1
|
Draga M, Scaal M. Building a vertebra: Development of the amniote sclerotome. J Morphol 2024; 285:e21665. [PMID: 38100740 DOI: 10.1002/jmor.21665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
In embryonic development, the vertebral column arises from the sclerotomal compartment of the somites. The sclerotome is a mesenchymal cell mass which can be subdivided into several subpopulations specified by different regulatory mechanisms and giving rise to different parts of the vertebrae like vertebral body, vertebral arch, ribs, and vertebral joints. This review gives a short overview on the molecular and cellular basis of the formation of sclerotomal subdomains and the morphogenesis of their vertebral derivatives.
Collapse
Affiliation(s)
- Margarethe Draga
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| | - Martin Scaal
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Mavrommatis L, Jeong HW, Kindler U, Gomez-Giro G, Kienitz MC, Stehling M, Psathaki OE, Zeuschner D, Bixel MG, Han D, Morosan-Puopolo G, Gerovska D, Yang JH, Kim JB, Arauzo-Bravo MJ, Schwamborn JC, Hahn SA, Adams RH, Schöler HR, Vorgerd M, Brand-Saberi B, Zaehres H. Human skeletal muscle organoids model fetal myogenesis and sustain uncommitted PAX7 myogenic progenitors. eLife 2023; 12:RP87081. [PMID: 37963071 PMCID: PMC10645425 DOI: 10.7554/elife.87081] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
In vitro culture systems that structurally model human myogenesis and promote PAX7+ myogenic progenitor maturation have not been established. Here we report that human skeletal muscle organoids can be differentiated from induced pluripotent stem cell lines to contain paraxial mesoderm and neuromesodermal progenitors and develop into organized structures reassembling neural plate border and dermomyotome. Culture conditions instigate neural lineage arrest and promote fetal hypaxial myogenesis toward limb axial anatomical identity, with generation of sustainable uncommitted PAX7 myogenic progenitors and fibroadipogenic (PDGFRa+) progenitor populations equivalent to those from the second trimester of human gestation. Single-cell comparison to human fetal and adult myogenic progenitor /satellite cells reveals distinct molecular signatures for non-dividing myogenic progenitors in activated (CD44High/CD98+/MYOD1+) and dormant (PAX7High/FBN1High/SPRY1High) states. Our approach provides a robust 3D in vitro developmental system for investigating muscle tissue morphogenesis and homeostasis.
Collapse
Affiliation(s)
- Lampros Mavrommatis
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular EmbryologyBochumGermany
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental BiologyMünsterGermany
- Department of Neurology with Heimer Institute for Muscle Research, University Hospital BergmannsheilBochumGermany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Sequencing Core FacilityMünsterGermany
| | - Urs Kindler
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular EmbryologyBochumGermany
| | - Gemma Gomez-Giro
- Luxembourg Centre for Systems Biomedicine, LCSB, Developmental and Cellular Biology, University of LuxembourgBelvauxLuxembourg
| | - Marie-Cecile Kienitz
- Ruhr University Bochum, Medical Faculty, Department of Cellular PhysiologyBochumGermany
| | - Martin Stehling
- Max Planck Institute for Molecular Biomedicine, Flow Cytometry UnitMünsterGermany
| | - Olympia E Psathaki
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental BiologyMünsterGermany
- Center for Cellular Nanoanalytics Osnabrück, CellNanOs, University of OsnabrückOsnabrückGermany
| | - Dagmar Zeuschner
- Max Planck Institute for Molecular Biomedicine, Electron Microscopy UnitMünsterGermany
| | - M Gabriele Bixel
- Max Planck Institute for Molecular Biomedicine, Department of Tissue MorphogenesisMünsterGermany
| | - Dong Han
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental BiologyMünsterGermany
| | - Gabriela Morosan-Puopolo
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular EmbryologyBochumGermany
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research InstituteSan SebastiánSpain
| | - Ji Hun Yang
- School of Mechanical Engineering, Korea UniversitySeoulRepublic of Korea
- R&D Research Center, Next & Bio IncSeoulRepublic of Korea
| | - Jeong Beom Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
| | - Marcos J Arauzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research InstituteSan SebastiánSpain
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine, LCSB, Developmental and Cellular Biology, University of LuxembourgBelvauxLuxembourg
| | - Stephan A Hahn
- Ruhr University Bochum, Medical Faculty, Department of Molecular GI OncologyBochumGermany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue MorphogenesisMünsterGermany
- Westphalian Wilhelms University Münster, Medical FacultyMünsterGermany
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental BiologyMünsterGermany
| | - Matthias Vorgerd
- Department of Neurology with Heimer Institute for Muscle Research, University Hospital BergmannsheilBochumGermany
| | - Beate Brand-Saberi
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular EmbryologyBochumGermany
| | - Holm Zaehres
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular EmbryologyBochumGermany
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental BiologyMünsterGermany
| |
Collapse
|
3
|
Abstract
Skin is largely composed of an epidermis that overlies a supporting dermis. Recent advancements in our understanding of how diverse groups of dermal fibroblasts regulate epidermal and hair follicle growth and differentiation have been fueled by tools capable of resolving molecular heterogeneity at a single-cell level. Fibroblast heterogeneity can be traced back to their developmental origin before their segregation into spatially distinct fibroblast subtypes. The mechanisms that drive this lineage diversification during development are being unraveled, with studies showing that both large- and small-scale positional signals play important roles during dermal development. Here, we first delineate what is known about the origins of the dermis and the central role of Wnt/β-catenin signaling in its specification across anatomical locations. We then discuss how one of the first morphologically recognizable fibroblast subtypes, the hair follicle dermal condensate lineage, emerges. Leveraging the natural variation of skin and its appendages between species and between different anatomical locations, these collective studies have identified shared and divergent factors that contribute to the extraordinary diversity of skin.
Collapse
Affiliation(s)
- Peggy Myung
- Department of Dermatology, Yale University, New Haven, CT 06510, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, Orlando, FL 32827, USA
| | - Radhika Atit
- Department of Biology, Department of Genetics and Genome Sciences, Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Shahriyari M, Islam MR, Sakib SM, Rinn M, Rika A, Krüger D, Kaurani L, Gisa V, Winterhoff M, Anandakumar H, Shomroni O, Schmidt M, Salinas G, Unger A, Linke WA, Zschüntzsch J, Schmidt J, Bassel-Duby R, Olson EN, Fischer A, Zimmermann WH, Tiburcy M. Engineered skeletal muscle recapitulates human muscle development, regeneration and dystrophy. J Cachexia Sarcopenia Muscle 2022; 13:3106-3121. [PMID: 36254806 PMCID: PMC9745484 DOI: 10.1002/jcsm.13094] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/29/2022] [Accepted: 09/10/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human pluripotent stem cell-derived muscle models show great potential for translational research. Here, we describe developmentally inspired methods for the derivation of skeletal muscle cells and their utility in skeletal muscle tissue engineering with the aim to model skeletal muscle regeneration and dystrophy in vitro. METHODS Key steps include the directed differentiation of human pluripotent stem cells to embryonic muscle progenitors followed by primary and secondary foetal myogenesis into three-dimensional muscle. To simulate Duchenne muscular dystrophy (DMD), a patient-specific induced pluripotent stem cell line was compared to a CRISPR/Cas9-edited isogenic control line. RESULTS The established skeletal muscle differentiation protocol robustly and faithfully recapitulates critical steps of embryonic myogenesis in two-dimensional and three-dimensional cultures, resulting in functional human skeletal muscle organoids (SMOs) and engineered skeletal muscles (ESMs) with a regeneration-competent satellite-like cell pool. Tissue-engineered muscle exhibits organotypic maturation and function (up to 5.7 ± 0.5 mN tetanic twitch tension at 100 Hz in ESM). Contractile performance could be further enhanced by timed thyroid hormone treatment, increasing the speed of contraction (time to peak contraction) as well as relaxation (time to 50% relaxation) of single twitches from 107 ± 2 to 75 ± 4 ms (P < 0.05) and from 146 ± 6 to 100 ± 6 ms (P < 0.05), respectively. Satellite-like cells could be documented as largely quiescent PAX7+ cells (75 ± 6% Ki67- ) located adjacent to muscle fibres confined under a laminin-containing basal membrane. Activation of the engineered satellite-like cell niche was documented in a cardiotoxin injury model with marked recovery of contractility to 57 ± 8% of the pre-injury force 21 days post-injury (P < 0.05 compared to Day 2 post-injury), which was completely blocked by preceding irradiation. Absence of dystrophin in DMD ESM caused a marked reduction of contractile force (-35 ± 7%, P < 0.05) and impaired expression of fast myosin isoforms resulting in prolonged contraction (175 ± 14 ms, P < 0.05 vs. gene-edited control) and relaxation (238 ± 22 ms, P < 0.05 vs. gene-edited control) times. Restoration of dystrophin levels by gene editing rescued the DMD phenotype in ESM. CONCLUSIONS We introduce human muscle models with canonical properties of bona fide skeletal muscle in vivo to study muscle development, maturation, disease and repair.
Collapse
Affiliation(s)
- Mina Shahriyari
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Md Rezaul Islam
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Sadman M Sakib
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Malte Rinn
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Anastasia Rika
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Dennis Krüger
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Verena Gisa
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Mandy Winterhoff
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Harithaa Anandakumar
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Orr Shomroni
- NGS Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Matthias Schmidt
- Department of Neurology, Neuromuscular Center, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Gabriela Salinas
- NGS Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Andreas Unger
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Jana Zschüntzsch
- Department of Neurology, Neuromuscular Center, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Jens Schmidt
- Department of Neurology, Neuromuscular Center, University Medical Center Göttingen, Georg August University, Göttingen, Germany.,Department of Neurology and Pain Treatment, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany.,Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - André Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany.,Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.,Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Scaal M. Development of the amniote ventrolateral body wall. Dev Dyn 2020; 250:39-59. [PMID: 32406962 DOI: 10.1002/dvdy.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
In vertebrates, the trunk consists of the musculoskeletal structures of the back and the ventrolateral body wall, which together enclose the internal organs of the circulatory, digestive, respiratory and urogenital systems. This review gives an overview on the development of the thoracic and abdominal wall during amniote embryogenesis. Specifically, I briefly summarize relevant historical concepts and the present knowledge on the early embryonic development of ribs, sternum, intercostal muscles and abdominal muscles with respect to anatomical bauplan, origin and specification of precursor cells, initial steps of pattern formation, and cellular and molecular regulation of morphogenesis.
Collapse
Affiliation(s)
- Martin Scaal
- Faculty of Medicine, Institute of Anatomy II, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Turner BRH, Itasaki N. Local modulation of the Wnt/β-catenin and bone morphogenic protein (BMP) pathways recapitulates rib defects analogous to cerebro-costo-mandibular syndrome. J Anat 2019; 236:931-945. [PMID: 31884688 DOI: 10.1111/joa.13144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 11/28/2019] [Indexed: 12/01/2022] Open
Abstract
Ribs are seldom affected by developmental disorders, however, multiple defects in rib structure are observed in the spliceosomal disease cerebro-costo-mandibular syndrome (CCMS). These defects include rib gaps, found in the posterior part of the costal shaft in multiple ribs, as well as missing ribs, shortened ribs and abnormal costotransverse articulations, which result in inadequate ventilation at birth and high perinatal mortality. The genetic mechanism of CCMS is a loss-of-function mutation in SNRPB, a component of the major spliceosome, and knockdown of this gene in vitro affects the activity of the Wnt/β-catenin and bone morphogenic protein (BMP) pathways. The aim of the present study was to investigate whether altering these pathways in vivo can recapitulate rib gaps and other rib abnormalities in the model animal. Chick embryos were implanted with beads soaked in Wnt/β-catenin and BMP pathway modulators during somitogenesis, and incubated until the ribs were formed. Some embryos were harvested in the preceding days for analysis of the chondrogenic marker Sox9, to determine whether pathway modulation affected somite patterning or chondrogenesis. Wnt/β-catenin inhibition manifested characteristic rib phenotypes seen in CCMS, including rib gaps (P < 0.05) and missing ribs (P < 0.05). BMP pathway activation did not cause rib gaps but yielded missing rib (P < 0.01) and shortened rib phenotypes (P < 0.05). A strong association with vertebral phenotypes was also noted with BMP4 (P < 0.001), including scoliosis (P < 0.05), a feature associated with CCMS. Reduced expression of Sox9 was detected with Wnt/β-catenin inhibition, indicating that inhibition of chondrogenesis precipitated the rib defects in the presence of Wnt/β-catenin inhibitors. BMP pathway activators also reduced Sox9 expression, indicating an interruption of somite patterning in the manifestation of rib defects with BMP4. The present study demonstrates that local inhibition of the Wnt/β-catenin and activation of the BMP pathway can recapitulate rib defects, such as those observed in CCMS. The balance of Wnt/β-catenin and BMP in the somite is vital for correct rib morphogenesis, and alteration of the activity of these two pathways in CCMS may perturb this balance during somite patterning, leading to the observed rib defects.
Collapse
Affiliation(s)
| | - Nobue Itasaki
- Faculty of Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
7
|
El-Magd MA, Elsayed SA, El-Shetry ES, Abdelfattah-Hassan A, Saleh AA, Allen S, McGonnell I, Patel K. The role of chick Ebf genes in the mediolateral patterning of the somites. Genesis 2019; 57:e23339. [PMID: 31724301 DOI: 10.1002/dvg.23339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022]
Abstract
This study was conducted to check whether the three chick Early B-cell Factor (Ebf) genes, particularly cEbf1, would be targets for Shh and Bmp signals during somites mediolateral (ML) patterning. Tissue manipulations and gain and loss of function experiments for Shh and Bmp4 were performed and the results revealed that cEbf1 expression was initiated in the cranial presomitic mesoderm by low dose of Bmp4 from the lateral mesoderm and maintained in the ventromedial part of the epithelial somite and the medial sclerotome by Shh from the notochord; while cEbf2/3 expression was induced and maintained by Bmp4 and inhibited by high dose of Shh. To determine whether Ebf1 plays a role in somite patterning, transfection of a dominant-negative construct was carried out; this showed suppression of cPax1 expression in the medial sclerotome and upregulation and medial expansion of cEbf3 and cPax3 expression in sclerotome and dermomyotome, respectively, suggesting that Ebf1 is important for ML patterning. Thus, it is possible that low doses of Bmp4 set up Ebf1 expression which, together with Shh from the notochord, leads to establishment of the medial sclerotome and suppression of lateral identities. These data also conclude that Bmp4 is required in both the medial and lateral domain of the somitic mesoderm to keep the ML identity of the sclerotome through maintenance of cEbf gene expression. These striking findings are novel and give a new insight on the role of Bmp4 on mediolateral patterning of somites.
Collapse
Affiliation(s)
- Mohammed A El-Magd
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kfrelsheikh, Egypt
| | - Shafika A Elsayed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Eman S El-Shetry
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ayman A Saleh
- Department of Animal Wealth Development, Genetics and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Steve Allen
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, United Kingdom
| | - Imelda McGonnell
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, United Kingdom
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
8
|
Bosch PJ, Fuller LC, Weiner JA. A critical role for the nuclear protein Akirin2 in the formation of mammalian muscle in vivo. Genesis 2019; 57:e23286. [PMID: 30801883 DOI: 10.1002/dvg.23286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022]
Abstract
Evolutionarily conserved Akirin nuclear proteins interact with chromatin remodeling complexes at gene enhancers and promoters, and have been reported to regulate cell proliferation and differentiation. Of the two mouse Akirin genes, Akirin2 is essential during embryonic development, with known in vivo roles in immune system function and the formation of the cerebral cortex. Here we demonstrate that Akirin2 is critical for mouse myogenesis, a tightly regulated developmental process through which myoblast precursors fuse to form mature skeletal muscle fibers. Loss of Akirin2 in somitic muscle precursor cells via Sim1-Cre-mediated excision of a conditional Akirin2 allele results in neonatal lethality. Mutant embryos exhibit a complete lack of forelimb, intercostal, and diaphragm muscles due to extensive apoptosis and loss of Pax3-positive myoblasts. Severe skeletal defects, including craniofacial abnormalities, disrupted ossification, and rib fusions are also observed, attributable to lack of skeletal muscles as well as patchy Sim1-Cre activity in the embryonic sclerotome. We further show that Akirin2 levels are tightly regulated during muscle cell differentiation in vitro, and that Akirin2 is required for the proper expression of muscle differentiation factors myogenin and myosin heavy chain. Our results implicate Akirin2 as a major regulator of mammalian muscle formation in vivo.
Collapse
Affiliation(s)
- Peter J Bosch
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Leah C Fuller
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Joshua A Weiner
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| |
Collapse
|
9
|
Young M, Selleri L, Capellini TD. Genetics of scapula and pelvis development: An evolutionary perspective. Curr Top Dev Biol 2019; 132:311-349. [PMID: 30797513 PMCID: PMC6430119 DOI: 10.1016/bs.ctdb.2018.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In tetrapods, the scapular and pelvic girdles perform the important function of anchoring the limbs to the trunk of the body and facilitating the movement of each appendage. This shared function, however, is one of relatively few similarities between the scapula and pelvis, which have significantly different morphologies, evolutionary histories, embryonic origins, and underlying genetic pathways. The scapula evolved in jawless fish prior to the pelvis, and its embryonic development is unique among bones in that it is derived from multiple progenitor cell populations, including the dermomyotome, somatopleure, and neural crest. Conversely, the pelvis evolved several million years later in jawed fish, and it develops from an embryonic somatopleuric cell population. The genetic networks controlling the formation of the pelvis and scapula also share similarities and differences, with a number of genes shaping only one or the other, while other gene products such as PBX transcription factors act as hierarchical developmental regulators of both girdle structures. Here, we provide a detailed review of the cellular processes and genetic networks underlying pelvis and scapula formation in tetrapods, while also highlighting unanswered questions about girdle evolution and development.
Collapse
Affiliation(s)
- Mariel Young
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Licia Selleri
- Program in Craniofacial Biology, Department of Orofacial Sciences, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California, Institute of Human Genetics, San Francisco, CA, United States; Program in Craniofacial Biology, Department of Anatomy, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California, Institute of Human Genetics, San Francisco, CA, United States.
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States; Broad Institute of Harvard and MIT, Cambridge, MA, United States.
| |
Collapse
|
10
|
Asfour HA, Allouh MZ, Said RS. Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (Maywood) 2018; 243:118-128. [PMID: 29307280 DOI: 10.1177/1535370217749494] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prenatal and postnatal myogenesis share many cellular and molecular aspects. Myogenic regulatory factors are basic Helix-Loop-Helix transcription factors that indispensably regulate both processes. These factors (Myf5, MyoD, Myogenin, and MRF4) function as an orchestrating cascade, with some overlapped actions. Prenatally, myogenic regulatory factors are restrictedly expressed in somite-derived myogenic progenitor cells and their derived myoblasts. Postnatally, myogenic regulatory factors are important in regulating the myogenesis process via satellite cells. Many positive and negative regulatory mechanisms exist either between myogenic regulatory factors themselves or between myogenic regulatory factors and other proteins. Upstream factors and signals are also involved in the control of myogenic regulatory factors expression within different prenatal and postnatal myogenic cells. Here, the authors have conducted a thorough and an up-to-date review of the myogenic regulatory factors since their discovery 30 years ago. This review discusses the myogenic regulatory factors structure, mechanism of action, and roles and regulations during prenatal and postnatal myogenesis. Impact statement Myogenic regulatory factors (MRFs) are key players in the process of myogenesis. Despite a considerable amount of literature regarding these factors, their exact mechanisms of actions are still incompletely understood with several overlapped functions. Herein, we revised what has hitherto been reported in the literature regarding MRF structures, molecular pathways that regulate their activities, and their roles during pre- and post-natal myogenesis. The work submitted in this review article is considered of great importance for researchers in the field of skeletal muscle formation and regeneration, as it provides a comprehensive summary of all the biological aspects of MRFs and advances a better understanding of the cellular and molecular mechanisms regulating myogenesis. Indeed, attaining a better understanding of MRFs could be utilized in developing novel therapeutic protocols for multiple myopathies.
Collapse
Affiliation(s)
- Hasan A Asfour
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| | - Mohammed Z Allouh
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| | - Raed S Said
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| |
Collapse
|
11
|
Ahmed MU, Maurya AK, Cheng L, Jorge EC, Schubert FR, Maire P, Basson MA, Ingham PW, Dietrich S. Engrailed controls epaxial-hypaxial muscle innervation and the establishment of vertebrate three-dimensional mobility. Dev Biol 2017; 430:90-104. [PMID: 28807781 DOI: 10.1016/j.ydbio.2017.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/16/2022]
Abstract
Chordates are characterised by contractile muscle on either side of the body that promotes movement by side-to-side undulation. In the lineage leading to modern jawed vertebrates (crown group gnathostomes), this system was refined: body muscle became segregated into distinct dorsal (epaxial) and ventral (hypaxial) components that are separately innervated by the medial and hypaxial motors column, respectively, via the dorsal and ventral ramus of the spinal nerves. This allows full three-dimensional mobility, which in turn was a key factor in their evolutionary success. How the new gnathostome system is established during embryogenesis and how it may have evolved in the ancestors of modern vertebrates is not known. Vertebrate Engrailed genes have a peculiar expression pattern as they temporarily demarcate a central domain of the developing musculature at the epaxial-hypaxial boundary. Moreover, they are the only genes known with this particular expression pattern. The aim of this study was to investigate whether Engrailed genes control epaxial-hypaxial muscle development and innervation. Investigating chick, mouse and zebrafish as major gnathostome model organisms, we found that the Engrailed expression domain was associated with the establishment of the epaxial-hypaxial boundary of muscle in all three species. Moreover, the outgrowing epaxial and hypaxial nerves orientated themselves with respect to this Engrailed domain. In the chicken, loss and gain of Engrailed function changed epaxial-hypaxial somite patterning. Importantly, in all animals studied, loss and gain of Engrailed function severely disrupted the pathfinding of the spinal motor axons, suggesting that Engrailed plays an evolutionarily conserved role in the separate innervation of vertebrate epaxial-hypaxial muscle.
Collapse
Affiliation(s)
- Mohi U Ahmed
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK
| | - Ashish K Maurya
- Institute of Molecular&Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Republic of Singapore
| | - Louise Cheng
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK; Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Erika C Jorge
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK; Universidade Federal de Minas Gerais - Departamento de Morfologia, Av Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Frank R Schubert
- Institute of Biomedical and Biomolecular Science, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Pascal Maire
- Institut Cochin, INSERM U567, CNRS UMR 8104, Univ. Paris Descartes, Département Génétique et Développement, Equipegénétique et développement du systèmeneuromusculaire, 24 Rue du Fg St Jacques, 75014 Paris, France
| | - M Albert Basson
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK
| | - Philip W Ingham
- Institute of Molecular&Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Republic of Singapore; Dept. of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore
| | - Susanne Dietrich
- King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK; Institute of Biomedical and Biomolecular Science, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| |
Collapse
|
12
|
Janesick A, Tang W, Nguyen TTL, Blumberg B. RARβ2 is required for vertebrate somitogenesis. Development 2017; 144:1997-2008. [PMID: 28432217 DOI: 10.1242/dev.144345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/07/2017] [Indexed: 01/02/2023]
Abstract
During vertebrate somitogenesis, retinoic acid is known to establish the position of the determination wavefront, controlling where new somites are permitted to form along the anteroposterior body axis. Less is understood about how RAR regulates somite patterning, rostral-caudal boundary setting, specialization of myotome subdivisions or the specific RAR subtype that is required for somite patterning. Characterizing the function of RARβ has been challenging due to the absence of embryonic phenotypes in murine loss-of-function studies. Using the Xenopus system, we show that RARβ2 plays a specific role in somite number and size, restriction of the presomitic mesoderm anterior border, somite chevron morphology and hypaxial myoblast migration. Rarβ2 is the RAR subtype whose expression is most upregulated in response to ligand and its localization in the trunk somites positions it at the right time and place to respond to embryonic retinoid levels during somitogenesis. RARβ2 positively regulates Tbx3 a marker of hypaxial muscle, and negatively regulates Tbx6 via Ripply2 to restrict the anterior boundaries of the presomitic mesoderm and caudal progenitor pool. These results demonstrate for the first time an early and essential role for RARβ2 in vertebrate somitogenesis.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Weiyi Tang
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Tuyen T L Nguyen
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
13
|
Jaffer S, Valasek P, Luke G, Batarfi M, Whalley BJ, Patel K. Characterisation of Development and Electrophysiological Mechanisms Underlying Rhythmicity of the Avian Lymph Heart. PLoS One 2016; 11:e0166428. [PMID: 27930653 PMCID: PMC5145147 DOI: 10.1371/journal.pone.0166428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/29/2016] [Indexed: 11/18/2022] Open
Abstract
Despite significant advances in tissue engineering such as the use of scaffolds, bioreactors and pluripotent stem cells, effective cardiac tissue engineering for therapeutic purposes has remained a largely intractable challenge. For this area to capitalise on such advances, a novel approach may be to unravel the physiological mechanisms underlying the development of tissues that exhibit rhythmic contraction yet do not originate from the cardiac lineage. Considerable attention has been focused on the physiology of the avian lymph heart, a discrete organ with skeletal muscle origins yet which displays pacemaker properties normally only found in the heart. A functional lymph heart is essential for avian survival and growth in ovo. The histological nature of the lymph heart is similar to skeletal muscle although molecular and bioelectrical characterisation during development to assess mechanisms that contribute towards lymph heart contractile rhythmicity have not been undertaken. A better understanding of these processes may provide exploitable insights for therapeutic rhythmically contractile tissue engineering approaches in this area of significant unmet clinical need. Here, using molecular and electrophysiological approaches, we describe the molecular development of the lymph heart to understand how this skeletal muscle becomes fully functional during discrete in ovo stages of development. Our results show that the lymph heart does not follow the normal transitional programme of myogenesis as documented in most skeletal muscle, but instead develops through a concurrent programme of precursor expansion, commitment to myogenesis and functional differentiation which offers a mechanistic explanation for its rapid development. Extracellular electrophysiological field potential recordings revealed that the peak-to-peak amplitude of electrically evoked local field potentials elicited from isolated lymph heart were significantly reduced by treatment with carbachol; an effect that could be fully reversed by atropine. Moreover, nifedipine and cyclopiazonic acid both significantly reduced peak-to-peak local field potential amplitude. Optical recordings of lymph heart showed that the organ’s rhythmicity can be blocked by the HCN channel blocker, ZD7288; an effect also associated with a significant reduction in peak-to-peak local field potential amplitude. Additionally, we also show that isoforms of HCN channels are expressed in avian lymph heart. These results demonstrate that cholinergic signalling and L-type Ca2+ channels are important in excitation and contraction coupling, while HCN channels contribute to maintenance of lymph heart rhythmicity.
Collapse
Affiliation(s)
- Sajjida Jaffer
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Petr Valasek
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Graham Luke
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Munirah Batarfi
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Benjamin Jason Whalley
- School of Chemistry, Food and Nutritional Sciences and Pharmacy, University of Reading, Whiteknights, Reading, United Kingdom
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Musumeci G, Castrogiovanni P, Coleman R, Szychlinska MA, Salvatorelli L, Parenti R, Magro G, Imbesi R. Somitogenesis: From somite to skeletal muscle. Acta Histochem 2015; 117:313-28. [PMID: 25850375 DOI: 10.1016/j.acthis.2015.02.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/31/2015] [Accepted: 02/08/2015] [Indexed: 12/21/2022]
Abstract
Myogenesis is controlled by an elaborate system of extrinsic and intrinsic regulatory mechanisms in all development stages. The aim of this review is to provide an overview of the different stages of myogenesis and muscle differentiation in mammals, starting from somitogenesis and analysis of the different portions that constitute the mature somite. Particular attention was paid to regulatory genes, in addition to mesodermal stem cells, which represent the earliest elements of myogenesis. Finally, the crucial role of growth factors, molecules of vital importance in contractile regulation, hormones and their function in skeletal muscle differentiation, growth and metabolism, and the role played by central nervous system, are discussed.
Collapse
Affiliation(s)
- Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy.
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Raymond Coleman
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Lucia Salvatorelli
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, School of Medicine, University of Catania, Catania, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele", Anatomic Pathology Section, University of Catania, Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
15
|
Abu-Elmagd M, Goljanek Whysall K, Wheeler G, Münsterberg A. Sprouty2 mediated tuning of signalling is essential for somite myogenesis. BMC Med Genomics 2015; 8 Suppl 1:S8. [PMID: 25783674 PMCID: PMC4315326 DOI: 10.1186/1755-8794-8-s1-s8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Negative regulators of signal transduction cascades play critical roles in controlling different aspects of normal embryonic development. Sprouty2 (Spry2) negatively regulates receptor tyrosine kinases (RTK) and FGF signalling and is important in differentiation, cell migration and proliferation. In vertebrate embryos, Spry2 is expressed in paraxial mesoderm and in forming somites. Expression is maintained in the myotome until late stages of somite differentiation. However, its role and mode of action during somite myogenesis is still unclear. Results Here, we analysed chick Spry2 expression and showed that it overlaps with that of myogenic regulatory factors MyoD and Mgn. Targeted mis-expression of Spry2 led to inhibition of myogenesis, whilst its C-terminal domain led to an increased number of myogenic cells by stimulating cell proliferation. Conclusions Spry2 is expressed in somite myotomes and its expression overlaps with myogenic regulatory factors. Overexpression and dominant-negative interference showed that Spry2 plays a crucial role in regulating chick myogenesis by fine tuning of FGF signaling through a negative feedback loop. We also propose that mir-23, mir-27 and mir-128 could be part of the negative feedback loop mechanism. Our analysis is the first to shed some light on in vivo Spry2 function during chick somite myogenesis.
Collapse
|
16
|
Wotton KR, Schubert FR, Dietrich S. Hypaxial muscle: controversial classification and controversial data? Results Probl Cell Differ 2015; 56:25-48. [PMID: 25344665 DOI: 10.1007/978-3-662-44608-9_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypaxial muscle is the anatomical term commonly used when referring to all the ventrally located musculature in the body of vertebrates, including muscles of the body wall and the limbs. Yet these muscles had very humble beginnings when vertebrates evolved from their chordate ancestors, and complex anatomical changes and changes in underlying gene regulatory networks occurred. This review summarises the current knowledge and controversies regarding the development and evolution of hypaxial muscles.
Collapse
Affiliation(s)
- Karl R Wotton
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
| | | | | |
Collapse
|
17
|
Shelton M, Metz J, Liu J, Carpenedo RL, Demers SP, Stanford WL, Skerjanc IS. Derivation and expansion of PAX7-positive muscle progenitors from human and mouse embryonic stem cells. Stem Cell Reports 2014; 3:516-29. [PMID: 25241748 PMCID: PMC4266001 DOI: 10.1016/j.stemcr.2014.07.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 12/25/2022] Open
Abstract
Cell therapies treating pathological muscle atrophy or damage requires an adequate quantity of muscle progenitor cells (MPCs) not currently attainable from adult donors. Here, we generate cultures of approximately 90% skeletal myogenic cells by treating human embryonic stem cells (ESCs) with the GSK3 inhibitor CHIR99021 followed by FGF2 and N2 supplements. Gene expression analysis identified progressive expression of mesoderm, somite, dermomyotome, and myotome markers, following patterns of embryonic myogenesis. CHIR99021 enhanced transcript levels of the pan-mesoderm gene T and paraxial-mesoderm genes MSGN1 and TBX6; immunofluorescence confirmed that 91% ± 6% of cells expressed T immediately following treatment. By 7 weeks, 47% ± 3% of cells were MYH(+ve) myocytes/myotubes surrounded by a 43% ± 4% population of PAX7(+ve) MPCs, indicating 90% of cells had achieved myogenic identity without any cell sorting. Treatment of mouse ESCs with these factors resulted in similar enhancements of myogenesis. These studies establish a foundation for serum-free and chemically defined monolayer skeletal myogenesis of ESCs.
Collapse
Affiliation(s)
- Michael Shelton
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jeff Metz
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jun Liu
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Richard L Carpenedo
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Faculty of Graduate and Postdoctoral Studies, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Simon-Pierre Demers
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Faculty of Graduate and Postdoctoral Studies, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - William L Stanford
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada; Faculty of Graduate and Postdoctoral Studies, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Ilona S Skerjanc
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
18
|
Lours-Calet C, Alvares LE, El-Hanfy AS, Gandesha S, Walters EH, Sobreira DR, Wotton KR, Jorge EC, Lawson JA, Kelsey Lewis A, Tada M, Sharpe C, Kardon G, Dietrich S. Evolutionarily conserved morphogenetic movements at the vertebrate head-trunk interface coordinate the transport and assembly of hypopharyngeal structures. Dev Biol 2014; 390:231-46. [PMID: 24662046 PMCID: PMC4010675 DOI: 10.1016/j.ydbio.2014.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 12/13/2022]
Abstract
The vertebrate head–trunk interface (occipital region) has been heavily remodelled during evolution, and its development is still poorly understood. In extant jawed vertebrates, this region provides muscle precursors for the throat and tongue (hypopharyngeal/hypobranchial/hypoglossal muscle precursors, HMP) that take a stereotype path rostrally along the pharynx and are thought to reach their target sites via active migration. Yet, this projection pattern emerged in jawless vertebrates before the evolution of migratory muscle precursors. This suggests that a so far elusive, more basic transport mechanism must have existed and may still be traceable today. Here we show for the first time that all occipital tissues participate in well-conserved cell movements. These cell movements are spearheaded by the occipital lateral mesoderm and ectoderm that split into two streams. The rostrally directed stream projects along the floor of the pharynx and reaches as far rostrally as the floor of the mandibular arch and outflow tract of the heart. Notably, this stream leads and engulfs the later emerging HMP, neural crest cells and hypoglossal nerve. When we (i) attempted to redirect hypobranchial/hypoglossal muscle precursors towards various attractants, (ii) placed non-migratory muscle precursors into the occipital environment or (iii) molecularly or (iv) genetically rendered muscle precursors non-migratory, they still followed the trajectory set by the occipital lateral mesoderm and ectoderm. Thus, we have discovered evolutionarily conserved morphogenetic movements, driven by the occipital lateral mesoderm and ectoderm, that ensure cell transport and organ assembly at the head–trunk interface. At the vertebrate head–trunk interface, all tissues engage in stereotype cell movements. A ventrally–rostrally directed stream of cells leads along the floor of the pharynx to the developing jaw and outflow tract of the heart. The cell movements are spearheaded by the lateral mesoderm and surface ectoderm; muscle precursors for throat and tongue muscles (hypopharyngeal muscles); neural crest cells and outgrowing axons of the hypoglossal nerve follow. Hypopharyngeal muscle precursors follow the trajectory set by the lateral mesoderm and ectoderm, even when challenged with ectopic attractants or when rendered non-migratory. The newly discovered cell movements are the likely ground state for cell transport and organ assembly at the head–trunk interface before actively migrating muscle precursors evolved in “bony” (osteichthyan) vertebrates.
Collapse
Affiliation(s)
- Corinne Lours-Calet
- School of Biomedical & Health Sciences, King׳s College London, Hodgkin Building G43S/44S, Guy׳s Campus, London SE1 1UL, UK; GReD - Génétique Reproduction et Développement, UMR CNRS 6247, INSERM U931, Clermont Université, 24, Avenue des Landais, BP 80026, 63171 Aubiere Cedex, France
| | - Lucia E Alvares
- School of Biomedical & Health Sciences, King׳s College London, Hodgkin Building G43S/44S, Guy׳s Campus, London SE1 1UL, UK; Department of Histology and Embryology, University of Campinas (UNICAMP), Rua Charles Darwin s/n, Cx. Postal 6109, CEP 13083-863 Campinas, São Paulo, Brazil
| | - Amira S El-Hanfy
- School of Biomedical & Health Sciences, King׳s College London, Hodgkin Building G43S/44S, Guy׳s Campus, London SE1 1UL, UK
| | - Saniel Gandesha
- School of Biomedical & Health Sciences, King׳s College London, Hodgkin Building G43S/44S, Guy׳s Campus, London SE1 1UL, UK; College Road Dental Practice, 2 College Road, Bromsgrove, B60 2NE
| | - Esther H Walters
- School of Biomedical & Health Sciences, King׳s College London, Hodgkin Building G43S/44S, Guy׳s Campus, London SE1 1UL, UK
| | - Débora Rodrigues Sobreira
- Department of Histology and Embryology, University of Campinas (UNICAMP), Rua Charles Darwin s/n, Cx. Postal 6109, CEP 13083-863 Campinas, São Paulo, Brazil; Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael׳s Building, White Swan Road, Portsmouth PO1 2DT, UK
| | - Karl R Wotton
- School of Biomedical & Health Sciences, King׳s College London, Hodgkin Building G43S/44S, Guy׳s Campus, London SE1 1UL, UK; EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Erika C Jorge
- School of Biomedical & Health Sciences, King׳s College London, Hodgkin Building G43S/44S, Guy׳s Campus, London SE1 1UL, UK; Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Jennifer A Lawson
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| | - A Kelsey Lewis
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| | - Masazumi Tada
- Department of Cell & Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Colin Sharpe
- Institute for Biomedical and Biomolecular Science (IBBS), School of Biology, University of Portsmouth, St. Michael׳s Building, White Swan Road, Portsmouth PO1 2DT, UK
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| | - Susanne Dietrich
- School of Biomedical & Health Sciences, King׳s College London, Hodgkin Building G43S/44S, Guy׳s Campus, London SE1 1UL, UK; Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael׳s Building, White Swan Road, Portsmouth PO1 2DT, UK.
| |
Collapse
|
19
|
ATOH8, a regulator of skeletal myogenesis in the hypaxial myotome of the trunk. Histochem Cell Biol 2013; 141:289-300. [PMID: 24186058 PMCID: PMC3935115 DOI: 10.1007/s00418-013-1155-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2013] [Indexed: 11/23/2022]
Abstract
The embryonic muscles of the axial skeleton and limbs take their origin from the dermomyotomes of the somites. During embryonic myogenesis, muscle precursors delaminate from the dermomyotome giving rise to the hypaxial and epaxial myotome. Mutant studies for myogenic regulatory factors have shown that the development of the hypaxial myotome differs from the formation of the epaxial myotome and that the development of the hypaxial myotome depends on the latter within the trunk region. The transcriptional networks that regulate the transition of proliferative dermomyotomal cells into the predominantly post-mitotic hypaxial myotome, as well as the eventual patterning of the myotome, are not fully understood. Similar transitions occurring during the development of the neural system have been shown to be controlled by the Atonal family of helix-loop-helix transcription factors. Here, we demonstrate that ATOH8, a member of the Atonal family, is expressed in a subset of embryonic muscle cells in the dermomyotome and myotome. Using the RNAi approach, we show that loss of ATOH8 in the lateral somites at the trunk level results in a blockage of differentiation and thus causes cells to be maintained in a predetermined state. Furthermore, we show that ATOH8 is also expressed in cultured C2C12 mouse myoblasts and becomes dramatically downregulated during their differentiation. We propose that ATOH8 plays a role during the transition of myoblasts from the proliferative phase to the differentiation phase and in the regulation of myogenesis in the hypaxial myotome of the trunk.
Collapse
|
20
|
Pu Q, Abduelmula A, Masyuk M, Theiss C, Schwandulla D, Hans M, Patel K, Brand-Saberi B, Huang R. The dermomyotome ventrolateral lip is essential for the hypaxial myotome formation. BMC DEVELOPMENTAL BIOLOGY 2013; 13:37. [PMID: 24138189 PMCID: PMC3853214 DOI: 10.1186/1471-213x-13-37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/11/2013] [Indexed: 11/29/2022]
Abstract
Background The myotome is the primitive skeletal muscle that forms within the embryonic metameric body wall. It can be subdivided into an epaxial and hypaxial domain. It has been shown that the formation of the epaxial myotome requires the dorsomedial lip of the dermomyotome (DML). Although the ventrolateral lip (VLL) of the dermomyotome is believed to be required for the formation of the hypaxial myotome, experimentally evidence for this statement still needs to be provided. Provision of such data would enable the resolution of a debate regarding the formation of the hypaxial dermomyotome. Two mechanisms have been proposed for this tissue. The first proposes that the intermediate dermomyotome undergoes cellular expansion thereby pushing the ventral lateral lip in a lateral direction (translocation). In contrast, the alternative view holds that the ventral lateral lip grows laterally. Results Using time lapse confocal microscopy, we observed that the GFP-labelled ventrolateral lip (VLL) of the dermomyotome grows rather than translocates in a lateral direction. The necessity of the VLL for lateral extension of the myotome was addressed by ablation studies. We found that the hypaxial myotome did not form after VLL ablation. In contrast, the removal of an intermediate portion of the dermomyotome had very little effect of the hypaxial myotome. These results demonstrate that the VLL is required for the formation of the hypaxial myotome. Conclusion Our study demonstrates that the dermomyotome ventrolateral lip is essential for the hypaxial myotome formation and supports the lip extension model. Therefore, despite being under independent signalling controls, both the dorsomedial and ventrolateral lip fulfil the same function, i.e. they extend into adjacent regions permitting the growth of the myotome.
Collapse
Affiliation(s)
- Qin Pu
- Institute of Anatomy, Department of Neuroanatomy, Medical Faculty Bonn, Rheinish Friedrich-Wilhelms-University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
El-Magd MA, Allen S, McGonnell I, Otto A, Patel K. Bmp4regulates chickEbf2andEbf3gene expression in somite development. Dev Growth Differ 2013; 55:710-22. [DOI: 10.1111/dgd.12077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Mohammed A. El-Magd
- Department of Anatomy and Embryology; Faculty of Veterinary Medicine; Kafrelsheikh University; El-Geish Street Kafrelsheikh Post Box 33516 Egypt
- Department of Veterinary Basic Sciences; The Royal Veterinary College; Royal College Street Camden London NW1 0TU UK
| | - Steve Allen
- Department of Veterinary Basic Sciences; The Royal Veterinary College; Royal College Street Camden London NW1 0TU UK
| | - Imelda McGonnell
- Department of Veterinary Basic Sciences; The Royal Veterinary College; Royal College Street Camden London NW1 0TU UK
| | - Anthony Otto
- School of Biological Sciences; University of Reading; Whiteknights PO Box 228 Reading UK
| | - Ketan Patel
- School of Biological Sciences; University of Reading; Whiteknights PO Box 228 Reading UK
| |
Collapse
|
22
|
Abstract
Mammalian skeletal muscles are derived from mesoderm segments flanking the embryonic midline. Upon receiving inductive cues from the adjacent neural tube, lateral plate mesoderm, and surface ectoderm, muscle precursors start to delaminate, migrate to their final destinations and proliferate. Muscle precursor cells become committed to the myogenic fate, become differentiated muscle cells, and fuse to form myofibers. Myofibers then fuse together to form the muscle groups. Muscle precursor cells have the ability to proliferate, and differentiate during development, while a subset remains capable of regeneration and repair of local injuries in adulthood. When the process of muscle development is perturbed such as in muscular dystrophies and injuries, ways to intervene and allow for proper muscle development or repair are the focus of regenerative medicine. Thus, understanding the developmental program of muscle at the genetic, cellular, and molecular levels has become a major focus of skeletal muscle regeneration research in the last few years.
Collapse
|
23
|
Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3. Proc Natl Acad Sci U S A 2013; 110:12709-14. [PMID: 23858437 DOI: 10.1073/pnas.1306287110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Skin melanocytes arise from two sources: either directly from neural crest progenitors or indirectly from neural crest-derived Schwann cell precursors after colonization of peripheral nerves. The relationship between these two melanocyte populations and the factors controlling their specification remains poorly understood. Direct lineage tracing reveals that neural crest and Schwann cell progenitor-derived melanocytes are differentially restricted to the epaxial and hypaxial body domains, respectively. Furthermore, although both populations are initially part of the Foxd3 lineage, hypaxial melanocytes lose Foxd3 at late stages upon separation from the nerve, whereas we recently found that epaxial melanocytes segregate earlier from Foxd3-positive neural progenitors while still residing in the dorsal neural tube. Gain- and loss-of-function experiments in avians and mice, respectively, reveal that Foxd3 is both sufficient and necessary for regulating the balance between melanocyte and Schwann cell development. In addition, Foxd3 is also sufficient to regulate the switch between neuronal and glial fates in sensory ganglia. Together, we propose that differential fate acquisition of neural crest-derived cells depends on their progressive segregation from the Foxd3-positive lineage.
Collapse
|
24
|
Singh K, Dilworth FJ. Differential modulation of cell cycle progression distinguishes members of the myogenic regulatory factor family of transcription factors. FEBS J 2013; 280:3991-4003. [DOI: 10.1111/febs.12188] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Kulwant Singh
- Sprott Center for Stem Cell Research; Ottawa Hospital Research Institute; ON; Canada
| | | |
Collapse
|
25
|
Kawanishi T, Kaneko T, Moriyama Y, Kinoshita M, Yokoi H, Suzuki T, Shimada A, Takeda H. Modular development of the teleost trunk along the dorsoventral axis and zic1/zic4 as selector genes in the dorsal module. Development 2013; 140:1486-96. [PMID: 23462471 DOI: 10.1242/dev.088567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Teleost fish exhibit remarkable diversity in morphology, such as fins and coloration, particularly on the dorsal side. These structures are evolutionary adaptive because their back is highly visible to other individuals. However, owing to the late phenotypic appearance (from larva to adult) and lack of appropriate mutants, the genetic mechanisms that regulate these dorsoventrally asymmetric external patterns are largely unknown. To address this, we have analyzed the spontaneous medaka mutant Double anal fin (Da), which exhibits a mirror-image duplication of the ventral half across the lateral midline from larva to adult. Da is an enhancer mutant for zic1 and zic4 in which their expression in dorsal somites is lost. We show that the dorsoventral polarity in Da somites is lost and then demonstrate using transplantation techniques that somites and their derived tissues globally determine the multiple dorsal-specific characteristics of the body (fin morphology and pigmentation) from embryo to adult. Intriguingly, the zic1/zic4 expression in the wild type persists throughout life in the dorsal parts of somite derivatives, i.e. the myotome, dermis and vertebrae, forming a broad dorsal domain in the trunk. Comparative analysis further implies a central role for zic1/zic4 in morphological diversification of the teleost body. Taken together, we propose that the teleost trunk consists of dorsal/ventral developmental modules and that zic1/zic4 in somites function as selector genes in the dorsal module to regulate multiple dorsal morphologies.
Collapse
Affiliation(s)
- Toru Kawanishi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Adachi N, Takechi M, Hirai T, Kuratani S. Development of the head and trunk mesoderm in the dogfish, Scyliorhinus torazame: II. Comparison of gene expression between the head mesoderm and somites with reference to the origin of the vertebrate head. Evol Dev 2013; 14:257-76. [PMID: 23017074 DOI: 10.1111/j.1525-142x.2012.00543.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The vertebrate mesoderm differs distinctly between the head and trunk, and the evolutionary origin of the head mesoderm remains enigmatic. Although the presence of somite-like segmentation in the head mesoderm of model animals is generally denied at molecular developmental levels, the appearance of head cavities in elasmobranch embryos has not been explained, and the possibility that they may represent vestigial head somites once present in an amphioxus-like ancestor has not been ruled out entirely. To examine whether the head cavities in the shark embryo exhibit any molecular signatures reminiscent of trunk somites, we isolated several developmentally key genes, including Pax1, Pax3, Pax7, Pax9, Myf5, Sonic hedgehog, and Patched2, which are involved in myogenic and chondrogenic differentiation in somites, and Pitx2, Tbx1, and Engrailed2, which are related to the patterning of the head mesoderm, from an elasmobranch species, Scyliorhinus torazame. Observation of the expression patterns of these genes revealed that most were expressed in patterns that resembled those found in amniote embryos. In addition, the head cavities did not exhibit an overt similarity to somites; that is, the similarity was no greater than that of the unsegmented head mesoderm in other vertebrates. Moreover, the shark head mesoderm showed an amniote-like somatic/visceral distinction according to the expression of Pitx2, Tbx1, and Engrailed2. We conclude that the head cavities do not represent a manifestation of ancestral head somites; rather, they are more likely to represent a derived trait obtained in the lineage of gnathostomes.
Collapse
Affiliation(s)
- Noritaka Adachi
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | | | |
Collapse
|
27
|
The extracellular matrix dimension of skeletal muscle development. Dev Biol 2011; 354:191-207. [PMID: 21420400 DOI: 10.1016/j.ydbio.2011.03.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 12/25/2022]
Abstract
Cells anchor to substrates by binding to extracellular matrix (ECM). In addition to this anchoring function however, cell-ECM binding is a mechanism for cells to sense their surroundings and to communicate and coordinate behaviour amongst themselves. Several ECM molecules and their receptors play essential roles in muscle development and maintenance. Defects in these proteins are responsible for some of the most severe muscle dystrophies at every stage of life from neonates to adults. However, recent studies have also revealed a role of cell-ECM interactions at much earlier stages of development as skeletal muscle forms. Here we review which ECM molecules are present during the early phases of myogenesis, how myogenic cells interact with the ECM that surrounds them and the potential consequences of those interactions. We conclude that cell-ECM interactions play significant roles during all stages of skeletal muscle development in the embryo and suggest that this "extracellular matrix dimension" should be added to our conceptual network of factors contributing to skeletal myogenesis.
Collapse
|
28
|
Mok GF, Sweetman D. Many routes to the same destination: lessons from skeletal muscle development. Reproduction 2011; 141:301-12. [PMID: 21183656 DOI: 10.1530/rep-10-0394] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The development and differentiation of vertebrate skeletal muscle provide an important paradigm to understand the inductive signals and molecular events controlling differentiation of specific cell types. Recent findings show that a core transcriptional network, initiated by the myogenic regulatory factors (MRFs; MYF5, MYOD, myogenin and MRF4), is activated by separate populations of cells in embryos in response to various signalling pathways. This review will highlight how cells from multiple distinct starting points can converge on a common set of regulators to generate skeletal muscle.
Collapse
Affiliation(s)
- Gi Fay Mok
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | | |
Collapse
|
29
|
Abstract
Myogenesis has been a leading model for elucidating the molecular mechanisms that underlie tissue differentiation and development since the discovery of MyoD. During myogenesis, the fate of myogenic precursor cells is first determined by Pax3/Pax7. This is followed by regulation of the myogenic differentiation program by muscle regulatory factors (Myf5, MyoD, Myog, and Mrf4) to form muscle tissues. Recent studies have uncovered a detailed myogenic program that involves the RP58 (Zfp238)-dependent regulatory network, which is critical for repressing the expression of inhibitor of DNA binding (Id) proteins. These novel findings contribute to a comprehensive understanding of the muscle differentiation transcriptional program.
Collapse
|
30
|
Dolez M, Nicolas JF, Hirsinger E. Laminins, via heparan sulfate proteoglycans, participate in zebrafish myotome morphogenesis by modulating the pattern of Bmp responsiveness. Development 2010; 138:97-106. [PMID: 21115608 DOI: 10.1242/dev.053975] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In zebrafish, Hedgehog-induced Engrailed expression defines a muscle fibre population that includes both slow and fast fibre types and exhibits an organisational role on myotome and surrounding tissues, such as motoneurons and lateral line. This Engrailed-positive population is restricted in the myotome to a central domain. To understand how this population is established, we have analysed the phenotype of the sly/lamc1 mutation in the Laminin γ1 chain that was shown to specifically affect Engrailed expression in pioneers. We find that the sly mutation affects Engrailed expression in the entire central domain and that Hedgehog signalling does not mediate this effect. We show that Bmp-responding cells are excluded from the central domain and that this pattern is modulated by laminins, but not by Hedgehog signalling. Knockdown of Bmp signalling rescues Engrailed expression in the sly mutant and ectopically activates Engrailed expression in slow and fast lineages in wild-type embryos. Last, extracellular matrix-associated heparan sulfate proteoglycans are absent in sly and their enzymatic removal mimics the sly phenotype. Our results therefore show that laminins, via heparan sulfate proteoglycans, are instrumental in patterning Bmp responsiveness and that Bmp signalling restricts Engrailed expression to the central domain. This study underlines the importance of extracellular cues for the precise spatial modulation of cell response to morphogens.
Collapse
Affiliation(s)
- Morgane Dolez
- Institut Pasteur, Unit of Molecular Biology of Development, Department of Developmental Biology, 25 rue du Docteur Roux, CNRS, URA2578, F-75015 Paris, France
| | | | | |
Collapse
|
31
|
Peyrot SM, Martin BL, Harland RM. Lymph heart musculature is under distinct developmental control from lymphatic endothelium. Dev Biol 2010; 339:429-38. [PMID: 20067786 DOI: 10.1016/j.ydbio.2010.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 12/14/2009] [Accepted: 01/04/2010] [Indexed: 11/16/2022]
Abstract
Lymph hearts are pulsatile organs, present in lower vertebrates, that function to propel lymph into the venous system. Although they are absent in mammals, the initial veno-lymphatic plexus that forms during mammalian jugular lymph sac development has been described as the vestigial homologue of the nascent stage of ancestral anterior lymph hearts. Despite the widespread presence of lymph hearts among vertebrate species and their unique function, extremely little is known about lymph heart development. We show that Xenopus anterior lymph heart muscle expresses skeletal muscle markers such as myoD and 12/101, rather than cardiac markers. The onset of lymph heart myoblast induction can be visualized by engrailed-1 (en1) staining in anterior trunk somites, which is dependent on Hedgehog (Hh) signaling. In the absence of Hh signaling and upon en1 knockdown, lymph heart muscle fails to develop, despite the normal development of the lymphatic endothelium of the lymph heart, and embryos develop edema. These results suggest a mechanism for the evolutionary transition from anterior lymph hearts to jugular lymph sacs in mammals.
Collapse
Affiliation(s)
- Sara M Peyrot
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, Center for Integrative Genomics, University of California, Berkeley, Berkeley, CA 94720-3204, USA
| | | | | |
Collapse
|
32
|
Grade CVC, Salerno MS, Schubert FR, Dietrich S, Alvares LE. An evolutionarily conserved Myostatin proximal promoter/enhancer confers basal levels of transcription and spatial specificity in vivo. Dev Genes Evol 2009; 219:497-508. [PMID: 20052486 DOI: 10.1007/s00427-009-0312-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 12/02/2009] [Indexed: 12/21/2022]
Abstract
Myostatin (Mstn) is a negative regulator of skeletal muscle mass, and Mstn mutations are responsible for the double muscling phenotype observed in many animal species. Moreover, Mstn is a positive regulator of adult muscle stem cell (satellite cell) quiescence, and hence, Mstn is being targeted in therapeutic approaches to muscle diseases. In order to better understand the mechanisms underlying Mstn regulation, we searched for the gene's proximal enhancer and promoter elements, using an evolutionary approach. We identified a 260-bp-long, evolutionary conserved region upstream of tetrapod Mstn and teleost mstn b genes. This region contains binding sites for TATA binding protein, Meis1, NF-Y, and for CREB family members, suggesting the involvement of cAMP in Myostatin regulation. The conserved fragment was able to drive reporter gene expression in C2C12 cells in vitro and in chicken somites in vivo; both normally express Mstn. In contrast, the reporter construct remained silent in the avian neural tube that normally does not express Mstn. This suggests that the identified element serves as a minimal promoter, harboring some spatial specificity. Finally, using bioinformatic approaches, we identified additional genes in the human genome associated with sequences similar to the Mstn proximal promoter/enhancer. Among them are genes important for myogenesis. This suggests that Mstn and these genes may form a synexpression group, regulated by a common signaling pathway.
Collapse
Affiliation(s)
- Carla Vermeulen Carvalho Grade
- Department of Histology and Embryology, State University of Campinas-UNICAMP, Rua Charles Darwin, s/n, Cx. Postal 6109, CEP 13083-863, Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
33
|
Hammond KL, Baxendale S, McCauley DW, Ingham PW, Whitfield TT. Expression ofpatched, prdm1andengrailedin the lamprey somite reveals conserved responses to Hedgehog signaling. Evol Dev 2009; 11:27-40. [DOI: 10.1111/j.1525-142x.2008.00300.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Liem IK, Aoyama H. Body wall morphogenesis: limb-genesis interferes with body wall-genesis via its influence on the abaxial somite derivatives. Mech Dev 2008; 126:198-211. [PMID: 19059337 DOI: 10.1016/j.mod.2008.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 11/03/2008] [Accepted: 11/14/2008] [Indexed: 11/25/2022]
Abstract
The vertebrate body wall is regionalized into thoracic and lumbosacral/abdominal regions that differ in their morphology and developmental origin. The thoracic body wall has ribs and intercostal muscles, which develops from thoracic somites, whereas the abdominal wall has abdominal muscles, which develops from lumbosacral somites without ribs cage. To examine whether limb-genesis interferes with body wall-genesis, and to test the possibility that limb generation leads to the regional differentiation, an ectopic limb was induced in the thoracic region by transplanting prospective limb somatopleural mesoderm of Japanese quail between the ectoderm and somatopleural mesoderm of the chick prospective thoracic region. This ectopic limb generation induced the somitic cells to migrate into the ectopic limb mesenchyme to become its muscles and caused the loss of distal thoracic body wall (sterno-distal rib and distal intercostal muscle), without causing any significant effect on the more proximal region (proximal rib, vertebro-distal rib and proximal intercostal muscle). According to a new primaxial-abaxial classification, the proximal region is classified as primaxial and the distal region, as well as limb, is classified as abaxial. We demonstrated that ectopic limb development interfered with body wall development via its influence on the abaxial somite derivatives. The present study supports the idea that the somitic cells give rise to the primaxial derivatives keeping their own identity and fate, whereas they produce the abaxial derivatives responding to the lateral plate mesoderm.
Collapse
Affiliation(s)
- Isabella Kurnia Liem
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | |
Collapse
|
35
|
Bothe I, Ahmed MU, Winterbottom FL, von Scheven G, Dietrich S. Extrinsic versus intrinsic cues in avian paraxial mesoderm patterning and differentiation. Dev Dyn 2007; 236:2397-409. [PMID: 17654605 DOI: 10.1002/dvdy.21241] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Somitic and head mesoderm contribute to cartilage and bone and deliver the entire skeletal musculature. Studies on avian somite patterning and cell differentiation led to the view that these processes depend solely on cues from surrounding tissues. However, evidence is accumulating that some developmental decisions depend on information within the somitic tissue itself. Moreover, recent studies established that head and somitic mesoderm, though delivering the same tissue types, are set up to follow their own, distinct developmental programmes. With a particular focus on the chicken embryo, we review the current understanding of how extrinsic signalling, operating in a framework of intrinsically regulated constraints, controls paraxial mesoderm patterning and cell differentiation.
Collapse
Affiliation(s)
- Ingo Bothe
- Department of Craniofacial Development, King's College London, Guy's Hospital, London, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
Abstract
We describe recent advances in the understanding of patterning in the vertebrate post-cranial mesoderm. Specifically, we discuss the integration of local information into global level information that results in the overall coordination along the anterioposterior axis. Experiments related to the integration of the axial and appendicular musculoskeletal systems are considered, and examples of genetic interactions between these systems are outlined. We emphasize the utility of the terms primaxial and abaxial as an aid to understanding development of the vertebrate musculoskeletal system, and hypothesize that the lateral somitic frontier is a catalyst for evolutionary change.
Collapse
|
37
|
Shih HP, Gross MK, Kioussi C. Muscle development: forming the head and trunk muscles. Acta Histochem 2007; 110:97-108. [PMID: 17945333 PMCID: PMC6317512 DOI: 10.1016/j.acthis.2007.08.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 08/16/2007] [Accepted: 08/21/2007] [Indexed: 01/26/2023]
Abstract
The morphological events forming the body's musculature are sensitive to genetic and environmental perturbations with high incidence of congenital myopathies, muscular dystrophies and degenerations. Pattern formation generates branching series of states in the genetic regulatory network. Different states of the network specify pre-myogenic progenitor cells in the head and trunk. These progenitors reveal their myogenic nature by the subsequent onset of expression of the master switch gene MyoD and/or Myf5. Once initiated, the myogenic progression that ultimately forms mature muscle appears to be quite similar in head and trunk skeletal muscle. Several genes that are essential in specifying pre-myogenic progenitors in the trunk are known. Pax3, Lbx1, and a number of other homeobox transcription factors are essential in specifying pre-myogenic progenitors in the dermomyotome, from which the epaxial and hypaxial myoblasts, which express myogenic regulatory factors (MRFs), emerge. The proteins involved in specifying pre-myogenic progenitors in the head are just beginning to be discovered and appear to be distinct from those in the trunk. The homeobox gene Pitx2, the T-box gene Tbx1, and the bHLH genes Tcf21 and Msc encode transcription factors that play roles in specifying progenitor cells that will give rise to branchiomeric muscles of the head. Pitx2 is expressed well before the onset of myogenic progression in the first branchial arch (BA) mesodermal core and is essential for the formation of first BA derived muscle groups. Anterior-posterior patterning events that occur during gastrulation appear to initiate the Pitx2 expression domain in the cephalic and BA mesoderm. Pitx2 therefore contributes to the establishment of network states, or kernels, that specify pre-myogenic progenitors for extraocular and mastication muscles. A detailed understanding of the molecular mechanisms that regulate head muscle specification and formation provides the foundation for understanding congenital myopathies. Current technology and mouse model systems help to elucidate the molecular basis on etiology and repair of muscular degenerative diseases.
Collapse
Affiliation(s)
- Hung Ping Shih
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331
| | - Michael K. Gross
- Department of Biochemistry and Biophysics, College of Sciences, Oregon State University, Corvallis, OR 97331
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331
- Corresponding Author, , T (541) 737-2179, F (541) 737-3999
| |
Collapse
|
38
|
Shimeld SM, van den Heuvel M, Dawber R, Briscoe J. An amphioxus Gli gene reveals conservation of midline patterning and the evolution of hedgehog signalling diversity in chordates. PLoS One 2007; 2:e864. [PMID: 17848995 PMCID: PMC1955834 DOI: 10.1371/journal.pone.0000864] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 08/15/2007] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Hedgehog signalling, interpreted in receiving cells by Gli transcription factors, plays a central role in the development of vertebrate and Drosophila embryos. Many aspects of the signalling pathway are conserved between these lineages, however vertebrates have diverged in at least one key aspect: they have evolved multiple Gli genes encoding functionally-distinct proteins, increasing the complexity of the hedgehog-dependent transcriptional response. Amphioxus is one of the closest living relatives of the vertebrates, having split from the vertebrate lineage prior to the widespread gene duplication prominent in early vertebrate evolution. PRINCIPAL FINDINGS We show that amphioxus has a single Gli gene, which is deployed in tissues adjacent to sources of hedgehog signalling derived from the midline and anterior endoderm. This shows the duplication and divergence of the Gli gene family, and hence the origin of vertebrate Gli functional diversity, was specific to the vertebrate lineage. However we also show that the single amphioxus Gli gene produces two distinct transcripts encoding different proteins. We utilise three tests of Gli function to examine the transcription regulatory capacities of these different proteins, demonstrating one has activating activity similar to Gli2, while the other acts as a weak repressor, similar to Gli3. CONCLUSIONS These data show that vertebrates and amphioxus have evolved functionally-similar repertoires of Gli proteins using parallel molecular routes; vertebrates via gene duplication and divergence, and amphioxus via alternate splicing of a single gene. Our results demonstrate that similar functional complexity of intercellular signalling can be achieved via different evolutionary pathways.
Collapse
|
39
|
Biressi S, Molinaro M, Cossu G. Cellular heterogeneity during vertebrate skeletal muscle development. Dev Biol 2007; 308:281-93. [PMID: 17612520 DOI: 10.1016/j.ydbio.2007.06.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/03/2007] [Accepted: 06/08/2007] [Indexed: 12/29/2022]
Abstract
Although skeletal muscles appear superficially alike at different anatomical locations, in reality there is considerably more diversity than previously anticipated. Heterogeneity is not only restricted to completely developed fibers, but is clearly apparent during development at the molecular, cellular and anatomical level. Multiple waves of muscle precursors with different features appear before birth and contribute to muscular diversification. Recent cell lineage and gene expression studies have expanded our knowledge on how skeletal muscle is formed and how its heterogeneity is generated. This review will present a comprehensive view of relevant findings in this field.
Collapse
Affiliation(s)
- Stefano Biressi
- Stem Cell Research Institute, DiBiT, San Raffaele Scientific Institute, 58 via Olgettina, 20132 Milan, Italy.
| | | | | |
Collapse
|
40
|
Kahane N, Ben-Yair R, Kalcheim C. Medial pioneer fibers pattern the morphogenesis of early myoblasts derived from the lateral somite. Dev Biol 2007; 305:439-50. [PMID: 17382923 DOI: 10.1016/j.ydbio.2007.02.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 02/11/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
The first wave of myoblasts which constitutes the post-mitotic myotome stems from the medial epithelial somite. Whereas medial pioneers extend throughout the entire mediolateral myotome at cervical and limb levels, at flank regions they are complemented laterally by a population of early myoblasts emerging from the lateral epithelial somite. These myoblasts delaminate underneath the nascent dermomyotome and become post-mitotic. They are Myf5-positive but express MyoD and desmin only a day later while differentiating into fibers. Overexpression of Noggin in the lateral somite triggers their premature differentiation suggesting that lateral plate-BMP4 maintains them in an undifferentiated state. Moreover, directly accelerating their differentiation by MyoD overexpression prior to arrival of medial fibers, generates a severely mispatterned lateral myotome. This is in contrast to medial pioneers that have the capacity for self-organization. Furthermore, inhibiting differentiation of medial pioneers with dominant-negative MyoD also disrupts lateral myoblast patterning and differentiation. Thus, we propose that medial pioneers are needed for proper morphogenesis of the lateral population which is kept as undifferentiated mesenchyme by BMP4 until their arrival. In addition, medial pioneers also organize dermomyotome lip-derived fibers suggesting that they have a general role in patterning myotome development.
Collapse
Affiliation(s)
- Nitza Kahane
- Department of Anatomy and Cell Biology, Hebrew University-Hadassah Medical School, Jerusalem 91120, PO Box 12272, Israel
| | | | | |
Collapse
|
41
|
Martin BL, Peyrot SM, Harland RM. Hedgehog signaling regulates the amount of hypaxial muscle development during Xenopus myogenesis. Dev Biol 2007; 304:722-34. [PMID: 17320852 PMCID: PMC2080674 DOI: 10.1016/j.ydbio.2007.01.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 01/11/2007] [Accepted: 01/12/2007] [Indexed: 12/28/2022]
Abstract
Hedgehog (Hh) signaling is proposed to have different roles on differentiation of hypaxial myoblasts of amniotes. Within the somitic environment, Hh signals restrict hypaxial development and promote epaxial muscle formation. On the other hand, in the limb bud, Hh signaling represses hypaxial myoblast differentiation. This poses the question of whether differences in response to Hh signaling are due to variations in local environment or are intrinsic differences between pre- and post-migratory hypaxial myoblasts. We have approached this question by examining the role of Hh signaling on myoblast development in Xenopus laevis, which, due to its unique mode of hypaxial muscle development, allows us to examine myoblast development in vivo in the absence of the limb environment. Cyclopamine and sonic hedgehog (shh) mRNA overexpression were used to inhibit or activate the Hh pathway, respectively. We find that hypaxial myoblasts respond similarly to Hh manipulations regardless of their location, and that this response is the same for epaxial myoblasts. Overexpression of shh mRNA causes a premature differentiation of the dermomyotome, subsequently inhibiting all further growth of the epaxial and hypaxial myotome. Cyclopamine treatment has the opposite effect, causing an increase in dermomyotome and a shift in myoblast fate from epaxial to hypaxial, eventually leading to an excess of hypaxial body wall muscle. Cyclopamine treatment before stage 20 can rescue the effects of shh overexpression, indicating that early Hh signaling plays an essential role in maintaining the balance between epaxial and hypaxial muscle mass. After stage 20, the premature differentiation of the dermomyotome caused by shh overexpression cannot be rescued by cyclopamine, and no further embryonic muscle growth occurs.
Collapse
|
42
|
Shih HP, Gross MK, Kioussi C. Expression pattern of the homeodomain transcription factor Pitx2 during muscle development. Gene Expr Patterns 2007; 7:441-51. [PMID: 17166778 DOI: 10.1016/j.modgep.2006.11.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Revised: 11/03/2006] [Accepted: 11/08/2006] [Indexed: 11/25/2022]
Abstract
Late-stage Pitx2(+/LacZ) mouse embryos stained with x-gal appeared to have blue muscles, suggesting that Pitx2 expression specifically marks some phase of the myogenic progression or muscle anlagen formation. Detailed temporal and spatial analyses were undertaken to determine the extent and onset of Pitx2 expression in muscle. Pitx2 was specifically expressed in the vast majority of muscles of the head and trunk in late embryos and adults. Early Pitx2 expression in the cephalic mesoderm, first branchial arch and somatopleure preceded specification of head muscle. In contrast, Pitx2 expression appeared to follow muscle specification events in the trunk. However, Pitx2 expression was rapidly upregulated in these myogenic structures by E10.5. Upregulation correlated tightly with the apposition of a non-myogenic, Pitx2-expressing, cell cluster lateral to the dermomyotome. This cluster first appeared at the forelimb level at E10.25, gradually elongated in the posterior direction, appeared to aggregate from delaminated cells emanating from the ventrally located somatopleure, and was named the dorsal somatopleure. Immunohistochemistry on appendicular sections after E10.5 demonstrated that Pitx2 neatly marked the areas of muscle anlagen, that Pax3, Lbx1, and the muscle regulatory factors (MRFs) stained only subsets of Pitx2(+) cells within these areas, and that virtually all Pitx2(+) cells in these areas express at least one of these known myogenic markers. Taken together, the results demonstrate that, within muscle anlagen, Pitx2 marks the muscle lineage more completely that any of the known markers, and are consistent with a role for Pitx2 in muscle anlagen formation or maintenance.
Collapse
Affiliation(s)
- Hung Ping Shih
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | | | | |
Collapse
|
43
|
Almushayt A, Narayanan K, Zaki AE, George A. Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Ther 2006; 13:611-20. [PMID: 16319946 DOI: 10.1038/sj.gt.3302687] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Odontoblasts are postmitotic cells that differentiate from the dental papilla. These cells are responsible for producing the calcified dentin matrix. The pulp-odontoblast interphase contains undifferentiated mesenchymal stem cells, which have the ability to cytodifferentiate into odontoblast-like cells in response to specific signaling molecules. Dentin matrix protein 1 (DMP1) is one of the dentin noncollagenous extracellular matrix proteins that has been implicated in regulation of mineralization. In this study, we have examined the potential role of DMP1 in inducing cytodifferentiation of dental pulp stem cells into odontoblast-like cells and formation of reparative dentin in a rat model. Cavities were drilled and pulps exposed in maxillary first molars. Collagen matrix impregnated with recombinant DMP1 was implanted directly in Group 1, while calcium hydroxide, a commonly used pulp-capping agent was implanted in group 2, collagen matrix that was not impregnated with rDMP1 was implanted directly in group 3, which served as control. Each of these three groups was subdivided into two subgroups, A for 2 weeks time duration and B for 4 weeks duration. At the end of the time period the maxillae were excised, tissues were processed for histological and immunohistochemical evaluations. The results showed that DMP1 could act as a morphogen on undifferentiated mesenchymal cells present in the dentin-pulp complex. These differentiated cells had the potential to regenerate dentin-like tissue, which was confirmed by the presence of collagenous matrix, odontoblast specific markers and calcified deposits.
Collapse
Affiliation(s)
- A Almushayt
- Department of Oral Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
44
|
Bothe I, Dietrich S. The molecular setup of the avian head mesoderm and its implication for craniofacial myogenesis. Dev Dyn 2006; 235:2845-60. [PMID: 16894604 DOI: 10.1002/dvdy.20903] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The head mesoderm is the mesodermal tissue on either side of the brain, from forebrain to hindbrain levels, and gives rise to the genuine head muscles. Its relatedness to the more posterior paraxial mesoderm, the somites, which generate the muscles of the trunk, is conversely debated. To gain insight into the molecular setup of the head mesoderm, its similarity or dissimilarity to the somitic mesoderm, and the implications of its setup for the progress of muscle formation, we investigated the expression of markers (1) for mesoderm segmentation and boundary formation, (2) for regional specification and somitogenesis and (3) for the positive and negative control of myogenic differentiation. We show that the head mesoderm is molecularly distinct from somites. It is not segmented; even the boundary to the first somite is ill-defined. Importantly, the head mesoderm lacks the transcription factors driving muscle differentiation while genes suppressing differentiation and promoting cell proliferation are expressed. These factors show anteroposteriorly and dorsoventrally regionalised but overlapping expression. Notably, expression extends into the areas that actively contribute to the heart, overlapping with the expression of cardiac markers.
Collapse
Affiliation(s)
- Ingo Bothe
- King's College London, Department of Craniofacial Development, Guy's Hospital, London, United Kingdom
| | | |
Collapse
|
45
|
von Scheven G, Alvares LE, Mootoosamy RC, Dietrich S. Neural tube derived signals and Fgf8 act antagonistically to specify eye versus mandibular arch muscles. Development 2006; 133:2731-45. [PMID: 16775000 DOI: 10.1242/dev.02426] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent knockout experiments in the mouse generated amazing craniofacial skeletal muscle phenotypes. Yet none of the genes could be placed into a molecular network, because the programme to control the development of muscles in the head is not known. Here we show that antagonistic signals from the neural tube and the branchial arches specify extraocular versus branchiomeric muscles. Moreover, we identified Fgf8 as the branchial arch derived signal. However, this molecule has an additional function in supporting the proliferative state of myoblasts, suppressing their differentiation, while a further branchial arch derived signal, namely Bmp7, is an overall negative regulator of head myogenesis.
Collapse
Affiliation(s)
- Gudrun von Scheven
- King's College London, Department of Craniofacial Development, Floor 27 Guy's Tower, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | | | | | | |
Collapse
|
46
|
Atit R, Sgaier SK, Mohamed OA, Taketo MM, Dufort D, Joyner AL, Niswander L, Conlon RA. Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev Biol 2006; 296:164-76. [PMID: 16730693 DOI: 10.1016/j.ydbio.2006.04.449] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 04/03/2006] [Accepted: 04/10/2006] [Indexed: 11/22/2022]
Abstract
Dorsal dermis and epaxial muscle have been shown to arise from the central dermomyotome in the chick. En1 is a homeobox transcription factor gene expressed in the central dermomyotome. We show by genetic fate mapping in the mouse that En1-expressing cells of the central dermomyotome give rise to dorsal dermis and epaxial muscle and, unexpectedly, to interscapular brown fat. Thus, the En1-expressing central dermomyotome normally gives rise to three distinct fates in mice. Wnt signals are important in early stages of dermomyotome development, but the signal that acts to specify the dermal fate has not been identified. Using a reporter transgene for Wnt signal transduction, we show that the En1-expressing cells directly underneath the surface ectoderm transduce Wnt signals. When the essential Wnt transducer beta-catenin is mutated in En1 cells, it results in the loss of Dermo1-expressing dorsal dermal progenitors and dermis. Conversely, when beta-catenin was activated in En1 cells, it induces Dermo1 expression in all cells of the En1 domain and disrupts muscle gene expression. Our results indicate that the mouse central dermomyotome gives rise to dermis, muscle, and brown fat, and that Wnt signalling normally instructs cells to select the dorsal dermal fate.
Collapse
Affiliation(s)
- Radhika Atit
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Cinnamon Y, Ben-Yair R, Kalcheim C. Differential effects of N-cadherin-mediated adhesion on the development of myotomal waves. Development 2006; 133:1101-12. [PMID: 16481350 DOI: 10.1242/dev.02291] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Myotomal fibers form by a first wave of pioneer myoblasts from the medial epithelial somite, and by a second wave from all four lips of the dermomyotome. Then, a third wave of mitotic progenitors colonizes the myotome,initially stemming from the extreme lips and, later, from the central dermomyotome sheet. In vitro studies have suggested that N-cadherin plays a role in myogenesis, but its role in vivo remains poorly understood. We find that during the growth phase of the dermomyotome sheet, when the orientation of mitotic spindles is parallel to the mediolateral extent of the epithelium,N-cadherin protein is inherited by both daughter cells. Prior to dermomyotome dissociation into dermis and muscle progenitors, when mitoses become perpendicularly oriented, N-cadherin remains associated only with the apical cell located in apposition to the myotome, generating molecular asymmetry between basal and apical progeny. Local gene missexpression confirms that N-cadherin-mediated adhesion is sufficient to promote myotome colonization,whereas its absence drives cells towards the subectodermal domain, hence coupling the asymmetric distribution of N-cadherin to a shift in mitotic orientation and to fate segregation. Site-directed electroporation to additional, discrete somite regions, further reveals that N-cadherin-mediated adhesion is necessary for maintaining the epithelial configuration of all dermomyotome domains while promoting the onset of Myod transcription and the translocation into the myotome of myofibers and/or of Pax-positive progenitors. By contrast, N-cadherin has no effect on migration or differentiation of the first wave of myotomal pioneers. Altogether, we show for the first time that the asymmetric localization of N-cadherin during mitosis indirectly influences fate segregation by differentially driving the allocation of progenitors to muscle versus dermal primordia, that the adhesive domain of N-cadherin maintains the integrity of the dermomyotome epithelium,which is necessary for myogenic specification, and that different molecular mechanisms underlie the establishment of pioneer and later myotomal waves.
Collapse
Affiliation(s)
- Yuval Cinnamon
- Department of Anatomy and Cell Biology, Hebrew University-Hadassah Medical School, PO Box 12272, Jerusalem 91120, Israel
| | | | | |
Collapse
|
48
|
Steinbacher P, Haslett JR, Sänger AM, Stoiber W. Evolution of myogenesis in fish: a sturgeon view of the mechanisms of muscle development. ACTA ACUST UNITED AC 2006; 211:311-22. [PMID: 16506067 DOI: 10.1007/s00429-006-0082-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2006] [Indexed: 11/29/2022]
Abstract
Patterns of initial muscle formation are well documented for teleost fish. Here, attention is focused upon sturgeons, which arose close to the base of the actinopterygian radiation and whose early development has remained largely unresearched. We demonstrate that some features of muscle development are common to both groups of fish, the most important being the origin and form of migration of adaxial cells to establish the superficial slow fibre layer. This, together with information on initial innervation and capillarisation, strongly suggests a common basis for muscle developmental mechanisms among fish. An important feature that is different between sturgeons and teleosts is that sturgeons lack any cellular dorsal-ventral separation of the myotome that involves the insertion of muscle pioneer (MP)-like cells at the site of the future horizontal septum. This, and information from other fish and from sarcopterygians, permits the supposition that such MP-defined dorsal-ventral separation is a teleost apomorphism. These and other findings are discussed in relation to their significance for the evolution of fish muscle developmental patterns.
Collapse
Affiliation(s)
- P Steinbacher
- Division of Zoology and Functional Anatomy, Department of Organismic Biology, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria.
| | | | | | | |
Collapse
|
49
|
Ahmed MU, Cheng L, Dietrich S. Establishment of the epaxial–hypaxial boundary in the avian myotome. Dev Dyn 2006; 235:1884-94. [PMID: 16680727 DOI: 10.1002/dvdy.20832] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trunk skeletal muscles are segregated into dorsomedial epaxial and ventrolateral hypaxial muscles, separated by a myoseptum. In amniotes, they are generated from a transient structure, the dermomyotome, which lays down muscle, namely the myotome underneath. However, the dermomyotome and myotome are dorsoventrally continuous, with no morphologically defined epaxial-hypaxial boundary. The transcription factors En1 and Sim1 have been shown to molecularly subdivide the amniote dermomyotome, with En1 labeling the epaxial dermomyotome and Sim1 the hypaxial counterpart. Here, we demonstrate that En1 and Sim1 expression persists in cells leaving the dermomyotome, superimposing the expression boundary onto muscle and skin. En1-expressing cells colonize the myotome initially from the rostral and caudal lips, and slightly later, directly from the de-epithelializing dermomyotomal center. En1 expression in the myotome is concomitant with the appearance of Fgfr4/Pax7-expressing mitotically active myoblasts. This finding suggests that Fgfr4+/Pax7+/En1+ cells carry their expression with them when entering the myotome. Furthermore, it suggests that the epaxial-hypaxial boundary of the myotome is established through the late arising, mitotically active myoblasts.
Collapse
Affiliation(s)
- Mohi U Ahmed
- Department of Craniofacial Development, King's College London, Guy's Hospital, London Bridge, London, United Kingdom
| | | | | |
Collapse
|
50
|
Kalcheim C, Ben-Yair R. Cell rearrangements during development of the somite and its derivatives. Curr Opin Genet Dev 2005; 15:371-80. [PMID: 15950454 DOI: 10.1016/j.gde.2005.05.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 05/23/2005] [Indexed: 12/21/2022]
Abstract
The generation of somites, and the subsequent formation of their major derivatives, muscle-, cartilage-, dermis- and tendon-cell lineages, is tightly orchestrated and, to different extents, these are also mutually supporting processes. They involve complex and timely reorganizations of the paraxial mesoderm, such as multiple phases of epithelial-mesenchymal rearrangements and vice-versa, cellular movements and migrations, and modifications of both cell shape and cell cycle properties. These morphogenetic changes are triggered by local environmental signals and are tightly associated to a genetic program imparting cell-specific fates. Elucidating these signals and their downstream effectors, in addition to determining the state of specification of responsive cell subsets and that of single progenitors in the various domains, is only beginning.
Collapse
Affiliation(s)
- Chaya Kalcheim
- Department of Anatomy and Cell Biology, Hebrew University-Hadassah Medical School, Jerusalem 91120, PO Box 12272, Israel.
| | | |
Collapse
|