations in multiple sclerosis (MS) patients have been reported in observational studies, but whether these associations are causal is unclear. OBJECTIVE We performed a Mendelian randomization study (MR) to assess the causal effects of gut microbiota on MS. METHODS Independent genetic variants associated with 211 gut microbiota phenotypes were selected as instrumental variables from the largest genome-wide association studies (GWAS) previously published by the MiBioGen study. GWAS data for MS were obtained from the International Multiple Sclerosis Genetics Consortium (IMSGC) for primary analysis and the FinnGen consortium for replication and collaborative analysis. Sensitivity analyses were conducted to evaluate heterogeneity and pleiotropy. RESULTS After inverse-variance-weighted and sensitivity analysis filtering, seven gut microbiota with potential causal effects on MS were identified from the IMSGC. Only five metabolites remained significant associations with MS when combined with the FinnGen consortium, including genus Anaerofilum id.2053 (odds ratio [OR] = 1.141, 95% confidence interval [CI]: 1.021-1.276, p = .021), Ruminococcus2 id.11374 (OR = 1.190, 95% CI: 1.007-1.406, p = .042), Ruminococcaceae UCG003 id.11361 (OR = 0.822, 95% CI: 0.688-0.982, p = .031), Ruminiclostridium5 id.11355 (OR = 0.724, 95% CI: 0.585-0.895, p = .003), Anaerotruncus id.2054 (OR = 0.772, 95% CI: 0.634-0.940, p = .010). CONCLUSION Our MR analysis reveals a potential causal relationship between gut microbiota and MS, offering promising avenues for advancing mechanistic understanding and clinical investigation of microbiota-mediated MS.
Collapse
Affiliation(s)
- Dongren Sun
- Department of NeurologyWest China HospitalSichuan UniversityChengduChina
| | - Yangyang Zhang
- Department of NeurologyWest China HospitalSichuan UniversityChengduChina
| | - Rui Wang
- Department of NeurologyWest China HospitalSichuan UniversityChengduChina
| | - Qin Du
- Department of NeurologyWest China HospitalSichuan UniversityChengduChina
| | - Ziyan Shi
- Department of NeurologyWest China HospitalSichuan UniversityChengduChina
| | - Hongxi Chen
- Department of NeurologyWest China HospitalSichuan UniversityChengduChina
| | - Xiaofei Wang
- Department of NeurologyWest China HospitalSichuan UniversityChengduChina
| | - Hongyu Zhou
- Department of NeurologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
16
|
Alexander M, Upadhyay V, Rock R, Ramirez L, Trepka K, Puchalska P, Orellana D, Ang QY, Whitty C, Turnbaugh JA, Tian Y, Dumlao D, Nayak R, Patterson A, Newman JC, Crawford PA, Turnbaugh PJ. A diet-dependent host metabolite shapes the gut microbiota to protect from autoimmunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565382. [PMID: 37961209 PMCID: PMC10635093 DOI: 10.1101/2023.11.02.565382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Diet can protect from autoimmune disease; however, whether diet acts via the host and/or microbiome remains unclear. Here, we use a ketogenic diet (KD) as a model to dissect these complex interactions. A KD rescued the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis in a microbiota-dependent fashion. Dietary supplementation with a single KD-dependent host metabolite (β-hydroxybutyrate, βHB) rescued EAE whereas transgenic mice unable to produce βHB in the intestine developed more severe disease. Transplantation of the βHB-shaped gut microbiota was protective. Lactobacillus sequence variants were associated with decreased T helper 17 (Th17) cell activation in vitro . Finally, we isolated a L. murinus strain that protected from EAE, which was phenocopied by the Lactobacillus metabolite indole lactic acid. Thus, diet alters the immunomodulatory potential of the gut microbiota by shifting host metabolism, emphasizing the utility of taking a more integrative approach to study diet-host-microbiome interactions.
Collapse
|
17
|
Tian H, Huang D, Wang J, Li H, Gao J, Zhong Y, Xia L, Zhang A, Lin Z, Ke X. The role of the "gut microbiota-mitochondria" crosstalk in the pathogenesis of multiple sclerosis. Front Microbiol 2024; 15:1404995. [PMID: 38741740 PMCID: PMC11089144 DOI: 10.3389/fmicb.2024.1404995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Multiple Sclerosis (MS) is a neurologic autoimmune disease whose exact pathophysiologic mechanisms remain to be elucidated. Recent studies have shown that the onset and progression of MS are associated with dysbiosis of the gut microbiota. Similarly, a large body of evidence suggests that mitochondrial dysfunction may also have a significant impact on the development of MS. Endosymbiotic theory has found that human mitochondria are microbial in origin and share similar biological characteristics with the gut microbiota. Therefore, gut microbiota and mitochondrial function crosstalk are relevant in the development of MS. However, the relationship between gut microbiota and mitochondrial function in the development of MS is not fully understood. Therefore, by synthesizing previous relevant literature, this paper focuses on the changes in gut microbiota and metabolite composition in the development of MS and the possible mechanisms of the crosstalk between gut microbiota and mitochondrial function in the progression of MS, to provide new therapeutic approaches for the prevention or reduction of MS based on this crosstalk.
Collapse
Affiliation(s)
- Huan Tian
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dunbing Huang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqi Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huaqiang Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Gao
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Zhong
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Libin Xia
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhonghua Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Rehabilitation Medicine Center, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincia Hospital, Fuzhou, China
| | - Xiaohua Ke
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
18
|
Saadh MJ, Ahmed HM, Alani ZK, Al Zuhairi RAH, Almarhoon ZM, Ahmad H, Ubaid M, Alwan NH. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromolecular Med 2024; 26:14. [PMID: 38630350 DOI: 10.1007/s12017-024-08783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Hani Moslem Ahmed
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
| | - Zaid Khalid Alani
- College of Health and Medical Technical, Al-Bayan University, Baghdad, Iraq
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
19
|
Williams LM, Cao S. Harnessing and delivering microbial metabolites as therapeutics via advanced pharmaceutical approaches. Pharmacol Ther 2024; 256:108605. [PMID: 38367866 PMCID: PMC10985132 DOI: 10.1016/j.pharmthera.2024.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Microbial metabolites have emerged as key players in the interplay between diet, the gut microbiome, and host health. Two major classes, short-chain fatty acids (SCFAs) and tryptophan (Trp) metabolites, are recognized to regulate inflammatory, immune, and metabolic responses within the host. Given that many human diseases are associated with dysbiosis of the gut microbiome and consequent reductions in microbial metabolite production, the administration of these metabolites represents a direct, multi-targeted treatment. While a multitude of preclinical studies showcase the therapeutic potential of both SCFAs and Trp metabolites, they often rely on high doses and frequent dosing regimens to achieve systemic effects, thereby constraining their clinical applicability. To address these limitations, a variety of pharmaceutical formulations approaches that enable targeted, delayed, and/or sustained microbial metabolite delivery have been developed. These approaches, including enteric encapsulations, esterification to dietary fiber, prodrugs, and nanoformulations, pave the way for the next generation of microbial metabolite-based therapeutics. In this review, we first provide an overview of the roles of microbial metabolites in maintaining host homeostasis and outline how compromised metabolite production contributes to the pathogenesis of inflammatory, metabolic, autoimmune, allergic, infectious, and cancerous diseases. Additionally, we explore the therapeutic potential of metabolites in these disease contexts. Then, we provide a comprehensive and up-to-date review of the pharmaceutical strategies that have been employed to enhance the therapeutic efficacy of microbial metabolites, with a focus on SCFAs and Trp metabolites.
Collapse
Affiliation(s)
- Lindsey M Williams
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Shijie Cao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
20
|
Zißler J, Rothhammer V, Linnerbauer M. Gut-Brain Interactions and Their Impact on Astrocytes in the Context of Multiple Sclerosis and Beyond. Cells 2024; 13:497. [PMID: 38534341 PMCID: PMC10968834 DOI: 10.3390/cells13060497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune inflammatory disease of the central nervous system (CNS) that leads to physical and cognitive impairment in young adults. The increasing prevalence of MS underscores the critical need for innovative therapeutic approaches. Recent advances in neuroimmunology have highlighted the significant role of the gut microbiome in MS pathology, unveiling distinct alterations in patients' gut microbiota. Dysbiosis not only impacts gut-intrinsic processes but also influences the production of bacterial metabolites and hormones, which can regulate processes in remote tissues, such as the CNS. Central to this paradigm is the gut-brain axis, a bidirectional communication network linking the gastrointestinal tract to the brain and spinal cord. Via specific routes, bacterial metabolites and hormones can influence CNS-resident cells and processes both directly and indirectly. Exploiting this axis, novel therapeutic interventions, including pro- and prebiotic treatments, have emerged as promising avenues with the aim of mitigating the severity of MS. This review delves into the complex interplay between the gut microbiome and the brain in the context of MS, summarizing current knowledge on the key signals of cross-organ crosstalk, routes of communication, and potential therapeutic relevance of the gut microbiome. Moreover, this review places particular emphasis on elucidating the influence of these interactions on astrocyte functions within the CNS, offering insights into their role in MS pathophysiology and potential therapeutic interventions.
Collapse
Affiliation(s)
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | | |
Collapse
|
21
|
Johnson-Martínez JP, Diener C, Levine AE, Wilmanski T, Suskind DL, Ralevski A, Hadlock J, Magis AT, Hood L, Rappaport N, Gibbons SM. Generally-healthy individuals with aberrant bowel movement frequencies show enrichment for microbially-derived blood metabolites associated with reduced kidney function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.04.531100. [PMID: 36945445 PMCID: PMC10028848 DOI: 10.1101/2023.03.04.531100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Bowel movement frequency (BMF) has been linked to changes in the composition of the human gut microbiome and to many chronic conditions, like metabolic disorders, neurodegenerative diseases, chronic kidney disease (CKD), and other intestinal pathologies like irritable bowel syndrome and inflammatory bowel disease. Lower BMF (constipation) can lead to compromised intestinal barrier integrity and a switch from saccharolytic to proteolytic fermentation within the microbiota, giving rise to microbially-derived toxins that may make their way into circulation and cause damage to organ systems. However, the connections between BMF, gut microbial metabolism, and the early-stage development and progression of chronic disease remain underexplored. Here, we examined the phenotypic impact of BMF variation in a cohort of generally-healthy, community dwelling adults with detailed clinical, lifestyle, and multi-omic data. We showed significant differences in microbially-derived blood plasma metabolites, gut bacterial genera, clinical chemistries, and lifestyle factors across BMF groups that have been linked to inflammation, cardiometabolic health, liver function, and CKD severity and progression. We found that the higher plasma levels of 3-indoxyl sulfate (3-IS), a microbially-derived metabolite associated with constipation, was in turn negatively associated with estimated glomerular filtration rate (eGFR), a measure of kidney function. Causal mediation analysis revealed that the effect of BMF on eGFR was significantly mediated by 3-IS. Finally, we identify self-reported diet, lifestyle, and psychological factors associated with BMF variation, which indicate several common-sense strategies for mitigating constipation and diarrhea. Overall, we suggest that aberrant BMF is an underappreciated risk factor in the development of chronic diseases, even in otherwise healthy populations.
Collapse
Affiliation(s)
- Johannes P. Johnson-Martínez
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | - Anne E. Levine
- Institute for Systems Biology, Seattle, WA 98109, USA
- Seattle Children’s Hospital, Seattle, WA 98105, USA
| | | | | | | | | | | | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Phenome Health, Seattle, WA 98109
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Noa Rappaport
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- eScience Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
22
|
Han K, Xu J, Xie F, Crowther J, Moon JJ. Engineering Strategies to Modulate the Gut Microbiome and Immune System. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:208-215. [PMID: 38166246 PMCID: PMC10766079 DOI: 10.4049/jimmunol.2300480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 01/04/2024]
Abstract
The gut microbiota, predominantly residing in the colon, is a complex ecosystem with a pivotal role in the host immune system. Dysbiosis of the gut microbiota has been associated with various diseases, and there is an urgent need to develop new therapeutics that target the microbiome and restore immune functions. This Brief Review discusses emerging therapeutic strategies that focus on oral delivery systems for modulating the gut microbiome. These strategies include genetic engineering of probiotics, probiotic-biomaterial hybrids, dietary fibers, and oral delivery systems for microbial metabolites, antimicrobial peptides, RNA, and antibiotics. Engineered oral formulations have demonstrated promising outcomes in reshaping the gut microbiome and influencing immune responses in preclinical studies. By leveraging these approaches, the interplay between the gut microbiota and the immune system can be harnessed for the development of novel therapeutics against cancer, autoimmune disorders, and allergies.
Collapse
Affiliation(s)
- Kai Han
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fang Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Julia Crowther
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Montgomery TL, Toppen LC, Eckstrom K, Heney ER, Kennedy JJ, Scarborough MJ, Krementsov DN. Lactobacillaceae differentially impact butyrate-producing gut microbiota to drive CNS autoimmunity. Gut Microbes 2024; 16:2418415. [PMID: 39462277 PMCID: PMC11520542 DOI: 10.1080/19490976.2024.2418415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs), produced by the gut microbiota, are thought to exert an anti-inflammatory effect on the host immune system. The levels of SCFAs and abundance of the microbiota that produce them are depleted in multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS). The mechanisms leading to this depletion are unknown. Using experimental autoimmune encephalomyelitis (EAE) as a model for MS, we have previously shown that gut microbiomes divergent in their abundance of specific commensal Lactobacillaceae, Limosilactobacillus reuteri (L. reuteri) and Ligilactobacillus murinus (L. murinus), differentially impact CNS autoimmunity. To determine the underlying mechanisms, we employed colonization by L. reuteri and L. murinus in disparate gut microbiome configurations in vivo and in vitro, profiling their impact on gut microbiome composition and metabolism, coupled with modulation of dietary fiber in the EAE model. RESULTS We show that stable colonization by L. reuteri, but not L. murinus, exacerbates EAE, in conjunction with a significant remodeling of gut microbiome composition, depleting SCFA-producing microbiota, including Lachnospiraceae, Prevotellaceae, and Bifidobacterium, with a net decrease in bacterial metabolic pathways involved in butyrate production. In a minimal microbiome culture model in vitro, L. reuteri directly inhibited SCFA-producer growth and depleted butyrate. Genomic analysis of L. reuteri isolates revealed an enrichment in bacteriocins with known antimicrobial activity against SCFA-producing microbiota. Functionally, provision of excess dietary fiber, as the prebiotic substrate for SCFA production, elevated SCFA levels and abrogated the ability of L. reuteri to exacerbate EAE. CONCLUSTIONS Our data highlight a potential mechanism for reduced SCFAs and their producers in MS through depletion by other members of the gut microbiome, demonstrating that interactions between microbiota can impact CNS autoimmunity in a diet-dependent manner. These data suggest that therapeutic restoration of SCFA levels in MS may require not only dietary intervention, but also modulation of the gut microbiome.
Collapse
Affiliation(s)
- Theresa L. Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | - Lucinda C. Toppen
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, USA
| | - Korin Eckstrom
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Eamonn R. Heney
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | | | - Matthew J. Scarborough
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, USA
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| |
Collapse
|
24
|
Kujawa D, Laczmanski L, Budrewicz S, Pokryszko-Dragan A, Podbielska M. Targeting gut microbiota: new therapeutic opportunities in multiple sclerosis. Gut Microbes 2023; 15:2274126. [PMID: 37979154 PMCID: PMC10730225 DOI: 10.1080/19490976.2023.2274126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023] Open
Abstract
Multiple sclerosis (MS) causes long-lasting, multifocal damage to the central nervous system. The complex background of MS is associated with autoimmune inflammation and neurodegeneration processes, and is potentially affected by many contributing factors, including altered composition and function of the gut microbiota. In this review, current experimental and clinical evidence is presented for the characteristics of gut dysbiosis found in MS, as well as for its relevant links with the course of the disease and the dysregulated immune response and metabolic pathways involved in MS pathology. Furthermore, therapeutic implications of these investigations are discussed, with a range of pharmacological, dietary and other interventions targeted at the gut microbiome and thus intended to have beneficial effects on the course of MS.
Collapse
Affiliation(s)
- Dorota Kujawa
- Laboratory of Genomics & Bioinformatics, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lukasz Laczmanski
- Laboratory of Genomics & Bioinformatics, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | | | - Maria Podbielska
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
25
|
Židó M, Kačer D, Valeš K, Zimová D, Štětkářová I. Metabolomics of Cerebrospinal Fluid Amino and Fatty Acids in Early Stages of Multiple Sclerosis. Int J Mol Sci 2023; 24:16271. [PMID: 38003464 PMCID: PMC10671192 DOI: 10.3390/ijms242216271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating and neurodegenerative autoimmune disease of the central nervous system (CNS) damaging myelin and axons. Diagnosis is based on the combination of clinical findings, magnetic resonance imaging (MRI) and analysis of cerebrospinal fluid (CSF). Metabolomics is a systematic study that allows us to track amounts of different metabolites in a chosen medium. The aim of this study was to establish metabolomic differences between the cerebrospinal fluid of patients in the early stages of multiple sclerosis and healthy controls, which could potentially serve as markers for predicting disease activity. We collected CSF from 40 patients after the first attack of clinical symptoms who fulfilled revised McDonald criteria of MS, and the CSF of 33 controls. Analyses of CSF samples were performed by using the high-performance liquid chromatography system coupled with a mass spectrometer with a high-resolution detector. Significant changes in concentrations of arginine, histidine, spermidine, glutamate, choline, tyrosine, serine, oleic acid, stearic acid and linoleic acid were observed. More prominently, Expanded Disability Status Scale values significantly correlated with lower concentrations of histidine. We conclude that these metabolites could potentially play a role as a biomarker of disease activity and predict presumable inflammatory changes.
Collapse
Affiliation(s)
- Michal Židó
- Department of Neurology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
- Department of Neurology, Faculty Hospital Královské Vinohrady, 100 34 Prague, Czech Republic;
| | - David Kačer
- National Institute of Mental Health, 250 67 Klecany, Czech Republic; (D.K.); (K.V.)
| | - Karel Valeš
- National Institute of Mental Health, 250 67 Klecany, Czech Republic; (D.K.); (K.V.)
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Denisa Zimová
- Department of Neurology, Faculty Hospital Královské Vinohrady, 100 34 Prague, Czech Republic;
| | - Ivana Štětkářová
- Department of Neurology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
- Department of Neurology, Faculty Hospital Královské Vinohrady, 100 34 Prague, Czech Republic;
| |
Collapse
|
26
|
Boris V, Vanessa V. Molecular systems biology approaches to investigate mechanisms of gut-brain communication in neurological diseases. Eur J Neurol 2023; 30:3622-3632. [PMID: 37038632 DOI: 10.1111/ene.15819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Whilst the incidence of neurological diseases is increasing worldwide, treatment remains mostly limited to symptom management. The gut-brain axis, which encompasses the communication routes between microbiota, gut and brain, has emerged as a crucial area of investigation for identifying new preventive and therapeutic targets in neurological disease. METHODS Due to the inter-organ, systemic nature of the gut-brain axis, together with the multitude of biomolecules and microbial species involved, molecular systems biology approaches are required to accurately investigate the mechanisms of gut-brain communication. High-throughput omics profiling, together with computational methodologies such as dimensionality reduction or clustering, machine learning, network inference and genome-scale metabolic models, allows novel biomarkers to be discovered and elucidates mechanistic insights. RESULTS In this review, the general concepts of experimental and computational methodologies for gut-brain axis research are introduced and their applications are discussed, mainly in human cohorts. Important aspects are further highlighted concerning rational study design, sampling procedures and data modalities relevant for gut-brain communication, strengths and limitations of methodological approaches and some future perspectives. CONCLUSION Multi-omics analyses, together with advanced data mining, are essential to functionally characterize the gut-brain axis and put forward novel preventive or therapeutic strategies in neurological disease.
Collapse
Affiliation(s)
- Vandemoortele Boris
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Vermeirssen Vanessa
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Nitzan Z, Staun-Ram E, Volkowich A, Miller A. Multiple Sclerosis-Associated Gut Microbiome in the Israeli Diverse Populations: Associations with Ethnicity, Gender, Disability Status, Vitamin D Levels, and Mediterranean Diet. Int J Mol Sci 2023; 24:15024. [PMID: 37834472 PMCID: PMC10573818 DOI: 10.3390/ijms241915024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Microbiome dysbiosis is increasingly being recognized as implicated in immune-mediated disorders including multiple sclerosis (MS). The microbiome is modulated by genetic and environmental factors including lifestyle, diet, and drug intake. This study aimed to characterize the MS-associated gut microbiome in the Israeli populations and to identify associations with demographic, dietary, and clinical features. The microbiota from 57 treatment-naive patients with MS (PwMS) and 43 age- and gender-matched healthy controls (HCs) was sequenced and abundance compared. Associations between differential microbes with demographic or clinical characteristics, as well as diet and nutrient intake, were assessed. While there was no difference in α- or β-diversity of the microbiome, we identified 40 microbes from different taxonomic levels that differ in abundance between PwMS and HCs, including Barnesiella, Collinsella, Egerthella, Mitsuokella, Olsenella Romboutsia, and Succinivibrio, all enhanced in PwMS, while several members of Lacnospira were reduced. Additional MS-differential microbes specific to ethnicity were identified. Several MS-specific microbial patterns were associated with gender, vitamin D level, Mediterranean diet, nutrient intake, or disability status. Thus, PwMS have altered microbiota composition, with distinctive patterns related to geographic locations and population. Microbiome dysbiosis seem to be implicated in disease progression, gender-related differences, and vitamin D-mediated immunological effects recognized in MS. Dietary interventions may be beneficial in restoring a "healthy microbiota" as part of applying comprehensive personalized therapeutic strategies for PwMS.
Collapse
Affiliation(s)
- Zehavit Nitzan
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel (E.S.-R.)
| | - Elsebeth Staun-Ram
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel (E.S.-R.)
- Neuroimmunology Unit & Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
| | - Anat Volkowich
- Neuroimmunology Unit & Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
| | - Ariel Miller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel (E.S.-R.)
- Neuroimmunology Unit & Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
- Department of Neurology, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
| |
Collapse
|
28
|
Luo Z, Chen A, Xie A, Liu X, Jiang S, Yu R. Limosilactobacillus reuteri in immunomodulation: molecular mechanisms and potential applications. Front Immunol 2023; 14:1228754. [PMID: 37638038 PMCID: PMC10450031 DOI: 10.3389/fimmu.2023.1228754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Frequent use of hormones and drugs may be associated with side-effects. Recent studies have shown that probiotics have effects on the prevention and treatment of immune-related diseases. Limosilactobacillus reuteri (L. reuteri) had regulatory effects on intestinal microbiota, host epithelial cells, immune cells, cytokines, antibodies (Ab), toll-like receptors (TLRs), tryptophan (Try) metabolism, antioxidant enzymes, and expression of related genes, and exhibits antibacterial and anti-inflammatory effects, leading to alleviation of disease symptoms. Although the specific composition of the cell-free supernatant (CFS) of L. reuteri has not been clarified, its efficacy in animal models has drawn increased attention to its potential use. This review summarizes the effects of L. reuteri on intestinal flora and immune regulation, and discusses the feasibility of its application in atopic dermatitis (AD), asthma, necrotizing enterocolitis (NEC), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS), and provides insights for the prevention and treatment of immune-related diseases.
Collapse
Affiliation(s)
- Zichen Luo
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Ailing Chen
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Anni Xie
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Xueying Liu
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
29
|
Mandato C, Colucci A, Lanzillo R, Staiano A, Scarpato E, Schiavo L, Operto FF, Serra MR, Di Monaco C, Napoli JS, Massa G, Vajro P. Multiple Sclerosis-Related Dietary and Nutritional Issues: An Updated Scoping Review with a Focus on Pediatrics. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1022. [PMID: 37371254 PMCID: PMC10297186 DOI: 10.3390/children10061022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
PURPOSE Lifestyle/dietetic habits play an important role in the development and progression of multiple sclerosis (MS) disease. Here, we examine the basic pathomechanisms underlying intestinal and brain barrier modifications in MS and consider diets and dietary supplementations proposed over time to complement pharmacological therapies for improving disease outcome both in adults and in children. METHODS Scoping literature search about evidence-based findings in MS-related gut-brain axis (GBA) pathophysiology and nutritional issues at all ages. FINDINGS Data show that (1) no universal best diet exists, (2) healthy/balanced diets are, however, necessary to safeguard the adequate intake of all essential nutrients, (3) diets with high intakes of fruits, vegetables, whole grains, and lean proteins that limit processed foods, sugar, and saturated fat appear beneficial for their antioxidant and anti-inflammatory properties and their ability to shape a gut microbiota that respects the gut and brain barriers, (4) obesity may trigger MS onset and/or its less favorable course, especially in pediatric-onset MS. Vitamin D and polyunsaturated fatty acids are the most studied supplements for reducing MS-associated inflammation. CONCLUSIONS Pending results from other and/or newer approaches targeting the GBA (e.g., pre- and probiotics, engineered probiotics, fecal-microbiota transplantation), accurate counseling in choosing adequate diet and maintaining physical activity remains recommended for MS prevention and management both in adults and children.
Collapse
Affiliation(s)
- Claudia Mandato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| | - Angelo Colucci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| | - Roberta Lanzillo
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Annamaria Staiano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Elena Scarpato
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Luigi Schiavo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Nutrition Section, University of Salerno, 84081 Baronissi, Salerno, Italy
| | - Francesca Felicia Operto
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatric Psychiatry Section, University of Salerno, 84081 Baronissi, Salerno, Italy
| | - Maria Rosaria Serra
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Cristina Di Monaco
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Julia Sara Napoli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| | - Grazia Massa
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| | - Pietro Vajro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| |
Collapse
|
30
|
Ordoñez-Rodriguez A, Roman P, Rueda-Ruzafa L, Campos-Rios A, Cardona D. Changes in Gut Microbiota and Multiple Sclerosis: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20054624. [PMID: 36901634 PMCID: PMC10001679 DOI: 10.3390/ijerph20054624] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease mediated by autoimmune reactions against myelin proteins and gangliosides in the grey and white matter of the brain and spinal cord. It is considered one of the most common neurological diseases of non-traumatic origin in young people, especially in women. Recent studies point to a possible association between MS and gut microbiota. Intestinal dysbiosis has been observed, as well as an alteration of short-chain fatty acid-producing bacteria, although clinical data remain scarce and inconclusive. OBJECTIVE To conduct a systematic review on the relationship between gut microbiota and multiple sclerosis. METHOD The systematic review was conducted in the first quarter of 2022. The articles included were selected and compiled from different electronic databases: PubMed, Scopus, ScienceDirect, Proquest, Cochrane, and CINAHL. The keywords used in the search were: "multiple sclerosis", "gut microbiota", and "microbiome". RESULTS 12 articles were selected for the systematic review. Among the studies that analysed alpha and beta diversity, only three found significant differences with respect to the control. In terms of taxonomy, the data are contradictory, but confirm an alteration of the microbiota marked by a decrease in Firmicutes, Lachnospiraceae, Bifidobacterium, Roseburia, Coprococcus, Butyricicoccus, Lachnospira, Dorea, Faecalibacterium, and Prevotella and an increase in Bacteroidetes, Akkermansia, Blautia, and Ruminocococcus. As for short-chain fatty acids, in general, a decrease in short-chain fatty acids, in particular butyrate, was observed. CONCLUSIONS Gut microbiota dysbiosis was found in multiple sclerosis patients compared to controls. Most of the altered bacteria are short-chain fatty acid (SCFA)-producing, which could explain the chronic inflammation that characterises this disease. Therefore, future studies should consider the characterisation and manipulation of the multiple sclerosis-associated microbiome as a focus of both diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Pablo Roman
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almería, 04120 Almeria, Spain
| | - Lola Rueda-Ruzafa
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Correspondence:
| | - Ana Campos-Rios
- Laboratory of Neuroscience, CINBIO, University of Vigo, 36310 Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), 15706 Vigo, Spain
| | - Diana Cardona
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almería, 04120 Almeria, Spain
| |
Collapse
|
31
|
Ladakis DC, Bhargava P. The Role of Gut Dysbiosis and Potential Approaches to Target the Gut Microbiota in Multiple Sclerosis. CNS Drugs 2023; 37:117-132. [PMID: 36690786 DOI: 10.1007/s40263-023-00986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
It has now been established that a perturbation in gut microbiome composition exists in multiple sclerosis (MS) and its interplay with the immune system and brain could potentially contribute to the development of the disease and influence its course. The effects of the gut microbiota on the disease may be mediated by direct interactions between bacteria and immune cells or through interactions of products of bacterial metabolism with immune and CNS cells. In this review article we summarize the ways in which the gut microbiome of people with MS differs from controls and how bacterial metabolites can potentially play a role in MS pathogenesis, and examine approaches to alter the composition of the gut microbiota potentially alleviating gut dysbiosis and impacting the course of MS.
Collapse
Affiliation(s)
- Dimitrios C Ladakis
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Pathology 627, Baltimore, MD, 21287, USA
| | - Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Pathology 627, Baltimore, MD, 21287, USA.
| |
Collapse
|
32
|
Lorefice L, Pitzalis M, Murgia F, Fenu G, Atzori L, Cocco E. Omics approaches to understanding the efficacy and safety of disease-modifying treatments in multiple sclerosis. Front Genet 2023; 14:1076421. [PMID: 36793897 PMCID: PMC9922720 DOI: 10.3389/fgene.2023.1076421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
From the perspective of precision medicine, the challenge for the future is to improve the accuracy of diagnosis, prognosis, and prediction of therapeutic responses through the identification of biomarkers. In this framework, the omics sciences (genomics, transcriptomics, proteomics, and metabolomics) and their combined use represent innovative approaches for the exploration of the complexity and heterogeneity of multiple sclerosis (MS). This review examines the evidence currently available on the application of omics sciences to MS, analyses the methods, their limitations, the samples used, and their characteristics, with a particular focus on biomarkers associated with the disease state, exposure to disease-modifying treatments (DMTs), and drug efficacies and safety profiles.
Collapse
Affiliation(s)
- Lorena Lorefice
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- *Correspondence: Lorena Lorefice,
| | - Maristella Pitzalis
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Federica Murgia
- Dpt of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giuseppe Fenu
- Department of Neurosciences, ARNAS Brotzu, Cagliari, Italy
| | - Luigi Atzori
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
33
|
Zhang X, Song Y, Wei Z, Chen X, Zhuang X, Yi L. The prevalence and risk factors of anxiety in multiple sclerosis: A systematic review and meta-analysis. Front Neurosci 2023; 17:1120541. [PMID: 37139531 PMCID: PMC10149809 DOI: 10.3389/fnins.2023.1120541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Background Patients with multiple sclerosis (MS) suffer from repetitive neurological deterioration, while anxiety may play a significant role in the disease's progression. Objective To explore the prevalence of anxiety in MS and to investigate the risk factors related to anxiety in MS patients. Methods An analysis of four databases, PubMed, Web of Science, EMBASE, and Cochrane Library, has been conducted to determine the prevalence or risk factors for anxiety in MS published before May 2021. Results In total, 32 studies were found to be eligible. Anxiety prevalence was estimated to be 36% based on the pooled estimates [the 95% confidence interval (CI) = [0.30-0.42], I 2 = 98.4%]. Significant risk factors for developing of anxiety were as follows: age at survey [the weighted mean difference (WMD) = 0.96, 95% CI = [0.86-1.06], I 2 = 43.8%], female [the odd ratio (OR) = 1.78, 95% CI = [1.38-2.30], I 2 = 0%], living together (OR 2.83, 95% CI = [1.74-4.59], I 2 = 0%), past psychiatric history (OR 2.42, 95% CI = [1.56-3.75], I 2 = 0%), depression (OR 7.89, 95% CI = [3.71-16.81], I 2 = 0%), not taking MS medication (OR 2.33, 95% CI = [1.29-4.21], I 2 = 77.8%), relapsing-remitting MS (RRMS) (OR 1.50, 95% CI = [0.94-2.37], I 2 = 53.5%), and baseline Expanded Disability Status Scale (EDSS) (OR 0.84, 95% CI = [0.48-1.21], I 2 = 62.2%). Conclusion An estimated 36% of people with MS suffer from anxiety. And anxiety rates in MS patients are significantly associated with age, gender, living together, prior psychiatric history, depression, drug compliance, RRMS, and baseline EDSS. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=287069, identifier CRD42021287069.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Neurology Department, Peking University Shenzhen Hospital, Shenzhen, China
- Rehabilitation Department, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Ying Song
- Neurology Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhiqiang Wei
- Neurology Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiao Chen
- Neurology Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaojia Zhuang
- Neurology Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Li Yi
- Neurology Department, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Li Yi,
| |
Collapse
|
34
|
Zacharias HU, Kaleta C, Cossais F, Schaeffer E, Berndt H, Best L, Dost T, Glüsing S, Groussin M, Poyet M, Heinzel S, Bang C, Siebert L, Demetrowitsch T, Leypoldt F, Adelung R, Bartsch T, Bosy-Westphal A, Schwarz K, Berg D. Microbiome and Metabolome Insights into the Role of the Gastrointestinal-Brain Axis in Parkinson's and Alzheimer's Disease: Unveiling Potential Therapeutic Targets. Metabolites 2022; 12:metabo12121222. [PMID: 36557259 PMCID: PMC9786685 DOI: 10.3390/metabo12121222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's disease (AD), the prevalence of which is rapidly rising due to an aging world population and westernization of lifestyles, are expected to put a strong socioeconomic burden on health systems worldwide. Clinical trials of therapies against PD and AD have only shown limited success so far. Therefore, research has extended its scope to a systems medicine point of view, with a particular focus on the gastrointestinal-brain axis as a potential main actor in disease development and progression. Microbiome and metabolome studies have already revealed important insights into disease mechanisms. Both the microbiome and metabolome can be easily manipulated by dietary and lifestyle interventions, and might thus offer novel, readily available therapeutic options to prevent the onset as well as the progression of PD and AD. This review summarizes our current knowledge on the interplay between microbiota, metabolites, and neurodegeneration along the gastrointestinal-brain axis. We further illustrate state-of-the art methods of microbiome and metabolome research as well as metabolic modeling that facilitate the identification of disease pathomechanisms. We conclude with therapeutic options to modulate microbiome composition to prevent or delay neurodegeneration and illustrate potential future research directions to fight PD and AD.
Collapse
Affiliation(s)
- Helena U. Zacharias
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 30625 Hannover, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Correspondence: (H.U.Z.); (C.K.)
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
- Correspondence: (H.U.Z.); (C.K.)
| | | | - Eva Schaeffer
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Henry Berndt
- Research Group Comparative Immunobiology, Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Lena Best
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany
| | - Thomas Dost
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany
| | - Svea Glüsing
- Institute of Human Nutrition and Food Science, Food Technology, Kiel University, 24118 Kiel, Germany
| | - Mathieu Groussin
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Mathilde Poyet
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastian Heinzel
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Institute of Medical Informatics and Statistics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Leonard Siebert
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Tobias Demetrowitsch
- Institute of Human Nutrition and Food Science, Food Technology, Kiel University, 24118 Kiel, Germany
- Kiel Network of Analytical Spectroscopy and Mass Spectrometry, Kiel University, 24118 Kiel, Germany
| | - Frank Leypoldt
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Neuroimmunology, Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Rainer Adelung
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Thorsten Bartsch
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Anja Bosy-Westphal
- Institute of Human Nutrition and Food Science, Kiel University, 24107 Kiel, Germany
| | - Karin Schwarz
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
- Institute of Human Nutrition and Food Science, Food Technology, Kiel University, 24118 Kiel, Germany
- Kiel Network of Analytical Spectroscopy and Mass Spectrometry, Kiel University, 24118 Kiel, Germany
| | - Daniela Berg
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
35
|
Montgomery TL, Eckstrom K, Lile KH, Caldwell S, Heney ER, Lahue KG, D'Alessandro A, Wargo MJ, Krementsov DN. Lactobacillus reuteri tryptophan metabolism promotes host susceptibility to CNS autoimmunity. MICROBIOME 2022; 10:198. [PMID: 36419205 PMCID: PMC9685921 DOI: 10.1186/s40168-022-01408-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/01/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND Dysregulation of gut microbiota-associated tryptophan metabolism has been observed in patients with multiple sclerosis. However, defining direct mechanistic links between this apparent metabolic rewiring and individual constituents of the gut microbiota remains challenging. We and others have previously shown that colonization with the gut commensal and putative probiotic species, Lactobacillus reuteri, unexpectedly enhances host susceptibility to experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. To identify underlying mechanisms, we characterized the genome of commensal L. reuteri isolates, coupled with in vitro and in vivo metabolomic profiling, modulation of dietary substrates, and gut microbiota manipulation. RESULTS The enzymes necessary to metabolize dietary tryptophan into immunomodulatory indole derivatives were enriched in the L. reuteri genomes, including araT, fldH, and amiE. Moreover, metabolite profiling of L. reuteri monocultures and serum of L. reuteri-colonized mice revealed a depletion of kynurenines and production of a wide array of known and novel tryptophan-derived aryl hydrocarbon receptor (AhR) agonists and antagonists, including indole acetate, indole-3-glyoxylic acid, tryptamine, p-cresol, and diverse imidazole derivatives. Functionally, dietary tryptophan was required for L. reuteri-dependent EAE exacerbation, while depletion of dietary tryptophan suppressed disease activity and inflammatory T cell responses in the CNS. Mechanistically, L. reuteri tryptophan-derived metabolites activated the AhR and enhanced T cell production of IL-17. CONCLUSIONS Our data suggests that tryptophan metabolism by gut commensals, such as the putative probiotic species L. reuteri, can unexpectedly enhance autoimmunity, inducing broad shifts in the metabolome and immunological repertoire. Video Abstract.
Collapse
Affiliation(s)
- Theresa L Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Korin Eckstrom
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05401, USA
| | - Katarina H Lile
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Sydney Caldwell
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Eamonn R Heney
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Karolyn G Lahue
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, 80045, USA
| | - Matthew J Wargo
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05401, USA
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA.
| |
Collapse
|
36
|
Dziedzic A, Saluk J. Probiotics and Commensal Gut Microbiota as the Effective Alternative Therapy for Multiple Sclerosis Patients Treatment. Int J Mol Sci 2022; 23:ijms232214478. [PMID: 36430954 PMCID: PMC9699268 DOI: 10.3390/ijms232214478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The gut-brain axis (GBA) refers to the multifactorial interactions between the intestine microflora and the nervous, immune, and endocrine systems, connecting brain activity and gut functions. Alterations of the GBA have been revealed in people with multiple sclerosis (MS), suggesting a potential role in disease pathogenesis and making it a promising therapeutic target. Whilst research in this field is still in its infancy, a number of studies revealed that MS patients are more likely to exhibit modified microbiota, altered levels of short-chain fatty acids, and enhanced intestinal permeability. Both clinical and preclinical trials in patients with MS and animal models revealed that the administration of probiotic bacteria might improve cognitive, motor, and mental behaviors by modulation of GBA molecular pathways. According to the newest data, supplementation with probiotics may be associated with slower disability progression, reduced depressive symptoms, and improvements in general health in patients with MS. Herein, we give an overview of how probiotics supplementation may have a beneficial effect on the course of MS and its animal model. Hence, interference with the composition of the MS patient's intestinal microbiota may, in the future, be a grip point for the development of diagnostic tools and personalized microbiota-based adjuvant therapy.
Collapse
|
37
|
Indolepropionic Acid, a Gut Bacteria-Produced Tryptophan Metabolite and the Risk of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease. Nutrients 2022; 14:nu14214695. [PMID: 36364957 PMCID: PMC9653718 DOI: 10.3390/nu14214695] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
An intricate relationship between gut microbiota, diet, and the human body has recently been extensively investigated. Gut microbiota and gut-derived metabolites, especially, tryptophan derivatives, modulate metabolic and immune functions in health and disease. One of the tryptophan derivatives, indolepropionic acid (IPA), is increasingly being studied as a marker for the onset and development of metabolic disorders, including type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). The IPA levels heavily depend on the diet, particularly dietary fiber, and show huge variations among individuals. We suggest that these variations could partially be explained using genetic variants known to be associated with specific diseases such as T2D. In this narrative review, we elaborate on the beneficial effects of IPA in the mitigation of T2D and NAFLD, and further study the putative interactions between IPA and well-known genetic variants (TCF7L2, FTO, and PPARG), known to be associated with the risk of T2D. We have investigated the long-term preventive value of IPA in the development of T2D in the Finnish prediabetic population and the correlation of IPA with phytosterols in obese individuals from an ongoing Kuopio obesity surgery study. The diversity in IPA-linked mechanisms affecting glucose metabolism and liver fibrosis makes it a unique small metabolite and a promising candidate for the reversal or management of metabolic disorders, mainly T2D and NAFLD.
Collapse
|
38
|
Rebeaud J, Peter B, Pot C. How Microbiota-Derived Metabolites Link the Gut to the Brain during Neuroinflammation. Int J Mol Sci 2022; 23:ijms231710128. [PMID: 36077526 PMCID: PMC9456539 DOI: 10.3390/ijms231710128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Microbiota-derived metabolites are important molecules connecting the gut to the brain. Over the last decade, several studies have highlighted the importance of gut-derived metabolites in the development of multiple sclerosis (MS). Indeed, microbiota-derived metabolites modulate the immune system and affect demyelination. Here, we discuss the current knowledge about microbiota-derived metabolites implications in MS and in different mouse models of neuroinflammation. We focus on the main families of microbial metabolites that play a role during neuroinflammation. A better understanding of the role of those metabolites may lead to new therapeutical avenues to treat neuroinflammatory diseases targeting the gut–brain axis.
Collapse
|
39
|
Liu Z, Waters J, Rui B. Metabolomics as a promising tool for improving understanding of multiple sclerosis: A review of recent advances. Biomed J 2022; 45:594-606. [PMID: 35042018 PMCID: PMC9486246 DOI: 10.1016/j.bj.2022.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system that usually affects young adults. The development of MS is closely related to the changes in the metabolome. Metabolomics studies have been performed using biofluids or tissue samples from rodent models and human patients to reveal metabolic alterations associated with MS progression. This review aims to provide an overview of the applications of metabolomics that for the investigations of the perturbed metabolic pathways in MS and to reveal the potential of metabolomics in personalizing treatments. In conclusion, informative variations of metabolites can be potential biomarkers in advancing our understanding of MS pathogenesis for MS diagnosis, predicting the progression of the disease, and estimating drug effects. Metabolomics will be a promising technique for improving clinical care in MS.
Collapse
Affiliation(s)
- Zhicheng Liu
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Jeffrey Waters
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Bin Rui
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA.
| |
Collapse
|
40
|
Bierhansl L, Hartung HP, Aktas O, Ruck T, Roden M, Meuth SG. Thinking outside the box: non-canonical targets in multiple sclerosis. Nat Rev Drug Discov 2022; 21:578-600. [PMID: 35668103 PMCID: PMC9169033 DOI: 10.1038/s41573-022-00477-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system that causes demyelination, axonal degeneration and astrogliosis, resulting in progressive neurological disability. Fuelled by an evolving understanding of MS immunopathogenesis, the range of available immunotherapies for clinical use has expanded over the past two decades. However, MS remains an incurable disease and even targeted immunotherapies often fail to control insidious disease progression, indicating the need for new and exceptional therapeutic options beyond the established immunological landscape. In this Review, we highlight such non-canonical targets in preclinical MS research with a focus on five highly promising areas: oligodendrocytes; the blood-brain barrier; metabolites and cellular metabolism; the coagulation system; and tolerance induction. Recent findings in these areas may guide the field towards novel targets for future therapeutic approaches in MS.
Collapse
Affiliation(s)
- Laura Bierhansl
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center of Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
41
|
An expanded reference map of the human gut microbiome reveals hundreds of previously unknown species. Nat Commun 2022; 13:3863. [PMID: 35790781 PMCID: PMC9256738 DOI: 10.1038/s41467-022-31502-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
Abstract
The gut is the richest ecosystem of microbes in the human body and has great influence on our health. Despite many efforts, the set of microbes inhabiting this environment is not fully known, limiting our ability to identify microbial content and to research it. In this work, we combine new microbial metagenomic assembled genomes from 51,052 samples, with previously published genomes to produce a curated set of 241,118 genomes. Based on this set, we procure a new and improved human gut microbiome reference set of 3594 high quality species genomes, which successfully matches 83.65% validation samples’ reads. This improved reference set contains 310 novel species, including one that exists in 19% of validation samples. Overall, this study provides a gut microbial genome reference set that can serve as a valuable resource for further research. Here, Leviatan et al. produce 241,118 genome assemblies to produce a new human gut microbiome reference set of 3,594 species genomes, of which 310 represent previously undescribed species, making the catalog a valuable resource for further research.
Collapse
|
42
|
Bomba L, Walter K, Guo Q, Surendran P, Kundu K, Nongmaithem S, Karim MA, Stewart ID, Langenberg C, Danesh J, Di Angelantonio E, Roberts DJ, Ouwehand WH, Dunham I, Butterworth AS, Soranzo N. Whole-exome sequencing identifies rare genetic variants associated with human plasma metabolites. Am J Hum Genet 2022; 109:1038-1054. [PMID: 35568032 PMCID: PMC9247822 DOI: 10.1016/j.ajhg.2022.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/13/2022] [Indexed: 12/11/2022] Open
Abstract
Metabolite levels measured in the human population are endophenotypes for biological processes. We combined sequencing data for 3,924 (whole-exome sequencing, WES, discovery) and 2,805 (whole-genome sequencing, WGS, replication) donors from a prospective cohort of blood donors in England. We used multiple approaches to select and aggregate rare genetic variants (minor allele frequency [MAF] < 0.1%) in protein-coding regions and tested their associations with 995 metabolites measured in plasma by using ultra-high-performance liquid chromatography-tandem mass spectrometry. We identified 40 novel associations implicating rare coding variants (27 genes and 38 metabolites), of which 28 (15 genes and 28 metabolites) were replicated. We developed algorithms to prioritize putative driver variants at each locus and used mediation and Mendelian randomization analyses to test directionality at associations of metabolite and protein levels at the ACY1 locus. Overall, 66% of reported associations implicate gene targets of approved drugs or bioactive drug-like compounds, contributing to drug targets' validating efforts.
Collapse
Affiliation(s)
- Lorenzo Bomba
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Open Targets, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Klaudia Walter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Qi Guo
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Kousik Kundu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Suraj Nongmaithem
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Mohd Anisul Karim
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Open Targets, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Isobel D Stewart
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK; Computational Medicine, Berlin Institute of Health at Charité - Utniversitätsmedizin Berlin, Berlin 10117, Germany
| | - John Danesh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB2 0QQ, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB10 1SA, UK
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB2 0QQ, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB10 1SA, UK; Human Technopole, Palazzo Italia, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - David J Roberts
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; NHS Blood and Transplant-Oxford Centre, Level 2, John Radcliffe Hospital, Oxford OX3 9BQ, UK; Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9BQ, UK
| | - Willem H Ouwehand
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | | | - Ian Dunham
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Open Targets, Wellcome Genome Campus, Hinxton CB10 1SD, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB2 0QQ, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB10 1SA, UK
| | - Nicole Soranzo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Open Targets, Wellcome Genome Campus, Hinxton CB10 1SD, UK; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB2 0QQ, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; Human Technopole, Palazzo Italia, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| |
Collapse
|
43
|
Barupal DK, Mahajan P, Fakouri-Baygi S, Wright RO, Arora M, Teitelbaum SL. CCDB: A database for exploring inter-chemical correlations in metabolomics and exposomics datasets. ENVIRONMENT INTERNATIONAL 2022; 164:107240. [PMID: 35461097 PMCID: PMC9195052 DOI: 10.1016/j.envint.2022.107240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 05/18/2023]
Abstract
Inter-chemical correlations in metabolomics and exposomics datasets provide valuable information for studying relationships among chemicals reported for human specimens. With an increase in the number of compounds for these datasets, a network graph analysis and visualization of the correlation structure is difficult to interpret. We have developed the Chemical Correlation Database (CCDB), as a systematic catalogue of inter-chemical correlation in publicly available metabolomics and exposomics studies. The database has been provided via an online interface to create single compound-centric views. We have demonstrated various applications of the database to explore: 1) the chemicals from a chemical class such as Per- and Polyfluoroalkyl Substances (PFAS), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), phthalates and tobacco smoke related metabolites; 2) xenobiotic metabolites such as caffeine and acetaminophen; 3) endogenous metabolites (acyl-carnitines); and 4) unannotated peaks for PFAS. The database has a rich collection of 35 human studies, including the National Health and Nutrition Examination Survey (NHANES) and high-quality untargeted metabolomics datasets. CCDB is supported by a simple, interactive and user-friendly web-interface to retrieve and visualize the inter-chemical correlation data. The CCDB has the potential to be a key computational resource in metabolomics and exposomics facilitating the expansion of our understanding about biological and chemical relationships among metabolites and chemical exposures in the human body. The database is available at www.ccdb.idsl.me site.
Collapse
Affiliation(s)
- Dinesh Kumar Barupal
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, CAM Building, New York 10029, USA.
| | - Priyanka Mahajan
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, CAM Building, New York 10029, USA
| | - Sadjad Fakouri-Baygi
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, CAM Building, New York 10029, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, CAM Building, New York 10029, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, CAM Building, New York 10029, USA
| | - Susan L Teitelbaum
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, CAM Building, New York 10029, USA
| |
Collapse
|
44
|
Židó M, Kačer D, Valeš K, Svobodová Z, Zimová D, Štětkárová I. Metabolomics of Cerebrospinal Fluid in Multiple Sclerosis Compared With Healthy Controls: A Pilot Study. Front Neurol 2022; 13:874121. [PMID: 35693010 PMCID: PMC9178205 DOI: 10.3389/fneur.2022.874121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) leading to the loss of myelin and axons. Diagnosis is based on clinical findings, MRI, and analysis of cerebrospinal fluid (CSF). CSF is an ultrafiltrate of plasma and reflects inflammatory processes in the CNS. The aim of this study was to perform metabolomics analysis of CSF in patients after the first attack of MS and healthy controls and try to find new specific analytes for MS including those potentially predicting disease activities at the onset. Methods We collected CSF from 19 patients (16 females, aged 19–55 years) after the first attack of clinical symptoms who fulfilled revised McDonald criteria of MS and CSF of 19 controls (16 females, aged 19–50 years). Analyses of CSF samples were provided using the high-performance liquid chromatography system coupled with a mass spectrometer with a high-resolution detector (TripleTOF 5600, AB Sciex, Canada). Results Approximately 130 selected analytes were identified, and 30 of them were verified. During the targeted analysis, a significant decrease in arginine and histidine and a less significant decrease in the levels of asparagine, leucine/isoleucine, and tryptophan, together with a significant increase of palmitic acid in the patient group, were found. Conclusion We observed significant differences in amino and fatty acids in the CSF of newly diagnosed patients with MS in comparison with controls. The most significant changes were observed in levels of arginine, histidine, and palmitic acid that may predict inflammatory disease activity. Further studies are necessary to support these findings as potential biomarkers of MS.
Collapse
Affiliation(s)
- Michal Židó
- Department of Neurology, Third Faculty of Medicine, Charles University, Prague, Czechia
- Department of Neurology, Faculty Hospital Královské Vinohrady, Prague, Czechia
| | - David Kačer
- National Institute of Mental Health, Klecany, Czechia
| | - Karel Valeš
- National Institute of Mental Health, Klecany, Czechia
- Institute of Physiology, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Zuzana Svobodová
- Department of Neurology, Faculty Hospital Královské Vinohrady, Prague, Czechia
| | - Denisa Zimová
- Department of Neurology, Faculty Hospital Královské Vinohrady, Prague, Czechia
| | - Ivana Štětkárová
- Department of Neurology, Third Faculty of Medicine, Charles University, Prague, Czechia
- Department of Neurology, Faculty Hospital Královské Vinohrady, Prague, Czechia
- *Correspondence: Ivana Štětkárová
| |
Collapse
|
45
|
Gubert C, Gasparotto J, H. Morais L. Convergent pathways of the gut microbiota-brain axis and neurodegenerative disorders. Gastroenterol Rep (Oxf) 2022; 10:goac017. [PMID: 35582476 PMCID: PMC9109005 DOI: 10.1093/gastro/goac017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/14/2022] Open
Abstract
Recent research has been uncovering the role of the gut microbiota for brain health and disease. These studies highlight the role of gut microbiota on regulating brain function and behavior through immune, metabolic, and neuronal pathways. In this review we provide an overview of the gut microbiota axis pathways to lay the groundwork for upcoming sessions on the links between the gut microbiota and neurogenerative disorders. We also discuss how the gut microbiota may act as an intermediate factor between the host and the environment to mediate disease onset and neuropathology. Based on the current literature, we further examine the potential for different microbiota-based therapeutic strategies to prevent, to modify, or to halt the progress of neurodegeneration.
Collapse
Affiliation(s)
- Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Juciano Gasparotto
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, Alfenas, Minas Gerais, Brasil
| | - Livia H. Morais
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
46
|
Nagpal S, Singh R, Taneja B, Mande SS. MarkerML – Marker feature identification in metagenomic datasets using interpretable machine learning. J Mol Biol 2022; 434:167589. [DOI: 10.1016/j.jmb.2022.167589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/29/2022]
|
47
|
Boussamet L, Rajoka MSR, Berthelot L. Microbiota, IgA and Multiple Sclerosis. Microorganisms 2022; 10:microorganisms10030617. [PMID: 35336190 PMCID: PMC8954136 DOI: 10.3390/microorganisms10030617] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease characterized by immune cell infiltration in the central nervous system and destruction of myelin sheaths. Alterations of gut bacteria abundances are present in MS patients. In mouse models of neuroinflammation, depletion of microbiota results in amelioration of symptoms, and gavage with MS patient microbiota exacerbates the disease and inflammation via Th17 cells. On the other hand, depletion of B cells using anti-CD20 is an efficient therapy in MS, and growing evidence shows an important deleterious role of B cells in MS pathology. However, the failure of TACI-Ig treatment in MS highlighted the potential regulatory role of plasma cells. The mechanism was recently demonstrated involving IgA+ plasma cells, specific for gut microbiota and producing IL-10. IgA-coated bacteria in MS patient gut exhibit also modifications. We will focus our review on IgA interactions with gut microbiota and IgA+ B cells in MS. These recent data emphasize new pathways of neuroinflammation regulation in MS.
Collapse
Affiliation(s)
- Léo Boussamet
- Centre for Research in Transplantation and Translation Immunology, Nantes Université, Inserm, CR2TI UMR, 1064 Nantes, France;
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Laureline Berthelot
- Centre for Research in Transplantation and Translation Immunology, Nantes Université, Inserm, CR2TI UMR, 1064 Nantes, France;
- Correspondence:
| |
Collapse
|
48
|
Goguyer-Deschaumes R, Waeckel L, Killian M, Rochereau N, Paul S. Metabolites and secretory immunoglobulins: messengers and effectors of the host-microbiota intestinal equilibrium. Trends Immunol 2021; 43:63-77. [PMID: 34848167 DOI: 10.1016/j.it.2021.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023]
Abstract
Maintaining commensal diversity is essential to host homeostasis, because microbial species provide a range of metabolic products and continuously educate the host immune system. The mucosal immune system must actively gather information about the composition of the microbiota, while offering an appropriate response. In mammals, bacterial sensing leads to the production of specific immunoglobulins (Ig), which reach the intestinal lumen as secretory Ig (SIg). Recent work has shed more light on the mechanisms by which SIg can shape bacterial repertoires and contribute to regulating host metabolism. In parallel, bacterial metabolites modulate Ig production and secretion. Here, we present an overview of the current knowledge of the relationship between bacterial metabolites and host SIg, correlating the disruption of this balance with chronic inflammation in humans.
Collapse
Affiliation(s)
- Roman Goguyer-Deschaumes
- Centre International de Recherche en Infectiologie (CIRI), Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, F42023 Saint-Etienne, France
| | - Louis Waeckel
- Centre International de Recherche en Infectiologie (CIRI), Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, F42023 Saint-Etienne, France
| | - Martin Killian
- Centre International de Recherche en Infectiologie (CIRI), Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, F42023 Saint-Etienne, France
| | - Nicolas Rochereau
- Centre International de Recherche en Infectiologie (CIRI), Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, F42023 Saint-Etienne, France
| | - Stéphane Paul
- Centre International de Recherche en Infectiologie (CIRI), Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, F42023 Saint-Etienne, France.
| |
Collapse
|
49
|
Fitzgerald KC, Smith MD, Kim S, Sotirchos ES, Kornberg MD, Douglas M, Nourbakhsh B, Graves J, Rattan R, Poisson L, Cerghet M, Mowry EM, Waubant E, Giri S, Calabresi PA, Bhargava P. Multi-omic evaluation of metabolic alterations in multiple sclerosis identifies shifts in aromatic amino acid metabolism. Cell Rep Med 2021; 2:100424. [PMID: 34755135 PMCID: PMC8561319 DOI: 10.1016/j.xcrm.2021.100424] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/16/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
The circulating metabolome provides unique insights into multiple sclerosis (MS) pathophysiology, but existing studies are relatively small or characterized limited metabolites. We test for differences in the metabolome between people with MS (PwMS; n = 637 samples) and healthy controls (HC; n = 317 samples) and assess the association between metabolomic profiles and disability in PwMS. We then assess whether metabolic differences correlate with changes in cellular gene expression using publicly available scRNA-seq data and whether identified metabolites affect human immune cell function. In PwMS, we identify striking abnormalities in aromatic amino acid (AAA) metabolites (p = 2.77E-18) that are also strongly associated with disability (p = 1.01E-4). Analysis of scRNA-seq data demonstrates altered AAA metabolism in CSF and blood-derived monocyte cell populations in PwMS. Treatment with AAA-derived metabolites in vitro alters monocytic endocytosis and pro-inflammatory cytokine production. We identify shifts in AAA metabolism resulting in the reduced production of immunomodulatory metabolites and increased production of metabotoxins in PwMS.
Collapse
Affiliation(s)
- Kathryn C. Fitzgerald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, MD, USA
| | - Matthew D. Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sol Kim
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elias S. Sotirchos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael D. Kornberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Morgan Douglas
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bardia Nourbakhsh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Graves
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ramandeep Rattan
- Department of Neurology, Henry Ford Health System, Wayne State University School of Medicine, Detroit, MI, USA
| | - Laila Poisson
- Department of Neurology, Henry Ford Health System, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mirela Cerghet
- Department of Neurology, Henry Ford Health System, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ellen M. Mowry
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, MD, USA
| | - Emmanuelle Waubant
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Wayne State University School of Medicine, Detroit, MI, USA
| | - Peter A. Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|