1
|
Li N, Liu S, Zhao D, Du H, Xi Y, Wei X, Liu Q, Müller U, Lu Q, Xiong W, Xu Z. Disruption of Cdh23 exon 68 splicing leads to progressive hearing loss in mice by affecting tip-link stability. Proc Natl Acad Sci U S A 2024; 121:e2309656121. [PMID: 38408254 PMCID: PMC10927504 DOI: 10.1073/pnas.2309656121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/21/2023] [Indexed: 02/28/2024] Open
Abstract
Inner ear hair cells are characterized by the F-actin-based stereocilia that are arranged into a staircase-like pattern on the apical surface of each hair cell. The tips of shorter-row stereocilia are connected with the shafts of their neighboring taller-row stereocilia through extracellular links named tip links, which gate mechano-electrical transduction (MET) channels in hair cells. Cadherin 23 (CDH23) forms the upper part of tip links, and its cytoplasmic tail is inserted into the so-called upper tip-link density (UTLD) that contains other proteins such as harmonin. The Cdh23 gene is composed of 69 exons, and we show here that exon 68 is subjected to hair cell-specific alternative splicing. Tip-link formation is not affected in genetically modified mutant mice lacking Cdh23 exon 68. Instead, the stability of tip links is compromised in the mutants, which also suffer from progressive and noise-induced hearing loss. Moreover, we show that the cytoplasmic tail of CDH23(+68) but not CDH23(-68) cooperates with harmonin in phase separation-mediated condensate formation. In conclusion, our work provides evidence that inclusion of Cdh23 exon 68 is critical for the stability of tip links through regulating condensate formation of UTLD components.
Collapse
Affiliation(s)
- Nana Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
| | - Shuang Liu
- Chinese Institute for Brain Research, Beijing102206, China
| | - Dange Zhao
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai200030, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
| | - Yuehui Xi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
| | - Xiaoxi Wei
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai200030, China
| | - Qingling Liu
- Chinese Institute for Brain Research, Beijing102206, China
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai200030, China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing102206, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong250014, China
| |
Collapse
|
2
|
Erickson T, Biggers WP, Williams K, Butland SE, Venuto A. Regionalized Protein Localization Domains in the Zebrafish Hair Cell Kinocilium. J Dev Biol 2023; 11:28. [PMID: 37367482 DOI: 10.3390/jdb11020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/05/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Sensory hair cells are the receptors for auditory, vestibular, and lateral line sensory organs in vertebrates. These cells are distinguished by "hair"-like projections from their apical surface collectively known as the hair bundle. Along with the staircase arrangement of the actin-filled stereocilia, the hair bundle features a single, non-motile, true cilium called the kinocilium. The kinocilium plays an important role in bundle development and the mechanics of sensory detection. To understand more about kinocilial development and structure, we performed a transcriptomic analysis of zebrafish hair cells to identify cilia-associated genes that have yet to be characterized in hair cells. In this study, we focused on three such genes-ankef1a, odf3l2a, and saxo2-because human or mouse orthologs are either associated with sensorineural hearing loss or are located near uncharacterized deafness loci. We made transgenic fish that express fluorescently tagged versions of their proteins, demonstrating their localization to the kinocilia of zebrafish hair cells. Furthermore, we found that Ankef1a, Odf3l2a, and Saxo2 exhibit distinct localization patterns along the length of the kinocilium and within the cell body. Lastly, we have reported a novel overexpression phenotype of Saxo2. Overall, these results suggest that the hair cell kinocilium in zebrafish is regionalized along its proximal-distal axis and set the groundwork to understand more about the roles of these kinocilial proteins in hair cells.
Collapse
Affiliation(s)
- Timothy Erickson
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | | | - Kevin Williams
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Shyanne E Butland
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Alexandra Venuto
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
3
|
Sharkova M, Chow E, Erickson T, Hocking JC. The morphological and functional diversity of apical microvilli. J Anat 2023; 242:327-353. [PMID: 36281951 PMCID: PMC9919547 DOI: 10.1111/joa.13781] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Sensory neurons use specialized apical processes to perceive external stimuli and monitor internal body conditions. The apical apparatus can include cilia, microvilli, or both, and is adapted for the functions of the particular cell type. Photoreceptors detect light through a large, modified cilium (outer segment), that is supported by a surrounding ring of microvilli-like calyceal processes (CPs). Although first reported 150 years ago, CPs remain poorly understood. As a basis for future study, we therefore conducted a review of existing literature about sensory cell microvilli, which can act either as the primary sensory detector or as support for a cilia-based detector. While all microvilli are finger-like cellular protrusions with an actin core, the processes vary across cell types in size, number, arrangement, dynamics, and function. We summarize the current state of knowledge about CPs and the characteristics of the microvilli found on inner ear hair cells (stereocilia) and cerebral spinal fluid-contacting neurons, with comparisons to the brush border of the intestinal and renal epithelia. The structure, stability, and dynamics of the actin core are regulated by a complement of actin-binding proteins, which includes both common components and unique features when compared across cell types. Further, microvilli are often supported by lateral links, a glycocalyx, and a defined extracellular matrix, each adapted to the function and environment of the cell. Our comparison of microvillar features will inform further research into how CPs support photoreceptor function, and also provide a general basis for investigations into the structure and functions of apical microvilli found on sensory neurons.
Collapse
Affiliation(s)
- Maria Sharkova
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Erica Chow
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Timothy Erickson
- Department of BiologyUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - Jennifer C. Hocking
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Division of Anatomy, Department of Surgery, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Medical Genetics, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Women and Children's Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
4
|
Romano DR, Hashino E, Nelson RF. Deafness-in-a-dish: modeling hereditary deafness with inner ear organoids. Hum Genet 2022; 141:347-362. [PMID: 34342719 PMCID: PMC9035009 DOI: 10.1007/s00439-021-02325-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/24/2021] [Indexed: 12/27/2022]
Abstract
Sensorineural hearing loss (SNHL) is a major cause of functional disability in both the developed and developing world. While hearing aids and cochlear implants provide significant benefit to many with SNHL, neither targets the cellular and molecular dysfunction that ultimately underlies SNHL. The successful development of more targeted approaches, such as growth factor, stem cell, and gene therapies, will require a yet deeper understanding of the underlying molecular mechanisms of human hearing and deafness. Unfortunately, the human inner ear cannot be biopsied without causing significant, irreversible damage to the hearing or balance organ. Thus, much of our current understanding of the cellular and molecular biology of human deafness, and of the human auditory system more broadly, has been inferred from observational and experimental studies in animal models, each of which has its own advantages and limitations. In 2013, researchers described a protocol for the generation of inner ear organoids from pluripotent stem cells (PSCs), which could serve as scalable, high-fidelity alternatives to animal models. Here, we discuss the advantages and limitations of conventional models of the human auditory system, describe the generation and characteristics of PSC-derived inner ear organoids, and discuss several strategies and recent attempts to model hereditary deafness in vitro. Finally, we suggest and discuss several focus areas for the further, intensive characterization of inner ear organoids and discuss the translational applications of these novel models of the human inner ear.
Collapse
Affiliation(s)
- Daniel R Romano
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, 980 W. Walnut Street, WH-C426C, Indianapolis, IN, 46202, USA
| | - Eri Hashino
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, 980 W. Walnut Street, WH-C426C, Indianapolis, IN, 46202, USA
| | - Rick F Nelson
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, 980 W. Walnut Street, WH-C426C, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Zuo MT, Huang SJ, Wu Y, Tang MH, Yu H, Qi XJ, Liu ZY. A proteomics study of the subacute toxicity of rat brain after long-term exposure of Gelsemium elegans. Curr Mol Pharmacol 2021; 15:794-801. [PMID: 34886788 DOI: 10.2174/1874467214666211209144139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/25/2021] [Accepted: 10/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Gelsemium elegans (G. elegans) has been shown to have strong pharmacological and pharmacodynamic effects in relevant studies both in China and USA. G. elegans has been used as a traditional medicine to treat a variety of diseases and even has the potential to be an alternative to laboratory synthesized drugs. However, its toxicity severely limited its application and development. At present, there is little attention paid to protein changes in toxicity. AIM This study investigated the toxicity effects after long-term exposure of G. elegans of the rat brain through proteomic. METHOD 11 differential abundance proteins were detected, among which 8 proteins were higher in the G. elegans- exposure group than in the control group, including Ig-like domain-containing protein (N/A), receptor-type tyrosine-protein phosphatase C (Ptprc), disheveled segment polarity protein 3 (Dvl3), trafficking protein particle complex 12 (Trappc12), seizure-related 6 homolog-like (Sez6l), transmembrane 9 superfamily member 4 (Tm9sf4), DENN domain-containing protein 5A (Dennd5a) and Tle4, whereas the other 3 proteins do the opposite including Golgi to ER traffic protein 4 (Get4), vacuolar protein sorting 4 homolog B (Vps4b) and cadherin-related 23 (CDH23). Furthermore, we performed validation of WB analysis on the key protein CDH23. RESULT Finally, only fewer proteins and related metabolic pathways were affected, indicating that there was no accumulative toxicity of G. elegans. G. elegans has the potential to develop and utilize of its pharmacological activity. CHD23, however, is a protein associated with hearing. CONCLUSION Whether the hearing impairment is a sequela after G. elegans exposure remains to be further studied.
Collapse
Affiliation(s)
- Meng-Ting Zuo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan. China
| | - Si-Juan Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan. China
| | - Yong Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan. China
| | - Mo-Huan Tang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan. China
| | - Hui Yu
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, Hunan. China
| | - Xue-Jia Qi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan. China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan. China
| |
Collapse
|
6
|
Peineau T, Belleudy S, Pietropaolo S, Bouleau Y, Dulon D. Synaptic Release Potentiation at Aging Auditory Ribbon Synapses. Front Aging Neurosci 2021; 13:756449. [PMID: 34733152 PMCID: PMC8558230 DOI: 10.3389/fnagi.2021.756449] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Age-related hidden hearing loss is often described as a cochlear synaptopathy that results from a progressive degeneration of the inner hair cell (IHC) ribbon synapses. The functional changes occurring at these synapses during aging are not fully understood. Here, we characterized this aging process in IHCs of C57BL/6J mice, a strain which is known to carry a cadherin-23 mutation and experiences early hearing loss with age. These mice, while displaying a large increase in auditory brainstem thresholds due to 50% loss of IHC synaptic ribbons at middle age (postnatal day 365), paradoxically showed enhanced acoustic startle reflex suggesting a hyperacusis-like response. The auditory defect was associated with a large shrinkage of the IHCs' cell body and a drastic enlargement of their remaining presynaptic ribbons which were facing enlarged postsynaptic AMPAR clusters. Presynaptic Ca2+ microdomains and the capacity of IHCs to sustain high rates of exocytosis were largely increased, while on the contrary the expression of the fast-repolarizing BK channels, known to negatively control transmitter release, was decreased. This age-related synaptic plasticity in IHCs suggested a functional potentiation of synaptic transmission at the surviving synapses, a process that could partially compensate the decrease in synapse number and underlie hyperacusis.
Collapse
Affiliation(s)
- Thibault Peineau
- Neurophysiologie de la Synapse Auditive, INSERM UMRS 1120, Bordeaux Neurocampus, Université de Bordeaux, Bordeaux, France.,Institut de l'Audition, Centre Institut Pasteur/Inserm, Paris, France
| | - Séverin Belleudy
- Neurophysiologie de la Synapse Auditive, INSERM UMRS 1120, Bordeaux Neurocampus, Université de Bordeaux, Bordeaux, France
| | | | - Yohan Bouleau
- Neurophysiologie de la Synapse Auditive, INSERM UMRS 1120, Bordeaux Neurocampus, Université de Bordeaux, Bordeaux, France.,Institut de l'Audition, Centre Institut Pasteur/Inserm, Paris, France
| | - Didier Dulon
- Neurophysiologie de la Synapse Auditive, INSERM UMRS 1120, Bordeaux Neurocampus, Université de Bordeaux, Bordeaux, France.,Institut de l'Audition, Centre Institut Pasteur/Inserm, Paris, France
| |
Collapse
|
7
|
Menard-Harvey SS, Watson GM. Rho-family G-proteins are required for the recovery of traumatized hair bundle mechanoreceptors in the sea anemone, Nematostella vectensis. Comp Biochem Physiol A Mol Integr Physiol 2019; 242:110637. [PMID: 31866537 DOI: 10.1016/j.cbpa.2019.110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 11/28/2022]
Abstract
Immersing anemones in calcium-free seawater disorganizes hair bundle mechanoreceptors on tentacles of sea anemones while causing a loss of vibration sensitivity. Remarkably, anemone hair bundles recover after being returned to calcium-containing seawater. Reorganization of actin in stereocilia likely follows during the recovery of normal morphology of hair bundles after such immersion. Previous studies have reported that Rho G-proteins are located in the stereocilia of hair bundles in sea anemones where they participate in polymerizing actin in stereocilia upon activation of specific chemoreceptors. We here find that immersing anemones in calcium-free seawater significantly reduces the abundance of hair bundles. A partial recovery of abundance of hair bundles occurs within 3 h post-immersion, but a full recovery of abundance does not occur even 6 h after specimens are returned to calcium-containing seawater. Anemones recovering from immersion in calcium-free seawater feature hair bundles that are significantly wider at their tips than in controls. The hair bundles subsequently narrow at their tips, becoming comparable to those of untreated controls within 6 h. Stereocilia of hair bundles are significantly longer in experimental animals than in controls at 2 h of recovery before shortening to lengths comparable to untreated controls at 6 h. In the presence of Rho inhibitors, the recovery in abundance of hair bundles through 6 h is delayed or inhibited. Likewise, in the presence of Rho inhibitors, stereocilia fail to significantly elongate within 2 h of recovery. These data suggest that Rho G-proteins participate in the normal recovery of abundance and recovery of normal morphology of experimentally damaged hair bundle mechanoreceptors.
Collapse
Affiliation(s)
- Shelcie S Menard-Harvey
- Department of Biology, University of Louisiana at Lafayette, 410 E. St. Mary Blvd., Lafayette, LA 70504, USA.
| | - Glen M Watson
- Department of Biology, University of Louisiana at Lafayette, 410 E. St. Mary Blvd., Lafayette, LA 70504, USA.
| |
Collapse
|
8
|
Richardson GP, Petit C. Hair-Bundle Links: Genetics as the Gateway to Function. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033142. [PMID: 30617060 DOI: 10.1101/cshperspect.a033142] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Up to five distinct cell-surface specializations interconnect the stereocilia and the kinocilium of the mature hair bundle in some species: kinocilial links, tip links, top connectors, shaft connectors, and ankle links. In developing hair bundles, transient lateral links are prominent. Mutations in genes encoding proteins associated with these links cause Usher deafness/blindness syndrome or nonsyndromic (isolated) forms of human hereditary deafness, and mice with constitutive or conditional alleles of these genes have provided considerable insight into the molecular composition and function of the different links. We describe the structure of these links and review evidence showing CDH23 and PCDH15 are components of the tip, kinocilial, and transient-lateral links, that stereocilin (STRC) and protein tyrosine phosphatase (PTPRQ) are associated with top and shaft connectors, respectively, and that USH2A and ADGRV1 are associated with the ankle links. Whereas tip links are required for mechanoelectrical transduction, all link proteins play key roles in the normal development and/or the maintenance of hair bundle structure and function. Recent crystallographic and single-particle analyses of PCDH15 and CDH23 provide insight as to how the structure of tip link may contribute to the elastic element predicted to lie in series with the hair cell's mechanoelectrical transducer channel.
Collapse
Affiliation(s)
- Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Christine Petit
- Institut Pasteur, 75724 Paris Cedex 15, France.,Collège de France, 75231 Paris Cedex 05, France
| |
Collapse
|
9
|
Singaraju GS, Sagar A, Kumar A, Samuel JS, Hazra JP, Sannigrahi MK, Yennamalli RM, Ashish , Rakshit S. Structural basis of the strong cell-cell junction formed by cadherin-23. FEBS J 2019; 287:2328-2347. [PMID: 31729176 PMCID: PMC7317872 DOI: 10.1111/febs.15141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/13/2019] [Accepted: 11/13/2019] [Indexed: 12/03/2022]
Abstract
Cadherin-23, a giant atypical cadherin, forms homophilic interactions at the cell-cell junction of epithelial cells and heterophilic interactions with protocadherin-15 at the tip-links of neuroepithelial cells. While the molecular structure of the heterodimer is solved, the homodimer structure is yet to be resolved. The homodimers play an essential role in cell-cell adhesion as the downregulation of cadherin-23 in cancers loosen the intercellular junction resulting in faster-migration of cancer cells and a significant drop in patient survival. In vitro studies have measured a stronger aggregation-propensity of cadherin-23 compared to typical E-cadherin. Here, we deciphered the unique trans-homodimer structure of cadherin-23 in solution, and show that it consists of two electrostatic-based interfaces extended up to two terminal domains. The interface is robust, with a low off-rate of ~8x10-4 s-1 that supports its strong aggregation-propensity. We identified a point-mutation, E78K, that disrupts this binding. Interestingly, a mutation at the interface was reported in skin cancer. Overall, the structural basis of the strong cadherin-23 adhesion may have far-reaching applications in the fields of mechanobiology and cancer.
Collapse
Affiliation(s)
- Gayathri S. Singaraju
- Department of Chemical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
| | - Amin Sagar
- Department of Chemical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
| | - Anuj Kumar
- Department of Physical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
| | - Jesse S. Samuel
- Department of Chemical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
| | - Jagadish P. Hazra
- Department of Chemical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
| | - Malay K. Sannigrahi
- Department of Chemical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
| | - Ragothaman M. Yennamalli
- Department of Biotechnology and BioinformaticsJaypee University of Information TechnologyWaknaghatIndia
| | - Ashish
- Institute of Microbial Technology (CSIR)ChandigarhIndia
| | - Sabyasachi Rakshit
- Department of Chemical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
- Centre for Protein Science Design and EngineeringIndian Institute of Science Education and Research MohaliPunjabIndia
| |
Collapse
|
10
|
Alimardani M, Hosseini SM, Khaniani MS, Haghi MR, Eslahi A, Farjami M, Chezgi J, Derakhshan SM, Mojarrad M. Targeted Mutation Analysis of the SLC26A4, MYO6, PJVK and CDH23 Genes in Iranian Patients with AR Nonsyndromic Hearing Loss. Fetal Pediatr Pathol 2019; 38:93-102. [PMID: 30582396 DOI: 10.1080/15513815.2018.1547336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hearing loss (HL) is the most prevalent sensory disorder. The over 100 genes implicated in autosomal recessive nonsyndromic hearing loss (ARNSHL) makes it difficult to analyze and determine the accurate genetic causes of hearing loss. We sought to de?ne the frequency of seven hearing loss-Causing causing genetic Variants in four genes in an Iranian population with hearing loss. MATERIALS AND METHODS One hundred ARNSHL patients with normal GJB2/GJB6 genes were included, and targeted mutations in SLC26A4, MYO6, PJVK and CDH23 genes were analyzed by ARMS-PCR. The negative and positive results were confirmed by the Sanger sequencing. RESULTS We found only two mutations, one in MYO6 (c.554-1 G > A) gene and another in PJVK (c.547C > T). CONCLUSION c.554-1G > A and c.547C > T mutations are responsible for 1% each of the Iranian ARNSHL patients. These genes are not a frequent cause of ARNSHL in an Iranian population.
Collapse
Affiliation(s)
- Maliheh Alimardani
- a Neurosciences Research Center , Tabriz University of Medical Science , Tabriz , Iran.,b Department of Medical Genetics , Tabriz University of Medical Sciences , Tabriz , Iran.,c Student Research Committee, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Seyed Mojtaba Hosseini
- c Student Research Committee, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,d Department of Medical Genetics , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mahmoud Shekari Khaniani
- b Department of Medical Genetics , Tabriz University of Medical Sciences , Tabriz , Iran.,e Ebne Sina Medical Genetic Diagnostic Laboratory , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohsen Rajati Haghi
- f Department of Head and Neck Surgery, ENT Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Atieh Eslahi
- c Student Research Committee, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,d Department of Medical Genetics , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mashsa Farjami
- c Student Research Committee, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,d Department of Medical Genetics , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Javad Chezgi
- c Student Research Committee, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,d Department of Medical Genetics , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Sima Mansoori Derakhshan
- a Neurosciences Research Center , Tabriz University of Medical Science , Tabriz , Iran.,b Department of Medical Genetics , Tabriz University of Medical Sciences , Tabriz , Iran.,e Ebne Sina Medical Genetic Diagnostic Laboratory , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Majid Mojarrad
- d Department of Medical Genetics , Mashhad University of Medical Sciences , Mashhad , Iran.,g Medical Genetics Research Center, School of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
11
|
Liu H, Li G, Lu J, Gao YG, Song L, Li GL, Wu H. Cellular Differences in the Cochlea of CBA and B6 Mice May Underlie Their Difference in Susceptibility to Hearing Loss. Front Cell Neurosci 2019; 13:60. [PMID: 30873008 PMCID: PMC6400987 DOI: 10.3389/fncel.2019.00060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/06/2019] [Indexed: 01/09/2023] Open
Abstract
Hearing is an extremely delicate sense that is particularly vulnerable to insults from environment, including drugs and noise. Unsurprisingly, mice of different genetic backgrounds show different susceptibility to hearing loss. In particular, CBA/CaJ (CBA) mice maintain relatively stable hearing over age while C57BL/6J (B6) mice show a steady decline of hearing, making them a popular model for early onset hearing loss. To reveal possible underlying mechanisms, we examined cellular differences in the cochlea of these two mouse strains. Although the ABR threshold and Wave I latency are comparable between them, B6 mice have a smaller Wave I amplitude. This difference is probably due to fewer spiral ganglion neurons found in B6 mice, as the number of ribbon synapses per inner hair cell (IHC) is comparable between the two mouse strains. Next, we compared the outer hair cell (OHC) function and we found OHCs from B6 mice are larger in size but the prestin density is similar among them, consistent with the finding that they share similar hearing thresholds. Lastly, we examined the IHC function and we found IHCs from B6 mice have a larger Ca2+ current, release more synaptic vesicles and recycle synaptic vesicles more quickly. Taken together, our results suggest that excessive exocytosis from IHCs in B6 mice may raise the probability of glutamate toxicity in ribbon synapses, which could accumulate over time and eventually lead to early onset hearing loss.
Collapse
Affiliation(s)
- Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Gen Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jiawen Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yun-Ge Gao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Geng-Lin Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
12
|
Jaiganesh A, Narui Y, Araya-Secchi R, Sotomayor M. Beyond Cell-Cell Adhesion: Sensational Cadherins for Hearing and Balance. Cold Spring Harb Perspect Biol 2018; 10:a029280. [PMID: 28847902 PMCID: PMC6008173 DOI: 10.1101/cshperspect.a029280] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cadherins form a large family of proteins often involved in calcium-dependent cellular adhesion. Although classical members of the family can provide a physical bond between cells, a subset of special cadherins use their extracellular domains to interlink apical specializations of single epithelial sensory cells. Two of these cadherins, cadherin-23 (CDH23) and protocadherin-15 (PCDH15), form extracellular "tip link" filaments that connect apical bundles of stereocilia on hair cells essential for inner-ear mechanotransduction. As these bundles deflect in response to mechanical stimuli from sound or head movements, tip links gate hair-cell mechanosensitive channels to initiate sensory perception. Here, we review the unusual and diverse structural properties of these tip-link cadherins and the functional significance of their deafness-related missense mutations. Based on the structural features of CDH23 and PCDH15, we discuss the elasticity of tip links and models that bridge the gap between the nanomechanics of cadherins and the micromechanics of hair-cell bundles during inner-ear mechanotransduction.
Collapse
Affiliation(s)
- Avinash Jaiganesh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Yoshie Narui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Raul Araya-Secchi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
13
|
Bouzid A, Smeti I, Chakroun A, Loukil S, Gibriel AA, Grati M, Ghorbel A, Masmoudi S. CDH23 Methylation Status and Presbycusis Risk in Elderly Women. Front Aging Neurosci 2018; 10:241. [PMID: 30131691 PMCID: PMC6090039 DOI: 10.3389/fnagi.2018.00241] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/23/2018] [Indexed: 01/15/2023] Open
Abstract
Introduction: Presbycusis, an age-related hearing impairment (ARHI) disease, is the most common cause for HI in adults worldwide. One of the best candidate genes for ARHI susceptibility is Cadherin 23 (CDH23) which encodes stereocilia tip-links of the inner ear sensory hair cell. Although alterations in the methylation status of CpG dinucleotides across various genes were reported to be associated with HI, methylation changes in CDH23 gene have not been reported previously. Objectives: This study aimed at investigating whether DNA methylation level of CDH23 gene at intragenic CpG island overlapping an exonic-intronic region at position chr10:73565570-73565827 (GRCh37/hg19) could be risk factor associated with ARHI. Materials and Methods: We screened for methylation changes in this particular position for CDH23 gene in 50 blood samples of elderly women affected with presbycusis and healthy control cohort. Methylation of CpG sites were assessed using Quantitative methylation-specific PCR (qMSP) following sodium bisulfite DNA conversion chemistry. Methylation levels were normalized against TSH2B reference gene. Results: DNA methylation analysis for the common CpG islands in CDH23 gene revealed 3.27-folds significant increase (p < 0.0001) in methylation profile for ARHI women as compared to healthy controls with an elevated risk odds ratio (OR) of 2.219 [95% CI 1.071–4.597]. Conclusion: Our study is the first of its kind to prove that higher CpG site methylation levels in CDH23 gene are likely to be associated with ARHI.
Collapse
Affiliation(s)
- Amal Bouzid
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Ibtihel Smeti
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Amine Chakroun
- Department of Otorhinolaryngology, Habib Bourguiba Teaching Hospital, University of Sfax, Sfax, Tunisia.,Unité de Recherche Surdité et Cancer du Cavum, UR12ES21, Faculté de Médecine, Université de Sfax, Sfax, Tunisia
| | - Salma Loukil
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Abdullah Ahmed Gibriel
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Mhamed Grati
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - Abdelmonem Ghorbel
- Department of Otorhinolaryngology, Habib Bourguiba Teaching Hospital, University of Sfax, Sfax, Tunisia.,Unité de Recherche Surdité et Cancer du Cavum, UR12ES21, Faculté de Médecine, Université de Sfax, Sfax, Tunisia
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
| |
Collapse
|
14
|
Jaiganesh A, De-la-Torre P, Patel AA, Termine DJ, Velez-Cortes F, Chen C, Sotomayor M. Zooming in on Cadherin-23: Structural Diversity and Potential Mechanisms of Inherited Deafness. Structure 2018; 26:1210-1225.e4. [PMID: 30033219 DOI: 10.1016/j.str.2018.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/22/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022]
Abstract
Cadherin-23 (CDH23) is an essential component of hair-cell tip links, fine filaments that mediate inner-ear mechanotransduction. The extracellular domain of CDH23 forms about three-fourths of the tip link with 27 extracellular cadherin (EC) repeats that are structurally similar but not identical to each other. Calcium (Ca2+) coordination at the EC linker regions is key for tip-link elasticity and function. There are ∼116 sites in CDH23 affected by deafness-causing mutations, many of which alter conserved Ca2+-binding residues. Here we present crystal structures showing 18 CDH23 EC repeats, including the most and least conserved, a fragment carrying disease mutations, and EC repeats with non-canonical Ca2+-binding motif sequences and unusual secondary structure. Complementary experiments show deafness mutations' effects on stability and affinity for Ca2+. Additionally, a model of nine contiguous CDH23 EC repeats reveals helicity and potential parallel dimerization faces. Overall, our studies provide detailed structural insight into CDH23 function in mechanotransduction.
Collapse
Affiliation(s)
- Avinash Jaiganesh
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Pedro De-la-Torre
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Aniket A Patel
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Domenic J Termine
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Florencia Velez-Cortes
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Conghui Chen
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Michel V, Booth KT, Patni P, Cortese M, Azaiez H, Bahloul A, Kahrizi K, Labbé M, Emptoz A, Lelli A, Dégardin J, Dupont T, Aghaie A, Oficjalska-Pham D, Picaud S, Najmabadi H, Smith RJ, Bowl MR, Brown SD, Avan P, Petit C, El-Amraoui A. CIB2, defective in isolated deafness, is key for auditory hair cell mechanotransduction and survival. EMBO Mol Med 2018; 9:1711-1731. [PMID: 29084757 PMCID: PMC5709726 DOI: 10.15252/emmm.201708087] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Defects of CIB2, calcium‐ and integrin‐binding protein 2, have been reported to cause isolated deafness, DFNB48 and Usher syndrome type‐IJ, characterized by congenital profound deafness, balance defects and blindness. We report here two new nonsense mutations (pGln12* and pTyr110*) in CIB2 patients displaying nonsyndromic profound hearing loss, with no evidence of vestibular or retinal dysfunction. Also, the generated CIB2−/− mice display an early onset profound deafness and have normal balance and retinal functions. In these mice, the mechanoelectrical transduction currents are totally abolished in the auditory hair cells, whilst they remain unchanged in the vestibular hair cells. The hair bundle morphological abnormalities of CIB2−/− mice, unlike those of mice defective for the other five known USH1 proteins, begin only after birth and lead to regression of the stereocilia and rapid hair‐cell death. This essential role of CIB2 in mechanotransduction and cell survival that, we show, is restricted to the cochlea, probably accounts for the presence in CIB2−/− mice and CIB2 patients, unlike in Usher syndrome, of isolated hearing loss without balance and vision deficits.
Collapse
Affiliation(s)
- Vincent Michel
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa.,Department of Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Pranav Patni
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Matteo Cortese
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa
| | - Amel Bahloul
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ménélik Labbé
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Alice Emptoz
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Andrea Lelli
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Julie Dégardin
- Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, Paris, France
| | - Typhaine Dupont
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Asadollah Aghaie
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, Paris, France
| | - Danuta Oficjalska-Pham
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Serge Picaud
- Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, Paris, France
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Richard J Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Oxford, UK
| | | | - Paul Avan
- Laboratoire de Biophysique Sensorielle, Faculté de Médecine, Biophysique Médicale, Centre Jean Perrin, Université d'Auvergne, Clermont-Ferrand, France
| | - Christine Petit
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Collège de France, Paris, France
| | - Aziz El-Amraoui
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France .,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| |
Collapse
|
16
|
Vanniya S P, Srisailapathy CRS, Kunka Mohanram R. The tip link protein Cadherin-23: From Hearing Loss to Cancer. Pharmacol Res 2018; 130:25-35. [PMID: 29421162 DOI: 10.1016/j.phrs.2018.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 11/26/2022]
Abstract
Cadherin-23 is an atypical member of the cadherin superfamily, with a distinctly long extracellular domain. It has been known to be a part of the tip links of the inner ear mechanosensory hair cells. Several studies have been carried out to understand the role of Cadherin-23 in the hearing mechanism and defects in the CDH23 have been associated with hearing impairment resulting from defective or absence of tip links. Recent studies have highlighted the role of Cadherin-23 in several pathological conditions, including cancer, suggesting the presence of several unknown functions. Initially, it was proposed that Cadherin-23 represents a yet unspecified subtype of Cadherins; however, no other proteins with similar characteristics have been identified, till date. It has a unique cytoplasmic domain that does not bear a β-catenin binding region, but has been demonstrated to mediate cell-cell adhesions. Several protein interacting partners have been identified for Cadherin-23 and the roles of their interactions in various cellular mechanisms are yet to be explored. This review summarizes the characteristics of Cadherin-23 and its roles in several pathologies including cancer.
Collapse
Affiliation(s)
- Paridhy Vanniya S
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Science, University of Madras, Taramani campus, Chennai, Tamilnadu, India
| | - C R Srikumari Srisailapathy
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Science, University of Madras, Taramani campus, Chennai, Tamilnadu, India
| | - Ramkumar Kunka Mohanram
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India.
| |
Collapse
|
17
|
Sannigrahi MK, Srinivas S, Rakshit S. The Prospects of Cadherin-23 as a Mediator of Homophilic Cell-Cell Adhesion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:99-105. [PMID: 30637693 DOI: 10.1007/978-981-13-3065-0_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cadherins (calcium-dependent adhesion proteins) constitute a family of cell surface proteins that mediate cell-cell adhesion and actively participate in tissue morphogenesis and in mediating tissue integrity. The ecto-domains of cadherins from opposing cell surfaces interact with each other to form the load-bearing trans-dimers and mechanically hold cells together. The "classical" cadherins and desmosomes that form separate groups in cadherin superfamily are mostly explored for their roles in cell-cell adhesion. However, majority of cadherins in cells belong to "nonclassical" group which is poorly explored in the context of their cell-binding properties. This review focuses on the role of "nonclassical" cadherin, cadherin-23, in cell-cell adhesion. Overall, this review highlights the need for further investigations on the role of "nonclassical" cadherin-23 in cell-cell adhesion.
Collapse
Affiliation(s)
- Malay Kumar Sannigrahi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India
| | - Sai Srinivas
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India.
- Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India.
| |
Collapse
|
18
|
Schietroma C, Parain K, Estivalet A, Aghaie A, Boutet de Monvel J, Picaud S, Sahel JA, Perron M, El-Amraoui A, Petit C. Usher syndrome type 1-associated cadherins shape the photoreceptor outer segment. J Cell Biol 2017; 216:1849-1864. [PMID: 28495838 PMCID: PMC5461027 DOI: 10.1083/jcb.201612030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/26/2017] [Accepted: 03/21/2017] [Indexed: 01/19/2023] Open
Abstract
Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but USH1 protein function in the retina is unclear. Schietroma et al. use Xenopus to model the deficiency in two USH1 proteins—protocadherin-15 and cadherin-23—and identify crucial roles for these molecules in shaping the photoreceptor outer segment. Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis, these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23, encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15–containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal.
Collapse
Affiliation(s)
- Cataldo Schietroma
- Institut Pasteur, Génétique et Physiologie de l'Audition, 75015 Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Karine Parain
- Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Amrit Estivalet
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Asadollah Aghaie
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Jacques Boutet de Monvel
- Institut Pasteur, Génétique et Physiologie de l'Audition, 75015 Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France
| | - Serge Picaud
- Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, 75012 Paris, France
| | - José-Alain Sahel
- Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, 75012 Paris, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, 94405 Orsay, France
| | - Aziz El-Amraoui
- Institut Pasteur, Génétique et Physiologie de l'Audition, 75015 Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France
| | - Christine Petit
- Institut Pasteur, Génétique et Physiologie de l'Audition, 75015 Paris, France .,Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France.,Collège de France, 75005 Paris, France
| |
Collapse
|
19
|
Plasma Membrane Targeting of Protocadherin 15 Is Regulated by the Golgi-Associated Chaperone Protein PIST. Neural Plast 2016; 2016:8580675. [PMID: 27867666 PMCID: PMC5102745 DOI: 10.1155/2016/8580675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/26/2016] [Indexed: 01/12/2023] Open
Abstract
Protocadherin 15 (PCDH15) is a core component of hair cell tip-links and crucial for proper function of inner ear hair cells. Mutations of PCDH15 gene cause syndromic and nonsyndromic hearing loss. At present, the regulatory mechanisms responsible for the intracellular transportation of PCDH15 largely remain unknown. Here we show that PIST, a Golgi-associated, PDZ domain-containing protein, interacts with PCDH15. The interaction is mediated by the PDZ domain of PIST and the C-terminal PDZ domain-binding interface (PBI) of PCDH15. Through this interaction, PIST retains PCDH15 in the trans-Golgi network (TGN) and reduces the membrane expression of PCDH15. We have previously showed that PIST regulates the membrane expression of another tip-link component, cadherin 23 (CDH23). Taken together, our finding suggests that PIST regulates the intracellular trafficking and membrane targeting of the tip-link proteins CDH23 and PCDH15.
Collapse
|
20
|
Takahashi S, Mui VJ, Rosenberg SK, Homma K, Cheatham MA, Zheng J. Cadherin 23-C Regulates Microtubule Networks by Modifying CAMSAP3's Function. Sci Rep 2016; 6:28706. [PMID: 27349180 PMCID: PMC4923861 DOI: 10.1038/srep28706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/08/2016] [Indexed: 02/05/2023] Open
Abstract
Cadherin-related 23 (CDH23) is an adhesive protein important for hearing and vision, while CAMSAP3/Marshalin is a microtubule (MT) minus-end binding protein that regulates MT networks. Although both CDH23 and CAMSAP3/Marshalin are expressed in the organ of Corti, and carry several protein-protein interaction domains, no functional connection between these two proteins has been proposed. In this report, we demonstrate that the C isoform of CDH23 (CDH23-C) directly binds to CAMSAP3/Marshalin and modifies its function by inhibiting CAMSAP3/Marshalin-induced bundle formation, a process that requires a tubulin-binding domain called CKK. We further identified a conserved N-terminal region of CDH23-C that binds to the CKK domain. This CKK binding motif (CBM) is adjacent to the domain that interacts with harmonin, a binding partner of CDH23 implicated in deafness. Because the human Usher Syndrome 1D-associated mutation, CDH23 R3175H, maps to the CBM, we created a matched mutation in mouse CDH23-C at R55H. Both in vivo and in vitro assays decreased the ability of CDH23-C to interact with CAMSAP3/Marshalin, indicating that the interaction between CDH23 and CAMSAP3/Marshalin plays a vital role in hearing and vision. Together, our data suggest that CDH23-C is a CAMSAP3/Marshalin-binding protein that can modify MT networks indirectly through its interaction with CAMSAP3/Marshalin.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Vincent J Mui
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Samuel K Rosenberg
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA.,Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA
| | - Mary Ann Cheatham
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA.,Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA
| | - Jing Zheng
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA.,Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
21
|
Mock BE, Vijayakumar S, Pierce J, Jones TA, Jones SM. Differential effects of Cdh23(753A) on auditory and vestibular functional aging in C57BL/6J mice. Neurobiol Aging 2016; 43:13-22. [PMID: 27255811 DOI: 10.1016/j.neurobiolaging.2016.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/04/2016] [Accepted: 03/13/2016] [Indexed: 11/16/2022]
Abstract
The C57BL/6J (B6) mouse strain carries a cadherin 23 mutation (Cdh23(753A), also known as Ahl), which affects inner ear structures and results in age-related hearing loss. The B6.CAST strain harbors the wild type Cdh23 gene, and hence, the influence of Ahl is absent. The purpose of the present study was to characterize the effect of age and gender on gravity receptor function in B6 and B6.CAST strains and to compare functional aging between auditory and vestibular modalities. Auditory sensitivity declined at significantly faster rates than gravity receptor sensitivity for both strains. Indeed, vestibular functional aging was minimal for both strains. The comparatively smaller loss of macular versus cochlear sensitivity in both the B6 and B6.CAST strains suggests that the contribution of Ahl to the aging of the vestibular system is minimal, and thus very different than its influence on aging of the auditory system. Alternatively, there exist unidentified genes or gene modifiers that serve to slow the degeneration of gravity receptor structures and maintain gravity receptor sensitivity into advanced age.
Collapse
Affiliation(s)
- Bruce E Mock
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, USA
| | - Sarath Vijayakumar
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, USA
| | - Jessica Pierce
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, USA
| | - Timothy A Jones
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, USA
| | - Sherri M Jones
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
22
|
Miyasaka Y, Shitara H, Suzuki S, Yoshimoto S, Seki Y, Ohshiba Y, Okumura K, Taya C, Tokano H, Kitamura K, Takada T, Hibino H, Shiroishi T, Kominami R, Yonekawa H, Kikkawa Y. Heterozygous mutation of Ush1g/Sans in mice causes early-onset progressive hearing loss, which is recovered by reconstituting the strain-specific mutation in Cdh23. Hum Mol Genet 2016; 25:2045-2059. [PMID: 26936824 DOI: 10.1093/hmg/ddw078] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/29/2016] [Indexed: 12/21/2022] Open
Abstract
Most clinical reports have suggested that patients with congenital profound hearing loss have recessive mutations in deafness genes, whereas dominant alleles are associated with progressive hearing loss (PHL). Jackson shaker (Ush1gjs) is a mouse model of recessive deafness that exhibits congenital profound deafness caused by the homozygous mutation of Ush1g/Sans on chromosome 11. We found that C57BL/6J-Ush1gjs/+ heterozygous mice exhibited early-onset PHL (ePHL) accompanied by progressive degeneration of stereocilia in the cochlear outer hair cells. Interestingly, ePHL did not develop in mutant mice with the C3H/HeN background, thus suggesting that other genetic factors are required for ePHL development. Therefore, we performed classical genetic analyses and found that the occurrence of ePHL in Ush1gjs/+ mice was associated with an interval in chromosome 10 that contains the cadherin 23 gene (Cdh23), which is also responsible for human deafness. To confirm this mutation effect, we generated C57BL/6J-Ush1gjs/+, Cdh23c.753A/G double-heterozygous mice by using the CRISPR/Cas9-mediated Cdh23c.753A>G knock-in method. The Cdh23c.753A/G mice harbored a one-base substitution (A for G), and the homozygous A allele caused moderate hearing loss with aging. Analyses revealed the complete recovery of ePHL and stereocilia degeneration in C57BL/6J-Ush1gjs/+ mice. These results clearly show that the development of ePHL requires at least two mutant alleles of the Ush1g and Cdh23 genes. Our results also suggest that because the SANS and CDH23 proteins form a complex in the stereocilia, the interaction between these proteins may play key roles in the maintenance of stereocilia and the prevention of ePHL.
Collapse
Affiliation(s)
- Yuki Miyasaka
- Mammalian Genetics Project, Graduate School of Medical and Dental Sciences
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | - Sachi Yoshimoto
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | - Yasuhiro Ohshiba
- Mammalian Genetics Project, Graduate School of Medical and Dental Sciences
| | - Kazuhiro Okumura
- Division of Oncogenomics, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba 260-0801, Japan
| | - Choji Taya
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Hisashi Tokano
- Department of Otolaryngology, Tokyo Medical and Dental University, Tokyo 113-0034, Japan and
| | - Ken Kitamura
- Department of Otolaryngology, Tokyo Medical and Dental University, Tokyo 113-0034, Japan and
| | - Toyoyuki Takada
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Toshihiko Shiroishi
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | | | - Hiromichi Yonekawa
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Graduate School of Medical and Dental Sciences,
| |
Collapse
|
23
|
Transcriptional analysis of the dachsous gene uncovers novel isoforms expressed during development in Drosophila. FEBS Lett 2015; 589:3595-603. [PMID: 26497083 DOI: 10.1016/j.febslet.2015.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/27/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022]
Abstract
The Drosophila cadherin-related protein Dachsous (Ds) plays a prominent role in planar cell polarity (PCP) and growth. The regulation of these two processes is based on the interaction between Ds and Fat proteins, generating an intracellular response required for tissue polarization and modulation of Hippo pathway activity. Here we have performed a comprehensive molecular study of the ds gene during larval development that has shown an unexpected complexity in its transcriptional regulation and revealed the expression of hitherto unsuspected transcripts. Also, knockdown of several isoforms provides new evidence on the importance of the cytoplasmic domain in the mechanism of action of Ds during development.
Collapse
|
24
|
Abstract
Epithelial cells from diverse tissues, including the enterocytes that line the intestinal tract, remodel their apical surface during differentiation to form a brush border: an array of actin-supported membrane protrusions known as microvilli that increases the functional capacity of the tissue. Although our understanding of how epithelial cells assemble, stabilize, and organize apical microvilli is still developing, investigations of the biochemical and physical underpinnings of these processes suggest that cells coordinate cytoskeletal remodeling, membrane-cytoskeleton cross-linking, and extracellular adhesion to shape the apical brush border domain.
Collapse
Affiliation(s)
- Scott W Crawley
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mark S Mooseker
- Department of Molecular, Cellular and Developmental Biology, Department of Cell Biology, and Department of Pathology, Yale University, New Haven, CT 06520 Department of Molecular, Cellular and Developmental Biology, Department of Cell Biology, and Department of Pathology, Yale University, New Haven, CT 06520 Department of Molecular, Cellular and Developmental Biology, Department of Cell Biology, and Department of Pathology, Yale University, New Haven, CT 06520
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
25
|
Kawashima Y, Kurima K, Pan B, Griffith AJ, Holt JR. Transmembrane channel-like (TMC) genes are required for auditory and vestibular mechanosensation. Pflugers Arch 2015; 467:85-94. [PMID: 25074487 PMCID: PMC4282624 DOI: 10.1007/s00424-014-1582-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 12/19/2022]
Abstract
Mutations of the transmembrane channel-like 1 (TMC1) gene can cause dominant and recessive forms of deafness in humans and mice. TMC1 is one of eight mammalian TMC genes of unknown function. The multi-pass transmembrane topologic structure of the proteins they encode suggests roles as a receptor, transporter, channel, or pump. Tmc1 and the closely related Tmc2 gene are expressed in neurosensory hair cells of the auditory and vestibular end organs of the mouse inner ear. Recent studies have demonstrated that Tmc1 and Tmc2 are specifically required for mechanoelectrical transduction in hair cells. The exact role of these proteins in mechanoelectrical transduction is unknown. TMC1 and TMC2 are viable candidates for the mechanoelectrical transduction channel of hair cells, whose component molecules have eluded identification for over 30 years. We expect that studies of TMC proteins will yield insights into molecular components and mechanisms of mechanosensation in auditory and vestibular hair cells, as well as in other tissues and organs.
Collapse
Affiliation(s)
- Yoshiyuki Kawashima
- Department of Otolaryngology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Kiyoto Kurima
- Molecular Biology and Genetics Section, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Bifeng Pan
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J. Griffith
- Molecular Biology and Genetics Section, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Jeffrey R. Holt
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
26
|
Xiong W, Wagner T, Yan L, Grillet N, Müller U. Using injectoporation to deliver genes to mechanosensory hair cells. Nat Protoc 2014; 9:2438-49. [PMID: 25232939 PMCID: PMC4241755 DOI: 10.1038/nprot.2014.168] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mechanosensation, the transduction of mechanical force into electrochemical signals, allows organisms to detect touch and sound, to register movement and gravity, and to sense changes in cell volume and shape. The hair cells of the mammalian inner ear are the mechanosensors for the detection of sound and head movement. The analysis of gene function in hair cells has been hampered by the lack of an efficient gene transfer method. Here we describe a method termed injectoporation that combines tissue microinjection with electroporation to express cDNAs and shRNAs in mouse cochlear hair cells. Injectoporation allows for gene transfer into dozens of hair cells, and it is compatible with the analysis of hair cell function using imaging approaches and electrophysiology. Tissue dissection and injectoporation can be carried out within a few hours, and the tissue can be cultured for days for subsequent functional analyses.
Collapse
Affiliation(s)
- Wei Xiong
- 1] Department of Molecular and Cellular Neuroscience, The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, USA. [2]
| | - Thomas Wagner
- Department of Molecular and Cellular Neuroscience, The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, USA
| | - Linxuan Yan
- Department of Molecular and Cellular Neuroscience, The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, USA
| | - Nicolas Grillet
- 1] Department of Molecular and Cellular Neuroscience, The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, USA. [2]
| | - Ulrich Müller
- Department of Molecular and Cellular Neuroscience, The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
27
|
Miyasaka Y, Suzuki S, Ohshiba Y, Watanabe K, Sagara Y, Yasuda SP, Matsuoka K, Shitara H, Yonekawa H, Kominami R, Kikkawa Y. Compound heterozygosity of the functionally null Cdh23(v-ngt) and hypomorphic Cdh23(ahl) alleles leads to early-onset progressive hearing loss in mice. Exp Anim 2014; 62:333-46. [PMID: 24172198 PMCID: PMC4160959 DOI: 10.1538/expanim.62.333] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The waltzer (v) mouse mutant harbors a mutation in Cadherin 23
(Cdh23) and is a model for Usher syndrome type 1D, which is
characterized by congenital deafness, vestibular dysfunction, and prepubertal onset of
progressive retinitis pigmentosa. In mice, functionally null Cdh23
mutations affect stereociliary morphogenesis and the polarity of both cochlear and
vestibular hair cells. In contrast, the murine Cdh23ahl
allele, which harbors a hypomorphic mutation, causes an increase in susceptibility to
age-related hearing loss in many inbred strains. We produced congenic mice by crossing
mice carrying the v niigata (Cdh23v-ngt) null
allele with mice carrying the hypomorphic Cdh23ahl allele on
the C57BL/6J background, and we then analyzed the animals’ balance and hearing phenotypes.
Although the
Cdh23v-ngt/ahl
compound heterozygous mice exhibited normal vestibular function, their hearing ability was
abnormal: the mice exhibited higher thresholds of auditory brainstem response (ABR) and
rapid age-dependent elevation of ABR thresholds compared with
Cdh23ahl/ahl
homozygous mice. We found that the stereocilia developed normally but were progressively
disrupted in
Cdh23v-ngt/ahl mice.
In hair cells, CDH23 localizes to the tip links of stereocilia, which are thought to gate
the mechanoelectrical transduction channels in hair cells. We hypothesize that the
reduction of Cdh23 gene dosage in
Cdh23v-ngt/ahl mice
leads to the degeneration of stereocilia, which consequently reduces tip link tension.
These findings indicate that CDH23 plays an important role in the maintenance of tip links
during the aging process.
Collapse
Affiliation(s)
- Yuki Miyasaka
- Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Blanco-Sánchez B, Clément A, Fierro J, Washbourne P, Westerfield M. Complexes of Usher proteins preassemble at the endoplasmic reticulum and are required for trafficking and ER homeostasis. Dis Model Mech 2014; 7:547-59. [PMID: 24626987 PMCID: PMC4007406 DOI: 10.1242/dmm.014068] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Usher syndrome (USH), the leading cause of hereditary combined hearing and vision loss, is characterized by sensorineural deafness and progressive retinal degeneration. Mutations in several different genes produce USH, but the proximal cause of sensory cell death remains mysterious. We adapted a proximity ligation assay to analyze associations among three of the USH proteins, Cdh23, Harmonin and Myo7aa, and the microtubule-based transporter Ift88 in zebrafish inner ear mechanosensory hair cells. We found that the proteins are in close enough proximity to form complexes and that these complexes preassemble at the endoplasmic reticulum (ER). Defects in any one of the three USH proteins disrupt formation and trafficking of the complex and result in diminished levels of the other proteins, generalized trafficking defects and ER stress that triggers apoptosis. ER stress, thus, contributes to sensory hair cell loss and provides a new target to explore for protective therapies for USH.
Collapse
|
29
|
Abstract
The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome.
Collapse
|
30
|
Zheng J, Furness D, Duan C, Miller KK, Edge RM, Chen J, Homma K, Hackney CM, Dallos P, Cheatham MA. Marshalin, a microtubule minus-end binding protein, regulates cytoskeletal structure in the organ of Corti. Biol Open 2013; 2:1192-202. [PMID: 24244856 PMCID: PMC3828766 DOI: 10.1242/bio.20135603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/01/2013] [Indexed: 12/30/2022] Open
Abstract
Dramatic structural changes in microtubules (MT) and the assembly of complicated intercellular connections are seen during the development of the cellular matrix of the sense organ for hearing, the organ of Corti. This report examines the expression of marshalin, a minus-end binding protein, during this process of cochlear development. We discovered that marshalin is abundantly expressed in both sensory hair cells and supporting cells. In the adult, prominent marshalin expression is observed in the cuticular plates of hair cells and in the noncentrosomal MT organization centers (MTOC) of Deiters' and pillar cells. Based upon differences in marshalin expression patterns seen in the organ of Corti, we identified eight isoforms ranging from 863 to 1280 amino acids. mRNAs/proteins associated with marshalin's isoforms are detected at different times during development. These isoforms carry various protein-protein interacting domains, including coiled-coil (CC), calponin homology (CH), proline-rich (PR), and MT-binding domains, referred to as CKK. We, therefore, examined membranous organelles and structural changes in the cytoskeleton induced by expressing two of these marshalin isoforms in vitro. Long forms containing CC and PR domains induce thick, spindle-shaped bundles, whereas short isoforms lacking CC and PR induce more slender variants that develop into densely woven networks. Together, these data suggest that marshalin is closely associated with noncentrosomal MTOCs, and may be involved in MT bundle formation in supporting cells. As a scaffolding protein with multiple isoforms, marshalin is capable of modifying cytoskeletal networks, and consequently organelle positioning, through interactions with various protein partners present in different cells.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University , Chicago, IL 60611 , USA ; Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University , Evanston, IL 60208 , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chonko KT, Jahan I, Stone J, Wright MC, Fujiyama T, Hoshino M, Fritzsch B, Maricich SM. Atoh1 directs hair cell differentiation and survival in the late embryonic mouse inner ear. Dev Biol 2013; 381:401-10. [PMID: 23796904 DOI: 10.1016/j.ydbio.2013.06.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 11/17/2022]
Abstract
Atoh1 function is required for the earliest stages of inner ear hair cell development, which begins during the second week of gestation. Atoh1 expression in developing hair cells continues until early postnatal ages, but the function of this late expression is unknown. To test the role of continued Atoh1 expression in hair cell maturation we conditionally deleted the gene in the inner ear at various embryonic and postnatal ages. In the organ of Corti, deletion of Atoh1 at E15.5 led to the death of all hair cells. In contrast, deletion at E16.5 caused death only in apical regions, but abnormalities of stereocilia formation were present throughout the cochlea. In the utricle, deletion at E14.5 or E16.5 did not cause cell death but led to decreased expression of myosin VIIa and failure of stereocilia formation. Furthermore, we show that maintained expression of Barhl1 and Gfi1, two transcription factors implicated in cochlear hair cell survival, depends upon continued Atoh1 expression. However, maintained expression of Pou4f3 and several hair cell-specific markers is independent of Atoh1 expression. These data reveal novel late roles for Atoh1 that are separable from its initial role in hair cell development.
Collapse
Affiliation(s)
- Kurt T Chonko
- Department of Developmental Biology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15090, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Indzhykulian AA, Stepanyan R, Nelina A, Spinelli KJ, Ahmed ZM, Belyantseva IA, Friedman TB, Barr-Gillespie PG, Frolenkov GI. Molecular remodeling of tip links underlies mechanosensory regeneration in auditory hair cells. PLoS Biol 2013; 11:e1001583. [PMID: 23776407 PMCID: PMC3679001 DOI: 10.1371/journal.pbio.1001583] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/02/2013] [Indexed: 11/18/2022] Open
Abstract
Sound detection by inner ear hair cells requires tip links that interconnect mechanosensory stereocilia and convey force to yet unidentified transduction channels. Current models postulate a static composition of the tip link, with protocadherin 15 (PCDH15) at the lower and cadherin 23 (CDH23) at the upper end of the link. In terminally differentiated mammalian auditory hair cells, tip links are subjected to sound-induced forces throughout an organism's life. Although hair cells can regenerate disrupted tip links and restore hearing, the molecular details of this process are unknown. We developed a novel implementation of backscatter electron scanning microscopy to visualize simultaneously immuno-gold particles and stereocilia links, both of only a few nanometers in diameter. We show that functional, mechanotransduction-mediating tip links have at least two molecular compositions, containing either PCDH15/CDH23 or PCDH15/PCDH15. During regeneration, shorter tip links containing nearly equal amounts of PCDH15 at both ends appear first. Whole-cell patch-clamp recordings demonstrate that these transient PCDH15/PCDH15 links mediate mechanotransduction currents of normal amplitude but abnormal Ca(2+)-dependent decay (adaptation). The mature PCDH15/CDH23 tip link composition is re-established later, concomitant with complete recovery of adaptation. Thus, our findings provide a molecular mechanism for regeneration and maintenance of mechanosensory function in postmitotic auditory hair cells and could help identify elusive components of the mechanotransduction machinery.
Collapse
Affiliation(s)
- Artur A. Indzhykulian
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ruben Stepanyan
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Anastasiia Nelina
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kateri J. Spinelli
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Zubair M. Ahmed
- Division of Pediatric Ophthalmology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Peter G. Barr-Gillespie
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Gregory I. Frolenkov
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
33
|
Xiong W, Grillet N, Elledge HM, Wagner TFJ, Zhao B, Johnson KR, Kazmierczak P, Müller U. TMHS is an integral component of the mechanotransduction machinery of cochlear hair cells. Cell 2013; 151:1283-95. [PMID: 23217710 DOI: 10.1016/j.cell.2012.10.041] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/28/2012] [Accepted: 10/23/2012] [Indexed: 01/02/2023]
Abstract
Hair cells are mechanosensors for the perception of sound, acceleration, and fluid motion. Mechanotransduction channels in hair cells are gated by tip links, which connect the stereocilia of a hair cell in the direction of their mechanical sensitivity. The molecular constituents of the mechanotransduction channels of hair cells are not known. Here, we show that mechanotransduction is impaired in mice lacking the tetraspan TMHS. TMHS binds to the tip-link component PCDH15 and regulates tip-link assembly, a process that is disrupted by deafness-causing Tmhs mutations. TMHS also regulates transducer channel conductance and is required for fast channel adaptation. TMHS therefore resembles other ion channel regulatory subunits such as the transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor regulatory proteins (TARPs) of AMPA receptors that facilitate channel transport and regulate the properties of pore-forming channel subunits. We conclude that TMHS is an integral component of the hair cell's mechanotransduction machinery that functionally couples PCDH15 to the transduction channel.
Collapse
Affiliation(s)
- Wei Xiong
- The Dorris Neuroscience Center, Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Integrity and regeneration of mechanotransduction machinery regulate aminoglycoside entry and sensory cell death. PLoS One 2013; 8:e54794. [PMID: 23359017 PMCID: PMC3554584 DOI: 10.1371/journal.pone.0054794] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/14/2012] [Indexed: 12/04/2022] Open
Abstract
Sound perception requires functional hair cell mechanotransduction (MET) machinery, including the MET channels and tip-link proteins. Prior work showed that uptake of ototoxic aminoglycosides (AG) into hair cells requires functional MET channels. In this study, we examined whether tip-link proteins, including Cadherin 23 (Cdh23), regulate AG entry into hair cells. Using time-lapse microscopy on cochlear explants, we found rapid uptake of gentamicin-conjugated Texas Red (GTTR) into hair cells from three-day-old Cdh23+/+ and Cdh23v2J/+ mice, but failed to detect GTTR uptake in Cdh23v2J/v2J hair cells. Pre-treatment of wildtype cochleae with the calcium chelator 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA) to disrupt tip-links also effectively reduced GTTR uptake into hair cells. Both Cdh23v2J/v2J and BAPTA-treated hair cells were protected from degeneration caused by gentamicin. Six hours after BAPTA treatment, GTTR uptake remained reduced in comparison to controls; by 24 hours, drug uptake was comparable between untreated and BAPTA-treated hair cells, which again became susceptible to cell death induced by gentamicin. Together, these results provide genetic and pharmacologic evidence that tip-links are required for AG uptake and toxicity in hair cells. Because tip-links can spontaneously regenerate, their temporary breakage offers a limited time window when hair cells are protected from AG toxicity.
Collapse
|
35
|
Sahly I, Dufour E, Schietroma C, Michel V, Bahloul A, Perfettini I, Pepermans E, Estivalet A, Carette D, Aghaie A, Ebermann I, Lelli A, Iribarne M, Hardelin JP, Weil D, Sahel JA, El-Amraoui A, Petit C. Localization of Usher 1 proteins to the photoreceptor calyceal processes, which are absent from mice. ACTA ACUST UNITED AC 2012; 199:381-99. [PMID: 23045546 PMCID: PMC3471240 DOI: 10.1083/jcb.201202012] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms underlying retinal dystrophy in Usher syndrome type I (USH1) remain unknown because mutant mice lacking any of the USH1 proteins-myosin VIIa, harmonin, cadherin-23, protocadherin-15, sans-do not display retinal degeneration. We found here that, in macaque photoreceptor cells, all USH1 proteins colocalized at membrane interfaces (i) between the inner and outer segments in rods and (ii) between the microvillus-like calyceal processes and the outer segment basolateral region in rods and cones. This pattern, conserved in humans and frogs, was mediated by the formation of an USH1 protein network, which was associated with the calyceal processes from the early embryonic stages of outer segment growth onwards. By contrast, mouse photoreceptors lacked calyceal processes and had no USH1 proteins at the inner-outer segment interface. We suggest that USH1 proteins form an adhesion belt around the basolateral region of the photoreceptor outer segment in humans, and that defects in this structure cause the retinal degeneration in USH1 patients.
Collapse
Affiliation(s)
- Iman Sahly
- Institut de la vision, Syndrome de Usher et autres Atteintes Rétino-Cochléaires, 75012 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wu L, Pan L, Zhang C, Zhang M. Large protein assemblies formed by multivalent interactions between cadherin23 and harmonin suggest a stable anchorage structure at the tip link of stereocilia. J Biol Chem 2012; 287:33460-71. [PMID: 22879593 PMCID: PMC3460447 DOI: 10.1074/jbc.m112.378505] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/03/2012] [Indexed: 11/06/2022] Open
Abstract
Stereocilia tip links of inner ear hair cells are subjected to constant stretching during hair-bundle deflection, and accordingly are well designed to prevent from being broken by mechanical tensions. The roots of tip links, which couple tip links with the cytoskeleton, supposedly play important roles in withstanding large forces under stimulated conditions. The upper root of the tip link is mainly formed by the cytoplasmic tail of cadherin23 and its actin-anchoring protein harmonin. However, the detailed organization mode of the two proteins that gives rise to a strong upper root remains unclear. Here we show that the exon68-encoded peptide of cadherin23 can either interact with the N-terminal domain (NTD) of harmonin or form a homodimer. We demonstrate that the three harmonin binding sites of cadherin23, namely the NTD-binding motif, the exon68 peptide, and the C-terminal PDZ binding motif, do not synergize with each other in binding to harmonin, instead they facilitate formation of polymeric cadherin23/harmonin complexes. The exon68 peptide can promote the cadherin23/harmonin polymer formation via either binding to harmonin NTD or self-dimerization. We propose that the polymeric cadherin23/harmonin complex formed beneath the upper tip link membranes may serve as part of the stable rootlet structure for anchoring the tip links of stereocilia.
Collapse
Affiliation(s)
- Lin Wu
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience
| | - Lifeng Pan
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience
| | - Chuchu Zhang
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience
| | - Mingjie Zhang
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience
- Center of Systems Biology and Human Health, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
37
|
Kikkawa Y, Seki Y, Okumura K, Ohshiba Y, Miyasaka Y, Suzuki S, Ozaki M, Matsuoka K, Noguchi Y, Yonekawa H. Advantages of a mouse model for human hearing impairment. Exp Anim 2012; 61:85-98. [PMID: 22531723 DOI: 10.1538/expanim.61.85] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Hearing is a major factor in human quality of life. Mouse models are important tools for discovering the genes that are responsible for genetic hearing loss, and these models often allow the processes that regulate the onset of deafness in humans to be analyzed. Thus far, in the study of hearing and deafness, at least 400 mutants with hearing impairments have been identified in laboratory mouse populations. Analysis of through a combination of genetic, morphological, and physiological studies is revealing valuable insights into the ontogenesis, morphogenesis, and function of the mammalian ear. This review discusses the advantages of the mouse models of human hearing impairment and highlights the identification of the molecules required for stereocilia development in the inner ear hair cells by analysis of various mouse mutants.
Collapse
Affiliation(s)
- Yoshiaki Kikkawa
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Cadherins are Ca(2+)-dependent cell-cell adhesion molecules that play critical roles in animal morphogenesis. Various cadherin-related molecules have also been identified, which show diverse functions, not only for the regulation of cell adhesion but also for that of cell proliferation and planar cell polarity. During the past decade, understanding of the roles of these molecules in the nervous system has significantly progressed. They are important not only for the development of the nervous system but also for its functions and, in turn, for neural disorders. In this review, we discuss the roles of cadherins and related molecules in neural development and function in the vertebrate brain.
Collapse
Affiliation(s)
- Shinji Hirano
- Department of Neurobiology and Anatomy, Kochi Medical School, Okoh-cho Kohasu, Nankoku-City 783–8505, Japan.
| | | |
Collapse
|
39
|
Lu MH, Takemoto M, Watanabe K, Luo H, Nishimura M, Yano M, Tomimoto H, Okazaki T, Oike Y, Song WJ. Deficiency of sphingomyelin synthase-1 but not sphingomyelin synthase-2 causes hearing impairments in mice. J Physiol 2012; 590:4029-44. [PMID: 22641779 DOI: 10.1113/jphysiol.2012.235846] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sphingomyelin (SM) is a sphingolipid reported to function as a structural component of plasma membranes and to participate in signal transduction. The role of SM metabolism in the process of hearing remains controversial. Here, we examined the role of SM synthase (SMS), which is subcategorized into the family members SMS1 and SMS2, in auditory function. Measurements of auditory brainstem response (ABR) revealed hearing impairment in SMS1−/− mice in a low frequency range (4–16 kHz). As a possible mechanism of this impairment, we found that the stria vascularis (SV) in these mice exhibited atrophy and disorganized marginal cells. Consequently, SMS1−/− mice exhibited significantly smaller endocochlear potentials (EPs). As a possible mechanism for EP reduction, we found altered expression patterns and a reduced level of KCNQ1 channel protein in the SV of SMS1−/− mice. These mice also exhibited reduced levels of distortion product otoacoustic emissions. Quantitative comparison of the SV atrophy, KCNQ1 expression, and outer hair cell density at the cochlear apical and basal turns revealed no location dependence, but more macrophage invasion into the SV was observed in the apical region than the basal region, suggesting a role of cochlear location-dependent oxidative stress in producing the frequency dependence of hearing loss in SMS1−/− mice. Elevated ABR thresholds, decreased EPs, and abnormal KCNQ1 expression patterns in SMS1−/− mice were all found to be progressive with age. Mice lacking SMS2, however, exhibited neither detectable hearing loss nor changes in their EPs. Taken together, our results suggest that hearing impairments occur in SMS1−/− but not SMS2−/− mice. Defects in the SV with subsequent reductions in EPs together with hair cell dysfunction may account, at least partially, for hearing impairments in SMS1−/− mice.
Collapse
Affiliation(s)
- Mei-Hong Lu
- Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pan L, Zhang M. Structures of usher syndrome 1 proteins and their complexes. Physiology (Bethesda) 2012; 27:25-42. [PMID: 22311968 DOI: 10.1152/physiol.00037.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Usher syndrome 1 (USH1) is the most common and severe form of hereditary loss of hearing and vision. Genetic, physiological, and cell biological studies, together with recent structural investigations, have not only uncovered the physiological functions of the five USH1 proteins but also provided mechanistic explanations for the hearing and visual deficiencies in humans caused by USH1 mutations. This review focuses on the structural basis of the USH1 protein complex organization.
Collapse
Affiliation(s)
- Lifeng Pan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|
41
|
Apostolopoulou M, Ligon L. Cadherin-23 mediates heterotypic cell-cell adhesion between breast cancer epithelial cells and fibroblasts. PLoS One 2012; 7:e33289. [PMID: 22413011 PMCID: PMC3296689 DOI: 10.1371/journal.pone.0033289] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/13/2012] [Indexed: 12/31/2022] Open
Abstract
In the early stages of breast cancer metastasis, epithelial cells penetrate the basement membrane and invade the surrounding stroma, where they encounter fibroblasts. Paracrine signaling between fibroblasts and epithelial tumor cells contributes to the metastatic cascade, but little is known about the role of adhesive contacts between these two cell types in metastasis. Here we show that MCF-7 breast cancer epithelial cells and normal breast fibroblasts form heterotypic adhesions when grown together in co-culture, as evidenced by adhesion assays. PCR and immunoblotting show that both cell types express multiple members of the cadherin superfamily, including the atypical cadherin, cadherin-23, when grown in isolation and in co-culture. Immunocytochemistry experiments show that cadherin-23 localizes to homotypic adhesions between MCF-7 cells and also to heterotypic adhesions between the epithelial cells and fibroblasts, and antibody inhibition and RNAi experiments show that cadherin-23 plays a role in mediating these adhesive interactions. Finally, we show that cadherin-23 is upregulated in breast cancer tissue samples, and we hypothesize that heterotypic adhesions mediated by this atypical cadherin may play a role in the early stages of metastasis.
Collapse
Affiliation(s)
- Maria Apostolopoulou
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | | |
Collapse
|
42
|
Zallocchi M, Meehan DT, Delimont D, Rutledge J, Gratton MA, Flannery J, Cosgrove D. Role for a novel Usher protein complex in hair cell synaptic maturation. PLoS One 2012; 7:e30573. [PMID: 22363448 PMCID: PMC3281840 DOI: 10.1371/journal.pone.0030573] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 12/22/2011] [Indexed: 12/22/2022] Open
Abstract
The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23), protocadherin-15 (PCDH15) and the very large G-protein coupled receptor 1 (VLGR1) have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1−/− mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzerav3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well.
Collapse
Affiliation(s)
- Marisa Zallocchi
- Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Daniel T. Meehan
- Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Duane Delimont
- Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Joseph Rutledge
- Otolaryngology-Head, Neck Surgery, St Louis University, St Louis, Missouri, United States of America
| | - Michael Anne Gratton
- Otolaryngology-Head, Neck Surgery, St Louis University, St Louis, Missouri, United States of America
| | - John Flannery
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Dominic Cosgrove
- Boys Town National Research Hospital, Omaha, Nebraska, United States of America
- University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
43
|
|
44
|
Chatterjee S, Lufkin T. The sound of silence: mouse models for hearing loss. GENETICS RESEARCH INTERNATIONAL 2011; 2011:416450. [PMID: 22567353 PMCID: PMC3335620 DOI: 10.4061/2011/416450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/10/2011] [Indexed: 01/27/2023]
Abstract
Sensorineural hearing loss is one of the most common disabilities in humans. It is estimated that about 278 million people worldwide have slight to extreme hearing loss in both ears, which results in an economic loss for the country and personal loss for the individual. It is thus critical to have a deeper understanding of the causes for hearing loss to better manage and treat the affected individuals. The mouse serves as an excellent model to study and recapitulate some of these phenotypes, identify new genes which cause deafness, and to study their roles in vivo and in detail. Mutant mice have been instrumental in elucidating the function and mechanisms of the inner ear. The development and morphogenesis of the inner ear from an ectodermal layer into distinct auditory and vestibular components depends on well-coordinated gene expression and well-orchestrated signaling cascades within the otic vesicle and interactions with surrounding layers of tissues. Any disruption in these pathways can lead to hearing impairment. This review takes a look at some of the genes and their corresponding mice mutants that have shed light on the mechanism governing hearing impairment (HI) in humans.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Stem Cell and Developmental Biology, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672
| | | |
Collapse
|
45
|
Manji SSM, Miller KA, Williams LH, Andreasen L, Siboe M, Rose E, Bahlo M, Kuiper M, Dahl HHM. An ENU-induced mutation of Cdh23 causes congenital hearing loss, but no vestibular dysfunction, in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:903-14. [PMID: 21689626 DOI: 10.1016/j.ajpath.2011.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 03/29/2011] [Accepted: 04/25/2011] [Indexed: 11/29/2022]
Abstract
Mutations in the human cadherin 23 (CDH23) gene cause deafness, neurosensory, autosomal recessive 12 (DFNB12) nonsyndromic hearing loss or Usher syndrome, type 1D (characterized by hearing impairment, vestibular dysfunction, and visual impairment). Reported waltzer mouse strains each harbor a Cdh23-null mutation and present with hearing loss and vestibular dysfunction. Two additional Cdh23 mouse mutants, salsa and erlong, each carry a homozygous Cdh23 missense mutation and have progressive hearing loss. We report the identification of a novel mouse strain, jera, with inherited hearing loss caused by an N-ethyl-N-nitrosourea-induced c.7079T>A mutation in the Cdh23 gene. The mutation generates a missense change, p.V2360E, in Cdh23. Affected mice have profound sensorineural deafness, with no vestibular dysfunction. The p.V2360E mutation is semidominant because heterozygous mice have milder and more progressive hearing loss in advanced age. The mutation affects a highly conserved Ca(2+)-binding motif in extracellular domain 22, thought to be important for Cdh23 structure and dimerization. Molecular modeling suggests that the Cdh23(V2360E/V2360E) mutation alters the structural conformation of the protein and affects Ca(2+)-binding properties. Similar to salsa mice, but in contrast to waltzer mice, hair bundle development is normal in jera and hearing loss appears to be due to the loss of tip links. Thus, jera is a novel mouse model for DFNB12.
Collapse
Affiliation(s)
- Shehnaaz S M Manji
- Genetic Hearing Research Laboratory, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Webb SW, Grillet N, Andrade LR, Xiong W, Swarthout L, Della Santina CC, Kachar B, Müller U. Regulation of PCDH15 function in mechanosensory hair cells by alternative splicing of the cytoplasmic domain. Development 2011; 138:1607-17. [PMID: 21427143 DOI: 10.1242/dev.060061] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Protocadherin 15 (PCDH15) is expressed in hair cells of the inner ear and in photoreceptors of the retina. Mutations in PCDH15 cause Usher Syndrome (deaf-blindness) and recessive deafness. In developing hair cells, PCDH15 localizes to extracellular linkages that connect the stereocilia and kinocilium into a bundle and regulate its morphogenesis. In mature hair cells, PCDH15 is a component of tip links, which gate mechanotransduction channels. PCDH15 is expressed in several isoforms differing in their cytoplasmic domains, suggesting that alternative splicing regulates PCDH15 function in hair cells. To test this model, we generated three mouse lines, each of which lacks one out of three prominent PCDH15 isoforms (CD1, CD2 and CD3). Surprisingly, mice lacking PCDH15-CD1 and PCDH15-CD3 form normal hair bundles and tip links and maintain hearing function. Tip links are also present in mice lacking PCDH15-CD2. However, PCDH15-CD2-deficient mice are deaf, lack kinociliary links and have abnormally polarized hair bundles. Planar cell polarity (PCP) proteins are distributed normally in the sensory epithelia of the mutants, suggesting that PCDH15-CD2 acts downstream of PCP components to control polarity. Despite the absence of kinociliary links, vestibular function is surprisingly intact in the PCDH15-CD2 mutants. Our findings reveal an essential role for PCDH15-CD2 in the formation of kinociliary links and hair bundle polarization, and show that several PCDH15 isoforms can function redundantly at tip links.
Collapse
Affiliation(s)
- Stuart W Webb
- Dorris Neuroscience Center and Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bonnet C, Grati M, Marlin S, Levilliers J, Hardelin JP, Parodi M, Niasme-Grare M, Zelenika D, Délépine M, Feldmann D, Jonard L, El-Amraoui A, Weil D, Delobel B, Vincent C, Dollfus H, Eliot MM, David A, Calais C, Vigneron J, Montaut-Verient B, Bonneau D, Dubin J, Thauvin C, Duvillard A, Francannet C, Mom T, Lacombe D, Duriez F, Drouin-Garraud V, Thuillier-Obstoy MF, Sigaudy S, Frances AM, Collignon P, Challe G, Couderc R, Lathrop M, Sahel JA, Weissenbach J, Petit C, Denoyelle F. Complete exon sequencing of all known Usher syndrome genes greatly improves molecular diagnosis. Orphanet J Rare Dis 2011; 6:21. [PMID: 21569298 PMCID: PMC3125325 DOI: 10.1186/1750-1172-6-21] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 05/11/2011] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Usher syndrome (USH) combines sensorineural deafness with blindness. It is inherited in an autosomal recessive mode. Early diagnosis is critical for adapted educational and patient management choices, and for genetic counseling. To date, nine causative genes have been identified for the three clinical subtypes (USH1, USH2 and USH3). Current diagnostic strategies make use of a genotyping microarray that is based on the previously reported mutations. The purpose of this study was to design a more accurate molecular diagnosis tool. METHODS We sequenced the 366 coding exons and flanking regions of the nine known USH genes, in 54 USH patients (27 USH1, 21 USH2 and 6 USH3). RESULTS Biallelic mutations were detected in 39 patients (72%) and monoallelic mutations in an additional 10 patients (18.5%). In addition to biallelic mutations in one of the USH genes, presumably pathogenic mutations in another USH gene were detected in seven patients (13%), and another patient carried monoallelic mutations in three different USH genes. Notably, none of the USH3 patients carried detectable mutations in the only known USH3 gene, whereas they all carried mutations in USH2 genes. Most importantly, the currently used microarray would have detected only 30 of the 81 different mutations that we found, of which 39 (48%) were novel. CONCLUSIONS Based on these results, complete exon sequencing of the currently known USH genes stands as a definite improvement for molecular diagnosis of this disease, which is of utmost importance in the perspective of gene therapy.
Collapse
Affiliation(s)
- Crystel Bonnet
- Unité de Génétique Médicale, INSERM UMRS 587, Hôpital d'Enfants Armand-Trousseau, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Unité de Génétique et Physiologie de l'Audition, INSERM UMRS 587, UPMC, Institut Pasteur, Paris, France
| | - M'hamed Grati
- Unité de Génétique Médicale, INSERM UMRS 587, Hôpital d'Enfants Armand-Trousseau, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Unité de Génétique et Physiologie de l'Audition, INSERM UMRS 587, UPMC, Institut Pasteur, Paris, France
- NIDCD, NIH, Bethesda, MD 20894, USA
| | - Sandrine Marlin
- Unité de Génétique Médicale, INSERM UMRS 587, Hôpital d'Enfants Armand-Trousseau, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jacqueline Levilliers
- Unité de Génétique et Physiologie de l'Audition, INSERM UMRS 587, UPMC, Institut Pasteur, Paris, France
| | - Jean-Pierre Hardelin
- Unité de Génétique et Physiologie de l'Audition, INSERM UMRS 587, UPMC, Institut Pasteur, Paris, France
| | - Marine Parodi
- Service de Biochimie et de Biologie Moléculaire, INSERM UMRS 587, Hôpital d'Enfants Armand-Trousseau, AP-HP, Paris, France
| | - Magali Niasme-Grare
- Service de Biochimie et de Biologie Moléculaire, INSERM UMRS 587, Hôpital d'Enfants Armand-Trousseau, AP-HP, Paris, France
| | | | | | - Delphine Feldmann
- Unité de Génétique Médicale, INSERM UMRS 587, Hôpital d'Enfants Armand-Trousseau, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Service de Biochimie et de Biologie Moléculaire, INSERM UMRS 587, Hôpital d'Enfants Armand-Trousseau, AP-HP, Paris, France
| | - Laurence Jonard
- Unité de Génétique Médicale, INSERM UMRS 587, Hôpital d'Enfants Armand-Trousseau, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Service de Biochimie et de Biologie Moléculaire, INSERM UMRS 587, Hôpital d'Enfants Armand-Trousseau, AP-HP, Paris, France
| | - Aziz El-Amraoui
- Unité de Génétique et Physiologie de l'Audition, INSERM UMRS 587, UPMC, Institut Pasteur, Paris, France
| | - Dominique Weil
- Unité de Génétique et Physiologie de l'Audition, INSERM UMRS 587, UPMC, Institut Pasteur, Paris, France
| | - Bruno Delobel
- Centre de Génétique, Hôpital St-Antoine, Lille, France
| | | | - Hélène Dollfus
- Service de Génétique médicale, Hôpital de Hautepierre, Strasbourg, France
| | | | - Albert David
- Service de Génétique, Hôtel Dieu, Nantes, France
| | | | | | | | - Dominique Bonneau
- Centre de Référence des Maladies Neurogénétiques, Centre Hospitalier Universitaire d'Angers, France
| | - Jacques Dubin
- Service ORL, Centre Hospitalier Universitaire d'Angers, France
| | | | | | | | - Thierry Mom
- Service ORL, Hôtel-Dieu, Clermont-Ferrand, France
| | - Didier Lacombe
- Centre de Génétique, Hôpital Pellegrin, Bordeaux, France
| | | | | | | | - Sabine Sigaudy
- Service de Génétique Médicale, Hôpital de la Timone, Marseille, France
| | - Anne-Marie Frances
- Service de Génétique Médicale, Hôpital intercommunal de Font-Pré, Toulon La Seyne sur Mer, France
| | - Patrick Collignon
- Service de Génétique Médicale, Hôpital intercommunal de Font-Pré, Toulon La Seyne sur Mer, France
| | - Georges Challe
- Departement d'Ophtalmologie et de Médecine Interne, Hôpital de la Salpêtrière, AP-HP, France
| | - Rémy Couderc
- Unité de Génétique Médicale, INSERM UMRS 587, Hôpital d'Enfants Armand-Trousseau, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Service de Biochimie et de Biologie Moléculaire, INSERM UMRS 587, Hôpital d'Enfants Armand-Trousseau, AP-HP, Paris, France
| | - Mark Lathrop
- Centre National de Génotypage, CEA, Evry, France
| | | | - Jean Weissenbach
- CEA, DSV, IG, Genoscope, CNRS-UMR 8030, UEVE, Université d'Evry, Evry, France
| | - Christine Petit
- Unité de Génétique et Physiologie de l'Audition, INSERM UMRS 587, UPMC, Institut Pasteur, Paris, France
- Collège de France, Paris, France
| | - Françoise Denoyelle
- Unité de Génétique et Physiologie de l'Audition, INSERM UMRS 587, UPMC, Institut Pasteur, Paris, France
- Service d'ORL et de Chirurgie Cervico-faciale, INSERM UMRS 587, Hôpital d'Enfants Armand-Trousseau, AP-HP, UPMC, Paris, France
| |
Collapse
|
48
|
Richardson GP, de Monvel JB, Petit C. How the Genetics of Deafness Illuminates Auditory Physiology. Annu Rev Physiol 2011; 73:311-34. [DOI: 10.1146/annurev-physiol-012110-142228] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guy P. Richardson
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom;
| | - Jacques Boutet de Monvel
- Unité de Génétique et Physiologie de l'Audition, Département de Neuroscience, Institut Pasteur, F-75724 Paris cedex 15, France; ,
- Inserm UMRS 587, F-75015 Paris, France
- Université Pierre & Marie Curie, F-75005 Paris, France
| | - Christine Petit
- Unité de Génétique et Physiologie de l'Audition, Département de Neuroscience, Institut Pasteur, F-75724 Paris cedex 15, France; ,
- Inserm UMRS 587, F-75015 Paris, France
- Université Pierre & Marie Curie, F-75005 Paris, France
- Collège de France, F-75005 Paris, France
| |
Collapse
|
49
|
Goodyear RJ, Forge A, Legan PK, Richardson GP. Asymmetric distribution of cadherin 23 and protocadherin 15 in the kinocilial links of avian sensory hair cells. J Comp Neurol 2011; 518:4288-97. [PMID: 20853507 PMCID: PMC3337639 DOI: 10.1002/cne.22456] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cadherin 23 and protocadherin 15 are components of tip links, fine filaments that interlink the stereocilia of hair cells and are believed to gate the hair cell's mechanotransducer channels. Tip links are aligned along the hair bundle's axis of mechanosensitivity, stretching obliquely from the top of one stereocilium to the side of an adjacent, taller stereocilium. In guinea pig auditory hair cells, tip links are polarized with cadherin 23 at the upper end and protocadherin 15 at the lower end, where the transducer channel is located. Double immunogold labeling of avian hair cells was used to study the distribution of these two proteins in kinocilial links, a link type that attaches the tallest stereocilia of the hair bundle to the kinocilium. In the kinocilial links of vestibular hair bundles, cadherin 23 localizes to the stereocilium and protocadherin 15 to the kinocilium. The two cadherins are therefore asymmetrically distributed within the kinocilial links but of a polarity that is, within those links that are aligned along the hair bundle's axis of sensitivity, reversed relative to that of tip links. Conventional transmission electron microscopy of hair bundles fixed in the presence of tannic acid reveals a distinct density in the 120–130 nm long kinocilial links that is located 35–40 nm from the kinociliary membrane. The location of this density is consistent with it being the site at which interactions occur in an in trans configuration between the opposing N-termini of homodimeric forms of cadherin 23 and protocadherin 15. J. Comp. Neurol. 518:4288–4297, 2010. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Richard J Goodyear
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | | | | | |
Collapse
|
50
|
Jagger D, Collin G, Kelly J, Towers E, Nevill G, Longo-Guess C, Benson J, Halsey K, Dolan D, Marshall J, Naggert J, Forge A. Alström Syndrome protein ALMS1 localizes to basal bodies of cochlear hair cells and regulates cilium-dependent planar cell polarity. Hum Mol Genet 2010; 20:466-81. [PMID: 21071598 DOI: 10.1093/hmg/ddq493] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alström Syndrome is a life-threatening disease characterized primarily by numerous metabolic abnormalities, retinal degeneration, cardiomyopathy, kidney and liver disease, and sensorineural hearing loss. The cellular localization of the affected protein, ALMS1, has suggested roles in ciliary function and/or ciliogenesis. We have investigated the role of ALMS1 in the cochlea and the pathogenesis of hearing loss in Alström Syndrome. In neonatal rat organ of Corti, ALMS1 was localized to the basal bodies of hair cells and supporting cells. ALMS1 was also evident at the basal bodies of differentiating fibrocytes and marginal cells in the lateral wall. Centriolar ALMS1 expression was retained into maturity. In Alms1-disrupted mice, which recapitulate the neurosensory deficits of human Alström Syndrome, cochleae displayed several cyto-architectural defects including abnormalities in the shape and orientation of hair cell stereociliary bundles. Developing hair cells were ciliated, suggesting that ciliogenesis was largely normal. In adult mice, in addition to bundle abnormalities, there was an accelerated loss of outer hair cells and the progressive appearance of large lesions in stria vascularis. Although the mice progressively lost distortion product otoacoustic emissions, suggesting defects in outer hair cell amplification, their endocochlear potentials were normal, indicating the strial atrophy did not affect its function. These results identify previously unrecognized cochlear histopathologies associated with this ciliopathy that (i) implicate ALMS1 in planar cell polarity signaling and (ii) suggest that the loss of outer hair cells causes the majority of the hearing loss in Alström Syndrome.
Collapse
Affiliation(s)
- Daniel Jagger
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|