1
|
Li N, Yang Z, Su Y, Ma W, Zhao J, Wang X, Wan W, Xie S, Li H, Wang M, Zhao Y, Han S, Li T, Xiehe S, Guo J, Yue L, Li X, Wang A, Jiang F, Qing S, Liu X, Liu J, Lei A, Tang Y. Establishing Bovine Embryonic Stem Cells and Dissecting Their Self-Renewal Mechanisms. Int J Mol Sci 2025; 26:3536. [PMID: 40331984 PMCID: PMC12027403 DOI: 10.3390/ijms26083536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Bovine pluripotent stem cells (PSCs) hold significant potential for diverse applications in agriculture, reproductive biotechnology, and biomedical research. However, challenges persist in establishing stable bovine PSC lines and understanding the mechanisms underlying their pluripotency maintenance. Here, we derived bovine embryonic stem cells (bESCs) from Holstein cattle embryos. These cells exhibited robust differentiation capacity into three germ layers in vitro and in vivo. Transcriptome analysis revealed distinct molecular profiles compared to primed-state bESCs. Notably, bESC proliferation ceased on methanol-treated feeder cells, in contrast to mouse ESCs (mESCs), which proliferated normally. Pathway analysis identified key signaling events critical for bESC survival and proliferation, highlighting species-specific regulatory mechanisms. Furthermore, the derived bESCs demonstrated chimerism capacity in early bovine embryos, underscoring their functional pluripotency. This work provides a foundation for advancing bovine embryology research and stem cell-based biotechnologies in livestock.
Collapse
Affiliation(s)
- Ningxiao Li
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Zhen Yang
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Yue Su
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Wei Ma
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Jianglin Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (J.Z.); (H.L.); (M.W.); (S.Q.)
| | - Xiangyan Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China; (X.W.); (X.L.)
| | - Wenjing Wan
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Shengcan Xie
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Heqiang Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (J.Z.); (H.L.); (M.W.); (S.Q.)
| | - Ming Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (J.Z.); (H.L.); (M.W.); (S.Q.)
| | - Yiyu Zhao
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Shiyao Han
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Tianle Li
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Shuangyi Xiehe
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Jintong Guo
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Linxiu Yue
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Xiaoting Li
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Ahui Wang
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Fenfen Jiang
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Suzhu Qing
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (J.Z.); (H.L.); (M.W.); (S.Q.)
| | - Xinfeng Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China; (X.W.); (X.L.)
| | - Jun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (J.Z.); (H.L.); (M.W.); (S.Q.)
| | - Anmin Lei
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Young Tang
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China; (X.W.); (X.L.)
| |
Collapse
|
2
|
Alonso-Olivares H, Marques MM, Prieto-Colomina A, López-Ferreras L, Martínez-García N, Vázquez-Jiménez A, Borrell V, Marin MC, Fernandez-Alonso R. Mouse cortical organoids reveal key functions of p73 isoforms: TAp73 governs the establishment of the archetypical ventricular-like zones while DNp73 is central in the regulation of neural cell fate. Front Cell Dev Biol 2024; 12:1464932. [PMID: 39376628 PMCID: PMC11456701 DOI: 10.3389/fcell.2024.1464932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Neurogenesis is tightly regulated in space and time, ensuring the correct development and organization of the central nervous system. Critical regulators of brain development and morphogenesis in mice include two members of the p53 family: p53 and p73. However, dissecting the in vivo functions of these factors and their various isoforms in brain development is challenging due to their pleiotropic effects. Understanding their role, particularly in neurogenesis and brain morphogenesis, requires innovative experimental approaches. Methods To address these challenges, we developed an efficient and highly reproducible protocol to generate mouse brain organoids from pluripotent stem cells. These organoids contain neural progenitors and neurons that self-organize into rosette-like structures resembling the ventricular zone of the embryonic forebrain. Using this model, we generated organoids from p73-deficient mouse cells to investigate the roles of p73 and its isoforms (TA and DNp73) during brain development. Results and Discussion Organoids derived from p73-deficient cells exhibited increased neuronal apoptosis and reduced neural progenitor proliferation, linked to compensatory activation of p53. This closely mirrors previous in vivo observations, confirming that p73 plays a pivotal role in brain development. Further dissection of p73 isoforms function revealed a dual role of p73 in regulating brain morphogenesis, whereby TAp73 controls transcriptional programs essential for the establishment of the neurogenic niche structure, while DNp73 is responsible for the precise and timely regulation of neural cell fate. These findings highlight the distinct roles of p73 isoforms in maintaining the balance of neural progenitor cell biology, providing a new understanding of how p73 regulates brain morphogenesis.
Collapse
Affiliation(s)
- Hugo Alonso-Olivares
- Instituto de Biomedicina and Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Margarita M. Marques
- Instituto de Desarrollo Ganadero y Sanidad Animal and Departamento de Producción Animal, Universidad de León, León, Spain
| | - Anna Prieto-Colomina
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Alicante, Spain
| | - Lorena López-Ferreras
- Instituto de Biomedicina and Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Nicole Martínez-García
- Instituto de Biomedicina and Departamento de Producción Animal, Universidad de León, León, Spain
| | - Alberto Vázquez-Jiménez
- Instituto de Biomedicina and Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Victor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Alicante, Spain
| | - Maria C. Marin
- Instituto de Biomedicina and Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Rosalia Fernandez-Alonso
- Instituto de Biomedicina and Departamento de Biología Molecular, Universidad de León, León, Spain
| |
Collapse
|
3
|
Huber PB, Rao A, LaBonne C. BET activity plays an essential role in control of stem cell attributes in Xenopus. Development 2024; 151:dev202990. [PMID: 38884356 PMCID: PMC11266789 DOI: 10.1242/dev.202990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Neural crest cells are a stem cell population unique to vertebrate embryos that retains broad multi-germ layer developmental potential through neurulation. Much remains to be learned about the genetic and epigenetic mechanisms that control the potency of neural crest cells. Here, we examine the role that epigenetic readers of the BET (bromodomain and extra terminal) family play in controlling the potential of pluripotent blastula and neural crest cells. We find that inhibiting BET activity leads to loss of pluripotency at blastula stages and a loss of neural crest at neurula stages. We compare the effects of HDAC (an eraser of acetylation marks) and BET (a reader of acetylation) inhibition and find that they lead to similar cellular outcomes through distinct effects on the transcriptome. Interestingly, loss of BET activity in cells undergoing lineage restriction is coupled to increased expression of genes linked to pluripotency and prolongs the competence of initially pluripotent cells to transit to a neural progenitor state. Together these findings advance our understanding of the epigenetic control of pluripotency and the formation of the vertebrate neural crest.
Collapse
Affiliation(s)
- Paul B. Huber
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- National Institute for Theory and Mathematics in Biology, Northwestern University, Evanston, IL 60208, USA
| | - Anjali Rao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- National Institute for Theory and Mathematics in Biology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
4
|
Ninfali C, Siles L, Esteve-Codina A, Postigo A. The mesodermal and myogenic specification of hESCs depend on ZEB1 and are inhibited by ZEB2. Cell Rep 2023; 42:113222. [PMID: 37819755 DOI: 10.1016/j.celrep.2023.113222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
Human embryonic stem cells (hESCs) can differentiate into any cell lineage. Here, we report that ZEB1 and ZEB2 promote and inhibit mesodermal-to-myogenic specification of hESCs, respectively. Knockdown and/or overexpression experiments of ZEB1, ZEB2, or PAX7 in hESCs indicate that ZEB1 is required for hESC Nodal/Activin-mediated mesodermal specification and PAX7+ human myogenic progenitor (hMuP) generation, while ZEB2 inhibits these processes. ZEB1 downregulation induces neural markers, while ZEB2 downregulation induces mesodermal/myogenic markers. Mechanistically, ZEB1 binds to and transcriptionally activates the PAX7 promoter, while ZEB2 binds to and activates the promoter of the neural OTX2 marker. Transplanting ZEB1 or ZEB2 knocked down hMuPs into the muscles of a muscular dystrophy mouse model, showing that hMuP engraftment and generation of dystrophin-positive myofibers depend on ZEB1 and are inhibited by ZEB2. The mouse model results suggest that ZEB1 expression and/or downregulating ZEB2 in hESCs may also enhance hESC regenerative capacity for human muscular dystrophy therapy.
Collapse
Affiliation(s)
- Chiara Ninfali
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036 Barcelona, Spain
| | - Laura Siles
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036 Barcelona, Spain
| | | | - Antonio Postigo
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036 Barcelona, Spain; Molecular Targets Program, J.G. Brown Center, Louisville University Healthcare Campus, Louisville, KY 40202, USA; ICREA, 08010 Barcelona, Spain.
| |
Collapse
|
5
|
Maraghechi P, Aponte MTS, Ecker A, Lázár B, Tóth R, Szabadi NT, Gócza E. Pluripotency-Associated microRNAs in Early Vertebrate Embryos and Stem Cells. Genes (Basel) 2023; 14:1434. [PMID: 37510338 PMCID: PMC10379376 DOI: 10.3390/genes14071434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNA molecules, regulate a wide range of critical biological processes, such as proliferation, cell cycle progression, differentiation, survival, and apoptosis, in many cell types. The regulatory functions of miRNAs in embryogenesis and stem cell properties have been extensively investigated since the early years of miRNA discovery. In this review, we will compare and discuss the impact of stem-cell-specific miRNA clusters on the maintenance and regulation of early embryonic development, pluripotency, and self-renewal of embryonic stem cells, particularly in vertebrates.
Collapse
Affiliation(s)
- Pouneh Maraghechi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Maria Teresa Salinas Aponte
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - András Ecker
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Bence Lázár
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation (NBGK-HGI), Isaszegi str. 200, 2100 Gödöllő, Hungary
| | - Roland Tóth
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Nikolett Tokodyné Szabadi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Elen Gócza
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| |
Collapse
|
6
|
Buchner F, Dokuzluoglu Z, Grass T, Rodriguez-Muela N. Spinal Cord Organoids to Study Motor Neuron Development and Disease. Life (Basel) 2023; 13:1254. [PMID: 37374039 PMCID: PMC10303776 DOI: 10.3390/life13061254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Motor neuron diseases (MNDs) are a heterogeneous group of disorders that affect the cranial and/or spinal motor neurons (spMNs), spinal sensory neurons and the muscular system. Although they have been investigated for decades, we still lack a comprehensive understanding of the underlying molecular mechanisms; and therefore, efficacious therapies are scarce. Model organisms and relatively simple two-dimensional cell culture systems have been instrumental in our current knowledge of neuromuscular disease pathology; however, in the recent years, human 3D in vitro models have transformed the disease-modeling landscape. While cerebral organoids have been pursued the most, interest in spinal cord organoids (SCOs) is now also increasing. Pluripotent stem cell (PSC)-based protocols to generate SpC-like structures, sometimes including the adjacent mesoderm and derived skeletal muscle, are constantly being refined and applied to study early human neuromuscular development and disease. In this review, we outline the evolution of human PSC-derived models for generating spMN and recapitulating SpC development. We also discuss how these models have been applied to exploring the basis of human neurodevelopmental and neurodegenerative diseases. Finally, we provide an overview of the main challenges to overcome in order to generate more physiologically relevant human SpC models and propose some exciting new perspectives.
Collapse
Affiliation(s)
- Felix Buchner
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Zeynep Dokuzluoglu
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Tobias Grass
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
7
|
Bustamante-Marin XM, Capel B. Oxygen availability influences the incidence of testicular teratoma in Dnd1Ter/+ mice. Front Genet 2023; 14:1179256. [PMID: 37180974 PMCID: PMC10169730 DOI: 10.3389/fgene.2023.1179256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
Testicular teratomas and teratocarcinomas are the most common testicular germ cell tumors in early childhood and young men, and they are frequently found unilaterally in the left testis. In 129/SvJ mice carrying a heterozygous copy of the potent modifier of tumor incidence Ter, a point mutation in the dead-end homolog one gene (Dnd1 Ter/+), ∼70% of the unilateral teratomas arise in the left testis. We previously showed that in mice, left/right differences in vascular architecture are associated with reduced hemoglobin saturation and increased levels of the hypoxia inducible factor-1 alpha (HIF-1α) in the left compared to the right testis. To test the hypothesis that systemic reduction of oxygen availability in Dnd1 Ter/+ mice would lead to an increased incidence of bilateral tumors, we placed pregnant females from 129/SvJ Dnd1 Ter/+ intercross matings in a hypobaric chamber for 12-h intervals. Our results show that in 129/SvJ Dnd1 Ter/+ male gonads, the incidence of bilateral teratoma increased from 3.3% to 64% when fetuses were exposed to acute low oxygen conditions for 12-h between E13.8 and E14.3. The increase in tumor incidence correlated with the maintenance of high expression of pluripotency genes Oct4, Sox2 and Nanog, elevated activity of the Nodal signaling pathway, and suppression of germ cell mitotic arrest. We propose that the combination of heterozygosity for the Ter mutation and hypoxia causes a delay in male germ cell differentiation that promotes teratoma initiation.
Collapse
Affiliation(s)
- Ximena M. Bustamante-Marin
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
- Departamento Biomédico, Facultad de Ciencias De La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
8
|
Regal JA, Guerra García ME, Jain V, Chandramohan V, Ashley DM, Gregory SG, Thompson EM, López GY, Reitman ZJ. Ganglioglioma deep transcriptomics reveals primitive neuroectoderm neural precursor-like population. Acta Neuropathol Commun 2023; 11:50. [PMID: 36966348 PMCID: PMC10039537 DOI: 10.1186/s40478-023-01548-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/06/2023] [Indexed: 03/27/2023] Open
Abstract
Gangliogliomas are brain tumors composed of neuron-like and macroglia-like components that occur in children and young adults. Gangliogliomas are often characterized by a rare population of immature astrocyte-appearing cells expressing CD34, a marker expressed in the neuroectoderm (neural precursor cells) during embryogenesis. New insights are needed to refine tumor classification and to identify therapeutic approaches. We evaluated five gangliogliomas with single nucleus RNA-seq, cellular indexing of transcriptomes and epitopes by sequencing, and/or spatially-resolved RNA-seq. We uncovered a population of CD34+ neoplastic cells with mixed neuroectodermal, immature astrocyte, and neuronal markers. Gene regulatory network interrogation in these neuroectoderm-like cells revealed control of transcriptional programming by TCF7L2/MEIS1-PAX6 and SOX2, similar to that found during neuroectodermal/neural development. Developmental trajectory analyses place neuroectoderm-like tumor cells as precursor cells that give rise to neuron-like and macroglia-like neoplastic cells. Spatially-resolved transcriptomics revealed a neuroectoderm-like tumor cell niche with relative lack of vascular and immune cells. We used these high resolution results to deconvolute clinically-annotated transcriptomic data, confirming that CD34+ cell-associated gene programs associate with gangliogliomas compared to other glial brain tumors. Together, these deep transcriptomic approaches characterized a ganglioglioma cellular hierarchy-confirming CD34+ neuroectoderm-like tumor precursor cells, controlling transcription programs, cell signaling, and associated immune cell states. These findings may guide tumor classification, diagnosis, prognostication, and therapeutic investigations.
Collapse
Affiliation(s)
- Joshua A Regal
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA
| | | | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27710, USA
| | | | - David M Ashley
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27710, USA
| | - Eric M Thompson
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA
| | - Giselle Y López
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA
- Department of Pathology, Duke University, Durham, NC, 27710, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA.
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA.
- Department of Pathology, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
9
|
Zorzan I, Betto RM, Rossignoli G, Arboit M, Drusin A, Corridori C, Martini P, Martello G. Chemical conversion of human conventional PSCs to TSCs following transient naive gene activation. EMBO Rep 2023; 24:e55235. [PMID: 36847616 PMCID: PMC10074076 DOI: 10.15252/embr.202255235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
In human embryos, naive pluripotent cells of the inner cell mass (ICM) generate epiblast, primitive endoderm and trophectoderm (TE) lineages, whence trophoblast cells derive. In vitro, naive pluripotent stem cells (PSCs) retain this potential and efficiently generate trophoblast stem cells (TSCs), while conventional PSCs form TSCs at low efficiency. Transient histone deacetylase and MEK inhibition combined with LIF stimulation is used to chemically reset conventional to naive PSCs. Here, we report that chemical resetting induces the expression of both naive and TSC markers and of placental imprinted genes. A modified chemical resetting protocol allows for the fast and efficient conversion of conventional PSCs into TSCs, entailing shutdown of pluripotency genes and full activation of the trophoblast master regulators, without induction of amnion markers. Chemical resetting generates a plastic intermediate state, characterised by co-expression of naive and TSC markers, after which cells steer towards one of the two fates in response to the signalling environment. The efficiency and rapidity of our system will be useful to study cell fate transitions and to generate models of placental disorders.
Collapse
Affiliation(s)
- Irene Zorzan
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | | | | | - Mattia Arboit
- Department of Biology, University of Padua, Padua, Italy
| | - Andrea Drusin
- Department of Biology, University of Padua, Padua, Italy
| | | | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | |
Collapse
|
10
|
Johnson K, Freedman S, Braun R, LaBonne C. Quantitative analysis of transcriptome dynamics provides novel insights into developmental state transitions. BMC Genomics 2022; 23:723. [PMID: 36273135 PMCID: PMC9588240 DOI: 10.1186/s12864-022-08953-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND During embryogenesis, the developmental potential of initially pluripotent cells becomes progressively restricted as they transit to lineage restricted states. The pluripotent cells of Xenopus blastula-stage embryos are an ideal system in which to study cell state transitions during developmental decision-making, as gene expression dynamics can be followed at high temporal resolution. RESULTS Here we use transcriptomics to interrogate the process by which pluripotent cells transit to four different lineage-restricted states: neural progenitors, epidermis, endoderm and ventral mesoderm, providing quantitative insights into the dynamics of Waddington's landscape. Our findings provide novel insights into why the neural progenitor state is the default lineage state for pluripotent cells and uncover novel components of lineage-specific gene regulation. These data reveal an unexpected overlap in the transcriptional responses to BMP4/7 and Activin signaling and provide mechanistic insight into how the timing of signaling inputs such as BMP are temporally controlled to ensure correct lineage decisions. CONCLUSIONS Together these analyses provide quantitative insights into the logic and dynamics of developmental decision making in early embryos. They also provide valuable lineage-specific time series data following the acquisition of specific lineage states during development.
Collapse
Affiliation(s)
- Kristin Johnson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Simon Freedman
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Engineering Sciences and Applied Math, Northwestern University, Evanston, IL, USA
| | - Rosemary Braun
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Engineering Sciences and Applied Math, Northwestern University, Evanston, IL, USA
- Northwestern Institute On Complex Systems, Northwestern University, Evanston, IL, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
11
|
Hidalgo Aguilar A, Smith L, Owens D, Quelch R, Przyborski S. Recreating Tissue Structures Representative of Teratomas In Vitro Using a Combination of 3D Cell Culture Technology and Human Embryonic Stem Cells. Bioengineering (Basel) 2022; 9:bioengineering9050185. [PMID: 35621463 PMCID: PMC9138123 DOI: 10.3390/bioengineering9050185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
In vitro studies using human embryonic stem cells (hESCs) are a valuable method to study aspects of embryogenesis, avoiding ethical issues when using embryonic materials and species dissimilarities. The xenograft teratoma assay is often traditionally used to establish pluripotency in putative PSC populations, but also has additional applications, including the study of tissue differentiation. The stem cell field has long sought an alternative due to various well-established issues with the in vivo technique, including significant protocol variability and animal usage. We have established a two-step culture method which combines PSC-derived embryoid bodies (EBs) with porous scaffolds to enhance their viability, prolonging the time these structures can be maintained, and therefore, permitting more complex, mature differentiation. Here, we have utilised human embryonic stem cell-derived EBs, demonstrating the formation of tissue rudiments of increasing complexity over time and the ability to manipulate their differentiation through the application of exogenous morphogens to achieve specific lineages. Crucially, these EB-derived tissues are highly reminiscent of xenograft teratoma samples derived from the same cell line. We believe this in vitro approach represents a reproducible, animal-free alternative to the teratoma assay, which can be used to study human tissue development.
Collapse
Affiliation(s)
| | - Lucy Smith
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (A.H.A.); (L.S.); (D.O.); (R.Q.)
| | - Dominic Owens
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (A.H.A.); (L.S.); (D.O.); (R.Q.)
| | - Rebecca Quelch
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (A.H.A.); (L.S.); (D.O.); (R.Q.)
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (A.H.A.); (L.S.); (D.O.); (R.Q.)
- Reprocell Europe, NETPark, Sedgefield TS21 3FD, UK
- Correspondence:
| |
Collapse
|
12
|
Su Y, Wang L, Fan Z, Liu Y, Zhu J, Kaback D, Oudiz J, Patrick T, Yee SP, Tian X(C, Polejaeva I, Tang Y. Establishment of Bovine-Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms221910489. [PMID: 34638830 PMCID: PMC8508593 DOI: 10.3390/ijms221910489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/04/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022] Open
Abstract
Pluripotent stem cells (PSCs) have been successfully developed in many species. However, the establishment of bovine-induced pluripotent stem cells (biPSCs) has been challenging. Here we report the generation of biPSCs from bovine mesenchymal stem cells (bMSCs) by overexpression of lysine-specific demethylase 4A (KDM4A) and the other reprogramming factors OCT4, SOX2, KLF4, cMYC, LIN28, and NANOG (KdOSKMLN). These biPSCs exhibited silenced transgene expression at passage 10, and had prolonged self-renewal capacity for over 70 passages. The biPSCs have flat, primed-like PSC colony morphology in combined media of knockout serum replacement (KSR) and mTeSR, but switched to dome-shaped, naïve-like PSC colony morphology in mTeSR medium and 2i/LIF with single cell colonization capacity. These cells have comparable proliferation rate to the reported primed- or naïve-state human PSCs, with three-germ layer differentiation capacity and normal karyotype. Transcriptome analysis revealed a high similarity of biPSCs to reported bovine embryonic stem cells (ESCs) and embryos. The naïve-like biPSCs can be incorporated into mouse embryos, with the extended capacity of integration into extra-embryonic tissues. Finally, at least 24.5% cloning efficiency could be obtained in nuclear transfer (NT) experiment using late passage biPSCs as nuclear donors. Our report represents a significant advance in the establishment of bovine PSCs.
Collapse
Affiliation(s)
- Yue Su
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Ling Wang
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
| | - Ying Liu
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
| | - Jiaqi Zhu
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Deborah Kaback
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA; (D.K.); (S.P.Y.)
| | - Julia Oudiz
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Tayler Patrick
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
| | - Siu Pok Yee
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA; (D.K.); (S.P.Y.)
| | - Xiuchun (Cindy) Tian
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Irina Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
- Correspondence: (I.P.); (Y.T.)
| | - Young Tang
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
- Correspondence: (I.P.); (Y.T.)
| |
Collapse
|
13
|
Maurya S, Yang W, Tamai M, Zhang Q, Erdmann-Gilmore P, Bystry A, Martins Rodrigues F, Valentine MC, Wong WH, Townsend R, Druley TE. Loss of KMT2C reprograms the epigenomic landscape in hPSCs resulting in NODAL overexpression and a failure of hemogenic endothelium specification. Epigenetics 2021; 17:220-238. [PMID: 34304711 PMCID: PMC8865227 DOI: 10.1080/15592294.2021.1954780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Germline or somatic variation in the family of KMT2 lysine methyltransferases have been associated with a variety of congenital disorders and cancers. Notably, KMT2A-fusions are prevalent in 70% of infant leukaemias but fail to phenocopy short latency leukaemogenesis in mammalian models, suggesting additional factors are necessary for transformation. Given the lack of additional somatic mutation, the role of epigenetic regulation in cell specification, and our prior results of germline KMT2C variation in infant leukaemia patients, we hypothesized that germline dysfunction of KMT2C altered haematopoietic specification. In isogenic KMT2C KO hPSCs, we found genome-wide differences in histone modifications at active and poised enhancers, leading to gene expression profiles akin to mesendoderm rather than mesoderm highlighted by a significant increase in NODAL expression and WNT inhibition, ultimately resulting in a lack of in vitro hemogenic endothelium specification. These unbiased multi-omic results provide new evidence for germline mechanisms increasing risk of early leukaemogenesis.
Collapse
Affiliation(s)
- Shailendra Maurya
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Wei Yang
- McDonnell Genome Institute, Genome Technology Access Center, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Minori Tamai
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Qiang Zhang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Petra Erdmann-Gilmore
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amelia Bystry
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | | | - Mark C Valentine
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Wing H Wong
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Reid Townsend
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Todd E Druley
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
14
|
Smith LA, Hidalgo Aguilar A, Owens DDG, Quelch RH, Knight E, Przyborski SA. Using Advanced Cell Culture Techniques to Differentiate Pluripotent Stem Cells and Recreate Tissue Structures Representative of Teratoma Xenografts. Front Cell Dev Biol 2021; 9:667246. [PMID: 34026759 PMCID: PMC8134696 DOI: 10.3389/fcell.2021.667246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022] Open
Abstract
Various methods are currently used to investigate human tissue differentiation, including human embryo culture and studies utilising pluripotent stem cells (PSCs) such as in vitro embryoid body formation and in vivo teratoma assays. Each method has its own distinct advantages, yet many are limited due to being unable to achieve the complexity and maturity of tissue structures observed in the developed human. The teratoma xenograft assay allows maturation of more complex tissue derivatives, but this method has ethical issues surrounding animal usage and significant protocol variation. In this study, we have combined three-dimensional (3D) in vitro cell technologies including the common technique of embryoid body (EB) formation with a novel porous scaffold membrane, in order to prolong cell viability and extend the differentiation of PSC derived EBs. This approach enables the formation of more complex morphologically identifiable 3D tissue structures representative of all three primary germ layers. Preliminary in vitro work with the human embryonal carcinoma line TERA2.SP12 demonstrated improved EB viability and enhanced tissue structure formation, comparable to teratocarcinoma xenografts derived in vivo from the same cell line. This is thought to be due to reduced diffusion distances as the shape of the spherical EB transforms and flattens, allowing for improved nutritional/oxygen support to the developing structures over extended periods. Further work with EBs derived from murine embryonic stem cells demonstrated that the formation of a wide range of complex, recognisable tissue structures could be achieved within 2–3 weeks of culture. Rudimentary tissue structures from all three germ layers were present, including epidermal, cartilage and epithelial tissues, again, strongly resembling tissue structure of teratoma xenografts of the same cell line. Proof of concept work with EBs derived from the human embryonic stem cell line H9 also showed the ability to form complex tissue structures within this system. This novel yet simple model offers a controllable, reproducible method to achieve complex tissue formation in vitro. It has the potential to be used to study human developmental processes, as well as offering an animal free alternative method to the teratoma assay to assess the developmental potential of novel stem cell lines.
Collapse
Affiliation(s)
- L A Smith
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - A Hidalgo Aguilar
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - D D G Owens
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - R H Quelch
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - E Knight
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - S A Przyborski
- Department of Biosciences, Durham University, Durham, United Kingdom.,Reprocell Europe, NETPark, Sedgefield, United Kingdom
| |
Collapse
|
15
|
Madsen RR, Longden J, Knox RG, Robin X, Völlmy F, Macleod KG, Moniz LS, Carragher NO, Linding R, Vanhaesebroeck B, Semple RK. NODAL/TGFβ signalling mediates the self-sustained stemness induced by PIK3CAH1047R homozygosity in pluripotent stem cells. Dis Model Mech 2021; 14:dmm048298. [PMID: 33514588 PMCID: PMC7969366 DOI: 10.1242/dmm.048298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Activating PIK3CA mutations are known 'drivers' of human cancer and developmental overgrowth syndromes. We recently demonstrated that the 'hotspot' PIK3CAH1047R variant exerts unexpected allele dose-dependent effects on stemness in human pluripotent stem cells (hPSCs). In this study, we combine high-depth transcriptomics, total proteomics and reverse-phase protein arrays to reveal potentially disease-related alterations in heterozygous cells, and to assess the contribution of activated TGFβ signalling to the stemness phenotype of homozygous PIK3CAH1047R cells. We demonstrate signalling rewiring as a function of oncogenic PI3K signalling strength, and provide experimental evidence that self-sustained stemness is causally related to enhanced autocrine NODAL/TGFβ signalling. A significant transcriptomic signature of TGFβ pathway activation in heterozygous PIK3CAH1047R was observed but was modest and was not associated with the stemness phenotype seen in homozygous mutants. Notably, the stemness gene expression in homozygous PIK3CAH1047R hPSCs was reversed by pharmacological inhibition of NODAL/TGFβ signalling, but not by pharmacological PI3Kα pathway inhibition. Altogether, this provides the first in-depth analysis of PI3K signalling in hPSCs and directly links strong PI3K activation to developmental NODAL/TGFβ signalling. This work illustrates the importance of allele dosage and expression when artificial systems are used to model human genetic disease caused by activating PIK3CA mutations. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ralitsa R. Madsen
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - James Longden
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, 10115Berlin, Germany
| | - Rachel G. Knox
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Xavier Robin
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Franziska Völlmy
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kenneth G. Macleod
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Larissa S. Moniz
- University College London Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK
| | - Neil O. Carragher
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Rune Linding
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, 10115Berlin, Germany
| | - Bart Vanhaesebroeck
- University College London Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK
| | - Robert K. Semple
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
16
|
Su Y, Zhu J, Salman S, Tang Y. Induced pluripotent stem cells from farm animals. J Anim Sci 2021; 98:5937369. [PMID: 33098420 DOI: 10.1093/jas/skaa343] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The development of the induced pluripotent stem cells (iPSCs) technology has revolutionized the world on the establishment of pluripotent stem cells (PSCs) across a great variety of animal species. Generation of iPSCs from domesticated animals would provide unrestricted cell resources for the study of embryonic development and cell differentiation of these species, for screening and establishing desired traits for sustainable agricultural production, and as veterinary and preclinical therapeutic tools for animal and human diseases. Induced PSCs from domesticated animals thus harbor enormous scientific, economical, and societal values. Although much progress has been made toward the generation of PSCs from these species, major obstacles remain precluding the exclamation of the establishment of bona fide iPSCs. The most prominent of them remain the inability of these cells to silence exogenous reprogramming factors, the obvious reliance on exogenous factors for their self-renewal, and the restricted development potential in vivo. In this review, we summarize the history and current progress in domestic farm animal iPSC generation, with a focus on swine, ruminants (cattle, ovine, and caprine), horses, and avian species (quails and chickens). We also discuss the problems associated with the farm animal iPSCs and potential future directions toward the complete reprogramming of somatic cells from farm animals.
Collapse
Affiliation(s)
- Yue Su
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Jiaqi Zhu
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Saleh Salman
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Young Tang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| |
Collapse
|
17
|
Yi S, Huang X, Zhou S, Zhou Y, Anderson MK, Zúñiga-Pflücker JC, Luan Q, Li Y. E2A regulates neural ectoderm fate specification in human embryonic stem cells. Development 2020; 147:dev.190298. [PMID: 33144398 DOI: 10.1242/dev.190298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/27/2020] [Indexed: 11/20/2022]
Abstract
E protein transcription factors are crucial for many cell fate decisions. However, the roles of E proteins in the germ-layer specification of human embryonic stem cells (hESCs) are poorly understood. We disrupted the TCF3 gene locus to delete the E protein E2A in hESCs. E2A knockout (KO) hESCs retained key features of pluripotency, but displayed decreased neural ectoderm coupled with enhanced mesoendoderm outcomes. Genome-wide analyses showed that E2A directly regulates neural ectoderm and Nodal pathway genes. Accordingly, inhibition of Nodal or E2A overexpression partially rescued the neural ectoderm defect in E2A KO hESCs. Loss of E2A had little impact on the epigenetic landscape of hESCs, whereas E2A KO neural precursors displayed increased accessibility of the gene locus encoding the Nodal agonist CRIPTO. Double-deletion of both E2A and HEB (TCF12) resulted in a more severe neural ectoderm defect. Therefore, this study reveals critical context-dependent functions for E2A in human neural ectoderm fate specification.
Collapse
Affiliation(s)
- Siqi Yi
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China.,Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing 100191, China
| | - Xiaotian Huang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing 100191, China
| | - Shixin Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing 100191, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Michele K Anderson
- Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | | | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yang Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing 100191, China
| |
Collapse
|
18
|
Galiakberova AA, Dashinimaev EB. Neural Stem Cells and Methods for Their Generation From Induced Pluripotent Stem Cells in vitro. Front Cell Dev Biol 2020; 8:815. [PMID: 33117792 PMCID: PMC7578226 DOI: 10.3389/fcell.2020.00815] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Neural stem cells (NSCs) provide promising approaches for investigating embryonic neurogenesis, modeling of the pathogenesis of diseases of the central nervous system, and for designing drug-screening systems. Such cells also have an application in regenerative medicine. The most convenient and acceptable source of NSCs is pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells). However, there are many different protocols for the induction and differentiation of NSCs, and these result in a wide range of neural cell types. This review is intended to summarize the knowledge accumulated, to date, by workers in this field. It should be particularly useful for researchers who are beginning investigations in this area of cell biology.
Collapse
Affiliation(s)
- Adelya A Galiakberova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem B Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
19
|
Ngo J, Hashimoto M, Hamada H, Wynshaw-Boris A. Deletion of the Dishevelled family of genes disrupts anterior-posterior axis specification and selectively prevents mesoderm differentiation. Dev Biol 2020; 464:161-175. [PMID: 32579954 PMCID: PMC8301231 DOI: 10.1016/j.ydbio.2020.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/30/2020] [Accepted: 05/21/2020] [Indexed: 12/31/2022]
Abstract
The Dishevelled proteins transduce both canonical Wnt/β-catenin and non-canonical Wnt/planar cell polarity (PCP) signaling pathways to regulate many key developmental processes during embryogenesis. Here, we disrupt both canonical and non-canonical Wnt pathways by targeting the entire Dishevelled family of genes (Dvl1, Dvl2, and Dvl3) to investigate their functional roles in the early embryo. We identified several defects in anterior-posterior axis specification and mesoderm patterning in Dvl1+/-; Dvl2-/-; Dvl3-/- embryos. Homozygous deletions in all three Dvl genes (Dvl TKO) resulted in defects in distal visceral endoderm migration and a complete failure to induce mesoderm formation. To identify potential mechanisms that lead to the defects in the developmental processes preceding gastrulation, we generated Dvl TKO mouse embryonic stem cells (mESCs) and compared the transcriptional profile of these cells with wild-type (WT) mESCs during germ lineage differentiation into 3D embryoid bodies (EBs). While the Dvl TKO mESCs displayed similar morphology, self-renewal properties, and minor transcriptional variation from WT mESCs, we identified major transcriptional dysregulation in the Dvl TKO EBs during differentiation in a number of genes involved in anterior-posterior pattern specification, gastrulation induction, mesenchyme morphogenesis, and mesoderm-derived tissue development. The absence of the Dvls leads to specific down-regulation of BMP signaling genes. Furthermore, exogenous activation of canonical Wnt, BMP, and Nodal signaling all fail to rescue the mesodermal defects in the Dvl TKO EBs. Moreover, endoderm differentiation was promoted in the absence of mesoderm in the Dvl TKO EBs, while the suppression of ectoderm differentiation was delayed. Overall, we demonstrate that the Dvls are dispensable for maintaining self-renewal in mESCs but are critical during differentiation to regulate key developmental signaling pathways to promote proper axis specification and mesoderm formation.
Collapse
Affiliation(s)
- Justine Ngo
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, 10900, Euclid Ave, Cleveland, OH, USA
| | - Masakazu Hashimoto
- Laboratory for Embryogenesis, Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, 10900, Euclid Ave, Cleveland, OH, USA.
| |
Collapse
|
20
|
Rao C, Malaguti M, Mason JO, Lowell S. The transcription factor E2A drives neural differentiation in pluripotent cells. Development 2020; 147:dev184093. [PMID: 32487737 PMCID: PMC7328008 DOI: 10.1242/dev.184093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/26/2020] [Indexed: 12/21/2022]
Abstract
The intrinsic mechanisms that link extracellular signalling to the onset of neural differentiation are not well understood. In pluripotent mouse cells, BMP blocks entry into the neural lineage via transcriptional upregulation of inhibitor of differentiation (Id) factors. We have previously identified the major binding partner of Id proteins in pluripotent cells as the basic helix-loop-helix (bHLH) transcription factor (TF) E2A. Id1 can prevent E2A from forming heterodimers with bHLH TFs or from forming homodimers. Here, we show that overexpression of a forced E2A homodimer is sufficient to drive robust neural commitment in pluripotent cells, even under non-permissive conditions. Conversely, we find that E2A null cells display a defect in their neural differentiation capacity. E2A acts as an upstream activator of neural lineage genes, including Sox1 and Foxd4, and as a repressor of Nodal signalling. Our results suggest a crucial role for E2A in establishing neural lineage commitment in pluripotent cells.
Collapse
Affiliation(s)
- Chandrika Rao
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Mattias Malaguti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - John O Mason
- Centre for Discovery Brain Sciences, University of Edinburgh, 15 George Square, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Sally Lowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
21
|
Laaref AM, Manchon L, Bareche Y, Lapasset L, Tazi J. The core spliceosomal factor U2AF1 controls cell-fate determination via the modulation of transcriptional networks. RNA Biol 2020; 17:857-871. [PMID: 32150510 PMCID: PMC7549707 DOI: 10.1080/15476286.2020.1733800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing (AS) plays a central role during cell-fate determination. However, how the core spliceosomal factors (CSFs) are involved in this process is poorly understood. Here, we report the down-regulation of the U2AF1 CSF during stem cell differentiation. To investigate its function in stemness and differentiation, we downregulated U2AF1 in human induced pluripotent stem cells (hiPSCs), using an inducible-shRNA system, to the level found in differentiated ectodermal, mesodermal and endodermal cells. RNA sequencing and computational analysis reveal that U2AF1 down-regulation modulates the expression of development-regulating genes and regulates transcriptional networks involved in cell-fate determination. Furthermore, U2AF1 down-regulation induces a switch in the AS of transcription factors (TFs) required to establish specific cell lineages, and favours the splicing of a differentiated cell-specific isoform of DNMT3B. Our results showed that the differential expression of the core spliceosomal factor U2AF1, between stem cells and the precursors of the three germ layers regulates a cell-type-specific alternative splicing programme and a transcriptional network involved in cell-fate determination via the modulation of gene expression and alternative splicing of transcription regulators.
Collapse
Affiliation(s)
| | | | - Yacine Bareche
- IGMM, CNRS, University of Montpellier, Montpellier, France
- Breast Cancer Translational Research Laboratory, J. C. Heuson, Institut Jules Bordet, Université Libre De Bruxelles, Brussels, Belgium
| | - Laure Lapasset
- IGMM, CNRS, University of Montpellier, Montpellier, France
- VP research, CNRS, University of Montpellier, Montpellier, France
| | - Jamal Tazi
- IGMM, CNRS, University of Montpellier, Montpellier, France
- Lead Contact
| |
Collapse
|
22
|
Zorzan I, Pellegrini M, Arboit M, Incarnato D, Maldotti M, Forcato M, Tagliazucchi GM, Carbognin E, Montagner M, Oliviero S, Martello G. The transcriptional regulator ZNF398 mediates pluripotency and epithelial character downstream of TGF-beta in human PSCs. Nat Commun 2020; 11:2364. [PMID: 32398665 PMCID: PMC7217929 DOI: 10.1038/s41467-020-16205-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) have the capacity to give rise to all differentiated cells of the adult. TGF-beta is used routinely for expansion of conventional hPSCs as flat epithelial colonies expressing the transcription factors POU5F1/OCT4, NANOG, SOX2. Here we report a global analysis of the transcriptional programme controlled by TGF-beta followed by an unbiased gain-of-function screening in multiple hPSC lines to identify factors mediating TGF-beta activity. We identify a quartet of transcriptional regulators promoting hPSC self-renewal including ZNF398, a human-specific mediator of pluripotency and epithelial character in hPSCs. Mechanistically, ZNF398 binds active promoters and enhancers together with SMAD3 and the histone acetyltransferase EP300, enabling transcription of TGF-beta targets. In the context of somatic cell reprogramming, inhibition of ZNF398 abolishes activation of pluripotency and epithelial genes and colony formation. Our findings have clear implications for the generation of bona fide hPSCs for regenerative medicine.
Collapse
Affiliation(s)
- Irene Zorzan
- Department of Molecular Medicine, Medical School, University of Padua, 35121, Padua, Italy
| | - Marco Pellegrini
- Department of Molecular Medicine, Medical School, University of Padua, 35121, Padua, Italy.,UCL Great Ormond Street Institute of Child Health, Developmental Biology and Cancer, Stem Cells and Regenerative Medicine, 30 Guilford Street, WC1N 1EH, London, UK
| | - Mattia Arboit
- Department of Molecular Medicine, Medical School, University of Padua, 35121, Padua, Italy
| | - Danny Incarnato
- Department of Life Sciences and Systems Biology and Molecular Biotechnology Center (MCB), University of Turin, 10126, Turin, Italy.,Italian Institute for Genomic Medicine (IIGM), 10060, Candiolo (TO), Italy.,Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Mara Maldotti
- Department of Life Sciences and Systems Biology and Molecular Biotechnology Center (MCB), University of Turin, 10126, Turin, Italy.,Italian Institute for Genomic Medicine (IIGM), 10060, Candiolo (TO), Italy
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Guidantonio Malagoli Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy.,UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Darwin Building, WC1E 6BT, London, UK
| | - Elena Carbognin
- Department of Molecular Medicine, Medical School, University of Padua, 35121, Padua, Italy
| | - Marco Montagner
- Department of Molecular Medicine, Medical School, University of Padua, 35121, Padua, Italy
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology and Molecular Biotechnology Center (MCB), University of Turin, 10126, Turin, Italy. .,Italian Institute for Genomic Medicine (IIGM), 10060, Candiolo (TO), Italy.
| | - Graziano Martello
- Department of Molecular Medicine, Medical School, University of Padua, 35121, Padua, Italy.
| |
Collapse
|
23
|
Harpelunde Poulsen K, Nielsen JE, Grønkær Toft B, Joensen UN, Rasmussen LJ, Blomberg Jensen M, Mitchell RT, Juul A, Rajpert-De Meyts E, Jørgensen A. Influence of Nodal signalling on pluripotency factor expression, tumour cell proliferation and cisplatin-sensitivity in testicular germ cell tumours. BMC Cancer 2020; 20:349. [PMID: 32326899 PMCID: PMC7181506 DOI: 10.1186/s12885-020-06820-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Testicular germ cell tumours (TGCTs) are characterised by an overall high cisplatin-sensitivity which has been linked to their continued expression of pluripotency factors. Recently, the Nodal signalling pathway has been implicated in the regulation of pluripotency factor expression in fetal germ cells, and the pathway could therefore also be involved in regulating expression of pluripotency factors in malignant germ cells, and hence cisplatin-sensitivity in TGCTs. METHODS We used in vitro culture of the TGCT-derived cell line NTera2, ex vivo tissue culture of primary TGCT specimens and xenografting of NTera2 cells into nude mice in order to investigate the consequences of manipulating Nodal and Activin signalling on pluripotency factor expression, apoptosis, proliferation and cisplatin-sensitivity. RESULTS The Nodal signalling factors were markedly expressed concomitantly with the pluripotency factor OCT4 in GCNIS cells, seminomas and embryonal carcinomas. Despite this, inhibition of Nodal and Activin signalling either alone or simultaneously did not affect proliferation or apoptosis in malignant germ cells in vitro or ex vivo. Interestingly, inhibition of Nodal signalling in vitro reduced the expression of pluripotency factors and Nodal pathway genes, while stimulation of the pathway increased their expression. However, cisplatin-sensitivity was not affected following pharmacological inhibition of Nodal/Activin signalling or siRNA-mediated knockdown of the obligate co-receptor CRIPTO in NTera2 cells in vitro or in a xenograft model. CONCLUSION Our findings suggest that the Nodal signalling pathway may be involved in regulating pluripotency factor expression in malignant germ cells, but manipulation of the pathway does not appear to affect cisplatin-sensitivity or tumour cell proliferation.
Collapse
Affiliation(s)
- K Harpelunde Poulsen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, Copenhagen, Denmark
| | - J E Nielsen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, Copenhagen, Denmark
| | - B Grønkær Toft
- Pathology Department, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - U N Joensen
- Department of Urology, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - L J Rasmussen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - M Blomberg Jensen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - R T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - A Juul
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, Copenhagen, Denmark
| | - E Rajpert-De Meyts
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, Copenhagen, Denmark
| | - A Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, DK-2100, Copenhagen, Denmark. .,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, Copenhagen, Denmark.
| |
Collapse
|
24
|
Wojdyla K, Collier AJ, Fabian C, Nisi PS, Biggins L, Oxley D, Rugg-Gunn PJ. Cell-Surface Proteomics Identifies Differences in Signaling and Adhesion Protein Expression between Naive and Primed Human Pluripotent Stem Cells. Stem Cell Reports 2020; 14:972-988. [PMID: 32302559 PMCID: PMC7220956 DOI: 10.1016/j.stemcr.2020.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Naive and primed human pluripotent stem cells (hPSC) provide valuable models to study cellular and molecular developmental processes. The lack of detailed information about cell-surface protein expression in these two pluripotent cell types prevents an understanding of how the cells communicate and interact with their microenvironments. Here, we used plasma membrane profiling to directly measure cell-surface protein expression in naive and primed hPSC. This unbiased approach quantified over 1,700 plasma membrane proteins, including those involved in cell adhesion, signaling, and cell interactions. Notably, multiple cytokine receptors upstream of JAK-STAT signaling were more abundant in naive hPSC. In addition, functional experiments showed that FOLR1 and SUSD2 proteins are highly expressed at the cell surface in naive hPSC but are not required to establish human naive pluripotency. This study provides a comprehensive stem cell proteomic resource that uncovers differences in signaling pathway activity and has identified new markers to define human pluripotent states.
Collapse
Affiliation(s)
- Katarzyna Wojdyla
- Epigenetics Programme, The Babraham Institute, Cambridge, UK; Mass Spectrometry Facility, The Babraham Institute, Cambridge, UK
| | | | - Charlene Fabian
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Paola S Nisi
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Laura Biggins
- Bioinformatics Group, The Babraham Institute, Cambridge, UK
| | - David Oxley
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, The Babraham Institute, Cambridge, UK; Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
25
|
Wamaitha SE, Grybel KJ, Alanis-Lobato G, Gerri C, Ogushi S, McCarthy A, Mahadevaiah SK, Healy L, Lea RA, Molina-Arcas M, Devito LG, Elder K, Snell P, Christie L, Downward J, Turner JMA, Niakan KK. IGF1-mediated human embryonic stem cell self-renewal recapitulates the embryonic niche. Nat Commun 2020; 11:764. [PMID: 32034154 PMCID: PMC7005693 DOI: 10.1038/s41467-020-14629-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/23/2020] [Indexed: 02/05/2023] Open
Abstract
Our understanding of the signalling pathways regulating early human development is limited, despite their fundamental biological importance. Here, we mine transcriptomics datasets to investigate signalling in the human embryo and identify expression for the insulin and insulin growth factor 1 (IGF1) receptors, along with IGF1 ligand. Consequently, we generate a minimal chemically-defined culture medium in which IGF1 together with Activin maintain self-renewal in the absence of fibroblast growth factor (FGF) signalling. Under these conditions, we derive several pluripotent stem cell lines that express pluripotency-associated genes, retain high viability and a normal karyotype, and can be genetically modified or differentiated into multiple cell lineages. We also identify active phosphoinositide 3-kinase (PI3K)/AKT/mTOR signalling in early human embryos, and in both primed and naïve pluripotent culture conditions. This demonstrates that signalling insights from human blastocysts can be used to define culture conditions that more closely recapitulate the embryonic niche.
Collapse
Affiliation(s)
- Sissy E Wamaitha
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Molecular, Cell and Developmental Biology, and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
| | - Katarzyna J Grybel
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Gregorio Alanis-Lobato
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Claudia Gerri
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sugako Ogushi
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | | | - Lyn Healy
- Human Embryo and Stem Cell Unit, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rebecca A Lea
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Miriam Molina-Arcas
- Oncogene Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Liani G Devito
- Human Embryo and Stem Cell Unit, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge, CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge, CB23 2TN, UK
| | | | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
26
|
Ko ME, Williams CM, Fread KI, Goggin SM, Rustagi RS, Fragiadakis GK, Nolan GP, Zunder ER. FLOW-MAP: a graph-based, force-directed layout algorithm for trajectory mapping in single-cell time course datasets. Nat Protoc 2020; 15:398-420. [PMID: 31932774 PMCID: PMC7897424 DOI: 10.1038/s41596-019-0246-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
Abstract
High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique cell populations and track how they change across time points. To facilitate this analysis, we developed FLOW-MAP, a graphical user interface (GUI)-based software tool that uses graph layout analysis with sequential time ordering to visualize cellular trajectories in high-dimensional single-cell datasets obtained from flow cytometry, mass cytometry or single-cell RNA sequencing (scRNAseq) experiments. Here we provide a detailed description of the FLOW-MAP algorithm and how to use the open-source R package FLOWMAPR via its GUI or with text-based commands. This approach can be applied to many dynamic processes, including in vitro stem cell differentiation, in vivo development, oncogenesis, the emergence of drug resistance and cell signaling dynamics. To demonstrate our approach, we perform a step-by-step analysis of a single-cell mass cytometry time course dataset from mouse embryonic stem cells differentiating into the three germ layers: endoderm, mesoderm and ectoderm. In addition, we demonstrate FLOW-MAP analysis of a previously published scRNAseq dataset. Using both synthetic and experimental datasets for comparison, we perform FLOW-MAP analysis side by side with other single-cell analysis methods, to illustrate when it is advantageous to use the FLOW-MAP approach. The protocol takes between 30 min and 1.5 h to complete.
Collapse
Affiliation(s)
- Melissa E Ko
- Cancer Biology Program, Stanford School of Medicine, Stanford, CA, USA
| | - Corey M Williams
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Kristen I Fread
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Sarah M Goggin
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Rohit S Rustagi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | | | - Garry P Nolan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Eli R Zunder
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
27
|
Poole E, Huang CJZ, Forbester J, Shnayder M, Nachshon A, Kweider B, Basaj A, Smith D, Jackson SE, Liu B, Shih J, Kiskin FN, Roche K, Murphy E, Wills MR, Morrell NW, Dougan G, Stern-Ginossar N, Rana AA, Sinclair J. An iPSC-Derived Myeloid Lineage Model of Herpes Virus Latency and Reactivation. Front Microbiol 2019; 10:2233. [PMID: 31649625 PMCID: PMC6795026 DOI: 10.3389/fmicb.2019.02233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/11/2019] [Indexed: 02/02/2023] Open
Abstract
Herpesviruses undergo life-long latent infection which can be life-threatening in the immunocompromised. Models of latency and reactivation of human cytomegalovirus (HCMV) include primary myeloid cells, cells known to be important for HCMV latent carriage and reactivation in vivo. However, primary cells are limited in availability, and difficult to culture and to genetically modify; all of which have hampered our ability to fully understand virus/host interactions of this persistent human pathogen. We have now used iPSCs to develop a model cell system to study HCMV latency and reactivation in different cell types after their differentiation down the myeloid lineage. Our results show that iPSCs can effectively mimic HCMV latency/reactivation in primary myeloid cells, allowing molecular interrogations of the viral latent/lytic switch. This model may also be suitable for analysis of other viruses, such as HIV and Zika, which also infect cells of the myeloid lineage.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Jessica Forbester
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Miri Shnayder
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Baraa Kweider
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Anna Basaj
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Smith
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Bin Liu
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Joy Shih
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Fedir N. Kiskin
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - K. Roche
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - E. Murphy
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Mark R. Wills
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Amer A. Rana
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - John Sinclair
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
Sandomenico A, Ruvo M. Targeting Nodal and Cripto-1: Perspectives Inside Dual Potential Theranostic Cancer Biomarkers. Curr Med Chem 2019; 26:1994-2050. [PMID: 30207211 DOI: 10.2174/0929867325666180912104707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Elucidating the mechanisms of recurrence of embryonic signaling pathways in tumorigenesis has led to the discovery of onco-fetal players which have physiological roles during normal development but result aberrantly re-activated in tumors. In this context, Nodal and Cripto-1 are recognized as onco-developmental factors, which are absent in normal tissues but are overexpressed in several solid tumors where they can serve as theranostic agents. OBJECTIVE To collect, review and discuss the most relevant papers related to the involvement of Nodal and Cripto-1 in the development, progression, recurrence and metastasis of several tumors where they are over-expressed, with a particular attention to their occurrence on the surface of the corresponding sub-populations of cancer stem cells (CSC). RESULTS We have gathered, rationalized and discussed the most interesting findings extracted from some 370 papers related to the involvement of Cripto-1 and Nodal in all tumor types where they have been detected. Data demonstrate the clear connection between Nodal and Cripto-1 presence and their multiple oncogenic activities across different tumors. We have also reviewed and highlighted the potential of targeting Nodal, Cripto-1 and the complexes that they form on the surface of tumor cells, especially of CSC, as an innovative approach to detect and suppress tumors with molecules that block one or more mechanisms that they regulate. CONCLUSION Overall, Nodal and Cripto-1 represent two innovative and effective biomarkers for developing potential theranostic anti-tumor agents that target normal as well as CSC subpopulations and overcome both pharmacological resistance and tumor relapse.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| |
Collapse
|
29
|
Cho JH, Patel B, Bonala S, Mansouri H, Manne S, Vadrevu SK, Ghouse S, Kung CP, Murphy ME, Astrinidis A, Henske EP, Kwiatkowski DJ, Markiewski MM, Karbowniczek M. The Codon 72 TP53 Polymorphism Contributes to TSC Tumorigenesis through the Notch-Nodal Axis. Mol Cancer Res 2019; 17:1639-1651. [PMID: 31088907 DOI: 10.1158/1541-7786.mcr-18-1292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/18/2019] [Accepted: 05/10/2019] [Indexed: 01/09/2023]
Abstract
We discovered that 90.3% of patients with angiomyolipomas, lymphangioleiomyomatosis (LAM), and tuberous sclerosis complex (TSC) carry the arginine variant of codon 72 (R72) of TP53 and that R72 increases the risk for angiomyolipoma. R72 transactivates NOTCH1 and NODAL better than the proline variant of codon 72 (P72); therefore, the expression of NOTCH1 and NODAL is increased in angiomyolipoma cells that carry R72. The loss of Tp53 and Tsc1 within nestin-expressing cells in mice resulted in the development of renal cell carcinomas (RCC) with high Notch1 and Nodal expression, suggesting that similar downstream mechanisms contribute to tumorigenesis as a result of p53 loss in mice and p53 polymorphism in humans. The loss of murine Tp53 or expression of human R72 contributes to tumorigenesis via enhancing epithelial-to-mesenchymal transition and motility of tumor cells through the Notch and Nodal pathways. IMPLICATIONS: This work revealed unexpected contributions of the p53 polymorphism to the pathogenesis of TSC and established signaling alterations caused by this polymorphism as a target for therapy. We found that the codon 72 TP53 polymorphism contributes to TSC-associated tumorigenesis via Notch and Nodal signaling.
Collapse
Affiliation(s)
- Jun-Hung Cho
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, Texas
| | - Bhaumik Patel
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, Texas
| | - Santosh Bonala
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, Texas.,Hollings Cancer Center, Charleston, South Carolina
| | - Hossein Mansouri
- Department of Mathematics and Statistics, Texas Tech University, Broadway and Boston, Lubbock, Texas
| | - Sasikanth Manne
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, Texas.,Institute for Immunology, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Surya Kumari Vadrevu
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, Texas.,HIV-1 Immunopathogenesis Laboratory, Wistar Institute, Philadelphia, Pennsylvania
| | - Shanawaz Ghouse
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, Texas
| | - Che-Pei Kung
- Program in Molecular and Cellular Oncogenesis, Wistar Institute, Philadelphia, Pennsylvania.,ICCE Institute and Department of Internal Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, Wistar Institute, Philadelphia, Pennsylvania
| | - Aristotelis Astrinidis
- Division of Nephrology, Department of Pediatrics, University of Tennessee Health Sciences Center, and Tuberous Sclerosis Complex Center of Excellence, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David J Kwiatkowski
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Maciej M Markiewski
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, Texas.
| | - Magdalena Karbowniczek
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, Texas.
| |
Collapse
|
30
|
Madsen RR, Knox RG, Pearce W, Lopez S, Mahler-Araujo B, McGranahan N, Vanhaesebroeck B, Semple RK. Oncogenic PIK3CA promotes cellular stemness in an allele dose-dependent manner. Proc Natl Acad Sci U S A 2019; 116:8380-8389. [PMID: 30948643 PMCID: PMC6486754 DOI: 10.1073/pnas.1821093116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The PIK3CA gene, which encodes the p110α catalytic subunit of PI3 kinase (PI3K), is mutationally activated in cancer and in overgrowth disorders known as PIK3CA-related overgrowth spectrum (PROS). To determine the consequences of genetic PIK3CA activation in a developmental context of relevance to both PROS and cancer, we engineered isogenic human induced pluripotent stem cells (iPSCs) with heterozygous or homozygous knockin of PIK3CAH1047R While heterozygous iPSCs remained largely similar to wild-type cells, homozygosity for PIK3CAH1047R caused widespread, cancer-like transcriptional remodeling, partial loss of epithelial morphology, up-regulation of stemness markers, and impaired differentiation to all three germ layers in vitro and in vivo. Genetic analysis of PIK3CA-associated cancers revealed that 64% had multiple oncogenic PIK3CA copies (39%) or additional PI3K signaling pathway-activating "hits" (25%). This contrasts with the prevailing view that PIK3CA mutations occur heterozygously in cancer. Our findings suggest that a PI3K activity threshold determines pathological consequences of oncogenic PIK3CA activation and provide insight into the specific role of this pathway in human pluripotent stem cells.
Collapse
Affiliation(s)
- Ralitsa R Madsen
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, United Kingdom
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Rachel G Knox
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, United Kingdom
| | - Wayne Pearce
- University College London Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Saioa Lopez
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London WC1E 6DD, United Kingdom
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Betania Mahler-Araujo
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Histopathology Department, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London WC1E 6DD, United Kingdom
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Bart Vanhaesebroeck
- University College London Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Robert K Semple
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom;
- National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, United Kingdom
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
31
|
Abstract
In recent years, stem cell therapy has become a very promising and advanced scientific research topic. The development of treatment methods has evoked great expectations. This paper is a review focused on the discovery of different stem cells and the potential therapies based on these cells. The genesis of stem cells is followed by laboratory steps of controlled stem cell culturing and derivation. Quality control and teratoma formation assays are important procedures in assessing the properties of the stem cells tested. Derivation methods and the utilization of culturing media are crucial to set proper environmental conditions for controlled differentiation. Among many types of stem tissue applications, the use of graphene scaffolds and the potential of extracellular vesicle-based therapies require attention due to their versatility. The review is summarized by challenges that stem cell therapy must overcome to be accepted worldwide. A wide variety of possibilities makes this cutting edge therapy a turning point in modern medicine, providing hope for untreatable diseases.
Collapse
Affiliation(s)
- Wojciech Zakrzewski
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Bujwida 44, Wrocław, 50-345 Poland
| | - Maciej Dobrzyński
- Department of Conservative Dentistry and Pedodontics, Krakowska 26, Wrocław, 50-425 Poland
| | - Maria Szymonowicz
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Bujwida 44, Wrocław, 50-345 Poland
| | - Zbigniew Rybak
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Bujwida 44, Wrocław, 50-345 Poland
| |
Collapse
|
32
|
Abstract
Germ cells are the stem cells of the species. Thus, it is critical that we have a good understanding of how they are specified, how the somatic cells instruct and support them, how they commit to one or other sex, and how they ultimately develop into functional gametes. Here, we focus on specifics of how sexual fate is determined during fetal life. Because the majority of relevant experimental work has been done using the mouse model, we focus on that species. We review evidence regarding the identity of instructive signals from the somatic cells, and the molecular responses that occur in germ cells in response to those extrinsic signals. In this way we aim to clarify progress to date regarding the mechanisms underlying the mitotic to meiosis switch in germ cells of the fetal ovary, and those involved in adopting and securing male fate in germ cells of the fetal testis.
Collapse
Affiliation(s)
- Cassy Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
33
|
Serrano F, Bernard WG, Granata A, Iyer D, Steventon B, Kim M, Vallier L, Gambardella L, Sinha S. A Novel Human Pluripotent Stem Cell-Derived Neural Crest Model of Treacher Collins Syndrome Shows Defects in Cell Death and Migration. Stem Cells Dev 2019; 28:81-100. [PMID: 30375284 PMCID: PMC6350417 DOI: 10.1089/scd.2017.0234] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 10/29/2018] [Indexed: 01/05/2023] Open
Abstract
The neural crest (NC) is a transient multipotent cell population present during embryonic development. The NC can give rise to multiple cell types and is involved in a number of different diseases. Therefore, the development of new strategies to model NC in vitro enables investigations into the mechanisms involved in NC development and disease. In this study, we report a simple and efficient protocol to differentiate human pluripotent stem cells (HPSC) into NC using a chemically defined media, with basic fibroblast growth factor 2 (FGF2) and the transforming growth factor-β inhibitor SB-431542. The cell population generated expresses a range of NC markers, including P75, TWIST1, SOX10, and TFAP2A. NC purification was achieved in vitro through serial passaging of the population, recreating the developmental stages of NC differentiation. The generated NC cells are highly proliferative, capable of differentiating to their derivatives in vitro and engraft in vivo to NC specific locations. In addition, these cells could be frozen for storage and thawed with no loss of NC properties, nor the ability to generate cellular derivatives. We assessed the potential of the derived NC population to model the neurocristopathy, Treacher Collins Syndrome (TCS), using small interfering RNA (siRNA) knockdown of TCOF1 and by creating different TCOF1+/- HPSC lines through CRISPR/Cas9 technology. The NC cells derived from TCOF1+/- HPSC recapitulate the phenotype of the reported TCS murine model. We also report for the first time an impairment of migration in TCOF1+/- NC and mesenchymal stem cells. In conclusion, the developed protocol permits the generation of the large number of NC cells required for developmental studies, disease modeling, and for drug discovery platforms in vitro.
Collapse
Affiliation(s)
- Felipe Serrano
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - William George Bernard
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alessandra Granata
- Division of Clinical Neurosciences, Clifford Allbutt Building, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Dharini Iyer
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ben Steventon
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Kim
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ludovic Vallier
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Laure Gambardella
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sanjay Sinha
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
Dakhore S, Nayer B, Hasegawa K. Human Pluripotent Stem Cell Culture: Current Status, Challenges, and Advancement. Stem Cells Int 2018; 2018:7396905. [PMID: 30595701 PMCID: PMC6282144 DOI: 10.1155/2018/7396905] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/23/2022] Open
Abstract
Over the past two decades, human embryonic stem cells (hESCs) have gained attention due to their pluripotent and proliferative ability which enables production of almost all cell types in the human body in vitro and makes them an excellent tool to study human embryogenesis and disease, as well as for drug discovery and cell transplantation therapies. Discovery of human-induced pluripotent stem cells (hiPSCs) further expanded therapeutic applications of human pluripotent stem cells (PSCs). hPSCs provide a stable and unlimited original cell source for producing suitable cells and tissues for downstream applications. Therefore, engineering the environment in which these cells are grown, for stable and quality-controlled hPSC maintenance and production, is one of the key factors governing the success of these applications. hPSCs are maintained in a particular niche using specific cell culture components. Ideally, the culture should be free of xenobiotic components to render hPSCs suitable for therapeutic applications. Substantial efforts have been put to identify effective components, and develop culture conditions and protocols, for their large-scale expansion without compromising on quality. In this review, we discuss different media, their components and functions, including specific requirements to maintain the pluripotent and proliferative ability of hPSCs. Understanding the role of culture components would enable the development of appropriate conditions to promote large-scale, quality-controlled expansion of hPSCs thereby increasing their potential applications.
Collapse
Affiliation(s)
- Sushrut Dakhore
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences (NCBS), Bangalore, India
| | - Bhavana Nayer
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences (NCBS), Bangalore, India
| | - Kouichi Hasegawa
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences (NCBS), Bangalore, India
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Japan
| |
Collapse
|
35
|
Tan H, Tee WW. Committing the primordial germ cell: An updated molecular perspective. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1436. [PMID: 30225862 DOI: 10.1002/wsbm.1436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/22/2018] [Accepted: 08/08/2018] [Indexed: 12/25/2022]
Abstract
The germ line is a crucial cell lineage that is distinct from somatic cells, and solely responsible for the trans-generational transmission of hereditary information in metazoan sexual reproduction. Primordial germ cells (PGCs)-the precursors to functional germ cells-are among the first cell types to be allocated in embryonic development, and this lineage commitment is a critical event in partitioning germ line and somatic tissues. Classically, mammalian PGC development has been largely informed by investigations on mouse embryos and embryonic stem cells. Recent findings from corresponding nonrodent systems, however, have indicated that murine PGC specification may not be fully archetypal. In this review, we outline the current understanding of molecular mechanisms in PGC specification, emphasizing key transcriptional events, and focus on salient differences between early human and mouse PGC commitment. Beyond these latest findings, we also contemplate the future outlook of inquiries in this field, highlighting the importance of comprehensively understanding early fate decisions that underlie the segregation of this unique lineage. This article is categorized under: Developmental Biology > Stem Cell Biology and Regeneration Biological Mechanisms > Cell Fates Physiology > Mammalian Physiology in Health and Disease.
Collapse
Affiliation(s)
- Haihan Tan
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Wee-Wei Tee
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
36
|
Bragança J. SMAD2/3, versatile molecular tools for cellular engineering. Stem Cell Investig 2018; 5:24. [PMID: 30148157 PMCID: PMC6088207 DOI: 10.21037/sci.2018.07.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/17/2018] [Indexed: 01/01/2023]
Affiliation(s)
- José Bragança
- Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal
- Centre for Biomedical Research-CBMR, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
- ABC - Algarve Biomedical Centre, 8005-139 Faro, Portugal
| |
Collapse
|
37
|
Suppressing Nodal Signaling Activity Predisposes Ectodermal Differentiation of Epiblast Stem Cells. Stem Cell Reports 2018; 11:43-57. [PMID: 30008328 PMCID: PMC6067151 DOI: 10.1016/j.stemcr.2018.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 01/18/2023] Open
Abstract
The molecular mechanism underpinning the specification of the ectoderm, a transient germ-layer tissue, during mouse gastrulation was examined here in a stem cell-based model. We captured a self-renewing cell population with enhanced ectoderm potency from mouse epiblast stem cells (EpiSCs) by suppressing Nodal signaling activity. The transcriptome of the Nodal-inhibited EpiSCs resembles that of the anterior epiblast of embryonic day (E)7.0 and E7.5 mouse embryo, which is accompanied by chromatin modifications that reflect the priming of ectoderm lineage-related genes for expression. Nodal-inhibited EpiSCs show enhanced ectoderm differentiation in vitro and contribute to the neuroectoderm and the surface ectoderm in postimplantation chimeras but lose the propensity for mesendoderm differentiation in vitro and in chimeras. Our findings show that specification of the ectoderm progenitors is enhanced by the repression of Nodal signaling activity, and the ectoderm-like stem cells provide an experimental model to investigate the molecular characters of the epiblast-derived ectoderm. Self-renewing epiblast stem cells can be maintained under Nodal inhibition Nodal-inhibited epiblast stem cells and the ectoderm display similar transcriptome Blocking Nodal changes the epigenome to that associated with ectoderm potency Nodal-inhibited epiblast stem cells differentiate preferentially to ectodermal cells
Collapse
|
38
|
Bertero A, Brown S, Madrigal P, Osnato A, Ortmann D, Yiangou L, Kadiwala J, Hubner NC, de Los Mozos IR, Sadée C, Lenaerts AS, Nakanoh S, Grandy R, Farnell E, Ule J, Stunnenberg HG, Mendjan S, Vallier L. The SMAD2/3 interactome reveals that TGFβ controls m 6A mRNA methylation in pluripotency. Nature 2018; 555:256-259. [PMID: 29489750 PMCID: PMC5951268 DOI: 10.1038/nature25784] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/22/2018] [Indexed: 12/17/2022]
Abstract
The TGFβ pathway has essential roles in embryonic development, organ homeostasis, tissue repair and disease. These diverse effects are mediated through the intracellular effectors SMAD2 and SMAD3 (hereafter SMAD2/3), whose canonical function is to control the activity of target genes by interacting with transcriptional regulators. Therefore, a complete description of the factors that interact with SMAD2/3 in a given cell type would have broad implications for many areas of cell biology. Here we describe the interactome of SMAD2/3 in human pluripotent stem cells. This analysis reveals that SMAD2/3 is involved in multiple molecular processes in addition to its role in transcription. In particular, we identify a functional interaction with the METTL3-METTL14-WTAP complex, which mediates the conversion of adenosine to N6-methyladenosine (m6A) on RNA. We show that SMAD2/3 promotes binding of the m6A methyltransferase complex to a subset of transcripts involved in early cell fate decisions. This mechanism destabilizes specific SMAD2/3 transcriptional targets, including the pluripotency factor gene NANOG, priming them for rapid downregulation upon differentiation to enable timely exit from pluripotency. Collectively, these findings reveal the mechanism by which extracellular signalling can induce rapid cellular responses through regulation of the epitranscriptome. These aspects of TGFβ signalling could have far-reaching implications in many other cell types and in diseases such as cancer.
Collapse
Affiliation(s)
- Alessandro Bertero
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Stephanie Brown
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Pedro Madrigal
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.,Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Anna Osnato
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Daniel Ortmann
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Loukia Yiangou
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Juned Kadiwala
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Nina C Hubner
- Department of Molecular Biology, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Igor Ruiz de Los Mozos
- Francis Crick Institute and Department of Molecular Neuroscience, University College London, London NW1 1AT, UK
| | - Christoph Sadée
- Francis Crick Institute and Department of Molecular Neuroscience, University College London, London NW1 1AT, UK
| | - An-Sofie Lenaerts
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Shota Nakanoh
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Rodrigo Grandy
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Edward Farnell
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Jernej Ule
- Francis Crick Institute and Department of Molecular Neuroscience, University College London, London NW1 1AT, UK
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Sasha Mendjan
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ludovic Vallier
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.,Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| |
Collapse
|
39
|
Kamarudin TA, Bojic S, Collin J, Yu M, Alharthi S, Buck H, Shortt A, Armstrong L, Figueiredo FC, Lako M. Differences in the Activity of Endogenous Bone Morphogenetic Protein Signaling Impact on the Ability of Induced Pluripotent Stem Cells to Differentiate to Corneal Epithelial-Like Cells. Stem Cells 2017; 36:337-348. [PMID: 29226476 PMCID: PMC5839253 DOI: 10.1002/stem.2750] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/27/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
Cornea is a clear outermost layer of the eye which enables transmission of light onto the retina. The transparent corneal epithelium is regenerated by limbal stem cells (LSCs), whose loss/dysfunction results in LSCs deficiency (LSCD). Ex vivo expansion of autologous LSCs obtained from patient's healthy eye followed by transplantation onto the LSCs damaged/deficient eye, has provided a successful treatment for unilateral LSCD. However, this is not applicable to patient with total bilateral LSCD, where LSCs are lost/damaged from both eyes. We investigated the potential of human induced pluripotent stem cell (hiPSC) to differentiate into corneal epithelial‐like cells as a source of autologous stem cell treatment for patients with total bilateral LSCD. Our study showed that combined addition of bone morphogenetic protein 4 (BMP4), all trans‐retinoic acid and epidermal growth factor for the first 9 days of differentiation followed by cell‐replating on collagen‐IV‐coated surfaces with a corneal‐specific‐epithelial cell media for an additional 11 days, resulted in step wise differentiation of human embryonic stem cells (hESC) to corneal epithelial progenitors and mature corneal epithelial‐like cells. We observed differences in the ability of hiPSC lines to undergo differentiation to corneal epithelial‐like cells which were dependent on the level of endogenous BMP signaling and could be restored via the activation of this signaling pathway by a specific transforming growth factor β inhibitor (SB431542). Together our data reveal a differential ability of hiPSC lines to generate corneal epithelial cells which is underlined by the activity of endogenous BMP signaling pathway. Stem Cells2018;36:337–348
Collapse
Affiliation(s)
- Taty Anna Kamarudin
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Sanja Bojic
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Joseph Collin
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Min Yu
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Sameer Alharthi
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | - Harley Buck
- UCL Institute of Immunology and Transplantation, Royal Free Campus, London, United Kingdom
| | - Alex Shortt
- UCL Institute of Immunology and Transplantation, Royal Free Campus, London, United Kingdom
| | - Lyle Armstrong
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Francisco C Figueiredo
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom.,Department of Ophthalmology, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, United Kingdom
| | - Majlinda Lako
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
40
|
Corsinotti A, Wong FC, Tatar T, Szczerbinska I, Halbritter F, Colby D, Gogolok S, Pantier R, Liggat K, Mirfazeli ES, Hall-Ponsele E, Mullin NP, Wilson V, Chambers I. Distinct SoxB1 networks are required for naïve and primed pluripotency. eLife 2017; 6:27746. [PMID: 29256862 PMCID: PMC5758114 DOI: 10.7554/elife.27746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
Deletion of Sox2 from mouse embryonic stem cells (ESCs) causes trophectodermal differentiation. While this can be prevented by enforced expression of the related SOXB1 proteins, SOX1 or SOX3, the roles of SOXB1 proteins in epiblast stem cell (EpiSC) pluripotency are unknown. Here, we show that Sox2 can be deleted from EpiSCs with impunity. This is due to a shift in the balance of SoxB1 expression in EpiSCs, which have decreased Sox2 and increased Sox3 compared to ESCs. Consistent with functional redundancy, Sox3 can also be deleted from EpiSCs without eliminating self-renewal. However, deletion of both Sox2 and Sox3 prevents self-renewal. The overall SOXB1 levels in ESCs affect differentiation choices: neural differentiation of Sox2 heterozygous ESCs is compromised, while increased SOXB1 levels divert the ESC to EpiSC transition towards neural differentiation. Therefore, optimal SOXB1 levels are critical for each pluripotent state and for cell fate decisions during exit from naïve pluripotency.
Collapse
Affiliation(s)
- Andrea Corsinotti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Frederick Ck Wong
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Tülin Tatar
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Iwona Szczerbinska
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Florian Halbritter
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Douglas Colby
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Sabine Gogolok
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Raphaël Pantier
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Kirsten Liggat
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Elham S Mirfazeli
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Elisa Hall-Ponsele
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Nicholas P Mullin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
41
|
Tewary M, Ostblom J, Prochazka L, Zulueta-Coarasa T, Shakiba N, Fernandez-Gonzalez R, Zandstra PW. A stepwise model of reaction-diffusion and positional information governs self-organized human peri-gastrulation-like patterning. Development 2017; 144:4298-4312. [PMID: 28870989 PMCID: PMC5769627 DOI: 10.1242/dev.149658] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/23/2017] [Indexed: 12/15/2022]
Abstract
How position-dependent cell fate acquisition occurs during embryogenesis is a central question in developmental biology. To study this process, we developed a defined, high-throughput assay to induce peri-gastrulation-associated patterning in geometrically confined human pluripotent stem cell (hPSC) colonies. We observed that, upon BMP4 treatment, phosphorylated SMAD1 (pSMAD1) activity in the colonies organized into a radial gradient. We developed a reaction-diffusion (RD)-based computational model and observed that the self-organization of pSMAD1 signaling was consistent with the RD principle. Consequent fate acquisition occurred as a function of both pSMAD1 signaling strength and duration of induction, consistent with the positional-information (PI) paradigm. We propose that the self-organized peri-gastrulation-like fate patterning in BMP4-treated geometrically confined hPSC colonies arises via a stepwise model of RD followed by PI. This two-step model predicted experimental responses to perturbations of key parameters such as colony size and BMP4 dose. Furthermore, it also predicted experimental conditions that resulted in RD-like periodic patterning in large hPSC colonies, and rescued peri-gastrulation-like patterning in colony sizes previously thought to be reticent to this behavior.
Collapse
Affiliation(s)
- Mukul Tewary
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Joel Ostblom
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Laura Prochazka
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Teresa Zulueta-Coarasa
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nika Shakiba
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3ES, Canada
- Medicine by Design: A Canada First Research Excellence Fund Program, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| |
Collapse
|
42
|
Jiang Y, Li H, Wang Y, Tian T, He Y, Jin Y, Han C, Jin X, Zhang F, Morii E. ALDH enzyme activity is regulated by Nodal and histamine in the A549 cell line. Oncol Lett 2017; 14:6955-6961. [PMID: 29181106 DOI: 10.3892/ol.2017.7057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 06/27/2017] [Indexed: 01/11/2023] Open
Abstract
The present study aimed to examine whether the enzyme activity of aldehyde dehydrogenase (ALDH) was regulated by Nodal and histamine in the human alveolar adenocarcinoma A549 cell line. The regulated enzyme activity of ALDH was analyzed by flow cytometry in the A549 cell line. ALDH1 and Nodal expression was investigated by immunohistochemistry in28 cases of lung mixed adenocarcinoma. The enzyme activity of ALDH was upregulated by histamine and agonists of histamine H1 receptor (H1R) and histamine H2 receptor (H2R). ALDH activity was also downregulated by recombinant human Nodal and antagonists of H1R and H2R in the A549 cell line. In addition, expression of Nodal and ALDH1 were inversely correlated in lung mixed adenocarcinoma. ALDH enzyme activity was regulated by Nodal and histamine in lung adenocarcinoma.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hui Li
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yi Wang
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tian Tian
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yan He
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yinji Jin
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Changsong Han
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaoming Jin
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
43
|
Montague TG, Schier AF. Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm. eLife 2017; 6:28183. [PMID: 29140251 PMCID: PMC5745085 DOI: 10.7554/elife.28183] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/13/2017] [Indexed: 12/03/2022] Open
Abstract
Nodal is considered the key inducer of mesendoderm in vertebrate embryos and embryonic stem cells. Other TGF-beta-related signals, such as Vg1/Dvr1/Gdf3, have also been implicated in this process but their roles have been unclear or controversial. Here we report that zebrafish embryos without maternally provided vg1 fail to form endoderm and head and trunk mesoderm, and closely resemble nodal loss-of-function mutants. Although Nodal is processed and secreted without Vg1, it requires Vg1 for its endogenous activity. Conversely, Vg1 is unprocessed and resides in the endoplasmic reticulum without Nodal, and is only secreted, processed and active in the presence of Nodal. Co-expression of Nodal and Vg1 results in heterodimer formation and mesendoderm induction. Thus, mesendoderm induction relies on the combination of two TGF-beta-related signals: maternal and ubiquitous Vg1, and zygotic and localized Nodal. Modeling reveals that the pool of maternal Vg1 enables rapid signaling at low concentrations of zygotic Nodal. All animals begin life as just one cell – a fertilized egg. In order to make a recognizable adult, each embryo needs to make the three types of tissue that will eventually form all of the organs: endoderm, which will form the internal organs; mesoderm, which will form the muscle and bones; and ectoderm, which will generate the skin and nervous system. All vertebrates – animals with backbones like fish and humans – use the so-called Nodal signaling pathway to make the endoderm and mesoderm. Nodal is a signaling molecule that binds to receptors on the surface of cells. If Nodal binds to a receptor on a cell, it instructs that cell to become endoderm or mesoderm. As such, Nodal is critical for vertebrate life. However, there has been a 30-year debate in the field of developmental biology about whether a protein called Vg1, which has a similar molecular structure as Nodal, plays a role in the early development of vertebrates. Zebrafish are often used to study animal development, and Montague and Schier decided to test whether these fish need the gene for Vg1 (also known as Gdf3) by deleting it using a genome editing technique called CRISPR/Cas9. It turns out that female zebrafish can survive without this gene. Yet, when the offspring of these females do not inherit the instructions to make Vg1 from their mothers, they fail to form the endoderm and mesoderm. This means that the embryos do not have hearts, blood or other internal organs, and they die within three days. Two other groups of researchers have independently reported similar results. The findings reveal that Vg1 is critical for the Nodal signaling pathway to work in zebrafish. Montague and Schier then showed that, in this pathway, Nodal does not activate its receptors on its own. Instead, Nodal must interact with Vg1, and it is this Nodal-Vg1 complex that activates receptors, and instructs cells to become endoderm and mesoderm. Scientists currently use the Nodal signaling pathway to induce human embryonic stem cells growing in the laboratory to become mesoderm and endoderm. As such, these new findings could ultimately help researchers to grow tissues and organs for human patients.
Collapse
Affiliation(s)
- Tessa G Montague
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States.,Broad Institute of MIT and Harvard, Cambridge, United States.,Harvard Stem Cell Institute, Cambridge, United States.,FAS Center for Systems Biology, Harvard University, Cambridge, United States
| |
Collapse
|
44
|
Liu Y, Hu H, Liang M, Xiong Y, Li K, Chen M, Fan Z, Kuang X, Deng F, Liu X, Xu C, Li K, Ge J. Regulated differentiation of WERI-Rb-1 cells into retinal neuron-like cells. Int J Mol Med 2017; 40:1172-1184. [PMID: 28848998 PMCID: PMC5593461 DOI: 10.3892/ijmm.2017.3102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/08/2017] [Indexed: 11/10/2022] Open
Abstract
The encouraging response and improved survival of acute promyelocytic leukemia patients following retinoic acid treatment has rendered differentiation therapy an attractive option in cancer treatment. Given that terminal differentiation represents a considerable barrier in retinoblastoma tumorigenesis and that retinoblastoma has a significantly higher spontaneous degeneration rate compared with other tumors (1,000-fold change), differentiation therapy represents a promising alternative in the treatment of retinoblastoma. However, the full differentiation potential of retinoblastoma still unknown. The present study was designed to investigate the extend differentiation of the classical retinoblastoma cell line WERI-Rb-1 (W-RBCs). Several critical cell signaling pathways and key genes related to cell proliferation and differentiation were comprehensively regulated to control the fate of W-RBCs. Various strategies were applied to optimize simple and time-saving methods to induce W-RBCs into different types of retinal neuron-like cells (RNLCs) in vitro. Further, the tumorigenesis of these differentiated W-RBCs was tested in nude mice in vivo. W-RBCs were found to inherently express both retinal progenitor cell- and embryonic stem cell-related genes or proteins. Moreover, the addition of antagonists of critical cell signals (Wnt, Nodal, BMP4 and Notch), even without atonal bHLH transcription factor 7 gene transfection, could directly induce W-RBCs into RNLCs, and especially into photoreceptor-like and retinal ganglion-like cells. Interestingly, the differentiated cells showed remarkably poorer tumorigenesis in vivo. These findings may offer new insights on the oriented differentiation of W-RBCs into RNLCs with low tumorigenicity and provide potential targets for retinoblastoma differentiation therapy.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Huiling Hu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Shenzhen, Guangdong 518034, P.R. China
| | - Meixin Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yunfan Xiong
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Kang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Mengfei Chen
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21087, USA
| | - Zhigang Fan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Fei Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaohong Liu
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Chaochao Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Kaijing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
45
|
Future Challenges in the Generation of Hepatocyte-Like Cells From Human Pluripotent Stem Cells. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0150-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Rao S, Zaidi S, Banerjee J, Jogunoori W, Sebastian R, Mishra B, Nguyen BN, Wu RC, White J, Deng C, Amdur R, Li S, Mishra L. Transforming growth factor-β in liver cancer stem cells and regeneration. Hepatol Commun 2017; 1:477-493. [PMID: 29404474 PMCID: PMC5678904 DOI: 10.1002/hep4.1062] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/27/2017] [Accepted: 06/01/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells have established mechanisms that contribute to tumor heterogeneity as well as resistance to therapy. Over 40% of hepatocellular carcinomas (HCCs) are considered to be clonal and arise from a stem-like/cancer stem cell. Moreover, HCC is the second leading cause of cancer death worldwide, and an improved understanding of cancer stem cells and targeting these in this cancer are urgently needed. Multiple studies have revealed etiological patterns and multiple genes/pathways signifying initiation and progression of HCC; however, unlike the transforming growth factor β (TGF-β) pathway, loss of p53 and/or activation of β-catenin do not spontaneously drive HCC in animal models. Despite many advances in cancer genetics that include identifying the dominant role of TGF-β signaling in gastrointestinal cancers, we have not reached an integrated view of genetic mutations, copy number changes, driver pathways, and animal models that support effective targeted therapies for these common and lethal cancers. Moreover, pathways involved in stem cell transformation into gastrointestinal cancers remain largely undefined. Identifying the key mechanisms and developing models that reflect the human disease can lead to effective new treatment strategies. In this review, we dissect the evidence obtained from mouse and human liver regeneration, and mouse genetics, to provide insight into the role of TGF-β in regulating the cancer stem cell niche. (Hepatology Communications 2017;1:477-493).
Collapse
Affiliation(s)
- Shuyun Rao
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Sobia Zaidi
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Jaideep Banerjee
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Wilma Jogunoori
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Raul Sebastian
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Bibhuti Mishra
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| | - Bao-Ngoc Nguyen
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Ray-Chang Wu
- Department of Biochemistry and Molecular Medicine George Washington University Washington DC
| | - Jon White
- Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| | - Chuxia Deng
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Health Sciences University of Macau Taipa Macau China
| | - Richard Amdur
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Shulin Li
- Department of Pediatrics The University of Texas MD Anderson Cancer Center Houston TX
| | - Lopa Mishra
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| |
Collapse
|
47
|
Spiller C, Burnet G, Bowles J. Regulation of fetal male germ cell development by members of the TGFβ superfamily. Stem Cell Res 2017; 24:174-180. [PMID: 28754604 DOI: 10.1016/j.scr.2017.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/04/2017] [Accepted: 07/15/2017] [Indexed: 11/16/2022] Open
Abstract
There is now substantial evidence that members of the transforming growth factor-β (TGFβ family) regulate germ cell development in the mouse fetal testis. Correct development of germ cells during fetal life is critical for establishment of effective spermatogenesis and for avoiding the formation of testicular germ cell cancer in later life. Here we consider the evidence for involvement of various TGFβ family members, attempt to reconcile discrepancies and clarify what we believe to be the likely in vivo roles of these factors.
Collapse
Affiliation(s)
- Cassy Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Guillaume Burnet
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
48
|
Abstract
Neural stem cells (NSCs) have been proposed as a promising cellular source for the treatment of diseases in nervous systems. NSCs can self-renew and generate major cell types of the mammalian central nervous system throughout adulthood. NSCs exist not only in the embryo, but also in the adult brain neurogenic region: the subventricular zone (SVZ) of the lateral ventricle. Embryonic stem (ES) cells acquire NSC identity with a default mechanism. Under the regulations of leukemia inhibitory factor (LIF) and fibroblast growth factors, the NSCs then become neural progenitors. Neurotrophic and differentiation factors that regulate gene expression for controlling neural cell fate and function determine the differentiation of neural progenitors in the developing mammalian brain. For clinical application of NSCs in neurodegenerative disorders and damaged neurons, there are several critical problems that remain to be resolved: 1) how to obtain enough NSCs from reliable sources for autologous transplantation; 2) how to regulate neural plasticity of different adult stem cells; 3) how to control differentiation of NSCs in the adult nervous system. In order to understand the mechanisms that control NSC differentiation and behavior, we review the ontogeny of NSCs and other stem cell plasticity of neuronal differentiation. The role of NSCs and their regulation by neurotrophic factors in CNS development are also reviewed.
Collapse
Affiliation(s)
- Yi-Chao Hsu
- Stem Cell Research Center, National Health Research Institutes, Jhunan, Taiwan
| | - Don-Ching Lee
- Stem Cell Research Center, National Health Research Institutes, Jhunan, Taiwan
| | - Ing-Ming Chiu
- Stem Cell Research Center, National Health Research Institutes, Jhunan, Taiwan
- Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Institute of Medical Technology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
49
|
Ashida Y, Nakajima-Koyama M, Hirota A, Yamamoto T, Nishida E. Activin A in combination with ERK1/2 MAPK pathway inhibition sustains propagation of mouse embryonic stem cells. Genes Cells 2017; 22:189-202. [PMID: 28097777 DOI: 10.1111/gtc.12467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 11/30/2022]
Abstract
The Activin/Nodal/TGF-β signaling pathway plays a major role in maintaining mouse epiblast stem cells (EpiSCs). The EpiSC-maintaining medium, which contains Activin A and bFGF, induces differentiation of mouse embryonic stem cells (ESCs) to EpiSCs. Here, we show that Activin A also has an ability to efficiently propagate ESCs without differentiation to EpiSCs when combined with a MEK inhibitor PD0325901. ESCs cultured in Activin+PD retained high-level expression of naive pluripotency-related transcription factors. Genomewide analysis showed that the gene expression profile of ESCs cultured in Activin+PD resembles that of ESCs cultured in 2i. ESCs cultured in Activin+PD also showed features common to the naive pluripotency of ESCs, including the preferential usage of the Oct4 distal enhancer and the self-renewal response to Wnt pathway activation. Our finding shows a role of Activin/Nodal/TGF-β signaling in stabilizing self-renewal gene regulatory networks in ESCs.
Collapse
Affiliation(s)
- Yuhei Ashida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - May Nakajima-Koyama
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.,AMED-CREST, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Akira Hirota
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takuya Yamamoto
- AMED-CREST, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.,AMED-CREST, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| |
Collapse
|
50
|
Activin A Modulates CRIPTO-1/HNF4 α+ Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells. Stem Cells Int 2017; 2017:4651238. [PMID: 28163723 PMCID: PMC5253508 DOI: 10.1155/2017/4651238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/29/2016] [Accepted: 12/01/2016] [Indexed: 01/02/2023] Open
Abstract
The use of human pluripotent stem cells in basic and translational cardiac research requires efficient differentiation protocols towards cardiomyocytes. In vitro differentiation yields heterogeneous populations of ventricular-, atrial-, and nodal-like cells hindering their potential applications in regenerative therapies. We described the effect of the growth factor Activin A during early human embryonic stem cell fate determination in cardiac differentiation. Addition of high levels of Activin A during embryoid body cardiac differentiation augmented the generation of endoderm derivatives, which in turn promoted cardiomyocyte differentiation. Moreover, a dose-dependent increase in the coreceptor expression of the TGF-β superfamily member CRIPTO-1 was observed in response to Activin A. We hypothesized that interactions between cells derived from meso- and endodermal lineages in embryoid bodies contributed to improved cell maturation in early stages of cardiac differentiation, improving the beating frequency and the percentage of contracting embryoid bodies. Activin A did not seem to affect the properties of cardiomyocytes at later stages of differentiation, measuring action potentials, and intracellular Ca2+ dynamics. These findings are relevant for improving our understanding on human heart development, and the proposed protocol could be further explored to obtain cardiomyocytes with functional phenotypes, similar to those observed in adult cardiac myocytes.
Collapse
|