1
|
Ge X, Weis K, Raetzman L. Glycoprotein hormone subunit alpha 2 (GPHA2): A pituitary stem cell-expressed gene associated with NOTCH2 signaling. Mol Cell Endocrinol 2024; 586:112163. [PMID: 38246572 DOI: 10.1016/j.mce.2024.112163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
NOTCH2 is expressed in pituitary stem cells and is necessary for stem cell maintenance, proliferation, and differentiation. However, the pathways NOTCH2 engages to affect pituitary development remain unclear. In this study, we hypothesized that glycoprotein hormone subunit A2 (GPHA2), a corneal stem cell factor and ligand for the thyroid stimulating hormone receptor (TSHR), is downstream of NOTCH2 signaling. We found Gpha2 is expressed in quiescent pituitary stem cells by RNAscope in situ hybridization and scRNA seq. In Notch2 conditional knockout pituitaries, Gpha2 mRNA is reduced compared with control littermates. We then investigated the possible functions of GPHA2. Pituitaries treated with a GPHA2 peptide do not have a change in proliferation. However, in dissociated adult pituitary cells, GPHA2 increased pCREB expression and this induction was reversed by co-treatment with a TSHR inhibitor. These data suggest GPHA2 is a NOTCH2 related stem cell factor that activates TSHR signaling, potentially impacting pituitary development.
Collapse
Affiliation(s)
- Xiyu Ge
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Karen Weis
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Lori Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, IL, 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Pérez Millán MI, Cheung LYM, Mercogliano F, Camilletti MA, Chirino Felker GT, Moro LN, Miriuka S, Brinkmeier ML, Camper SA. Pituitary stem cells: past, present and future perspectives. Nat Rev Endocrinol 2024; 20:77-92. [PMID: 38102391 PMCID: PMC10964491 DOI: 10.1038/s41574-023-00922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
Pituitary cells that express the transcription factor SOX2 are stem cells because they can self-renew and differentiate into multiple pituitary hormone-producing cell types as organoids. Wounding and physiological challenges can activate pituitary stem cells, but cell numbers are not fully restored, and the ability to mobilize stem cells decreases with increasing age. The basis of these limitations is still unknown. The regulation of stem cell quiescence and activation involves many different signalling pathways, including those mediated by WNT, Hippo and several cytokines; more research is needed to understand the interactions between these pathways. Pituitary organoids can be formed from human or mouse embryonic stem cells, or from human induced pluripotent stem cells. Human pituitary organoid transplantation is sufficient to induce corticosterone release in hypophysectomized mice, raising the possibility of therapeutic applications. Today, pituitary organoids have the potential to assess the role of individual genes and genetic variants on hormone production ex vivo, providing an important tool for the advancement of exciting frontiers in pituitary stem cell biology and pituitary organogenesis. In this article, we provide an overview of notable discoveries in pituitary stem cell function and highlight important areas for future research.
Collapse
Affiliation(s)
- María Inés Pérez Millán
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Leonard Y M Cheung
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Florencia Mercogliano
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Maria Andrea Camilletti
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Gonzalo T Chirino Felker
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Lucia N Moro
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Santiago Miriuka
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Winningham AH, Camper SA. Pituitary Stem Cell Regulation by Zeb2 and BMP Signaling. Endocrinology 2023; 164:bqad016. [PMID: 36683433 PMCID: PMC10091485 DOI: 10.1210/endocr/bqad016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is important for many developing organs, and for wound healing, fibrosis, and cancer. Pituitary stem cells undergo an EMT-like process as they migrate and initiate differentiation, but little is known about the input of signaling pathways or the genetic hierarchy of the transcriptional cascade. Prop1 mutant stem cells fail to undergo changes in cellular morphology, migration, and transition to the Pou1f1 lineage. We used Prop1 mutant mice to identify the changes in gene expression that are affiliated with EMT-like processes. BMP and TGF-β family gene expression was reduced in Prop1 mutants and Elf5, a transcription factor that characteristically suppresses EMT, had elevated expression. Genes involved in cell-cell contact such as cadherins and claudins were elevated in Prop1 mutants. To establish the genetic hierarchy of control, we manipulated gene expression in pituitary stem cell colonies. We determined that the EMT inducer, Zeb2, is necessary for robust BMP signaling and repression of Elf5. We demonstrated that inhibition of BMP signaling affects expression of target genes in the Id family, but it does not affect expression of other EMT genes. Zeb2 is necessary for expression of the SHH effector gene Gli2. However, knock down of Gli2 has little effect on the EMT-related genes, suggesting that it acts through a separate pathway. Thus, we have established the genetic hierarchy involved in the transition of pituitary stem cells to differentiation.
Collapse
Affiliation(s)
- Amanda H Winningham
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA
| |
Collapse
|
4
|
Gui Z, Lv M, Han M, Li S, Mo Z. Effect of CPP-related genes on GnRH secretion and Notch signaling pathway during puberty. Biomed J 2022; 46:100575. [PMID: 36528337 DOI: 10.1016/j.bj.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Puberty is a complex biological process of sexual development, influenced by genetic, metabolic-nutritional, environmental and socioeconomic factors, characterized by the development of secondary sexual characteristics, maturation of the gonads, leading to the acquisition of reproductive capacity. The onset of central precocious puberty (CPP) is mainly associated with the early activation of the hypothalamic-pituitary-gonadal (HPG) axis and increased secretion of gonadotropin-releasing hormone (GnRH), leading to increased pituitary secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) and activation of gonadal function. Due to the expense and invasiveness of current diagnostic testing and drug therapies for CPP, it would be helpful to find serum and genetic markers to facilitate diagnosis. In this paper, we summarized the related factors that may affect the expression of GnRH1 gene and the secretion and action pathway of GnRH and related sex hormones, and found several potential targets, such as MKRN3, DLK1 and KISS1. Although, the specific mechanism still needs to be further studied, we would be encouraged if the insights from this review could provide new insights for future research and clinical diagnosis and treatment of CPP.
Collapse
Affiliation(s)
- Zihao Gui
- Guangxi Provincial Postgraduate Co-training Base for Collaborative Innovation in Basic Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China; Clinical Medicine of Hengyang Medical School, University of South China, Hengyang, China
| | - Mei Lv
- Guangxi Provincial Postgraduate Co-training Base for Collaborative Innovation in Basic Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China; Anshun City People's Hospital, Anshun, Guizhou, China
| | - Min Han
- Clinical Medicine of Hengyang Medical School, University of South China, Hengyang, China
| | - Shan Li
- Guangxi Provincial Postgraduate Co-training Base for Collaborative Innovation in Basic Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
| | - Zhongcheng Mo
- Guangxi Provincial Postgraduate Co-training Base for Collaborative Innovation in Basic Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
5
|
Willis TL, Lodge EJ, Andoniadou CL, Yianni V. Cellular interactions in the pituitary stem cell niche. Cell Mol Life Sci 2022; 79:612. [PMID: 36451046 PMCID: PMC9712314 DOI: 10.1007/s00018-022-04612-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 09/27/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022]
Abstract
Stem cells in the anterior pituitary gland can give rise to all resident endocrine cells and are integral components for the appropriate development and subsequent maintenance of the organ. Located in discreet niches within the gland, stem cells are involved in bi-directional signalling with their surrounding neighbours, interactions which underpin pituitary gland homeostasis and response to organ challenge or physiological demand. In this review we highlight core signalling pathways that steer pituitary progenitors towards specific endocrine fate decisions throughout development. We further elaborate on those which are conserved in the stem cell niche postnatally, including WNT, YAP/TAZ and Notch signalling. Furthermore, we have collated a directory of single cell RNA sequencing studies carried out on pituitaries across multiple organisms, which have the potential to provide a vast database to study stem cell niche components in an unbiased manner. Reviewing published data, we highlight that stem cells are one of the main signalling hubs within the anterior pituitary. In future, coupling single cell sequencing approaches with genetic manipulation tools in vivo, will enable elucidation of how previously understudied signalling pathways function within the anterior pituitary stem cell niche.
Collapse
Affiliation(s)
- Thea L Willis
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Emily J Lodge
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Cynthia L Andoniadou
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Val Yianni
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
6
|
Laporte E, Vennekens A, Vankelecom H. Pituitary Remodeling Throughout Life: Are Resident Stem Cells Involved? Front Endocrinol (Lausanne) 2021; 11:604519. [PMID: 33584539 PMCID: PMC7879485 DOI: 10.3389/fendo.2020.604519] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
The pituitary gland has the primordial ability to dynamically adapt its cell composition to changing hormonal needs of the organism throughout life. During the first weeks after birth, an impressive growth and maturation phase is occurring in the gland during which the distinct hormonal cell populations expand. During pubertal growth and development, growth hormone (GH) levels need to peak which requires an adaptive enterprise in the GH-producing somatotrope population. At aging, pituitary function wanes which is associated with organismal decay including the somatopause in which GH levels drop. In addition to these key time points of life, the pituitary's endocrine cell landscape plastically adapts during specific (patho-)physiological conditions such as lactation (need for PRL) and stress (engagement of ACTH). Particular resilience is witnessed after physical injury in the (murine) gland, culminating in regeneration of destroyed cell populations. In many other tissues, adaptive and regenerative processes involve the local stem cells. Over the last 15 years, evidence has accumulated that the pituitary gland houses a resident stem cell compartment. Recent studies propose their involvement in at least some of the cell remodeling processes that occur in the postnatal pituitary but support is still fragmentary and not unequivocal. Many questions remain unsolved such as whether the stem cells are key players in the vivid neonatal growth phase and whether the decline in pituitary function at old age is associated with decreased stem cell fitness. Furthermore, the underlying molecular mechanisms of pituitary plasticity, in particular the stem cell-linked ones, are still largely unknown. Pituitary research heavily relies on transgenic in vivo mouse models. While having proven their value, answers to pituitary stem cell-focused questions may more diligently come from a novel powerful in vitro research model, termed organoids, which grow from pituitary stem cells and recapitulate stem cell phenotype and activation status. In this review, we describe pituitary plasticity conditions and summarize what is known on the involvement and phenotype of pituitary stem cells during these pituitary remodeling events.
Collapse
Affiliation(s)
| | | | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
7
|
Lee HS, Jeong HR, Rho JG, Kum CD, Kim KH, Kim DW, Cheong JY, Jeong SY, Hwang JS. Identification of rare missense mutations in NOTCH2 and HERC2 associated with familial central precocious puberty via whole-exome sequencing. Gynecol Endocrinol 2020; 36:682-686. [PMID: 32400230 DOI: 10.1080/09513590.2020.1760241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective: Genetic factors play a critical role in pubertal progression; however, mutations associated with central precocious puberty (CPP) have been reported only in four genes: KISS1, KISS1R, DLK1, and MKRN3. This study aimed to identify novel, potentially pathogenic variants in patients with familial CPP via whole-exome sequencing (WES).Methods: WES analysis was applied in 28 patients (25 girls and three boys) belonging to 14 families, wherein all siblings were diagnosed with CPP. Data analysis aimed to select only very rare variants (minor allele frequency <1%). Nonsense, splice-site, and frameshift variants were considered the most ideal candidate variants. Additionally, non-synonymous missense variants predicted as being deleterious using in silico analysis tools were further considered.Results: The analysis of exome sequencing data resulted in the identification of rare mutations in two promising candidate genes (NOTCH2 and HERC2) in a family. Siblings with CPP exhibited two heterozygous missense mutations (p. Leu15Phe in NOTCH2 and p. Arg4081His in HERC2). Moreover, their parents without history of CPP had a missense variant in either NOTCH2 or HERC2.Conclusions: We identified new candidate genes with potential roles in pubertal development. Digenic inheritance of the two genetic mutations associated with the Notch signaling pathway may have a synergistic effect resulting in CPP.
Collapse
Affiliation(s)
- Hae Sang Lee
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hwal Rim Jeong
- Department of Pediatrics, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jung Gi Rho
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chang Dae Kum
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kyung Hee Kim
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Do Wan Kim
- Ajou Translational Omics Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Jae Youn Cheong
- Ajou Translational Omics Center, Ajou University Medical Center, Suwon, Republic of Korea
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Jin Soon Hwang
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
8
|
Mariniello K, Ruiz-Babot G, McGaugh EC, Nicholson JG, Gualtieri A, Gaston-Massuet C, Nostro MC, Guasti L. Stem Cells, Self-Renewal, and Lineage Commitment in the Endocrine System. Front Endocrinol (Lausanne) 2019; 10:772. [PMID: 31781041 PMCID: PMC6856655 DOI: 10.3389/fendo.2019.00772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
The endocrine system coordinates a wide array of body functions mainly through secretion of hormones and their actions on target tissues. Over the last decades, a collective effort between developmental biologists, geneticists, and stem cell biologists has generated a wealth of knowledge related to the contribution of stem/progenitor cells to both organogenesis and self-renewal of endocrine organs. This review provides an up-to-date and comprehensive overview of the role of tissue stem cells in the development and self-renewal of endocrine organs. Pathways governing crucial steps in both development and stemness maintenance, and that are known to be frequently altered in a wide array of endocrine disorders, including cancer, are also described. Crucially, this plethora of information is being channeled into the development of potential new cell-based treatment modalities for endocrine-related illnesses, some of which have made it through clinical trials.
Collapse
Affiliation(s)
- Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Emily C. McGaugh
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - James G. Nicholson
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
9
|
Weis KE, Raetzman LT. Genistein inhibits proliferation and induces senescence in neonatal mouse pituitary gland explant cultures. Toxicology 2019; 427:152306. [PMID: 31593742 DOI: 10.1016/j.tox.2019.152306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/27/2022]
Abstract
Genistein is an isoflavone abundant in soybean and infants are exposed to high levels of genistein in soy-based formula. It is known that genistein mediates estrogen receptor (ER) signaling, and exposure during neonatal development could cause acute and long term endocrine effects. We assayed genistein's impact on the neonatal mouse pituitary gland because it is an endocrine signaling hub and is sensitive to endocrine disruption during critical periods. Pituitary explant cultures, which actively proliferate and differentiate, were exposed to 0.06 μM-36 μM genistein and assayed for mRNA and protein changes. Genistein induced mRNA expression of the ERα regulated gene, Cckar, to the same magnitude as estradiol (E2) but with less potency. Interestingly, 36 μM genistein strongly inhibited pituitary proliferation, measured by a reduction in mKi67 mRNA and phospho-Histone H3 immunostaining. Examining cell cycle dynamics, we found that 36 μM genistein decreased Ccnb1 (Cyclin B1) mRNA; while mRNA for the cyclin dependent kinase inhibitor Cdkn1a (p21) was upregulated, correlated with an apparent increase in p21 immunostained cells. Strikingly, we observed a robust onset of cellular senescence, permanent cell cycle exit, in 36 μM genistein treated pituitaries by increased senescence activated β-galactosidase staining. We also found that 36 μM genistein decreased Bcl2 mRNA levels, a gene protective against apoptosis. Taken together these data suggest that genistein exposure during the neonatal period could initiate senescence and halt proliferation during a time when the proper numbers of endocrine cells are being established for mature gland function.
Collapse
Affiliation(s)
- Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois, 61801, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois, 61801, USA.
| |
Collapse
|
10
|
Edwards W, Raetzman LT. Complex integration of intrinsic and peripheral signaling is required for pituitary gland development. Biol Reprod 2019; 99:504-513. [PMID: 29757344 DOI: 10.1093/biolre/ioy081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022] Open
Abstract
The coordination of pituitary development is complicated and requires input from multiple cellular processes. Recent research has provided insight into key molecular determinants that govern cell fate specification in the pituitary. Moreover, increasing research aimed to identify, characterize, and functionally describe the presumptive pituitary stem cell population has allowed for a better understanding of the processes that govern endocrine cell differentiation in the developing pituitary. The culmination of this research has led to the ability of investigators to recapitulate some of embryonic pituitary development in vitro, the first steps to developing novel regenerative therapies for pituitary diseases. In this current review, we cover the major players in pituitary stem/progenitor cell function and maintenance, and the key molecular determinants of endocrine cell specification. In addition, we discuss the contribution of peripheral hormonal regulation of pituitary gland development, an understudied area of research.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
11
|
Han DX, Wang CJ, Sun XL, Liu JB, Jiang H, Gao Y, Chen CZ, Yuan B, Zhang JB. Identification of circular RNAs in the immature and mature rat anterior pituitary. J Endocrinol 2019; 240:393-402. [PMID: 30657740 DOI: 10.1530/joe-18-0540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022]
Abstract
Circular RNAs (circRNAs) are a new class of RNA that have a stable structure characterized by covalently closed circular molecules and are involved in invasive pituitary adenomas and recurrent clinically nonfunctioning pituitary adenomas. However, information on circRNAs in the normal pituitary, especially in rats, is limited. In this study, we identified 4123 circRNAs in the immature (D15) and mature (D120) rat anterior pituitary using the Illumina platform, and 32 differentially expressed circRNAs were found. A total of 150 Gene Ontology terms were significantly enriched, and 16 KEGG pathways were found to contain differentially expressed genes. Moreover, we randomly selected eight highly expressed circRNAs and detected their relative expression levels in the mature and immature rat pituitary by qPCR. In addition, we predicted 90 interactions between 53 circRNAs and 57 miRNAs using miRanda. Notably, circ_0000964 and circ_0001303 are potential miRNA sponges that may regulate the Fshb gene. The expression profile of circRNAs in the immature and mature rat anterior pituitary may provide more information about the roles of circRNAs in the development and reproduction in mammals.
Collapse
Affiliation(s)
- Dong-Xu Han
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Chang-Jiang Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Xu-Lei Sun
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jian-Bo Liu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Yan Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Cheng-Zhen Chen
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
12
|
Zubeldía-Brenner L, De Winne C, Perrone S, Rodríguez-Seguí SA, Willems C, Ornstein AM, Lacau-Mengido I, Vankelecom H, Cristina C, Becu-Villalobos D. Inhibition of Notch signaling attenuates pituitary adenoma growth in Nude mice. Endocr Relat Cancer 2019; 26:13-29. [PMID: 30121620 DOI: 10.1530/erc-18-0337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/08/2018] [Indexed: 12/16/2022]
Abstract
Preclinical and clinical studies support that Notch signaling may play an important oncogenic role in cancer, but there is scarce information for pituitary tumors. We therefore undertook a functional study to evaluate Notch participation in pituitary adenoma growth. Tumors generated in Nude mice by subcutaneous GH3 somatolactotrope cell injection were treated in vivo with DAPT, a γ-secretase inhibitor, thus inactivating Notch signaling. This treatment led to pituitary tumor reduction, lower prolactin and GH tumor content and a decrease in angiogenesis. Furthermore, in silico transcriptomic and epigenomic analyses uncovered several tumor suppressor genes related to Notch signaling in pituitary tissue, namely Btg2, Nr4a1, Men1, Zfp36 and Cnot1. Gene evaluation suggested that Btg2, Nr4a1 and Cnot1 may be possible players in GH3 xenograft growth. Btg2 mRNA expression was lower in GH3 tumors compared to the parental line, and DAPT increased its expression levels in the tumor in parallel with the inhibition of its volume. Cnot1 mRNA levels were also increased in the pituitary xenografts by DAPT treatment. And the Nr4a1 gene was lower in tumors compared to the parental line, though not modified by DAPT. Finally, because DAPT in vivo may also be acting on tumor microenvironment, we determined the direct effect of DAPT on GH3 cells in vitro. We found that DAPT decreases the proliferative, secretory and migration potential of GH3 cells. These results position selective interruption of Notch signaling as a potential therapeutic tool in adjuvant treatments for aggressive or resistant pituitary tumors.
Collapse
Affiliation(s)
| | - Catalina De Winne
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina
| | - Sofía Perrone
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Santiago A Rodríguez-Seguí
- Departamento de Fisiología y Biología Molecular y Celular, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Christophe Willems
- Department of Development and Regeneration, Cluster Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Ana María Ornstein
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina
| | - Isabel Lacau-Mengido
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina
| | - Hugo Vankelecom
- Department of Development and Regeneration, Cluster Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Carolina Cristina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
13
|
Youngblood JL, Coleman TF, Davis SW. Regulation of Pituitary Progenitor Differentiation by β-Catenin. Endocrinology 2018; 159:3287-3305. [PMID: 30085028 DOI: 10.1210/en.2018-00563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
The pituitary gland is a critical organ that is necessary for many physiological processes, including growth, reproduction, and stress response. The secretion of pituitary hormones from specific cell types regulates these essential processes. Pituitary hormone cell types arise from a common pool of pituitary progenitors, and mutations that disrupt the formation and differentiation of pituitary progenitors result in hypopituitarism. Canonical WNT signaling through CTNNB1 (β-catenin) is known to regulate the formation of the POU1F1 lineage of pituitary cell types. When β-catenin is deleted during the initial formation of the pituitary progenitors, Pou1f1 is not transcribed, which leads to the loss of the POU1F1 lineage. However, when β-catenin is deleted after lineage specification, there is no observable effect. Similarly, the generation of a β-catenin gain-of-function allele in early pituitary progenitors or stem cells results in the formation of craniopharyngiomas, whereas stimulating β-catenin in differentiated cell types has no effect. PROP1 is a pituitary-specific transcription factor, and the peak of PROP1 expression coincides with a critical time point in pituitary organogenesis-that is, after pituitary progenitor formation but before lineage specification. We used a Prop1-cre to conduct both loss- and gain-of-function studies on β-catenin during this critical time point. Our results demonstrate that pituitary progenitors remain sensitive to both loss and gain of β-catenin at this time point, and that either manipulation results in hypopituitarism.
Collapse
Affiliation(s)
- Julie L Youngblood
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Tanner F Coleman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
14
|
Cheung L, Le Tissier P, Goldsmith SGJ, Treier M, Lovell-Badge R, Rizzoti K. NOTCH activity differentially affects alternative cell fate acquisition and maintenance. eLife 2018; 7:e33318. [PMID: 29578405 PMCID: PMC5889214 DOI: 10.7554/elife.33318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/24/2018] [Indexed: 01/08/2023] Open
Abstract
The pituitary is an essential endocrine gland regulating multiple processes. Regeneration of endocrine cells is of therapeutic interest and recent studies are promising, but mechanisms of endocrine cell fate acquisition need to be better characterised. The NOTCH pathway is important during pituitary development. Here, we further characterise its role in the murine pituitary, revealing differential sensitivity within and between lineages. In progenitors, NOTCH activation blocks cell fate acquisition, with time-dependant modulation. In differentiating cells, response to activation is blunted in the POU1F1 lineage, with apparently normal cell fate specification, while POMC cells remain sensitive. Absence of apparent defects in Pou1f1-Cre; Rbpjfl/fl mice further suggests no direct role for NOTCH signalling in POU1F1 cell fate acquisition. In contrast, in the POMC lineage, NICD expression induces a regression towards a progenitor-like state, suggesting that the NOTCH pathway specifically blocks POMC cell differentiation. These results have implications for pituitary development, plasticity and regeneration. Activation of NOTCH signalling in different cell lineages of the embryonic murine pituitary uncovers an unexpected differential sensitivity, and this consequently reveals new aspects of endocrine lineages development and plasticity.
Collapse
Affiliation(s)
- Leonard Cheung
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Paul Le Tissier
- Centre for Discovery Brain ScienceIntegrative PhysiologyEdinburghUnited Kingdom
| | | | - Mathias Treier
- Cardiovascular and Metabolic SciencesMax Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité-Universitätsmedizin BerlinBerlinGermany
| | | | | |
Collapse
|
15
|
Li C, Li X, Ma Q, Zhang X, Cao Y, Yao Y, You S, Wang D, Quan R, Hou X, Liu Z, Zhan Q, Liu L, Zhang M, Yu S, Ni W, Hu S. Genome-wide analysis of circular RNAs in prenatal and postnatal pituitary glands of sheep. Sci Rep 2017; 7:16143. [PMID: 29170496 PMCID: PMC5700919 DOI: 10.1038/s41598-017-16344-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/10/2017] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of animal non-coding RNAs and play an impor-tant role in animal growth and development. However, the expression and function of circRNAs in the pituitary gland of sheep are unclear. Transcriptome profiling of circRNAs in the pituitary gland of sheep may enable us to understand their biological functions. In the present study, we identified 10,226 circRNAs from RNA-seq data in the pituitary gland of prenatal and postnatal sheep. Reverse transcription PCR and DNA sequencing analysis confirmed the presence of several circRNAs. Real-time RT-PCR analysis showed that sheep circRNAs are resistant to RNase R digestion and are expressed in prenatal and postnatal pituitary glands. GO and KEGG enrichment analysis showed that host genes of differentially expressed circRNAs are involved in the regulation of hormone secretion as well as in several pathways related to these processes. We determined that numerous circRNAs interact with pituitary-specific miRNAs that are involved in the biologic functions of the pituitary gland. Moreover, several circRNAs contain at least one IRES element and open reading frame, indicating their potential to encode proteins. Our study provides comprehensive expression profiles of circRNAs in the pituitary gland, thereby offering a valuable resource for circRNA biology in sheep.
Collapse
Affiliation(s)
- Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Qiman Ma
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Xiangyu Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yang Cao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yang Yao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Shuang You
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Dawei Wang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Renzhe Quan
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Xiaoxu Hou
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Zhijin Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Qianqian Zhan
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Li Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Mengdan Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Shuting Yu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| |
Collapse
|
16
|
Cox B, Roose H, Vennekens A, Vankelecom H. Pituitary stem cell regulation: who is pulling the strings? J Endocrinol 2017; 234:R135-R158. [PMID: 28615294 DOI: 10.1530/joe-17-0083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/14/2017] [Indexed: 12/28/2022]
Abstract
The pituitary gland plays a pivotal role in the endocrine system, steering fundamental processes of growth, metabolism, reproduction and coping with stress. The adult pituitary contains resident stem cells, which are highly quiescent in homeostatic conditions. However, the cells show marked signs of activation during processes of increased cell remodeling in the gland, including maturation at neonatal age, adaptation to physiological demands, regeneration upon injury and growth of local tumors. Although functions of pituitary stem cells are slowly but gradually uncovered, their regulation largely remains virgin territory. Since postnatal stem cells in general reiterate embryonic developmental pathways, attention is first being given to regulatory networks involved in pituitary embryogenesis. Here, we give an overview of the current knowledge on the NOTCH, WNT, epithelial-mesenchymal transition, SHH and Hippo pathways in the pituitary stem/progenitor cell compartment during various (activation) conditions from embryonic over neonatal to adult age. Most information comes from expression analyses of molecular components belonging to these networks, whereas functional extrapolation is still very limited. From this overview, it emerges that the 'big five' embryonic pathways are indeed reiterated in the stem cells of the 'lazy' homeostatic postnatal pituitary, further magnified en route to activation in more energetic, physiological and pathological remodeling conditions. Increasing the knowledge on the molecular players that pull the regulatory strings of the pituitary stem cells will not only provide further fundamental insight in postnatal pituitary homeostasis and activation, but also clues toward the development of regenerative ideas for improving treatment of pituitary deficiency and tumors.
Collapse
Affiliation(s)
- Benoit Cox
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Heleen Roose
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Annelies Vennekens
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Hugo Vankelecom
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
17
|
Guo QH, Wang CZ, Wu ZQ, Qin Y, Han BY, Wang AP, Wang BA, Dou JT, Wu XS, Mu YM. Multi-genic pattern found in rare type of hypopituitarism: a whole-exome sequencing study of Han Chinese with pituitary stalk interruption syndrome. J Cell Mol Med 2017; 21:3626-3632. [PMID: 28707430 PMCID: PMC5706574 DOI: 10.1111/jcmm.13272] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/07/2017] [Indexed: 12/17/2022] Open
Abstract
Pituitary stalk interruption syndrome (PSIS) is a rare type of hypopituitarism manifesting various degrees of pituitary hormone deficiency. Although mutations have been identified in some familial cases, the underpinning mechanisms of sporadic patients with PSIS who are in a vast majority remain elusive, necessitating a comprehensive study using systemic approaches. We postulate that other genetic mechanisms may be responsible for the sporadic PSIS. To test this hypothesis, we conducted a study in 24 patients with PSIS of Han Chinese with no family history using whole‐exome sequencing (WES) and bioinformatic analysis. We identified a group of heterozygous mutations in 92% (22 of 24) of the patients, and these genes are mostly associated with Notch, Shh, Wnt signalling pathways. Importantly, 83% (20 of 24) of the patients had more than one mutation in those pathways suggesting synergy of compound mutations underpin the pathogenesis of sporadic PSIS.
Collapse
Affiliation(s)
- Qing-Hua Guo
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China.,Department of Endocrinology, Hainan Branch of Chinese PLA General Hospital, Sanya, Hainan, China
| | - Cheng-Zhi Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Zhi-Qiang Wu
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yan Qin
- Department of Endocrinology, The First Affiliated Hospital of Xinxiang Medical University, Weihui City, Henan, China
| | - Bai-Yu Han
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China.,Department of Endocrinology and Metabolism, The 264 Hospital of PLA, Taiyuan, Shanxi, China
| | - An-Ping Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Bao-An Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Jing-Tao Dou
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Sheng Wu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Yi-Ming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Perrone S, Zubeldia-Brenner L, Gazza E, Demarchi G, Baccarini L, Baricalla A, Mertens F, Luque G, Vankelecom H, Berner S, Becu-Villalobos D, Cristina C. Notch system is differentially expressed and activated in pituitary adenomas of distinct histotype, tumor cell lines and normal pituitaries. Oncotarget 2017; 8:57072-57088. [PMID: 28915655 PMCID: PMC5593626 DOI: 10.18632/oncotarget.19046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/19/2017] [Indexed: 01/10/2023] Open
Abstract
Pituitary adenomas are among the most frequent intracranial neoplasms and treatment depends on tumor subtype and clinical features. Unfortunately, non responder cases occur, then new molecular targets are needed. Notch system component expression and activation data are scarce in pituitary tumorigenesis, we therefore aimed to characterize Notch system in pituitary tumors of different histotype. In human pituitary adenomas we showed NOTCH1-4 receptors, JAGGED1 ligand and HES1 target gene expression with positive correlations between NOTCH1,2,4 and HES1, and NOTCH3 and JAGGED1 denoting Notch system activation in a subset of tumors. Importantly, NOTCH3 positive cells were higher in corticotropinomas and somatotropinomas compared to non functioning adenomas. In accordance, Notch activation was evidenced in AtT20 tumor corticotropes, with higher levels of NOTCH1-3 active domains, Jagged1 and Hes1 compared to normal pituitary. In the prolactinoma cell lines GH3 and MMQ, in vivo GH3 tumors and normal glands, Notch system activation was lower than in corticotropes. In MMQ cells only the NOTCH2 active domain was increased, whereas NOTCH1 active domain was higher in GH3 tumors. High levels of Jagged1 and Dll1 were found solely in GH3 cells, and Hes1, Hey1 and Hey2 were expressed in a model dependent pattern. Prolactinomas harbored by lacDrd2KO mice expressed high levels of NOTCH1 active domain and reduced Hes1. We show a differential expression of Notch system components in tumoral and normal pituitaries and specific Notch system involvement depending on adenoma histotype, with higher activation in corticotropinomas. These data suggest that targeting Notch pathway may benefit non responder pituitary adenomas.
Collapse
Affiliation(s)
- Sofia Perrone
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, 2700 Buenos Aires, Argentina
| | | | - Elias Gazza
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, 2700 Buenos Aires, Argentina
| | - Gianina Demarchi
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, 2700 Buenos Aires, Argentina
| | - Leticia Baccarini
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, 2700 Buenos Aires, Argentina
| | - Agustin Baricalla
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, 2700 Buenos Aires, Argentina
| | - Freya Mertens
- Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, KU Leuven (University of Leuven), Campus Gasthuisberg O&N4, B-3000 Leuven, Belgium
| | - Guillermina Luque
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, 1428 Buenos Aires, Argentina
| | - Hugo Vankelecom
- Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, KU Leuven (University of Leuven), Campus Gasthuisberg O&N4, B-3000 Leuven, Belgium
| | - Silvia Berner
- Servicio de Neurocirugía, Clínica Santa Isabel, C1406GZJ Buenos Aires, Argentina
| | | | - Carolina Cristina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, 2700 Buenos Aires, Argentina
| |
Collapse
|
19
|
Batchuluun K, Azuma M, Fujiwara K, Yashiro T, Kikuchi M. Notch Signaling and Maintenance of SOX2 Expression in Rat Anterior Pituitary Cells. Acta Histochem Cytochem 2017; 50:63-69. [PMID: 28522881 PMCID: PMC5433936 DOI: 10.1267/ahc.17002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/07/2017] [Indexed: 11/22/2022] Open
Abstract
After publication of reports describing the presence of stem/progenitor cells among non-hormone-producing cells in the pituitary, the mechanism responsible for proliferation and differentiation generated considerable interest. Several studies have suggested that Notch signaling is involved. In the present study, we examined the histochemical relationship between Notch signaling molecules and the transcription factor SOX2 in rat pituitary. Combined in situ hybridization and immunohistochemistry showed that Notch2 mRNA and SOX2 were co-expressed at embryonic day 14.5 in most cells in the adenohypophyseal primordium. In adult rat pituitary, double immunohistochemistry showed that SOX2 and either Notch2 or the Notch signaling target HES1 were co-localized within cells with large oval nuclei in both the marginal cell layer and cell aggregates in the main part of the anterior lobe, which are believed to be stem cell niches. Furthermore, when the Notch signaling inhibitor DAPT was added to a primary culture of adult rat anterior pituitary cells, the proportion of SOX2-expressing cells within Notch2-positive cells was approximately 30% lower. These findings suggest that Notch signaling has a role in maintaining the stemness of precursor cells in the adult rat pituitary gland.
Collapse
Affiliation(s)
- Khongorzul Batchuluun
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Morio Azuma
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Ken Fujiwara
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Takashi Yashiro
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Motoshi Kikuchi
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
- Laboratory of Natural History, Jichi Medical University School of Medicine
| |
Collapse
|
20
|
Mezzomo LC, Pesce FG, Marçal JMB, Haag T, Ferreira NP, Lima JFSP, Leães CGS, Oliveira MC, da Fonte Kohek MB. Decreased TAp63 and ΔNp63 mRNA Levels in Most Human Pituitary Adenomas Are Correlated with Notch3/Jagged1 Relative Expression. Endocr Pathol 2017; 28:13-21. [PMID: 28078618 DOI: 10.1007/s12022-016-9463-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Despite recent advances in molecular genetics, the pituitary adenoma initiation, development, progress, and the molecular basis of their unique features are still poorly understood. In this sense, it is proposed that stem cell could be involved in pituitary adenoma tumorigenesis. It is suggested that TP63 has important functions in stem cells, and it may have interplay of TP63 and Notch and its ligand Jagged in this process. This study aimed to evaluate the distinct expression of TP63 isoforms (TAp63 and ΔNp63), as well as its correlation with Notch3 receptor and its ligand Jagged1 in human pituitary adenomas at the messenger RNA (mRNA) level. We included 77 pituitary adenoma tumor samples from patients who underwent surgical resection. The expression levels of TP63 isoforms (TAp63 and ΔNp63) and Notch3 and its ligand Jagged1 were evaluated by qRT-PCR using isoform-specific primers. We also evaluated proliferation index immunohistochemically using KI-67 antibody. The expression levels were associated with clinical outcomes, as age, gender, tumor size, and tumor subtype. In summary, we found that mRNA expression of both TP63 isoforms decreased in pituitary adenomas compared with normal pituitary control. On the other hand, there was an increase of relative Notch3 and Jagged1 mRNA expression in the majority of examined samples. The mRNA expression of three genes evaluated was correlated and statistically significantly. There was no significant association between gene expression and the analyzed clinical data. The current study has provided the first time evidence that Tap63 and ΔNp63 isoforms are underexpressed in most pituitary adenomas. These results are correlated with Notch3 and its ligand Jagged1 overexpression, corroborating previous studies pointing its antagonistic interactions.
Collapse
Affiliation(s)
- Lisiane Cervieri Mezzomo
- Post Graduation Program of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
- Laboratory of Molecular Biology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| | - Frederico Giacomoni Pesce
- Post Graduation Program of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Laboratory of Molecular Biology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Josenel Maria Barcelos Marçal
- Post Graduation Program of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Taiana Haag
- Post Graduation Program of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Laboratory of Molecular Biology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | | | - Julia Fernanda Semmelmann Pereira Lima
- Post Graduation Program of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Neuroendocrinology Center of Santa Casa de Misericórdia, Porto Alegre, RS, Brazil
| | | | - Miriam Costa Oliveira
- Post Graduation Program of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Neuroendocrinology Center of Santa Casa de Misericórdia, Porto Alegre, RS, Brazil
| | - Maria Beatriz da Fonte Kohek
- Post Graduation Program of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Laboratory of Molecular Biology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Wang CZ, Guo LL, Han BY, Su X, Guo QH, Mu YM. Pituitary Stalk Interruption Syndrome: From Clinical Findings to Pathogenesis. J Neuroendocrinol 2017; 29. [PMID: 27917547 DOI: 10.1111/jne.12451] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022]
Abstract
Pituitary stalk interruption syndrome (PSIS) is a rare congenital defect manifesting with varying degrees of pituitary hormone deficiency. The signs and symptoms of PSIS during the neonatal period and infancy are often overlooked and therefore diagnosis is delayed. The typical manifestations of PSIS can be detected by magnetic resonance imaging. Several genes in the Wnt, Notch and Shh signalling pathways related to hypothalamic-pituitary development, such as PIT1, PROP1, LHX3/LHX4, PROKR2, OTX2, TGIF and HESX1, have been found to be associated with PSIS. Nevertheless, the aetiology in the majority of cases still remains unknown. In the present review, we provide an overview of clinical features of PSIS and summarise our current understanding of the underlying pathogenic mechanisms for this rare syndrome. Furthermore, we propose future research directions that may help our understanding of the aetiology of PSIS.
Collapse
Affiliation(s)
- C-Z Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100853, China
| | - L-L Guo
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100853, China
- Department of Endocrinology, Beijing Electric Teaching Hospital of Capital Medical University, Beijing, 100073, China
| | - B-Y Han
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100853, China
| | - X Su
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Q-H Guo
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100853, China
- Department of Endocrinology, Hainan Branch of Chinese PLA General Hospital, Sanya, Hainan, 572000, China
| | - Y-M Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
22
|
Chang CV, Araujo RV, Cirqueira CS, Cani CMG, Matushita H, Cescato VAS, Fragoso MCBV, Bronstein MD, Zerbini MCN, Mendonca BB, Carvalho LR. Differential Expression of Stem Cell Markers in Human Adamantinomatous Craniopharyngioma and Pituitary Adenoma. Neuroendocrinology 2017; 104:183-193. [PMID: 27161333 DOI: 10.1159/000446072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 04/09/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Although craniopharyngioma (CP) is histologically benign, it is a pituitary tumour that grows rapidly and often recurs. Adamantinomatous CP (ACP) was associated with an activating mutation in β-catenin, and it has been postulated that pituitary stem cells might play a role in oncogenesis in human ACP. Stem cells have also been identified in pituitary adenoma. Our aim was to characterize the expression pattern of ABCG2, CD44, DLL4, NANOG, NOTCH2, POU5F1/OCT4, SOX2, and SOX9 stem cell markers in human ACP and pituitary adenoma. METHODS AND RESULTS We studied 33 patients (9 ACP and 24 adenoma) using real-time quantitative PCR (RT-qPCR) and immunohistochemistry. SOX9 was up-regulated in ACP, exhibiting positive immunostaining in the epithelium and stroma, with the highest expression in patients with recurrence. CD44 was overexpressed in ACP as confirmed by immunohistochemistry. SOX2 did not significantly differ among the tumour types. The RT-qPCR array showed an increased expression of MKI67,OCT4/POU5F1, and DLL4 in all tumours. NANOG was decreased in ACP. ABCG2 was down-regulated in most of the tumours. NOTCH2 was significantly decreased in the adenomas. CONCLUSION Our results confirm the presence of stem cell markers in human pituitary tumours as well as the different expression patterns of ACP and adenoma. These findings suggest that ACP may originate from a more undifferentiated cell cluster. Additionally, SOX9 immunodetection in the stroma and the highest expression levels related to the relapse of patients suggest a contribution to the aggressive behaviour and high recurrence of this tumour type.
Collapse
Affiliation(s)
- Claudia Veiga Chang
- Laboratório de Hormônios e Genética Molecular - LIM/42, Divisão de Endocrinologia, FMUSP, Brasília, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Notch signaling-mediated cell-to-cell interaction is dependent on E-cadherin adhesion in adult rat anterior pituitary. Cell Tissue Res 2016; 368:125-133. [DOI: 10.1007/s00441-016-2540-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/09/2016] [Indexed: 01/07/2023]
|
24
|
Zhu X, Tollkuhn J, Taylor H, Rosenfeld MG. Notch-Dependent Pituitary SOX2(+) Stem Cells Exhibit a Timed Functional Extinction in Regulation of the Postnatal Gland. Stem Cell Reports 2016; 5:1196-1209. [PMID: 26651607 PMCID: PMC4682291 DOI: 10.1016/j.stemcr.2015.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 01/17/2023] Open
Abstract
Although SOX2+ stem cells are present in the postnatal pituitary gland, how they are regulated molecularly and whether they are required for pituitary functions remain unresolved questions. Using a conditional knockout animal model, here we demonstrate that ablation of the canonical Notch signaling in the embryonic pituitary gland leads to progressive depletion of the SOX2+ stem cells and hypoplastic gland. Furthermore, we show that the SOX2+ stem cells initially play a significant role in contributing to postnatal pituitary gland expansion by self-renewal and differentiating into distinct lineages in the immediate postnatal period. However, we found that within several weeks postpartum, the SOX2+ stem cells switch to an essentially dormant state and are no longer required for homeostasis/tissue adaptation. Our results present a dynamic tissue homeostatic model in which stem cells provide an initial contribution to the growth of the neonatal pituitary gland, whereas the mature gland can be maintained in a stem cell-independent fashion. Notch signaling is necessary to maintain Sox2+ stem cells in the pituitary gland Sox2+ cells and differentiated cells contribute to postnatal pituitary expansion Sox2+ stem cells prove to be dispensable for adult pituitary gland homeostasis Differentiated cells retain mitotic capacity and respond to physiological demands
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Howard Hughes Medical Institute, Department and School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Jessica Tollkuhn
- Howard Hughes Medical Institute, Department and School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Havilah Taylor
- Howard Hughes Medical Institute, Department and School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
25
|
Edwards W, Nantie LB, Raetzman LT. Identification of a novel progenitor cell marker, grainyhead-like 2 in the developing pituitary. Dev Dyn 2016; 245:1097-1106. [PMID: 27564454 DOI: 10.1002/dvdy.24439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pituitary stem/progenitor cells give rise to all of the endocrine cell types within the pituitary gland and are necessary for both development and gland homeostasis. Recent studies have identified several key factors that characterize the progenitor cell population. However, little is known about the factors that regulate progenitor cell differentiation and maintenance. Therefore, it is crucial to identify novel factors that help elucidate mechanisms of progenitor cell function in the developing pituitary. Our studies are the first to characterize the expression of Grainyhead-like 2 (GRHL2), a transcription factor known to regulate progenitor cell plasticity, in the developing pituitary. RESULTS Our studies show GRHL2 expression is highest in the embryonic and early postnatal pituitary and is localized in pituitary progenitor cells. We demonstrate GRHL2 expression is changed in Notch2 cKO and Prop1df/df mice, mouse models that display progenitor cell number defects. In addition, our studies indicate a potential relationship between Notch signaling and GRHL2 expression in the developing pituitary. CONCLUSIONS Taken together, our results indicate GRHL2 as a novel progenitor cell maker in the developing pituitary that may contribute to progenitor cell function and maintenance. Developmental Dynamics 245:1097-1106, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Leah B Nantie
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois.,Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
26
|
Stallings CE, Kapali J, Ellsworth BS. Mouse Models of Gonadotrope Development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:1-48. [PMID: 27697200 DOI: 10.1016/bs.pmbts.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pituitary gonadotrope is central to reproductive function. Gonadotropes develop in a systematic process dependent on signaling factors secreted from surrounding tissues and those produced within the pituitary gland itself. These signaling pathways are important for stimulating specific transcription factors that ultimately regulate the expression of genes and define gonadotrope identity. Proper gonadotrope development and ultimately gonadotrope function are essential for normal sexual maturation and fertility. Understanding the mechanisms governing differentiation programs of gonadotropes is important to improve treatment and molecular diagnoses for patients with gonadotrope abnormalities. Much of what is known about gonadotrope development has been elucidated from mouse models in which important factors contributing to gonadotrope development and function have been deleted, ectopically expressed, or modified. This chapter will focus on many of these mouse models and their contribution to our current understanding of gonadotrope development.
Collapse
Affiliation(s)
- C E Stallings
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - J Kapali
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - B S Ellsworth
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States.
| |
Collapse
|
27
|
Zubeldia-Brenner L, Roselli CE, Recabarren SE, Gonzalez Deniselle MC, Lara HE. Developmental and Functional Effects of Steroid Hormones on the Neuroendocrine Axis and Spinal Cord. J Neuroendocrinol 2016; 28:10.1111/jne.12401. [PMID: 27262161 PMCID: PMC4956521 DOI: 10.1111/jne.12401] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 12/13/2022]
Abstract
This review highlights the principal effects of steroid hormones at central and peripheral levels in the neuroendocrine axis. The data discussed highlight the principal role of oestrogens and testosterone in hormonal programming in relation to sexual orientation, reproductive and metabolic programming, and the neuroendocrine mechanism involved in the development of polycystic ovary syndrome phenotype. Moreover, consistent with the wide range of processes in which steroid hormones take part, we discuss the protective effects of progesterone on neurodegenerative disease and the signalling mechanism involved in the genesis of oestrogen-induced pituitary prolactinomas.
Collapse
Affiliation(s)
- L Zubeldia-Brenner
- Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | - C E Roselli
- Department of Physiology and Pharmacology, Oregon Health and Science University Portland, Portland, OR, USA
| | - S E Recabarren
- Laboratory of Animal Physiology and Endocrinology, Faculty of Veterinary Sciences, University of Concepcion, Chillán, Chile
| | - M C Gonzalez Deniselle
- Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - H E Lara
- Laboratory of Neurobiochemistry Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
28
|
Pérez Millán MI, Brinkmeier ML, Mortensen AH, Camper SA. PROP1 triggers epithelial-mesenchymal transition-like process in pituitary stem cells. eLife 2016; 5. [PMID: 27351100 PMCID: PMC4940164 DOI: 10.7554/elife.14470] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/24/2016] [Indexed: 12/13/2022] Open
Abstract
Mutations in PROP1 are the most common cause of hypopituitarism in humans; therefore, unraveling its mechanism of action is highly relevant from a therapeutic perspective. Our current understanding of the role of PROP1 in the pituitary gland is limited to the repression and activation of the pituitary transcription factor genes Hesx1 and Pou1f1, respectively. To elucidate the comprehensive PROP1-dependent gene regulatory network, we conducted genome-wide analysis of PROP1 DNA binding and effects on gene expression in mutant mice, mouse isolated stem cells and engineered mouse cell lines. We determined that PROP1 is essential for stimulating stem cells to undergo an epithelial to mesenchymal transition-like process necessary for cell migration and differentiation. Genomic profiling reveals that PROP1 binds to genes expressed in epithelial cells like Claudin 23, and to EMT inducer genes like Zeb2, Notch2 and Gli2. Zeb2 activation appears to be a key step in the EMT process. Our findings identify PROP1 as a central transcriptional component of pituitary stem cell differentiation.
Collapse
Affiliation(s)
| | | | - Amanda H Mortensen
- Department of Human Genetics, University of Michigan, Ann Arbor, United States
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, United States
| |
Collapse
|
29
|
Aujla PK, Bogdanovic V, Naratadam GT, Raetzman LT. Persistent expression of activated notch in the developing hypothalamus affects survival of pituitary progenitors and alters pituitary structure. Dev Dyn 2016; 244:921-34. [PMID: 25907274 DOI: 10.1002/dvdy.24283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND As the pituitary gland develops, signals from the hypothalamus are necessary for pituitary induction and expansion. Little is known about the control of cues that regulate early signaling between the two structures. Ligands and receptors of the Notch signaling pathway are found in both the hypothalamus and Rathke's pouch. The downstream Notch effector gene Hes1 is required for proper pituitary formation; however, these effects could be due to the action of Hes1 in the hypothalamus, Rathke's pouch, or both. To determine the contribution of hypothalamic Notch signaling to pituitary organogenesis, we used mice with loss and gain of Notch function within the developing hypothalamus. RESULTS We demonstrate that loss of Notch signaling by conditional deletion of Rbpj in the hypothalamus does not affect expression of Hes1 within the posterior hypothalamus or expression of Hes5. In contrast, expression of activated Notch within the hypothalamus results in ectopic Hes5 expression and increased Hes1 expression, which is sufficient to disrupt pituitary development and postnatal expansion. CONCLUSIONS Taken together, our results indicate that Rbpj-dependent Notch signaling within the developing hypothalamus is not necessary for pituitary development, but persistent Notch signaling and ectopic Hes5 expression in hypothalamic progenitors affects pituitary induction and expansion.
Collapse
Affiliation(s)
- Paven K Aujla
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Vedran Bogdanovic
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - George T Naratadam
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Lori T Raetzman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
30
|
Nakahara Y, Muto A, Hirabayashi R, Sakuma T, Yamamoto T, Kume S, Kikuchi Y. Temporal effects of Notch signaling and potential cooperation with multiple downstream effectors on adenohypophysis cell specification in zebrafish. Genes Cells 2016; 21:492-504. [PMID: 27027936 DOI: 10.1111/gtc.12358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 01/17/2023]
Abstract
The adenohypophysis (AH) consists of six distinct types of hormone-secreting cells. In zebrafish, although proper differentiation of all AH cell types has been shown to require Notch signaling within a period of 14-16 h postfertilization (hpf), the mechanisms underlying this process remain to be elucidated. Herein, we observed using the Notch inhibitor dibenzazepine (DBZ) that Notch signaling also contributed to AH cell specification beyond 16 hpf. Specification of distinct cell types was perturbed by DBZ treatment for different time frames, suggesting that AH cells are specified by Notch-dependent and cell-type-specific mechanisms. We also found that two hes-family genes, her4.1 and hey1, were expressed in the developing AH under the influence of Notch signaling. her4.1 knockdown reduced expression of proopiomelanocortin a (pomca), growth hormone (gh), and prolactin, whereas hey1 was responsible only for gh expression. Simultaneous loss of both Her4.1 and Hey1 produced milder phenotypes than that of DBZ-treated embryos. Moreover, DBZ treatment from 18 hpf led to a significant down-regulation of both gh and pomca genes only when combined with injection of a subthreshold level of her4.1-morpholino. These observations suggest that multiple downstream effectors, including Her4.1 and Hey1, mediate Notch signaling during AH cell specification.
Collapse
Affiliation(s)
- Yoshinari Nakahara
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Akihiko Muto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Ryo Hirabayashi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Shoen Kume
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Yutaka Kikuchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
31
|
Vankelecom H. Pituitary Stem Cells: Quest for Hidden Functions. STEM CELLS IN NEUROENDOCRINOLOGY 2016. [DOI: 10.1007/978-3-319-41603-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Arnett MG, Muglia LM, Laryea G, Muglia LJ. Genetic Approaches to Hypothalamic-Pituitary-Adrenal Axis Regulation. Neuropsychopharmacology 2016; 41:245-60. [PMID: 26189452 PMCID: PMC4677126 DOI: 10.1038/npp.2015.215] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/09/2015] [Accepted: 07/09/2015] [Indexed: 01/12/2023]
Abstract
The normal function of the hypothalamic-pituitary-adrenal (HPA) axis, and resultant glucocorticoid (GC) secretion, is essential for human health. Disruption of GC regulation is associated with pathologic, psychological, and physiological disease states such as depression, post-traumatic stress disorder, hypertension, diabetes, and osteopenia, among others. As such, understanding the mechanisms by which HPA output is tightly regulated in its responses to environmental stressors and circadian cues has been an active area of investigation for decades. Over the last 20 years, however, advances in gene targeting and genome modification in rodent models have allowed the detailed dissection of roles for key molecular mediators and brain regions responsible for this control in vivo to emerge. Here, we summarize work done to elucidate the function of critical neuropeptide systems, GC-signaling targets, and inflammation-associated pathways in HPA axis regulation and behavior, and highlight areas for future investigation.
Collapse
Affiliation(s)
- Melinda G Arnett
- Cincinnati Children's Hospital Medical Center, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Cincinnati Children's Hospital Medical Center, Center for Prevention of Preterm Birth, Perinatal Institute, 3333 Burnet Avenue, MLC 7009, Attention Melinda Arnett, Cincinnati, OH 45229, USA, Tel: +1 513 803 8040, Fax: +1 513 803 5009, E-mail:
| | - Lisa M Muglia
- Cincinnati Children's Hospital Medical Center, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati, OH, USA
| | - Gloria Laryea
- Cincinnati Children's Hospital Medical Center, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati, OH, USA,Neuroscience Graduate Program Vanderbilt University, Nashville, TN, USA
| | - Louis J Muglia
- Cincinnati Children's Hospital Medical Center, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
33
|
Yavropoulou MP, Maladaki A, Topouridou K, Kotoula V, Poulios C, Daskalaki E, Foroglou N, Karkavelas G, Yovos JG. Expression pattern of the Hedgehog signaling pathway in pituitary adenomas. Neurosci Lett 2015; 611:94-100. [PMID: 26620835 DOI: 10.1016/j.neulet.2015.10.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/18/2015] [Accepted: 10/27/2015] [Indexed: 12/14/2022]
Abstract
Several studies have demonstrated the role of Wnt and Notch signaling in the pathogenesis of pituitary adenomas, but data are scarce regarding the role of Hedgehog signaling. In this study we investigated the differential expression of gene targets of the Hedgehog signaling pathway. Formalin-fixed, paraffin-embedded specimens from adult patients who underwent transphenoidal resection and normal human pituitary tissues that were obtained from autopsies were used. Clinical information and data from pre-operative MRI scan (extracellular tumor extension, tumor size, displacement of the optic chiasm) were retrieved from the Hospital's database. We used a customized RT(2) Profiler PCR Array, to investigate the expression of genes related to Notch and Hedgehog signaling pathways (PTCH1, PTCH2, GLI1, GLI3, NOTCH3, JAG1, HES1, and HIP). A total of 52 pituitary adenomas (32 non-functioning adenomas, 15 somatotropinomas and 5 prolactinomas) were used in the final analysis. In non-functioning pituitary adenomas there was a significant decrease (approximately 75%) in expression of all Hedgehog related genes that were tested, while Notch3 and Jagged-1 expression was found significantly increased, compared with normal pituitary tissue controls. In contrast, somatotropinomas demonstrated a significant increase in expression of all Hedgehog related genes and a decrease in the expression of Notch3 and Jagged-1. There was no significant difference in the expression of Hedgehog and Notch related genes between prolactinomas and healthy pituitary tissues. Hedgehog signalling appears to be activated in somatotropinomas but not in non-functioning pituitary adenomas in contrast to the expression pattern of Notch signalling pathway.
Collapse
Affiliation(s)
- Maria P Yavropoulou
- Laboratory of Molecular and Clinical Endocrinology, 1st Department of Internal Medicine, AHEPA Univ. Hospital, Aristotle University of Thessaloniki, Greece.
| | - Anna Maladaki
- Laboratory of Molecular and Clinical Endocrinology, 1st Department of Internal Medicine, AHEPA Univ. Hospital, Aristotle University of Thessaloniki, Greece
| | - Konstantina Topouridou
- Laboratory of Molecular and Clinical Endocrinology, 1st Department of Internal Medicine, AHEPA Univ. Hospital, Aristotle University of Thessaloniki, Greece
| | - Vasiliki Kotoula
- Pathology Department, Faculty of Medicine, Aristotle University of Thessaloniki, Greece
| | - Chris Poulios
- Pathology Department, Faculty of Medicine, Aristotle University of Thessaloniki, Greece
| | - Emily Daskalaki
- Pathology Department, Faculty of Medicine, Aristotle University of Thessaloniki, Greece
| | - Nikolaos Foroglou
- Department of Neurosurgery, AHEPA Univ. Hospital, Aristotle University of Thessaloniki, Greece
| | - George Karkavelas
- Pathology Department, Faculty of Medicine, Aristotle University of Thessaloniki, Greece
| | - John G Yovos
- Laboratory of Molecular and Clinical Endocrinology, 1st Department of Internal Medicine, AHEPA Univ. Hospital, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
34
|
Goto M, Hojo M, Ando M, Kita A, Kitagawa M, Ohtsuka T, Kageyama R, Miyamoto S. Hes1 and Hes5 are required for differentiation of pituicytes and formation of the neurohypophysis in pituitary development. Brain Res 2015; 1625:206-17. [PMID: 26348989 DOI: 10.1016/j.brainres.2015.08.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022]
Abstract
The pituitary gland is a critical endocrine organ regulating diverse physiological functions, including homeostasis, metabolism, reproduction, and growth. It is composed of two distinct entities: the adenohypophysis, including the anterior and intermediate lobes, and the neurohypophysis known as the posterior lobe. The neurohypophysis is composed of pituicytes (glial cells) and axons projected from hypothalamic neurons. The adenohypophysis derives from Rathke's pouch, whereas the neurohypophysis derives from the infundibulum, an evagination of the ventral diencephalon. Molecular mechanisms of adenohypophysis development are much better understood, but little is known about mechanisms that regulate neurohypophysis development. Hes genes, known as Notch effectors, play a crucial role in specifying cellular fates during the development of various tissues and organs. Here, we report that the ventral diencephalon fails to evaginate resulting in complete loss of the posterior pituitary lobe in Hes1(-/-); Hes5(+/-) mutant embryos. In these mutant mice, progenitor cells are differentiated into neurons at the expense of pituicytes in the ventral diencephalon. In the developing neurohypophysis, the proliferative zone is located at the base of the infundibulum. Thus, Hes1 and Hes5 modulate not only maintenance of progenitor cells but also pituicyte versus neuron fate specification during neurohypophysis development.
Collapse
Affiliation(s)
- Masanori Goto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masato Hojo
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Neurosurgery, Shiga Medical Center for Adults, 5-4-30 Moriyama, Moriyama, Shiga 524-8524, Japan.
| | - Mitsushige Ando
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Aya Kita
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masashi Kitagawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toshiyuki Ohtsuka
- Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ryoichiro Kageyama
- Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
35
|
Abstract
Significant progress has been made recently in unravelling the embryonic events leading to pituitary morphogenesis, both in vivo and in vitro. This includes dissection of the molecular mechanisms controlling patterning of the ventral diencephalon that regulate formation of the pituitary anlagen or Rathke's pouch. There is also a better characterisation of processes that underlie maintenance of pituitary progenitors, specification of endocrine lineages and the three-dimensional organisation of newly differentiated endocrine cells. Furthermore, a population of adult pituitary stem cells (SCs), originating from embryonic progenitors, have been described and shown to have not only regenerative potential, but also the capacity to induce tumour formation. Finally, the successful recapitulation in vitro of embryonic events leading to generation of endocrine cells from embryonic SCs, and their subsequent transplantation, represents exciting advances towards the use of regenerative medicine to treat endocrine deficits. In this review, an up-to-date description of pituitary morphogenesis will be provided and discussed with particular reference to pituitary SC studies.
Collapse
Affiliation(s)
- Karine Rizzoti
- Division of Stem Cell Biology and Developmental GeneticsMRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
36
|
Yavropoulou MP, Maladaki A, Yovos JG. The role of Notch and Hedgehog signaling pathways in pituitary development and pathogenesis of pituitary adenomas. Hormones (Athens) 2015; 14:5-18. [PMID: 25885100 DOI: 10.1007/bf03401377] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pituitary adenomas are usually benign tumors that cause symptoms by compression of surrounding structures or impaired hormone secretion. Treatment, whether surgical or medical depends, on the tumor subtype and degree of compression; however, a significant proportion of patients do not achieve optimal control of mass effects or hormonal hypersecretion. Unraveling the pathogenesis of pituitary adenomas is a critical step in the quest for new subcellular treatment targets that will decrease morbidity and mortality related to these tumors. A large diversity of pathogenetic mechanisms has been described so far including deregulation of cell cycle, molecular pathways and angiogenesis. Major signaling pathways such as Notch, Wnt and Hedgehog, which are mainly active in the early phase of pituitary organogenesis and are essential for the development of somatotrophs, lactotrophs thyrotrophs and corticotrophs, have been implicated in the pathogenesis of pituitary adenomas. In this review we present novel data regarding the role of Notch and Hedgehog regulatory networks in pituitary development and pathogenesis of pituitary adenomas.
Collapse
Affiliation(s)
- Maria P Yavropoulou
- Laboratory of Clinical and Molecular Endocrinology, 1st Department of Internal Medicine, ΑHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Maladaki
- Laboratory of Clinical and Molecular Endocrinology, 1st Department of Internal Medicine, ΑHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John G Yovos
- Laboratory of Clinical and Molecular Endocrinology, 1st Department of Internal Medicine, ΑHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
37
|
Nantie LB, Himes AD, Getz DR, Raetzman LT. Notch signaling in postnatal pituitary expansion: proliferation, progenitors, and cell specification. Mol Endocrinol 2014; 28:731-44. [PMID: 24673559 DOI: 10.1210/me.2013-1425] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mutations in PROP1 account for up to half of the cases of combined pituitary hormone deficiency that result from known causes. Despite this, few signaling molecules and pathways that influence PROP1 expression have been identified. Notch signaling has been linked to Prop1 expression, but the developmental periods during which Notch signaling influences Prop1 and overall pituitary development remain unclear. To test the requirement for Notch signaling in establishing the normal pituitary hormone milieu, we generated mice with early embryonic conditional loss of Notch2 (conditional knockout) and examined the consequences of chemical Notch inhibition during early postnatal pituitary maturation. We show that loss of Notch2 has little influence on early embryonic pituitary proliferation but is crucial for postnatal progenitor maintenance and proliferation. In addition, we show that Notch signaling is necessary embryonically and postnatally for Prop1 expression and robust Pit1 lineage hormone cell expansion, as well as repression of the corticotrope lineage. Taken together, our studies identify temporal and cell type-specific roles for Notch signaling and highlight the importance of this pathway throughout pituitary development.
Collapse
Affiliation(s)
- Leah B Nantie
- Department of Molecular and Integrative Physiology (L.B.N., A.D.H., D.R.G., L.T.R.) and Neuroscience Program (L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | | | | |
Collapse
|
38
|
Vankelecom H, Chen J. Pituitary stem cells: where do we stand? Mol Cell Endocrinol 2014; 385:2-17. [PMID: 23994027 DOI: 10.1016/j.mce.2013.08.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/12/2013] [Accepted: 08/20/2013] [Indexed: 01/21/2023]
Abstract
Some 5 years ago, the stem cells of the adult pituitary gland were discovered. Subsequent in-depth characterization revealed expression of several stemness markers and embryo-typical factors. Now, the quest is open to decipher their role in the gland. When and how pituitary stem cells differentiate to contribute to the mature hormone-producing cell populations is not known. New research models support their involvement in cell regeneration after injury in the gland, and suggest a possible role in pituitary tumor formation. From their expression phenotype, pituitary stem cells seem to re-use embryonic developmental programs during the creation of new hormonal cells. Here, we will review the latest progression in the domain of pituitary stem cells, including the uncovering of some new molecular flavors and of the first potential functions. Eventually, we will speculate on their differentiation programs towards hormonal cells, with a particular focus on gonadotropes.
Collapse
Affiliation(s)
- Hugo Vankelecom
- Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven), B-3000 Leuven, Belgium.
| | - Jianghai Chen
- Department of Hand Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science & Technology (HUST), Wuhan, Hubei 430022, PR China.
| |
Collapse
|
39
|
|
40
|
Welcker JE, Hernandez-Miranda LR, Paul FE, Jia S, Ivanov A, Selbach M, Birchmeier C. Insm1 controls development of pituitary endocrine cells and requires a SNAG domain for function and for recruitment of histone-modifying factors. Development 2013; 140:4947-58. [DOI: 10.1242/dev.097642] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Insm1 gene encodes a zinc finger factor expressed in many endocrine organs. We show here that Insm1 is required for differentiation of all endocrine cells in the pituitary. Thus, in Insm1 mutant mice, hormones characteristic of the different pituitary cell types (thyroid-stimulating hormone, follicle-stimulating hormone, melanocyte-stimulating hormone, adrenocorticotrope hormone, growth hormone and prolactin) are absent or produced at markedly reduced levels. This differentiation deficit is accompanied by upregulated expression of components of the Notch signaling pathway, and by prolonged expression of progenitor markers, such as Sox2. Furthermore, skeletal muscle-specific genes are ectopically expressed in endocrine cells, indicating that Insm1 participates in the repression of an inappropriate gene expression program. Because Insm1 is also essential for differentiation of endocrine cells in the pancreas, intestine and adrenal gland, it is emerging as a transcription factor that acts in a pan-endocrine manner. The Insm1 factor contains a SNAG domain at its N-terminus, and we show here that the SNAG domain recruits histone-modifying factors (Kdm1a, Hdac1/2 and Rcor1-3) and other proteins implicated in transcriptional regulation (Hmg20a/b and Gse1). Deletion of sequences encoding the SNAG domain in mice disrupted differentiation of pituitary endocrine cells, and resulted in an upregulated expression of components of the Notch signaling pathway and ectopic expression of skeletal muscle-specific genes. Our work demonstrates that Insm1 acts in the epigenetic and transcriptional network that controls differentiation of endocrine cells in the anterior pituitary gland, and that it requires the SNAG domain to exert this function in vivo.
Collapse
Affiliation(s)
- Jochen E. Welcker
- Developmental Biology/Signal Transduction Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Luis R. Hernandez-Miranda
- Developmental Biology/Signal Transduction Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Florian E. Paul
- Cell Signaling and Mass Spectrometry Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Shiqi Jia
- Developmental Biology/Signal Transduction Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Andranik Ivanov
- Systems Biology of Gene Regulatory Elements Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Matthias Selbach
- Cell Signaling and Mass Spectrometry Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
41
|
Cheung LYM, Rizzoti K, Lovell-Badge R, Le Tissier PR. Pituitary phenotypes of mice lacking the notch signalling ligand delta-like 1 homologue. J Neuroendocrinol 2013; 25:391-401. [PMID: 23279263 PMCID: PMC3664429 DOI: 10.1111/jne.12010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 11/16/2012] [Accepted: 12/08/2012] [Indexed: 01/17/2023]
Abstract
The Notch signalling pathway ligand delta-like 1 homologue (Dlk1, also named Pref1) is expressed throughout the developing pituitary and becomes restricted to mostly growth hormone (GH) cells within the adult gland. We have investigated the role of Dlk1 in pituitary development and function from late embryogenesis to adulthood using a mouse model completely lacking the expression of Dlk1. We confirm that Dlk1-null mice are shorter and weigh less than wild-type littermates from late gestation, at parturition and in adulthood. A loss of Dlk1 leads to significant reduction in GH content throughout life, whereas other pituitary hormones are reduced to varying degrees depending on sex and age. Both the size of the pituitary and the proportion of hormone-producing cell populations are unchanged, suggesting that there is a reduction in hormone content per cell. In vivo challenge of mutant and wild-type littermates with growth hormone-releasing hormone and growth hormone-releasing hexapeptide shows that reduced GH secretion is unlikely to account for the reduced growth of Dlk1 knockout animals. These data suggest that loss of Dlk1 gives rise to minor pituitary defects manifesting as an age- and sex-dependent reduction in pituitary hormone contents. However, Dlk1 expression in other tissue is most likely responsible for the weight and length differences observed in mutant animals.
Collapse
Affiliation(s)
- L Y M Cheung
- Division of Molecular Neuroendocrinology, MRC National Institute for Medical Research, London, UK
| | | | | | | |
Collapse
|
42
|
Davis SW, Ellsworth BS, Peréz Millan MI, Gergics P, Schade V, Foyouzi N, Brinkmeier ML, Mortensen AH, Camper SA. Pituitary gland development and disease: from stem cell to hormone production. Curr Top Dev Biol 2013; 106:1-47. [PMID: 24290346 DOI: 10.1016/b978-0-12-416021-7.00001-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many aspects of pituitary development have become better understood in the past two decades. The signaling pathways regulating pituitary growth and shape have emerged, and the balancing interactions between the pathways are now appreciated. Markers for multipotent progenitor cells are being identified, and signature transcription factors have been discovered for most hormone-producing cell types. We now realize that pulsatile hormone secretion involves a 3D integration of cellular networks. About a dozen genes are known to cause pituitary hypoplasia when mutated due to their essential roles in pituitary development. Similarly, a few genes are known that predispose to familial endocrine neoplasia, and several genes mutated in sporadic pituitary adenomas are documented. In the next decade, we anticipate gleaning a deeper appreciation of these processes at the molecular level, insight into the development of the hypophyseal portal blood system, and evolution of better therapeutics for congenital and acquired hormone deficiencies and for common craniopharyngiomas and pituitary adenomas.
Collapse
Affiliation(s)
- Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tando Y, Fujiwara K, Yashiro T, Kikuchi M. Localization of Notch signaling molecules and their effect on cellular proliferation in adult rat pituitary. Cell Tissue Res 2012; 351:511-9. [PMID: 23232913 DOI: 10.1007/s00441-012-1532-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/08/2012] [Indexed: 11/30/2022]
Abstract
Notch signaling is a cell-to-cell signaling system involved in the maintenance of precursor cells in many tissues. Although Notch signaling has been reported in the pituitary gland, the histological characteristics of Notch receptors and ligands in the gland are unknown. Here, we report the histological gene expression pattern of Notch receptors and ligands and the role of Notch signaling in cellular proliferation in adult rat pituitary gland. In situ hybridization detected transcripts of Notch1 and 2 and Jagged1 and 2. Double-staining with a combination of in situ hybridization and immunohistochemistry revealed that their mRNAs were localized in almost half of the S100-protein-positive cells, which are generally regarded as marginal layer cells and folliculo-stellate cells. In primary culture of anterior pituitary cells, proliferation of S100-protein-positive cells was modulated by Notch signaling inhibitor and solubilized Notch ligand. Furthermore, quantitative analysis revealed that the inhibition of Notch signaling led to the down-regulation of mRNA for the Notch target gene Hes1 and the up-regulation of p57 gene expression. These findings suggest that Notch signaling is involved in the proliferation of S100-protein-positive cells, presumably precursor cells, in adult rat pituitary gland.
Collapse
Affiliation(s)
- Yukiko Tando
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | | | | | | |
Collapse
|
44
|
Monahan P, Himes AD, Parfieniuk A, Raetzman LT. p21, an important mediator of quiescence during pituitary tumor formation, is dispensable for normal pituitary development during embryogenesis. Mech Dev 2011; 128:640-52. [PMID: 22154697 DOI: 10.1016/j.mod.2011.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/14/2011] [Accepted: 11/23/2011] [Indexed: 12/25/2022]
Abstract
A delicate balance between proliferation and differentiation must be maintained in the developing pituitary to ensure the formation of the appropriate number of hormone producing cells. In the adult, proliferation is actively restrained to prevent tumor formation. The cyclin dependent kinase inhibitors (CDKIs) of the CIP/KIP family, p21, p27 and p57, mediate cell cycle inhibition. Although p21 is induced in the pituitary upon loss of Notch signaling or initiation of tumor formation to halt cell cycle progression, its role in normal pituitary organogenesis has not been explored. In wildtype pituitaries, expression of p21 is limited to a subset of cells embryonically as well as during the postnatal proliferative phase. Mice lacking p21 do not have altered cell proliferation during early embryogenesis, but do show a slight delay in separation of proliferating progenitors from the oral ectoderm. By embryonic day 16.5, p21 mutants have an alteration in the spatial distribution of proliferating pituitary progenitors, however there is no overall change in proliferation. At postnatal day 21, there appears to be no change in proliferation, as assessed by cells expressing Ki67 protein. However, p21 mutant pituitaries have significantly less mRNA of Myc and the cyclins Ccnb1, Ccnd1, Ccnd2 and Ccne1 than wildtype pituitaries. Interestingly, unlike the redundant role in cell cycle inhibition uncovered in p27/p57 double mutants, the pituitary of p21/p27 double mutants has a similar proliferation profile to p27 single mutants at the time points examined. Taken together, these studies demonstrate that unlike p27 or p57, p21 does not play a major role in control of progenitor proliferation in the developing pituitary. However, p21 may be required to maintain normal levels of cell cycle components.
Collapse
Affiliation(s)
- Pamela Monahan
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
45
|
Yako H, Kato T, Yoshida S, Inoue K, Kato Y. Three-dimensional studies of Prop1-expressing cells in the rat pituitary primordium of Rathke's pouch. Cell Tissue Res 2011; 346:339-46. [PMID: 22113335 DOI: 10.1007/s00441-011-1273-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/24/2011] [Indexed: 12/30/2022]
Abstract
Pituitary embryonic development progresses daily toward terminal differentiation exhibiting quantitative and qualitative alterations regulated by signal molecules and transcription factors expressed under temporospatial control. In this study, we analyzed the heterogeneity of the cells in the pituitary primordium of embryonic day (E) 13.5. The three-dimensional structure of the Rathke's pouch was built up from measurements taken from multiple DAPI-stained sections and cell populations positive to stem/progenitor marker SOX2 and pituitary-specific transcription factor PROP1 were analyzed. The pituitary primordium (Rathke's pouch) of E13.5 showed a flattened discoid shape of about 500 μm in diameter and 200 μm depth in a dorsoventral axis and consisted in about 5,800 cells. Immunohistochemistry revealed that 0.3% of the cells in Rathke's pouch were SOX2-negative in the lateral region, whereas all cells at E12.5 were SOX2-positive. On E13.5, the shape and size of their nuclei showed a location-specific divergence: ellipsoid morphology in the median region and round morphology in the lateral region. Moreover, on E14.5, adrenocorticotropic-hormone-positive cells (the first hormone-producing cells appearing in the pituitary) contained round nuclei. These data suggest that differentiation to pituitary-hormone-producing cells from SOX2-negative cells starts in the lateral region between E12.5 and E13.5 and that the onset of differentiation is preceded by a change in nuclear shape.
Collapse
Affiliation(s)
- Hideji Yako
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
46
|
Mortensen AH, MacDonald JW, Ghosh D, Camper SA. Candidate genes for panhypopituitarism identified by gene expression profiling. Physiol Genomics 2011; 43:1105-16. [PMID: 21828248 DOI: 10.1152/physiolgenomics.00080.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations in the transcription factors PROP1 and PIT1 (POU1F1) lead to pituitary hormone deficiency and hypopituitarism in mice and humans. The dysmorphology of developing Prop1 mutant pituitaries readily distinguishes them from those of Pit1 mutants and normal mice. This and other features suggest that Prop1 controls the expression of genes besides Pit1 that are important for pituitary cell migration, survival, and differentiation. To identify genes involved in these processes we used microarray analysis of gene expression to compare pituitary RNA from newborn Prop1 and Pit1 mutants and wild-type littermates. Significant differences in gene expression were noted between each mutant and their normal littermates, as well as between Prop1 and Pit1 mutants. Otx2, a gene critical for normal eye and pituitary development in humans and mice, exhibited elevated expression specifically in Prop1 mutant pituitaries. We report the spatial and temporal regulation of Otx2 in normal mice and Prop1 mutants, and the results suggest Otx2 could influence pituitary development by affecting signaling from the ventral diencephalon and regulation of gene expression in Rathke's pouch. The discovery that Otx2 expression is affected by Prop1 deficiency provides support for our hypothesis that identifying molecular differences in mutants will contribute to understanding the molecular mechanisms that control pituitary organogenesis and lead to human pituitary disease.
Collapse
Affiliation(s)
- Amanda H Mortensen
- Department of Human Genetics, Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA
| | | | | | | |
Collapse
|
47
|
Goldberg LB, Aujla PK, Raetzman LT. Persistent expression of activated Notch inhibits corticotrope and melanotrope differentiation and results in dysfunction of the HPA axis. Dev Biol 2011; 358:23-32. [PMID: 21781958 DOI: 10.1016/j.ydbio.2011.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/17/2011] [Accepted: 07/05/2011] [Indexed: 11/30/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is an important regulator of energy balance, immune function and the body's response to stress. Signaling networks governing the initial specification of corticotropes, a major component of this axis, are not fully understood. Loss of function studies indicate that Notch signaling may be necessary to repress premature differentiation of corticotropes and to promote proliferation of pituitary progenitors. To elucidate whether Notch signaling must be suppressed in order for corticotrope differentiation to proceed and whether Notch signaling is sufficient to promote corticotrope proliferation, we examined the effects of persistent Notch expression in Pomc lineage cells. We show that constitutive activation of the Notch cascade inhibits the differentiation of both corticotropes and melanotropes and results in the suppression of transcription factors required for Pomc expression. Furthermore, persistent Notch signaling traps cells in the intermediate lobe of the pituitary in a progenitor state, but has no effect on pituitary proliferation. Undifferentiated cells are eliminated in the first two postnatal weeks in these mice, resulting in a modest increase in CRH expression in the paraventricular nucleus, hypoplastic adrenal glands and decreased stress-induced corticosterone levels. Taken together, these findings show that Notch signaling is sufficient to prevent corticotrope and melanotrope differentiation, resulting in dysregulation of the HPA axis.
Collapse
Affiliation(s)
- Leah B Goldberg
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
48
|
Beta-catenin stimulates pituitary stem cells to form aggressive tumors. Proc Natl Acad Sci U S A 2011; 108:11303-4. [PMID: 21719710 DOI: 10.1073/pnas.1108275108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
49
|
Angotzi AR, Mungpakdee S, Stefansson S, Male R, Chourrout D. Involvement of Prop1 homeobox gene in the early development of fish pituitary gland. Gen Comp Endocrinol 2011; 171:332-40. [PMID: 21362424 DOI: 10.1016/j.ygcen.2011.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/17/2011] [Accepted: 02/21/2011] [Indexed: 11/22/2022]
Abstract
When mutated in mammals, paired-like homeobox Prop1 gene produces highly variable pituitary phenotypes with impaired regulation of Pit1 and eventually defective synthesis of Pit1-regulated pituitary hormones. Here we have identified fish prop1 orthologs, confirmed their pituitary-specific expression, and blocked the splicing of zebrafish prop1 transcripts using morpholino oligonucleotides. Very early steps of the gland formation seemed unaffected based on morphology and expression of early placodal marker pitx. Prop1 knock-down reduced the expression of pit1, prl (prolactin) and gh (growth hormone), as expected if the function of Prop1 is conserved throughout vertebrates. Less expectedly, lim3 was down regulated. This gene is expressed from early stages of vertebrate pituitary development but is not known to be Prop1-dependent. In situ hybridizations on prop1 morphants using probes for the pan pituitary gene pitx3 and for the hormone gene markers prl, gh and tshβ, revealed abnormal shape, growth and cellular organization of the developed adenohypophysis. Strikingly, the effects of prop1 knock-down on adenohypophysis morphology and gene expression were gradually reversed during late development, despite persistent splice-blocking of transcripts. Therefore, prop1 function appears to be conserved between mammals and fish, at least for the mediation of hormonal cell type differentiation via pit1, but the existence of other fish-specific pathways downstream of prop1 are suggested by our observations.
Collapse
Affiliation(s)
- Anna Rita Angotzi
- Sars, International Centre for Marine Molecular Biology, University of Bergen, High Technology Centre, Thormoehlensgt 55, N-5008 Bergen, Norway
| | | | | | | | | |
Collapse
|
50
|
Davis SW, Mortensen AH, Camper SA. Birthdating studies reshape models for pituitary gland cell specification. Dev Biol 2011; 352:215-27. [PMID: 21262217 PMCID: PMC3066562 DOI: 10.1016/j.ydbio.2011.01.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 12/20/2010] [Accepted: 01/07/2011] [Indexed: 11/15/2022]
Abstract
The intermediate and anterior lobes of the pituitary gland are derived from an invagination of oral ectoderm that forms Rathke's pouch. During gestation proliferating cells are enriched around the pouch lumen, and they appear to delaminate as they exit the cell cycle and differentiate. During late mouse gestation and the postnatal period, anterior lobe progenitors re-enter the cell cycle and expand the populations of specialized, hormone-producing cells. At birth, all cell types are present, and their localization appears stratified based on cell type. We conducted a birth dating study of Rathke's pouch derivatives to determine whether the location of specialized cells at birth is correlated with the timing of cell cycle exit. We find that all of the anterior lobe cell types initiate differentiation concurrently with a peak between e11.5 and e13.5. Differentiation of intermediate lobe melanotropes is delayed relative to anterior lobe cell types. We discovered that specialized cell types are not grouped together based on birth date and are dispersed throughout the anterior lobe. Thus, the apparent stratification of specialized cells at birth is not correlated with cell cycle exit. Thus, the currently popular model of cell specification, dependent upon timing of extrinsic, directional gradients of signaling molecules, needs revision. We propose that signals intrinsic to Rathke's pouch are necessary for cell specification between e11.5 and e13.5 and that cell-cell communication likely plays an important role in regulating this process.
Collapse
Affiliation(s)
- Shannon W. Davis
- Department of Human Genetics, University of Michigan Medical School, 4909 Buhl Building, 1241 East Catherine Street, Ann Arbor, MI, 48109-5618, USA
| | - Amanda H. Mortensen
- Department of Human Genetics, University of Michigan Medical School, 4909 Buhl Building, 1241 East Catherine Street, Ann Arbor, MI, 48109-5618, USA
| | - Sally A. Camper
- Department of Human Genetics, University of Michigan Medical School, 4909 Buhl Building, 1241 East Catherine Street, Ann Arbor, MI, 48109-5618, USA
| |
Collapse
|