1
|
Yang B, Sun L, Peng Z, Zhang Q, Lin M, Peng Z, Yang J, Zheng L. Toxicity of rare earth elements europium and samarium on zebrafish development and locomotor performance. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137213. [PMID: 39837035 DOI: 10.1016/j.jhazmat.2025.137213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/23/2025]
Abstract
Rare earth elements are integral to modern technology, but their increasing environmental distribution due to anthropogenic activities poses potential health risks to humans. This study utilized zebrafish as a model to assess developmental and locomotor performance effects of europium and samarium. Exposure to Eu or Sm induced a reduction in heart rate, growth inhibition, and morphological deformities. RNA-Seq revealed gene expression alterations linked to critical biological processes and functions following Eu or Sm exposure. Impaired organogenesis in liver and exocrine pancreas, evident through fluorescence imaging, was confirmed transcriptionally. Exposure to Eu or Sm significantly impaired the burst and spontaneous swimming behaviors of zebrafish larvae, characterized by pronounced reductions in movement distance, frequency, and velocity. These observations indicate severe locomotor dysfunction in zebrafish exposed to Eu and Sm. The comprehensive downregulation of the oxidative phosphorylation pathway is likely a primary factor contributing to these motor impairments. Apoptosis induced by Eu and Sm, confirmed through acridine orange staining, was accompanied by the upregulation of the intrinsic apoptosis pathway. Our findings contribute critical insights into the health risks of rare earth elements, informing risk assessment and management strategies.
Collapse
Affiliation(s)
- Boyu Yang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Luning Sun
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China
| | - Zheng Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Qing Zhang
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Mei Lin
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhilin Peng
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jue Yang
- School of public health, Brown University, Providence, RI, USA.
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China.
| |
Collapse
|
2
|
Childers L, Park J, Wang S, Liu R, Barry R, Watts SA, Rawls JF, Bagnat M. Protein absorption in the zebrafish gut is regulated by interactions between lysosome rich enterocytes and the microbiome. eLife 2025; 13:RP100611. [PMID: 40080061 PMCID: PMC11906160 DOI: 10.7554/elife.100611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Dietary protein absorption in neonatal mammals and fishes relies on the function of a specialized and conserved population of highly absorptive lysosome-rich enterocytes (LREs). The gut microbiome has been shown to enhance absorption of nutrients, such as lipids, by intestinal epithelial cells. However, whether protein absorption is also affected by the gut microbiome is poorly understood. Here, we investigate connections between protein absorption and microbes in the zebrafish gut. Using live microscopy-based quantitative assays, we find that microbes slow the pace of protein uptake and degradation in LREs. While microbes do not affect the number of absorbing LRE cells, microbes lower the expression of endocytic and protein digestion machinery in LREs. Using transgene-assisted cell isolation and single cell RNA-sequencing, we characterize all intestinal cells that take up dietary protein. We find that microbes affect expression of bacteria-sensing and metabolic pathways in LREs, and that some secretory cell types also take up protein and share components of protein uptake and digestion machinery with LREs. Using custom-formulated diets, we investigated the influence of diet and LRE activity on the gut microbiome. Impaired protein uptake activity in LREs, along with a protein-deficient diet, alters the microbial community and leads to an increased abundance of bacterial genera that have the capacity to reduce protein uptake in LREs. Together, these results reveal that diet-dependent reciprocal interactions between LREs and the gut microbiome regulate protein absorption.
Collapse
Affiliation(s)
- Laura Childers
- Department of Cell Biology, Duke University, DurhamDurhamUnited States
| | - Jieun Park
- Neuroscience Center, University of North CarolinaChapel HillUnited States
- Carolina Institute of Developmental DisabilitiesChapel HillUnited States
| | - Siyao Wang
- Department of Cell Biology, Duke University, DurhamDurhamUnited States
| | - Richard Liu
- Department of Cell Biology, Duke University, DurhamDurhamUnited States
| | - Robert Barry
- Department of Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Stephen A Watts
- Department of Biology, University of Alabama at BirminghamBirminghamUnited States
| | - John F Rawls
- Department of Molecular Genetics and Genomics, Duke UniversityDurhamUnited States
| | - Michel Bagnat
- Department of Cell Biology, Duke University, DurhamDurhamUnited States
| |
Collapse
|
3
|
Childers L, Park J, Wang S, Liu R, Barry R, Watts SA, Rawls JF, Bagnat M. Protein absorption in the zebrafish gut is regulated by interactions between lysosome rich enterocytes and the microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597998. [PMID: 38895310 PMCID: PMC11185774 DOI: 10.1101/2024.06.07.597998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Dietary protein absorption in neonatal mammals and fishes relies on the function of a specialized and conserved population of highly absorptive lysosome rich enterocytes (LREs). The gut microbiome has been shown to enhance absorption of nutrients, such as lipids, by intestinal epithelial cells. However, whether protein absorption is also affected by the gut microbiome is poorly understood. Here, we investigate connections between protein absorption and microbes in the zebrafish gut. Using live microscopy-based quantitative assays, we find that microbes slow the pace of protein uptake and degradation in LREs. While microbes do not affect the number of absorbing LRE cells, microbes lower the expression of endocytic and protein digestion machinery in LREs. Using transgene assisted cell isolation and single cell RNA-sequencing, we characterize all intestinal cells that take up dietary protein. We find that microbes affect expression of bacteria-sensing and metabolic pathways in LREs, and that some secretory cell types also take up protein and share components of protein uptake and digestion machinery with LREs. Using custom-formulated diets, we investigated the influence of diet and LRE activity on the gut microbiome. Impaired protein uptake activity in LREs, along with a protein-deficient diet, alters the microbial community and leads to increased abundance of bacterial genera that have the capacity to reduce protein uptake in LREs. Together, these results reveal that diet-dependent reciprocal interactions between LREs and the gut microbiome regulate protein absorption.
Collapse
Affiliation(s)
- Laura Childers
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Jieun Park
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Carolina Institute of Developmental Disabilities, Chapel Hill, NC 27510, USA
| | - Siyao Wang
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Richard Liu
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Robert Barry
- Department of Biology, University of Alabama at Birmingham, Birmingham, Al, 35294, USA
| | - Stephen A. Watts
- Department of Biology, University of Alabama at Birmingham, Birmingham, Al, 35294, USA
| | - John F. Rawls
- Department of Molecular Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Lead Contact
| |
Collapse
|
4
|
Lykov N, Wang H, Panga MJ, Du Z, Chen Z, Chen S, Zhu L, Zhao Y. Evaluating the involvement and mutual interaction of wbp2 and yap in embryogenesis with an emphasis on liver function in zebrafish embryos. Tissue Cell 2024; 91:102600. [PMID: 39486132 DOI: 10.1016/j.tice.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
The Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) play complex roles in liver health, influencing processes such as fibrosis, cancer development, and regeneration. WW domain binding protein-2 (WBP2) primarily enhances the co-translational activity of YAP/TAZ, which is crucial for the progression of liver diseases. Despite existing knowledge, the specific functions of WBP2 and its interactions with YAP remain inadequately understood. This study investigates the expression levels of WBP2 in zebrafish embryos and its molecular interaction with YAP. We employed morpholino-mediated knockdown of wbp2 and yap, followed by assessments of liver histology, immunofluorescence, and co-immunoprecipitation. Subsequently, RNA sequencing analyses were conducted to elucidate the signaling pathways and mechanisms underlying the interplay between YAP and WBP2 in liver injury. Our findings highlight the significant interaction between WBP2 and YAP, emphasizing their potential as therapeutic targets for liver diseases.
Collapse
Affiliation(s)
- Nikita Lykov
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Huiling Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Mogellah John Panga
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Zhanxiang Du
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Ziyi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Shitian Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Lin Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
5
|
Tao Z, Yang D, Ni R. Tmed10 deficiency results in impaired exocrine pancreatic differentiation in zebrafish larvae. Dev Biol 2023; 503:43-52. [PMID: 37597605 DOI: 10.1016/j.ydbio.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Transmembrane p24 trafficking protein 10 (TMED10) is a conserved vesicle trafficking protein. It is dysregulated in Alzheimer disease and plays a pivotal role in the pathogenesis of Alzheimer disease. In addition to the brain, TMED10 is highly expressed in the exocrine pancreas; however, its biological functions and underlying mechanisms remain largely unknown. We studied reduced Tmed10 in zebrafish embryos by morpholino oligonucleotide knockdown and CRISPR-Cas9 mutagenesis. Tmed10-deficient embryos showed extensive loss of acinar mass and impaired acinar differentiation. TMED10 has been reported to have an inhibitory effect on γ-secretase. As one of the substrates of γ-secretase, membrane-bound β-catenin was significantly reduced in Tmed10-deficient embryos. Increased γ-secretase activity in wild-type embryos resulted in a phenotype similar to that of tmed10 mutants. And the mutant phenotype could be rescued by treatment with the γ-secretase inhibitor, N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-s-phenylglycinet-butyl ester (DAPT). In addition, the reduced membrane-bound β-catenin was accompanied with up-regulated β-catenin target genes in Tmed10-deficient embryos. Overexpression of β-catenin signaling inhibitor Dickkopf-1 (DKK-1) could rescue the exocrine pancreas defects. Taken together, our study reveals that Tmed10 regulates exocrine pancreatic differentiation through γ-secretase. Reduced membrane-bound β-catenin, accompanied with hyperactivation of β-catenin signaling, is an important cause of exocrine pancreas defects in Tmed10-deficient embryos. Our study reaffirms the importance of appropriate β-catenin signaling in exocrine pancreas development. These findings may provide a theoretical basis for the development of treatment strategies for TMED10-related diseases.
Collapse
Affiliation(s)
- Zewen Tao
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, 400715, Chongqing, China
| | - Di Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, 400715, Chongqing, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, 400715, Chongqing, China.
| |
Collapse
|
6
|
Hedge JM, Hunter DL, Sanders E, Jarema KA, Olin JK, Britton KN, Lowery M, Knapp BR, Padilla S, Hill BN. Influence of Methylene Blue or Dimethyl Sulfoxide on Larval Zebrafish Development and Behavior. Zebrafish 2023; 20:132-145. [PMID: 37406269 PMCID: PMC10627343 DOI: 10.1089/zeb.2023.0017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
The use of larval zebrafish developmental testing and assessment, specifically larval zebrafish locomotor activity, has been recognized as a higher throughput testing strategy to identify developmentally toxic and neurotoxic chemicals. There are, however, no standardized protocols for this type of assay, which could result in confounding variables being overlooked. Two chemicals commonly employed during early-life stage zebrafish assays, methylene blue (antifungal agent) and dimethyl sulfoxide (DMSO, a commonly used vehicle) have been reported to affect the morphology and behavior of freshwater fish. In this study, we conducted developmental toxicity (morphology) and neurotoxicity (behavior) assessments of commonly employed concentrations for both chemicals (0.6-10.0 μM methylene blue; 0.3%-1.0% v/v DMSO). A light-dark transition behavioral testing paradigm was applied to morphologically normal, 6 days postfertilization (dpf) zebrafish larvae kept at 26°C. Additionally, an acute DMSO challenge was administered based on early-life stage zebrafish assays typically used in this research area. Results from developmental toxicity screens were similar between both chemicals with no morphological abnormalities detected at any of the concentrations tested. However, neurodevelopmental results were mixed between the two chemicals of interest. Methylene blue resulted in no behavioral changes up to the highest concentration tested, 10.0 μM. By contrast, DMSO altered larval behavior following developmental exposure at concentrations as low as 0.5% (v/v) and exhibited differential concentration-response patterns in the light and dark photoperiods. These results indicate that developmental DMSO exposure can affect larval zebrafish locomotor activity at routinely used concentrations in developmental neurotoxicity assessments, whereas methylene blue does not appear to be developmentally or neurodevelopmentally toxic to larval zebrafish at routinely used concentrations. These results also highlight the importance of understanding the influence of experimental conditions on larval zebrafish locomotor activity that may ultimately confound the interpretation of results.
Collapse
Affiliation(s)
- Joan M. Hedge
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Advanced Experimental Toxicology Models Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Deborah L. Hunter
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Erik Sanders
- Aquatics Lab Services LLC 1112 Nashville Street St. Peters, MO 63376, USA
| | - Kimberly A. Jarema
- Office of Research and Development, Center for Public Health and Environmental Assessment, Immediate Office, Program Operations Staff, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Jeanene K. Olin
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Katy N. Britton
- ORAU Research Participation Program hosted by EPA, Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Morgan Lowery
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Bridget R. Knapp
- ORISE Research Participation Program hosted by EPA, Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Stephanie Padilla
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Bridgett N. Hill
- ORISE Research Participation Program hosted by EPA, Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| |
Collapse
|
7
|
Kondakova EA, Bogdanova VA, Ottesen O, Alexandrov AA. The development of the digestive system and the fate of the yolk syncytial layer in postembryogenesis of Stenodus leucichthys nelma (Teleostei). J Morphol 2023; 284:e21604. [PMID: 37313770 DOI: 10.1002/jmor.21604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/15/2023]
Abstract
Stenodus leucichthys nelma is an economically important species for cold-water aquaculture. Unlike other Coregoninae, S. leucichthys nelma is a piscivore. Here, we describe in detail the development of the digestive system and the yolk syncytial layer from hatching to early juvenile stage using histological and histochemical methods to determine their common and specific characteristics and to test the hypothesis that the digestive system of S. leucichthys nelma rapidly acquires adult features. The digestive tract differentiates at hatching and starts to function before the transition to mixed feeding. The mouth and anus are open, mucous cells and taste buds are present in the buccopharyngeal cavity and esophagus, pharyngeal teeth have erupted, the stomach primordium is seen, the intestinal epithelium with mucous cells is folded and the intestinal valve is observed; the epithelial cells of the postvalvular intestine contain supranuclear vacuoles. The liver blood vessels are filled with blood. The cells of exocrine pancreas are loaded with zymogen granules, and at least two islets of Langerhans are present. However, the larvae remain dependent on maternal yolk and lipids for a long time. The adult features of the digestive system develop gradually, the most significant changes take place approximately from 31 to 42 days posthatching. Then, the gastric glands and pyloric caeca buds appear, the U-shaped stomach with glandular and aglandular regions develops, the swim bladder inflates, the number of islets of Langerhans increases, the pancreas becomes scattered, and the yolk syncytial layer undergoes programmed death during the larval-to-juvenile transition. During postembryonic development, the mucous cells of the digestive system contain neutral mucosubstances.
Collapse
Affiliation(s)
- Ekaterina A Kondakova
- Saint Petersburg State University, Saint Petersburg, Russia
- Saint Petersburg Branch of the FSBSI «VNIRO» («GosNIORKH» named after L.S. Berg), Saint Petersburg, Russia
| | - Vera A Bogdanova
- Saint Petersburg Branch of the FSBSI «VNIRO» («GosNIORKH» named after L.S. Berg), Saint Petersburg, Russia
| | - Oddvar Ottesen
- Faculty of Bioscience and Aquaculture, Nord University, Bodø, Norway
- Akvatik AS, Bodø, Norway
| | - Alexey A Alexandrov
- Saint Petersburg Branch of the FSBSI «VNIRO» («GosNIORKH» named after L.S. Berg), Saint Petersburg, Russia
| |
Collapse
|
8
|
Basha A, May SC, Anderson RM, Samala N, Mirmira RG. Non-Alcoholic Fatty Liver Disease: Translating Disease Mechanisms into Therapeutics Using Animal Models. Int J Mol Sci 2023; 24:9996. [PMID: 37373143 PMCID: PMC10298283 DOI: 10.3390/ijms24129996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a range of pathologies arising from fat accumulation in the liver in the absence of excess alcohol use or other causes of liver disease. Its complications include cirrhosis and liver failure, hepatocellular carcinoma, and eventual death. NAFLD is the most common cause of liver disease globally and is estimated to affect nearly one-third of individuals in the United States. Despite knowledge that the incidence and prevalence of NAFLD are increasing, the pathophysiology of the disease and its progression to cirrhosis remain insufficiently understood. The molecular pathogenesis of NAFLD involves insulin resistance, inflammation, oxidative stress, and endoplasmic reticulum stress. Better insight into these molecular pathways would allow for therapies that target specific stages of NAFLD. Preclinical animal models have aided in defining these mechanisms and have served as platforms for screening and testing of potential therapeutic approaches. In this review, we will discuss the cellular and molecular mechanisms thought to contribute to NAFLD, with a focus on the role of animal models in elucidating these mechanisms and in developing therapies.
Collapse
Affiliation(s)
- Amina Basha
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah C. May
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Ryan M. Anderson
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Niharika Samala
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Sun L, Yang B, Peng Z, Yang T, Qin B, Ao J, Yang Y, Wang J, Zheng L, Xie H. Transcriptomics and Phenotypic Analysis of gpr56 Knockout in Zebrafish. Int J Mol Sci 2023; 24:ijms24097740. [PMID: 37175447 PMCID: PMC10178538 DOI: 10.3390/ijms24097740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The adhesion G-protein-coupled receptor is a seven-transmembrane receptor protein with a complex structure. Impaired GPR56 has been found to cause developmental damage to the human brain, resulting in intellectual disability and motor dysfunction. To date, studies on gpr56 deficiency in zebrafish have been limited to the nervous system, and there have been no reports of its systemic effects on juvenile fish at developmental stages. In order to explore the function of gpr56 in zebrafish, the CRISPR/Cas9 gene-editing system was used to construct a gpr56-knockout zebrafish. Subsequently, the differentially expressed genes (DEGs) at the transcriptional level between the 3 days post fertilization (dpf) homozygotes of the gpr56 mutation and the wildtype zebrafish were analyzed via RNA-seq. The results of the clustering analysis, quantitative PCR (qPCR), and in situ hybridization demonstrated that the expression of innate immunity-related genes in the mutant was disordered, and multiple genes encoding digestive enzymes of the pancreatic exocrine glands were significantly downregulated in the mutant. Motor ability tests demonstrated that the gpr56-/- zebrafish were more active, and this change was more pronounced in the presence of cold and additional stimuli. In conclusion, our results revealed the effect of gpr56 deletion on the gene expression of juvenile zebrafish and found that the gpr56 mutant was extremely active, providing an important clue for studying the mechanism of gpr56 in the development of juvenile zebrafish.
Collapse
Affiliation(s)
- Luning Sun
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha 410081, China
| | - Boyu Yang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Zheng Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Tianle Yang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Bin Qin
- Heart Development Center, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Jieyu Ao
- Heart Development Center, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yanqun Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha 410081, China
| | - Jingling Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha 410081, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Huaping Xie
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha 410081, China
| |
Collapse
|
10
|
Oderberg IM, Goessling W. Biliary epithelial cells are facultative liver stem cells during liver regeneration in adult zebrafish. JCI Insight 2023; 8:163929. [PMID: 36625346 PMCID: PMC9870093 DOI: 10.1172/jci.insight.163929] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
The liver is a highly regenerative organ, yet the presence of a dedicated stem cell population remains controversial. Here, we interrogate a severe hepatocyte injury model in adult zebrafish to define that regeneration involves a stem cell population. After near-total hepatocyte ablation, single-cell transcriptomic and high-resolution imaging analyses throughout the entire regenerative timeline reveal that biliary epithelial cells undergo transcriptional and morphological changes to become hepatocytes. As a population, biliary epithelial cells give rise to both hepatocytes and biliary epithelial cells. Biliary epithelial cells proliferate and dedifferentiate to express hepatoblast transcription factors prior to hepatocyte differentiation. This process is characterized by increased MAPK, PI3K, and mTOR signaling, and chemical inhibition of these pathways impairs biliary epithelial cell proliferation and fate conversion. We conclude that, upon severe hepatocyte ablation in the adult liver, biliary epithelial cells act as facultative liver stem cells in an EGFR-PI3K-mTOR-dependent manner.
Collapse
Affiliation(s)
- Isaac M. Oderberg
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts USA.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Maddela NR, Ramakrishnan B, Kakarla D, Venkateswarlu K, Megharaj M. Major contaminants of emerging concern in soils: a perspective on potential health risks. RSC Adv 2022; 12:12396-12415. [PMID: 35480371 PMCID: PMC9036571 DOI: 10.1039/d1ra09072k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Soil pollution by the contaminants of emerging concern (CECs) or emerging contaminants deserves attention worldwide because of their toxic health effects and the need for developing regulatory guidelines. Though the global soil burden by certain CECs is in several metric tons, the source-tracking of these contaminants in soil environments is difficult due to heterogeneity of the medium and complexities associated with the interactive mechanisms. Most CECs have higher affinities towards solid matrices for adsorption. The CECs alter not only soil functionalities but also those of plants and animals. Their toxicities are at nmol to μmol levels in cell cultures and test animals. These contaminants have a higher propensity in accumulating mostly in root-based food crops, threatening human health. Poor understanding on the fate of certain CECs in anaerobic environments and their transfer pathways in the food web limits the development of effective bioremediation strategies and restoration of the contaminated soils and endorsement of global regulatory efforts. Despite their proven toxicities to the biotic components, there are no environmental laws or guidelines for certain CECs. Moreover, the information available on the impact of soil pollution with CECs on human health is fragmentary. Therefore, we provide here a comprehensive account on five significantly important CECs, viz., (i) PFAS, (ii) micro/nanoplastics, (iii) additives (biphenyls, phthalates), (iv) novel flame retardants, and (v) nanoparticles. The emphasis is on (a) degree of soil burden of CECs and the consequences, (b) endocrine disruption and immunotoxicity, (c) genotoxicity and carcinogenicity, and (d) soil health guidelines.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí Portoviejo 130105 Ecuador
- Instituto de Investigación, Universidad Técnica de Manabí Portoviejo 130105 Ecuador
| | | | - Dhatri Kakarla
- University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University Anantapuramu 515003 India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Faculty of Science, The University of Newcastle Callaghan NSW 2308 Australia
| |
Collapse
|
12
|
Altman MK, Schaub CM, Dadi PK, Dickerson MT, Zaborska KE, Nakhe AY, Graff SM, Galletta TJ, Amarnath G, Thorson AS, Gu G, Jacobson DA. TRPM7 is a crucial regulator of pancreatic endocrine development and high-fat-diet-induced β-cell proliferation. Development 2021; 148:dev194928. [PMID: 34345920 PMCID: PMC8406533 DOI: 10.1242/dev.194928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/20/2021] [Indexed: 12/31/2022]
Abstract
The melastatin subfamily of the transient receptor potential channels (TRPM) are regulators of pancreatic β-cell function. TRPM7 is the most abundant islet TRPM channel; however, the role of TRPM7 in β-cell function has not been determined. Here, we used various spatiotemporal transgenic mouse models to investigate how TRPM7 knockout influences pancreatic endocrine development, proliferation and function. Ablation of TRPM7 within pancreatic progenitors reduced pancreatic size, and α-cell and β-cell mass. This resulted in modestly impaired glucose tolerance. However, TRPM7 ablation following endocrine specification or in adult mice did not impact endocrine expansion or glucose tolerance. As TRPM7 regulates cell proliferation, we assessed how TRPM7 influences β-cell hyperplasia under insulin-resistant conditions. β-Cell proliferation induced by high-fat diet was significantly decreased in TRPM7-deficient β-cells. The endocrine roles of TRPM7 may be influenced by cation flux through the channel, and indeed we found that TRPM7 ablation altered β-cell Mg2+ and reduced the magnitude of elevation in β-cell Mg2+ during proliferation. Together, these findings revealed that TRPM7 controls pancreatic development and β-cell proliferation, which is likely due to regulation of Mg2+ homeostasis.
Collapse
Affiliation(s)
- Molly K. Altman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Charles M. Schaub
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Prasanna K. Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Matthew T. Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Karolina E. Zaborska
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Arya Y. Nakhe
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Sarah M. Graff
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Thomas J. Galletta
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Gautami Amarnath
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
- Molecular Neurophysiology, Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Ariel S. Thorson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Guoqiang Gu
- Vanderbilt Program in Developmental Biology, Vanderbilt Center for Stem Cell Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| |
Collapse
|
13
|
Vizán P, Di Croce L, Aranda S. Functional and Pathological Roles of AHCY. Front Cell Dev Biol 2021; 9:654344. [PMID: 33869213 PMCID: PMC8044520 DOI: 10.3389/fcell.2021.654344] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/24/2021] [Indexed: 11/25/2022] Open
Abstract
Adenosylhomocysteinase (AHCY) is a unique enzyme and one of the most conserved proteins in living organisms. AHCY catalyzes the reversible break of S-adenosylhomocysteine (SAH), the by-product and a potent inhibitor of methyltransferases activity. In mammals, AHCY is the only enzyme capable of performing this reaction. Controlled subcellular localization of AHCY is believed to facilitate local transmethylation reactions, by removing excess of SAH. Accordingly, AHCY is recruited to chromatin during replication and active transcription, correlating with increasing demands for DNA, RNA, and histone methylation. AHCY deletion is embryonic lethal in many organisms (from plants to mammals). In humans, AHCY deficiency is associated with an incurable rare recessive disorder in methionine metabolism. In this review, we focus on the AHCY protein from an evolutionary, biochemical, and functional point of view, and we discuss the most recent, relevant, and controversial contributions to the study of this enzyme.
Collapse
Affiliation(s)
- Pedro Vizán
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
14
|
Edelman HE, McClymont SA, Tucker TR, Pineda S, Beer RL, McCallion AS, Parsons MJ. SOX9 modulates cancer biomarker and cilia genes in pancreatic cancer. Hum Mol Genet 2021; 30:485-499. [PMID: 33693707 DOI: 10.1093/hmg/ddab064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/02/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive form of cancer with high mortality. The cellular origins of PDAC are largely unknown; however, ductal cells, especially centroacinar cells (CACs), have several characteristics in common with PDAC, such as expression of SOX9 and components of the Notch-signaling pathway. Mutations in KRAS and alterations to Notch signaling are common in PDAC, and both these pathways regulate the transcription factor SOX9. To identify genes regulated by SOX9, we performed siRNA knockdown of SOX9 followed by RNA-seq in PANC-1s, a human PDAC cell line. We report 93 differentially expressed (DE) genes, with convergence on alterations to Notch-signaling pathways and ciliogenesis. These results point to SOX9 and Notch activity being in a positive feedback loop and SOX9 regulating cilia production in PDAC. We additionally performed ChIP-seq in PANC-1s to identify direct targets of SOX9 binding and integrated these results with our DE gene list. Nine of the top 10 downregulated genes have evidence of direct SOX9 binding at their promoter regions. One of these targets was the cancer stem cell marker EpCAM. Using whole-mount in situ hybridization to detect epcam transcript in zebrafish larvae, we demonstrated that epcam is a CAC marker and that Sox9 regulation of epcam expression is conserved in zebrafish. Additionally, we generated an epcam null mutant and observed pronounced defects in ciliogenesis during development. Our results provide a link between SOX9, EpCAM and ciliary repression that can be exploited in improving our understanding of the cellular origins and mechanisms of PDAC.
Collapse
Affiliation(s)
- Hannah E Edelman
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Sarah A McClymont
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Tori R Tucker
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, CA 92697, USA
| | - Santiago Pineda
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, CA 92697, USA
| | - Rebecca L Beer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Andrew S McCallion
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Michael J Parsons
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA.,Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, CA 92697, USA
| |
Collapse
|
15
|
Singleman C, Zimmerman A, Harrison E, Roy NK, Wirgin I, Holtzman NG. Toxic Effects of Polychlorinated Biphenyl Congeners and Aroclors on Embryonic Growth and Development. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:187-201. [PMID: 33118622 DOI: 10.1002/etc.4908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/19/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) cause significant health and reproductive problems in many vertebrates. Exposure during embryogenesis likely leads to defects in organ development, compromising survival and growth through adulthood. The present study identifies the impact of PCBs on the embryonic development of key organs and resulting consequences on survival and growth. Zebrafish embryos were treated with individual PCB congeners (126 or 104) or one of 4 Aroclor mixtures (1016, 1242, 1254, or 1260) and analyzed for changes in gross embryonic morphology. Specific organs were assessed for defects during embryonic development, using a variety of transgenic zebrafish to improve organ visualization. Resulting larvae were grown to adulthood while survival and growth were assayed. Embryonic gross development on PCB treatment was abnormal, with defects presenting in a concentration-dependent manner in the liver, pancreas, heart, and blood vessel organization. Polychlorinated biphenyl 126 treatment resulted in the most consistently severe and fatal phenotypes, whereas treatments with PCB 104 and Aroclors resulted in a range of more subtle organ defects. Survival of fish was highly variable although the growth rates of surviving fish were relatively normal, suggesting that maturing PCB-treated fish that survive develop compensatory strategies needed to reach adulthood. Life span analyses of fish from embryogenesis through adulthood, as in the present study, are scarce but important for the field because they help identify foci for further studies. Environ Toxicol Chem 2021;40:187-201. © 2020 SETAC.
Collapse
Affiliation(s)
- Corinna Singleman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
- The Graduate Center, City University of New York, New York, New York, USA
| | - Alison Zimmerman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
| | - Elise Harrison
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
| | - Nirmal K Roy
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Isaac Wirgin
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Nathalia G Holtzman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
- The Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
16
|
Abstract
The pancreas of adult mammals displays a branched structure which transports digestive enzymes produced in the distal acini through a tree-like network of ducts into the duodenum. In contrast to several other branched organs, its branching patterns are not stereotypic. Moreover, the branches do not grow from dichotomic splitting of an initial stem but rather from the formation of microlumen in a mass of cells. These lumen progressively assemble into a hyperconnected network that refines into a tree by the time of birth. We review the cell remodeling events and the molecular mechanisms governing pancreas branching, as well as the role of the surrounding tissues in this process. Furthermore, we draw parallels with other branched organs such as the salivary and mammary gland.
Collapse
Affiliation(s)
- Lydie Flasse
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Coline Schewin
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anne Grapin-Botton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany; The Novo Nordisk Foundation Center for Stem Cell Biology, Copenhagen, Denmark.
| |
Collapse
|
17
|
Chu D, Zhu D, Wu H, Li C, Zhang H, Chen Y, Han X, Liu N, He Y, Li Y, Wei T. Development of the embryonic liver and pancreas of the Chinese softshell turtle Trionyx sinensis. J Histotechnol 2020; 44:2-11. [PMID: 32909928 DOI: 10.1080/01478885.2020.1775013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The research on hatching ecology of the Chinese softshell turtle Trionyx sinensis has essential guiding roles to clarify the physiological and ecological mechanism of reptile evolution. The aim of this study is to describe the histological changes, differentiation, and maturation of some functional cells during the genesis and development of the liver and pancreas of the Chinese softshell turtle T. sinensis. Softshell turtle eggs were incubated under artificial conditions and hatched within 41-45 days. Hematoxylin and eosin-stained embryonic pancreas and liver were examined at various time points from 2 to 31 days and compared with that of other reptiles, amphibians, fishes, and birds in the literature. Immunohistochemical assay for glucagon and insulin was performed on paraformaldehyde-fixed embryos to identify functional cells in the pancreas. Pancreatic endocrine cells of T. sinensis have secretory ability at day 26 of embryonic development, and the dispersed pancreatic endocrine cells may be the result of the incomplete pancreatic development.
Collapse
Affiliation(s)
- Dechang Chu
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Daoyu Zhu
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Hongsong Wu
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Chunhua Li
- Logistics Management Office, Heze University, Heze, China
| | - Haili Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Yan Chen
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Xue Han
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Na Liu
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Ying He
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Yangui Li
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Tao Wei
- College of Agriculture and Bioengineering, Heze University, Heze, China
| |
Collapse
|
18
|
Lavergne A, Tarifeño-Saldivia E, Pirson J, Reuter AS, Flasse L, Manfroid I, Voz ML, Peers B. Pancreatic and intestinal endocrine cells in zebrafish share common transcriptomic signatures and regulatory programmes. BMC Biol 2020; 18:109. [PMID: 32867764 PMCID: PMC7457809 DOI: 10.1186/s12915-020-00840-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 08/04/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Endocrine cells of the zebrafish digestive system play an important role in regulating metabolism and include pancreatic endocrine cells (PECs) clustered in the islets of Langerhans and the enteroendocrine cells (EECs) scattered in the intestinal epithelium. Despite EECs and PECs are being located in distinct organs, their differentiation involves shared molecular mechanisms and transcription factors. However, their degree of relatedness remains unexplored. In this study, we investigated comprehensively the similarity of EECs and PECs by defining their transcriptomic landscape and comparing the regulatory programmes controlled by Pax6b, a key player in both EEC and PEC differentiations. RESULTS RNA sequencing was performed on EECs and PECs isolated from wild-type and pax6b mutant zebrafish. Data mining of wild-type zebrafish EEC data confirmed the expression of orthologues for most known mammalian EEC hormones, but also revealed the expression of three additional neuropeptide hormones (Proenkephalin-a, Calcitonin-a and Adcyap1a) not previously reported to be expressed by EECs in any species. Comparison of transcriptomes from EECs, PECs and other zebrafish tissues highlights a very close similarity between EECs and PECs, with more than 70% of genes being expressed in both endocrine cell types. Comparison of Pax6b-regulated genes in EECs and PECs revealed a significant overlap. pax6b loss-of-function does not affect the total number of EECs and PECs but instead disrupts the balance between endocrine cell subtypes, leading to an increase of ghrelin- and motilin-like-expressing cells in both the intestine and pancreas at the expense of other endocrine cells such as beta and delta cells in the pancreas and pyyb-expressing cells in the intestine. Finally, we show that the homeodomain of Pax6b is dispensable for its action in both EECs and PECs. CONCLUSION We have analysed the transcriptomic landscape of wild-type and pax6b mutant zebrafish EECs and PECs. Our study highlights the close relatedness of EECs and PECs at the transcriptomic and regulatory levels, supporting the hypothesis of a common phylogenetic origin and underscoring the potential implication of EECs in metabolic diseases such as type 2 diabetes.
Collapse
Affiliation(s)
- Arnaud Lavergne
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Estefania Tarifeño-Saldivia
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
- Present Address: Gene Expression and Regulation Laboratory, Department of Biochemistry and Molecular Biology, University of Concepción, Concepción, Chile
| | - Justine Pirson
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Anne-Sophie Reuter
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Lydie Flasse
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Isabelle Manfroid
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Marianne L. Voz
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Bernard Peers
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| |
Collapse
|
19
|
Seymour PA, Collin CA, Egeskov-Madsen ALR, Jørgensen MC, Shimojo H, Imayoshi I, de Lichtenberg KH, Kopan R, Kageyama R, Serup P. Jag1 Modulates an Oscillatory Dll1-Notch-Hes1 Signaling Module to Coordinate Growth and Fate of Pancreatic Progenitors. Dev Cell 2020; 52:731-747.e8. [PMID: 32059775 DOI: 10.1016/j.devcel.2020.01.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/25/2019] [Accepted: 01/14/2020] [Indexed: 12/30/2022]
Abstract
Notch signaling controls proliferation of multipotent pancreatic progenitor cells (MPCs) and their segregation into bipotent progenitors (BPs) and unipotent pro-acinar cells (PACs). Here, we showed that fast ultradian oscillations of the ligand Dll1 and the transcriptional effector Hes1 were crucial for MPC expansion, and changes in Hes1 oscillation parameters were associated with selective adoption of BP or PAC fate. Conversely, Jag1, a uniformly expressed ligand, restrained MPC growth. However, when its expression later segregated to PACs, Jag1 became critical for the specification of all but the most proximal BPs, and BPs were entirely lost in Jag1; Dll1 double mutants. Anatomically, ductal morphogenesis and organ architecture are minimally perturbed in Jag1 mutants until later stages, when ductal remodeling fails, and signs of acinar-to-ductal metaplasia appear. Our study thus uncovers that oscillating Notch activity in the developing pancreas, modulated by Jag1, is required to coordinate MPC growth and fate.
Collapse
Affiliation(s)
- Philip Allan Seymour
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Caitlin Alexis Collin
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Anuska la Rosa Egeskov-Madsen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Mette Christine Jørgensen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Hiromi Shimojo
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Itaru Imayoshi
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Palle Serup
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark.
| |
Collapse
|
20
|
Brun NR, van Hage P, Hunting ER, Haramis APG, Vink SC, Vijver MG, Schaaf MJM, Tudorache C. Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish. Commun Biol 2019; 2:382. [PMID: 31646185 PMCID: PMC6802380 DOI: 10.1038/s42003-019-0629-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 09/23/2019] [Indexed: 01/05/2023] Open
Abstract
Plastic nanoparticles originating from weathering plastic waste are emerging contaminants in aquatic environments, with unknown modes of action in aquatic organisms. Recent studies suggest that internalised nanoplastics may disrupt processes related to energy metabolism. Such disruption can be crucial for organisms during development and may ultimately lead to changes in behaviour. Here, we investigated the link between polystyrene nanoplastic (PSNP)-induced signalling events and behavioural changes. Larval zebrafish exhibited PSNP accumulation in the pancreas, which coincided with a decreased glucose level. By using hyperglycemic and glucocorticoid receptor (Gr) mutant larvae, we demonstrate that the PSNP-induced disruption in glucose homoeostasis coincided with increased cortisol secretion and hyperactivity in challenge phases. Our work sheds new light on a potential mechanism underlying nanoplastics toxicity in fish, suggesting that the adverse effect of PSNPs are at least in part mediated by Gr activation in response to disrupted glucose homeostasis, ultimately leading to aberrant locomotor activity.
Collapse
Affiliation(s)
- Nadja R. Brun
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Patrick van Hage
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | | | | | - Suzanne C. Vink
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Martina G. Vijver
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | | | | |
Collapse
|
21
|
Schüttler A, Altenburger R, Ammar M, Bader-Blukott M, Jakobs G, Knapp J, Krüger J, Reiche K, Wu GM, Busch W. Map and model-moving from observation to prediction in toxicogenomics. Gigascience 2019; 8:giz057. [PMID: 31140561 PMCID: PMC6539241 DOI: 10.1093/gigascience/giz057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/13/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chemicals induce compound-specific changes in the transcriptome of an organism (toxicogenomic fingerprints). This provides potential insights about the cellular or physiological responses to chemical exposure and adverse effects, which is needed in assessment of chemical-related hazards or environmental health. In this regard, comparison or connection of different experiments becomes important when interpreting toxicogenomic experiments. Owing to lack of capturing response dynamics, comparability is often limited. In this study, we aim to overcome these constraints. RESULTS We developed an experimental design and bioinformatic analysis strategy to infer time- and concentration-resolved toxicogenomic fingerprints. We projected the fingerprints to a universal coordinate system (toxicogenomic universe) based on a self-organizing map of toxicogenomic data retrieved from public databases. Genes clustering together in regions of the map indicate functional relation due to co-expression under chemical exposure. To allow for quantitative description and extrapolation of the gene expression responses we developed a time- and concentration-dependent regression model. We applied the analysis strategy in a microarray case study exposing zebrafish embryos to 3 selected model compounds including 2 cyclooxygenase inhibitors. After identification of key responses in the transcriptome we could compare and characterize their association to developmental, toxicokinetic, and toxicodynamic processes using the parameter estimates for affected gene clusters. Furthermore, we discuss an association of toxicogenomic effects with measured internal concentrations. CONCLUSIONS The design and analysis pipeline described here could serve as a blueprint for creating comparable toxicogenomic fingerprints of chemicals. It integrates, aggregates, and models time- and concentration-resolved toxicogenomic data.
Collapse
Affiliation(s)
- Andreas Schüttler
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen, Worringerweg 1, 52074 Aachen, Germany
| | - Rolf Altenburger
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen, Worringerweg 1, 52074 Aachen, Germany
| | - Madeleine Ammar
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Marcella Bader-Blukott
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Gianina Jakobs
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Johanna Knapp
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Janet Krüger
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Kristin Reiche
- Bioinformatics Unit, Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany
| | - Gi-Mick Wu
- DEVELOP, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Wibke Busch
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
22
|
Scavuzzo MA, Chmielowiec J, Yang D, Wamble K, Chaboub LS, Duraine L, Tepe B, Glasgow SM, Arenkiel BR, Brou C, Deneen B, Borowiak M. Pancreatic Cell Fate Determination Relies on Notch Ligand Trafficking by NFIA. Cell Rep 2018; 25:3811-3827.e7. [PMID: 30590051 DOI: 10.1016/j.celrep.2018.11.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/28/2018] [Accepted: 11/20/2018] [Indexed: 12/24/2022] Open
Abstract
Notch is activated globally in pancreatic progenitors; however, for progenitors to differentiate into endocrine cells, they must escape Notch activation to express Neurogenin-3. Here, we find that the transcription factor nuclear factor I/A (NFIA) promotes endocrine development by regulating Notch ligand Dll1 trafficking. Pancreatic deletion of NFIA leads to cell fate defects, with increased duct and decreased endocrine formation, while ectopic expression promotes endocrine formation in mice and human pancreatic progenitors. NFIA-deficient mice exhibit dysregulation of trafficking-related genes including increased expression of Mib1, which acts to target Dll1 for endocytosis. We find that NFIA binds to the Mib1 promoter, with loss of NFIA leading to an increase in Dll1 internalization and enhanced Notch activation with rescue of the cell fate defects after Mib1 knockdown. This study reveals NFIA as a pro-endocrine factor in the pancreas, acting to repress Mib1, inhibit Dll1 endocytosis and thus promote escape from Notch activation.
Collapse
Affiliation(s)
- Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jolanta Chmielowiec
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA; Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diane Yang
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katrina Wamble
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA; Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lesley S Chaboub
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lita Duraine
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Burak Tepe
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stacey M Glasgow
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA; Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christel Brou
- Department of Cell Biology and Infection, Institute Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Benjamin Deneen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA; Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Malgorzata Borowiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA; Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Sokol AM, Uszczynska-Ratajczak B, Collins MM, Bazala M, Topf U, Lundegaard PR, Sugunan S, Guenther S, Kuenne C, Graumann J, Chan SSL, Stainier DYR, Chacinska A. Loss of the Mia40a oxidoreductase leads to hepato-pancreatic insufficiency in zebrafish. PLoS Genet 2018; 14:e1007743. [PMID: 30457989 PMCID: PMC6245507 DOI: 10.1371/journal.pgen.1007743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Development and function of tissues and organs are powered by the activity of mitochondria. In humans, inherited genetic mutations that lead to progressive mitochondrial pathology often manifest during infancy and can lead to death, reflecting the indispensable nature of mitochondrial biogenesis and function. Here, we describe a zebrafish mutant for the gene mia40a (chchd4a), the life-essential homologue of the evolutionarily conserved Mia40 oxidoreductase which drives the biogenesis of cysteine-rich mitochondrial proteins. We report that mia40a mutant animals undergo progressive cellular respiration defects and develop enlarged mitochondria in skeletal muscles before their ultimate death at the larval stage. We generated a deep transcriptomic and proteomic resource that allowed us to identify abnormalities in the development and physiology of endodermal organs, in particular the liver and pancreas. We identify the acinar cells of the exocrine pancreas to be severely affected by mutations in the MIA pathway. Our data contribute to a better understanding of the molecular, cellular and organismal effects of mitochondrial deficiency, important for the accurate diagnosis and future treatment strategies of mitochondrial diseases. Mitochondrial pathologies which result from mutations in the nuclear DNA remain incurable and often lead to death. As mitochondria play various roles in cellular and tissue-specific contexts, the symptoms of mitochondrial pathologies can differ between patients. Thus, diagnosis and treatment of mitochondrial disorders remain challenging. To enhance this, the generation of new models that explore and define the consequences of mitochondria insufficiencies is of central importance. Here, we present a mia40a zebrafish mutant as a model for mitochondrial dysfunction, caused by an imbalance in mitochondrial protein biogenesis. This mutant shares characteristics with existing reports on mitochondria dysfunction, and has led us to identify novel phenotypes such as enlarged mitochondrial clusters in skeletal muscles. In addition, our transcriptomics and proteomics data contribute important findings to the existing knowledge on how faulty mitochondria impinge on vertebrate development in molecular, tissue and organ specific contexts.
Collapse
Affiliation(s)
- Anna M. Sokol
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- * E-mail: (AMS); (AC)
| | | | - Michelle M. Collins
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michal Bazala
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ulrike Topf
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Pia R. Lundegaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sreedevi Sugunan
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Stefan Guenther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Kuenne
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sherine S. L. Chan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Chacinska
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- * E-mail: (AMS); (AC)
| |
Collapse
|
24
|
Zhou X, Xiao C, Li Y, Shang Y, Yin D, Li S, Xiang B, Lu R, Ji Y, Wu Y, Meng W, Zhu H, Liu J, Hu H, Mo X, Xu H. Mid1ip1b modulates apical reorientation of non-centrosomal microtubule organizing center in epithelial cells. J Genet Genomics 2018; 45:433-442. [PMID: 30174135 DOI: 10.1016/j.jgg.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 02/05/2023]
Abstract
In most kinds of animal cells, the centrosome serves as the main microtubule organizing center (MTOC) that nucleates microtubule arrays throughout the cytoplasm to maintain cell structure, cell division and intracellular transport. Whereas in epithelial cells, non-centrosomal MTOCs are established in the apical domain for generating asymmetric microtubule fibers and cilia in epithelial cells for the organ morphogenesis during embryonic development. However, the mechanism by which MTOCs localize to the apical domain in epithelial cells remains largely unknown. Here, we show that Mid1ip1b has a close interaction with γ-tubulin protein, the central component of MTOC, and modulates lumen opening of the neural tube, gut, intestine, and kidney of zebrafish. Knockdown or dominant negative effect of Mid1ip1b resulted in failure of lumen formation of the organs as aforementioned. Moreover, the non-centrosomal MTOCs were unable to orientate to the apical domain in Mid1ip1b knockdown epithelial cells, and the centrosomal MTOCs were inaccurately placed in the apical domain, resulting in defective formation of asymmetric microtubules and misplacement of cilia in the apical domain. These data uncover a molecule that controls the proper localization of MTOCs in the apical domain in epithelial cells for organ morphogenesis during embryonic development.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Chun Xiao
- National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Li
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yanna Shang
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Dongqin Yin
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Siying Li
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bo Xiang
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ran Lu
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yi Ji
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yang Wu
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Wentong Meng
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hongyan Zhu
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jin Liu
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Huozhen Hu
- National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xianming Mo
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hong Xu
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
25
|
Zang L, Maddison LA, Chen W. Zebrafish as a Model for Obesity and Diabetes. Front Cell Dev Biol 2018; 6:91. [PMID: 30177968 PMCID: PMC6110173 DOI: 10.3389/fcell.2018.00091] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022] Open
Abstract
Obesity and diabetes now considered global epidemics. The prevalence rates of diabetes are increasing in parallel with the rates of obesity and the strong connection between these two diseases has been coined as “diabesity.” The health risks of overweight or obesity include Type 2 diabetes mellitus (T2DM), coronary heart disease and cancer of numerous organs. Both obesity and diabetes are complex diseases that involve the interaction of genetics and environmental factors. The underlying pathogenesis of obesity and diabetes are not well understood and further research is needed for pharmacological and surgical management. Consequently, the use of animal models of obesity and/or diabetes is important for both improving the understanding of these diseases and to identify and develop effective treatments. Zebrafish is an attractive model system for studying metabolic diseases because of the functional conservation in lipid metabolism, adipose biology, pancreas structure, and glucose homeostasis. It is also suited for identification of novel targets associated with the risk and treatment of obesity and diabetes in humans. In this review, we highlight studies using zebrafish to model metabolic diseases, and discuss the advantages and disadvantages of studying pathologies associated with obesity and diabetes in zebrafish.
Collapse
Affiliation(s)
- Liqing Zang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States.,Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
| | - Lisette A Maddison
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
26
|
Kowalska M, Rupik W. Development of the duct system during exocrine pancreas differentiation in the grass snakeNatrix natrix(Lepidosauria, Serpentes). J Morphol 2018; 279:724-746. [DOI: 10.1002/jmor.20806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/25/2018] [Accepted: 02/06/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Magdalena Kowalska
- Department of Animal Histology and Embryology; University of Silesia; Katowice Poland
| | - Weronika Rupik
- Department of Animal Histology and Embryology; University of Silesia; Katowice Poland
| |
Collapse
|
27
|
Freudenblum J, Iglesias JA, Hermann M, Walsen T, Wilfinger A, Meyer D, Kimmel RA. In vivo imaging of emerging endocrine cells reveals a requirement for PI3K-regulated motility in pancreatic islet morphogenesis. Development 2018; 145:dev158477. [PMID: 29386244 PMCID: PMC5818004 DOI: 10.1242/dev.158477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/10/2018] [Indexed: 01/03/2023]
Abstract
The three-dimensional architecture of the pancreatic islet is integral to beta cell function, but the process of islet formation remains poorly understood due to the difficulties of imaging internal organs with cellular resolution. Within transparent zebrafish larvae, the developing pancreas is relatively superficial and thus amenable to live imaging approaches. We performed in vivo time-lapse and longitudinal imaging studies to follow islet development, visualizing both naturally occurring islet cells and cells arising with an accelerated timecourse following an induction approach. These studies revealed previously unappreciated fine dynamic protrusions projecting between neighboring and distant endocrine cells. Using pharmacological compound and toxin interference approaches, and single-cell analysis of morphology and cell dynamics, we determined that endocrine cell motility is regulated by phosphoinositide 3-kinase (PI3K) and G-protein-coupled receptor (GPCR) signaling. Linking cell dynamics to islet formation, perturbation of protrusion formation disrupted endocrine cell coalescence, and correlated with decreased islet cell differentiation. These studies identified novel cell behaviors contributing to islet morphogenesis, and suggest a model in which dynamic exploratory filopodia establish cell-cell contacts that subsequently promote cell clustering.
Collapse
Affiliation(s)
- Julia Freudenblum
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - José A Iglesias
- Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenbergerstrasse 69, A-4040 Linz, Austria
| | - Martin Hermann
- Department of Anaesthesiology and Critical Care Medicine, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria
| | - Tanja Walsen
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck Austria
| | - Armin Wilfinger
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Robin A Kimmel
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|
28
|
Kowalska M, Hermyt M, Rupik W. Three-dimensional reconstruction of the embryonic pancreas in the grass snake Natrix natrix L. (Lepidosauria, Serpentes) based on histological studies. ZOOLOGY 2017; 121:91-110. [DOI: 10.1016/j.zool.2016.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 09/27/2016] [Accepted: 11/10/2016] [Indexed: 01/08/2023]
|
29
|
Schmitner N, Kohno K, Meyer D. ptf1a+ , ela3l- cells are developmentally maintained progenitors for exocrine regeneration following extreme loss of acinar cells in zebrafish larvae. Dis Model Mech 2017; 10:307-321. [PMID: 28138096 PMCID: PMC5374315 DOI: 10.1242/dmm.026633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022] Open
Abstract
The exocrine pancreas displays a significant capacity for regeneration and renewal. In humans and mammalian model systems, the partial loss of exocrine tissue, such as after acute pancreatitis or partial pancreatectomy induces rapid recovery via expansion of surviving acinar cells. In mouse it was further found that an almost complete removal of acinar cells initiates regeneration from a currently not well-defined progenitor pool. Here, we used the zebrafish as an alternative model to study cellular mechanisms of exocrine regeneration following an almost complete removal of acinar cells. We introduced and validated two novel transgenic approaches for genetically encoded conditional cell ablation in the zebrafish, either by caspase-8-induced apoptosis or by rendering cells sensitive to diphtheria toxin. By using the ela3l promoter for exocrine-specific expression, we show that both approaches allowed cell-type-specific removal of >95% of acinar tissue in larval and adult zebrafish without causing any signs of unspecific side effects. We find that zebrafish larvae are able to recover from a virtually complete acinar tissue ablation within 2 weeks. Using short-term lineage-tracing experiments and EdU incorporation assays, we exclude duct-associated Notch-responsive cells as the source of regeneration. Rather, a rare population of slowly dividing ela3l-negative cells expressing ptf1a and CPA was identified as the origin of the newly forming exocrine cells. Cells are actively maintained, as revealed by a constant number of these cells at different larval stages and after repeated cell ablation. These cells establish ela3l expression about 4-6 days after ablation without signs of increased proliferation in between. With onset of ela3l expression, cells initiate rapid proliferation, leading to fast expansion of the ela3l-positive population. Finally, we show that this proliferation is blocked by overexpression of the Wnt-signaling antagonist dkk1b In conclusion, we show a conserved requirement for Wnt signaling in exocrine tissue expansion and reveal a potential novel progenitor or stem cell population as a source for exocrine neogenesis after complete loss of acinar cells.
Collapse
Affiliation(s)
- Nicole Schmitner
- Institute for Molecular Biology, CMBI, University of Innsbruck, 6020 Innsbruck Austria
| | - Kenji Kohno
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Dirk Meyer
- Institute for Molecular Biology, CMBI, University of Innsbruck, 6020 Innsbruck Austria
| |
Collapse
|
30
|
Nissim S, Weeks O, Talbot JC, Hedgepeth JW, Wucherpfennig J, Schatzman-Bone S, Swinburne I, Cortes M, Alexa K, Megason S, North TE, Amacher SL, Goessling W. Iterative use of nuclear receptor Nr5a2 regulates multiple stages of liver and pancreas development. Dev Biol 2016; 418:108-123. [PMID: 27474396 DOI: 10.1016/j.ydbio.2016.07.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 12/22/2022]
Abstract
The stepwise progression of common endoderm progenitors into differentiated liver and pancreas organs is regulated by a dynamic array of signals that are not well understood. The nuclear receptor subfamily 5, group A, member 2 gene nr5a2, also known as Liver receptor homolog-1 (Lrh-1) is expressed in several tissues including the developing liver and pancreas. Here, we interrogate the role of Nr5a2 at multiple developmental stages using genetic and chemical approaches and uncover novel pleiotropic requirements during zebrafish liver and pancreas development. Zygotic loss of nr5a2 in a targeted genetic null mutant disrupted the development of the exocrine pancreas and liver, while leaving the endocrine pancreas intact. Loss of nr5a2 abrogated exocrine pancreas markers such as trypsin, while pancreas progenitors marked by ptf1a or pdx1 remained unaffected, suggesting a role for Nr5a2 in regulating pancreatic acinar cell differentiation. In the developing liver, Nr5a2 regulates hepatic progenitor outgrowth and differentiation, as nr5a2 mutants exhibited reduced hepatoblast markers hnf4α and prox1 as well as differentiated hepatocyte marker fabp10a. Through the first in vivo use of Nr5a2 chemical antagonist Cpd3, the iterative requirement for Nr5a2 for exocrine pancreas and liver differentiation was temporally elucidated: chemical inhibition of Nr5a2 function during hepatopancreas progenitor specification was sufficient to disrupt exocrine pancreas formation and enhance the size of the embryonic liver, suggesting that Nr5a2 regulates hepatic vs. pancreatic progenitor fate choice. Chemical inhibition of Nr5a2 at a later time during pancreas and liver differentiation was sufficient to block the formation of mature acinar cells and hepatocytes. These findings define critical iterative and pleiotropic roles for Nr5a2 at distinct stages of pancreas and liver organogenesis, and provide novel perspectives for interpreting the role of Nr5a2 in disease.
Collapse
Affiliation(s)
- Sahar Nissim
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Olivia Weeks
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jared C Talbot
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH 43210, USA
| | - John W Hedgepeth
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julia Wucherpfennig
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Ian Swinburne
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mauricio Cortes
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Kristen Alexa
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sean Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Trista E North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sharon L Amacher
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH 43210, USA
| | - Wolfram Goessling
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
31
|
Abstract
The endoderm is the innermost embryonic germ layer, and in zebrafish, it gives rise to the lining of the gut, the gills, liver, pancreas, gallbladder, and derivatives of the pharyngeal pouch. These organs form the gastrointestinal tract and are involved with the absorption, delivery, and metabolism of nutrients. The liver has a central role in regulating these processes because it controls carbohydrate and lipid metabolism, protein synthesis, and breakdown of endogenous and xenobiotic products. Liver dysfunction frequently leads to significant morbidity and mortality; however, in most settings of organ injury, the liver exhibits remarkable regenerative capacity. In this chapter, we review the principal mechanisms of endoderm and liver formation and provide protocols to assess liver formation and liver regeneration.
Collapse
|
32
|
O'Hare EA, Yerges-Armstrong LM, Perry JA, Shuldiner AR, Zaghloul NA. Assignment of Functional Relevance to Genes at Type 2 Diabetes-Associated Loci Through Investigation of β-Cell Mass Deficits. Mol Endocrinol 2016; 30:429-45. [PMID: 26963759 DOI: 10.1210/me.2015-1243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes (T2D) has been associated with a large number of genomic loci, many of which encompass multiple genes without a definitive causal gene. This complexity has hindered efforts to clearly identify functional candidate genes and interpret their role in mediating susceptibility to disease. Here we examined the relevance of individual genes found at T2D-associated loci by assessing their potential contribution to a phenotype relevant to the disease state: production and maintenance of β-cell mass. Using transgenic zebrafish in which β-cell mass could be rapidly visualized in vivo, we systematically suppressed the expression of orthologs of genes found at T2D-associated genomic loci. Overall, we tested 67 orthologs, many of which had no known relevance to β-cell mass, at 62 human T2D-associated loci, including eight loci with multiple candidate genes. In total we identified 25 genes that were necessary for proper β-cell mass, providing functional evidence for their role in a physiological phenotype directly related to T2D. Of these, 16 had not previously been implicated in the regulation of β-cell mass. Strikingly, we identified single functional candidate genes at the majority of the loci for which multiple genes were analyzed. Further investigation into the contribution of the 25 genes to the adaptive capacity of β-cells suggested that the majority of genes were not required for glucose-induced expansion of β-cell mass but were significantly necessary for the regeneration of β-cells. These findings suggest that genetically programmed deficiencies in β-cell mass may be related to impaired maintenance. Finally, we investigated the relevance of our findings to human T2D onset in diabetic individuals from the Old Order Amish and found that risk alleles in β-cell mass genes were associated with significantly younger age of onset and lower body mass index. Taken together, our study offers a functional approach to assign relevance to genes at T2D-associated loci and offers experimental evidence for the defining role of β-cell mass maintenance in genetic susceptibility to T2D onset.
Collapse
Affiliation(s)
- Elizabeth A O'Hare
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Laura M Yerges-Armstrong
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - James A Perry
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Alan R Shuldiner
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Norann A Zaghloul
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
33
|
Patil P, Uechi T, Kenmochi N. Incomplete splicing of neutrophil-specific genes affects neutrophil development in a zebrafish model of poikiloderma with neutropenia. RNA Biol 2016; 12:426-34. [PMID: 25849198 DOI: 10.1080/15476286.2015.1017240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Poikiloderma with neutropenia (PN) is a rare inherited disorder characterized by poikiloderma, facial dysmorphism, pachyonychia, short stature and neutropenia. The molecular testing of PN patients has identified mutations in the C16orf57 gene, which encodes a protein referred to as USB1 (U Six Biogenesis 1). In this study, we developed a zebrafish model of PN by the microinjection of morpholino antisense oligos to suppress usb1 gene function. Severe morphological defects, including a bent tail, thin yolk extension and reduced body length, were predominant in the Usb1-suppressed embryos (morphants). We also observed significantly decreased number of neutrophils in the morphants by Sudan Black staining. Interestingly, the splicing of genes involved in neutrophil differentiation and development, such as mpx, ncf1, ela3l and npsn, was aberrant in the morphants. However, the splicing of haematopoietic precursors and erythroid-specific genes was unaltered. Importantly, the neutrophil defects were almost completely rescued by co-injection of ela3l mRNA, the most markedly affected gene in the morphants. Our study demonstrated a possible role of USB1 in modulating the tissue-specific gene splicing that eventually leads to the impaired development of neutrophils. This zebrafish model could serve as a valuable tool to investigate the causative role of USB1 in PN pathogenesis.
Collapse
Affiliation(s)
- Prakash Patil
- a Frontier Science Research Center; University of Miyazaki; Miyazaki , Japan
| | | | | |
Collapse
|
34
|
Bielczyk-Maczyńska E, Lam Hung L, Ferreira L, Fleischmann T, Weis F, Fernández-Pevida A, Harvey SA, Wali N, Warren AJ, Barroso I, Stemple DL, Cvejic A. The Ribosome Biogenesis Protein Nol9 Is Essential for Definitive Hematopoiesis and Pancreas Morphogenesis in Zebrafish. PLoS Genet 2015; 11:e1005677. [PMID: 26624285 PMCID: PMC4666468 DOI: 10.1371/journal.pgen.1005677] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/26/2015] [Indexed: 12/27/2022] Open
Abstract
Ribosome biogenesis is a ubiquitous and essential process in cells. Defects in ribosome biogenesis and function result in a group of human disorders, collectively known as ribosomopathies. In this study, we describe a zebrafish mutant with a loss-of-function mutation in nol9, a gene that encodes a non-ribosomal protein involved in rRNA processing. nol9sa1022/sa1022 mutants have a defect in 28S rRNA processing. The nol9sa1022/sa1022 larvae display hypoplastic pancreas, liver and intestine and have decreased numbers of hematopoietic stem and progenitor cells (HSPCs), as well as definitive erythrocytes and lymphocytes. In addition, ultrastructural analysis revealed signs of pathological processes occurring in endothelial cells of the caudal vein, emphasizing the complexity of the phenotype observed in nol9sa1022/sa1022 larvae. We further show that both the pancreatic and hematopoietic deficiencies in nol9sa1022/sa1022 embryos were due to impaired cell proliferation of respective progenitor cells. Interestingly, genetic loss of Tp53 rescued the HSPCs but not the pancreatic defects. In contrast, activation of mRNA translation via the mTOR pathway by L-Leucine treatment did not revert the erythroid or pancreatic defects. Together, we present the nol9sa1022/sa1022 mutant, a novel zebrafish ribosomopathy model, which recapitulates key human disease characteristics. The use of this genetically tractable model will enhance our understanding of the tissue-specific mechanisms following impaired ribosome biogenesis in the context of an intact vertebrate.
Collapse
Affiliation(s)
- Ewa Bielczyk-Maczyńska
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge, United Kingdom
| | - Laure Lam Hung
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Lauren Ferreira
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Tobias Fleischmann
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Félix Weis
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Antonio Fernández-Pevida
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Steven A. Harvey
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Neha Wali
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Alan J. Warren
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Inês Barroso
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Derek L. Stemple
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Ana Cvejic
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
35
|
Tabassum N, Tai H, Jung DW, Williams DR. Fishing for Nature's Hits: Establishment of the Zebrafish as a Model for Screening Antidiabetic Natural Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:287847. [PMID: 26681965 PMCID: PMC4670909 DOI: 10.1155/2015/287847] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/28/2015] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus affects millions of people worldwide and significantly impacts their quality of life. Moreover, life threatening diseases, such as myocardial infarction, blindness, and renal disorders, increase the morbidity rate associated with diabetes. Various natural products from medicinal plants have shown potential as antidiabetes agents in cell-based screening systems. However, many of these potential "hits" fail in mammalian tests, due to issues such as poor pharmacokinetics and/or toxic side effects. To address this problem, the zebrafish (Danio rerio) model has been developed as a "bridge" to provide an experimentally convenient animal-based screening system to identify drug candidates that are active in vivo. In this review, we discuss the application of zebrafish to drug screening technologies for diabetes research. Specifically, the discovery of natural product-based antidiabetes compounds using zebrafish will be described. For example, it has recently been demonstrated that antidiabetic natural compounds can be identified in zebrafish using activity guided fractionation of crude plant extracts. Moreover, the development of fluorescent-tagged glucose bioprobes has allowed the screening of natural product-based modulators of glucose homeostasis in zebrafish. We hope that the discussion of these advances will illustrate the value and simplicity of establishing zebrafish-based assays for antidiabetic compounds in natural products-based laboratories.
Collapse
Affiliation(s)
- Nadia Tabassum
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Hongmei Tai
- Department of Endocrinology, Yanji Hospital, Jilin 133000, China
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Darren R. Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| |
Collapse
|
36
|
Otsuka T, Tsukahara T, Takeda H. Development of the pancreas in medaka, Oryzias latipes, from embryo to adult. Dev Growth Differ 2015; 57:557-69. [PMID: 26435359 DOI: 10.1111/dgd.12237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/17/2015] [Accepted: 07/19/2015] [Indexed: 12/17/2022]
Abstract
To address conserved and unique features of fish pancreas development, we performed extensive analyses of pancreatic development in medaka embryos and adults using pdx1- and ptf1a-transgenic medaka, in situ hybridization and immunohistochemistry. The markers used in these analyses included pdx1, nkx6.1, nkx6.2, nkx2.2, Islet1, insulin, Somatostatin, glucagon, ptf1a, ela3l, trypsin, and amylase. The double transgenic (Tg) fish produced in the present study visualizes the development of endocrine (pdx1+) and exocrine (ptf1a+) parts simultaneously in living fishes. Like other vertebrates, the medaka pancreas develops as two (dorsal and ventral) buds in the anterior gut tube, which soon fuse into a single anlagen. The double Tg fish demonstrates that the differential property between the two buds is already established at the initial phase of bud development as indicated by strong pdx1 expression in the dorsal one. This Tg fish also allowed us to examine the gross morphology and the structure of adult pancreas and revealed unique characters of medaka pancreas such as broad and multiple connections with the gut tube along the anterior-posterior axis.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tatsuya Tsukahara
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
37
|
Kimmel RA, Dobler S, Schmitner N, Walsen T, Freudenblum J, Meyer D. Diabetic pdx1-mutant zebrafish show conserved responses to nutrient overload and anti-glycemic treatment. Sci Rep 2015; 5:14241. [PMID: 26384018 PMCID: PMC4585597 DOI: 10.1038/srep14241] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/20/2015] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus is characterized by disrupted glucose homeostasis due to loss or dysfunction of insulin-producing beta cells. In this work, we characterize pancreatic islet development and function in zebrafish mutant for pdx1, a gene which in humans is linked to genetic forms of diabetes and is associated with increased susceptibility to Type 2 diabetes. Pdx1 mutant zebrafish have the key diabetic features of reduced beta cells, decreased insulin and elevated glucose. The hyperglycemia responds to pharmacologic anti-diabetic treatment and, as often seen in mammalian diabetes models, beta cells of pdx1 mutants show sensitivity to nutrient overload. This unique genetic model of diabetes provides a new tool for elucidating the mechanisms behind hyperglycemic pathologies and will allow the testing of novel therapeutic interventions in a model organism that is amenable to high-throughput approaches.
Collapse
Affiliation(s)
- Robin A. Kimmel
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Stefan Dobler
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Nicole Schmitner
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | | | - Julia Freudenblum
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|
38
|
Wang YJ, Park JT, Parsons MJ, Leach SD. Fate mapping of ptf1a-expressing cells during pancreatic organogenesis and regeneration in zebrafish. Dev Dyn 2015; 244:724-35. [PMID: 25773748 DOI: 10.1002/dvdy.24271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/22/2015] [Accepted: 03/01/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Pancreas development in zebrafish shares many features with mammals, including the participation of epithelial progenitor cells expressing pancreas transcription factor 1a (ptf1a). However, to date it has remained unclear whether, as in mammals, ptf1a-expressing zebrafish pancreatic progenitors are able to contribute to multiple exocrine and endocrine lineages. To delineate the lineage potential of ptf1a-expressing cells, we generated ptf1a:creER(T2) transgenic fish and performed genetic-inducible lineage tracing in developmental, regenerating, and ptf1a-deficient zebrafish pancreas. RESULTS In addition to their contribution to the acinar cell lineage, ptf1a-expressing cells give rise to both pancreatic Notch-responsive-cells (PNCs) as well as small numbers of endocrine cells during pancreatic development. In fish with ptf1a haploinsufficiency, a higher proportion of ptf1a lineage-labeled cells are traced into the PNC and endocrine compartments. Further reduction of ptf1a gene dosage converts pancreatic progenitor cells to gall bladder and other non-pancreatic cell fates. CONCLUSIONS Our results confirm the presence of multipotent ptf1a-expressing progenitor cells in developing zebrafish pancreas, with reduced ptf1a dosage promoting greater contributions towards non-acinar lineages. As in mammals, loss of ptf1a results in conversion of nascent pancreatic progenitor cells to non-pancreatic cell fates, underscoring the central role of ptf1a in foregut tissue specification.
Collapse
Affiliation(s)
- Yue J Wang
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joon T Park
- The Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael J Parsons
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven D Leach
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
39
|
Navis A, Bagnat M. Loss of cftr function leads to pancreatic destruction in larval zebrafish. Dev Biol 2015; 399:237-48. [PMID: 25592226 DOI: 10.1016/j.ydbio.2014.12.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 12/14/2022]
Abstract
The development and function of many internal organs requires precisely regulated fluid secretion. A key regulator of vertebrate fluid secretion is an anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Loss of CFTR function leads to defects in fluid transport and cystic fibrosis (CF), a complex disease characterized by a loss of fluid secretion and mucus buildup in many organs including the lungs, liver, and pancreas. Several animal models including mouse, ferret and pig have been generated to investigate the pathophysiology of CF. However, these models have limited accessibility to early processes in the development of CF and are not amenable for forward genetic or chemical screens. Here, we show that Cftr is expressed and localized to the apical membrane of the zebrafish pancreatic duct and that loss of cftr function leads to destruction of the exocrine pancreas and a cystic fibrosis phenotype that mirrors human disease. Our analyses reveal that the cftr mutant pancreas initially develops normally, then rapidly loses pancreatic tissue during larval life, reflecting pancreatic disease in CF. Altogether, we demonstrate that the cftr mutant zebrafish is a powerful new model for pancreatitis and pancreatic destruction in CF. This accessible model will allow more detailed investigation into the mechanisms that drive CF of the pancreas and facilitate development of new therapies to treat the disease.
Collapse
Affiliation(s)
- Adam Navis
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
40
|
O'Hare EA, Wang X, Montasser ME, Chang YPC, Mitchell BD, Zaghloul NA. Disruption of ldlr causes increased LDL-c and vascular lipid accumulation in a zebrafish model of hypercholesterolemia. J Lipid Res 2014; 55:2242-53. [PMID: 25201834 DOI: 10.1194/jlr.m046540] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hyperlipidemia and arterial cholesterol accumulation are primary causes of cardiovascular events. Monogenic forms of hyperlipidemia and recent genome-wide association studies indicate that genetics plays an important role. Zebrafish are a useful model for studying the genetic susceptibility to hyperlipidemia owing to conservation of many components of lipoprotein metabolism, including those related to LDL, ease of genetic manipulation, and in vivo observation of lipid transport and vascular calcification. We sought to develop a genetic model for lipid metabolism in zebrafish, capitalizing on one well-understood player in LDL cholesterol (LDL-c) transport, the LDL receptor (ldlr), and an established in vivo model of hypercholesterolemia. We report that morpholinos targeted against the gene encoding ldlr effectively suppressed its expression in embryos during the first 8 days of development. The ldlr morphants exhibited increased LDL-c levels that were exacerbated by feeding a high cholesterol diet. Increased LDL-c was ameliorated in morphants upon treatment with atorvastatin. Furthermore, we observed significant vascular and liver lipid accumulation, vascular leakage, and plaque oxidation in ldlr-deficient embryos. Finally, upon transcript analysis of several cholesterol-regulating genes, we observed changes similar to those seen in mammalian systems, suggesting that cholesterol regulation may be conserved in zebrafish. Taken together, these observations indicate conservation of ldlr function in zebrafish and demonstrate the utility of transient gene knockdown in embryos as a genetic model for hyperlipidemia.
Collapse
Affiliation(s)
- Elizabeth A O'Hare
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - Xiaochun Wang
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - May E Montasser
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - Yen-Pei C Chang
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - Norann A Zaghloul
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
41
|
Yee NS, Kazi AA, Yee RK. Cellular and Developmental Biology of TRPM7 Channel-Kinase: Implicated Roles in Cancer. Cells 2014; 3:751-777. [PMID: 25079291 PMCID: PMC4197629 DOI: 10.3390/cells3030751] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 12/29/2022] Open
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed cation-permeable ion channel with intrinsic kinase activity that plays important roles in various physiological functions. Biochemical and electrophysiological studies, in combination with molecular analyses of TRPM7, have generated insights into its functions as a cellular sensor and transducer of physicochemical stimuli. Accumulating evidence indicates that TRPM7 channel-kinase is essential for cellular processes, such as proliferation, survival, differentiation, growth, and migration. Experimental studies in model organisms, such as zebrafish, mouse, and frog, have begun to elucidate the pleiotropic roles of TRPM7 during embryonic development from gastrulation to organogenesis. Aberrant expression and/or activity of the TRPM7 channel-kinase have been implicated in human diseases including a variety of cancer. Studying the functional roles of TRPM7 and the underlying mechanisms in normal cells and developmental processes is expected to help understand how TRPM7 channel-kinase contributes to pathogenesis, such as malignant neoplasia. On the other hand, studies of TRPM7 in diseases, particularly cancer, will help shed new light in the normal functions of TRPM7 under physiological conditions. In this article, we will provide an updated review of the structural features and biological functions of TRPM7, present a summary of current knowledge of its roles in development and cancer, and discuss the potential of TRPM7 as a clinical biomarker and therapeutic target in malignant diseases.
Collapse
Affiliation(s)
- Nelson S Yee
- Division of Hematology-Oncology, Department of Medicine, Penn State College of Medicine, Program of Experimental Therapeutics, Penn State Hershey Cancer Institute, Penn State Milton S, Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA.
| | - Abid A Kazi
- Division of Hematology-Oncology, Department of Medicine, Penn State College of Medicine, Program of Experimental Therapeutics, Penn State Hershey Cancer Institute, Penn State Milton S, Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA.
| | - Rosemary K Yee
- Schreyer Honors College, Pennsylvania State University, University Park, PA 16802, USA; Penn State Harrisburg School of Humanities, Pennsylvania State University, Middletown, PA 17057, USA.
| |
Collapse
|
42
|
Hepatocyte growth factor signaling in intrapancreatic ductal cells drives pancreatic morphogenesis. PLoS Genet 2013; 9:e1003650. [PMID: 23935514 PMCID: PMC3723531 DOI: 10.1371/journal.pgen.1003650] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 06/04/2013] [Indexed: 12/17/2022] Open
Abstract
In a forward genetic screen for regulators of pancreas development in zebrafish, we identified donut(s908) , a mutant which exhibits failed outgrowth of the exocrine pancreas. The s908 mutation leads to a leucine to arginine substitution in the ectodomain of the hepatocyte growth factor (HGF) tyrosine kinase receptor, Met. This missense mutation impedes the proteolytic maturation of the receptor, its trafficking to the plasma membrane, and diminishes the phospho-activation of its kinase domain. Interestingly, during pancreatogenesis, met and its hgf ligands are expressed in pancreatic epithelia and mesenchyme, respectively. Although Met signaling elicits mitogenic and migratory responses in varied contexts, normal proliferation rates in donut mutant pancreata together with dysmorphic, mislocalized ductal cells suggest that met primarily functions motogenically in pancreatic tail formation. Treatment with PI3K and STAT3 inhibitors, but not with MAPK inhibitors, phenocopies the donut pancreatic defect, further indicating that Met signals through migratory pathways during pancreas development. Chimera analyses showed that Met-deficient cells were excluded from the duct, but not acinar, compartment in the pancreatic tail. Conversely, wild-type intrapancreatic duct and "tip cells" at the leading edge of the growing pancreas rescued the donut phenotype. Altogether, these results reveal a novel and essential role for HGF signaling in the intrapancreatic ducts during exocrine morphogenesis.
Collapse
|
43
|
Flasse LC, Pirson JL, Stern DG, Von Berg V, Manfroid I, Peers B, Voz ML. Ascl1b and Neurod1, instead of Neurog3, control pancreatic endocrine cell fate in zebrafish. BMC Biol 2013; 11:78. [PMID: 23835295 PMCID: PMC3726459 DOI: 10.1186/1741-7007-11-78] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/28/2013] [Indexed: 12/15/2022] Open
Abstract
Background NEUROG3 is a key regulator of pancreatic endocrine cell differentiation in mouse, essential for the generation of all mature hormone producing cells. It is repressed by Notch signaling that prevents pancreatic cell differentiation by maintaining precursors in an undifferentiated state. Results We show that, in zebrafish, neurog3 is not expressed in the pancreas and null neurog3 mutant embryos do not display any apparent endocrine defects. The control of endocrine cell fate is instead fulfilled by two basic helix-loop-helix factors, Ascl1b and Neurod1, that are both repressed by Notch signaling. ascl1b is transiently expressed in the mid-trunk endoderm just after gastrulation and is required for the generation of the first pancreatic endocrine precursor cells. Neurod1 is expressed afterwards in the pancreatic anlagen and pursues the endocrine cell differentiation program initiated by Ascl1b. Their complementary role in endocrine differentiation of the dorsal bud is demonstrated by the loss of all hormone-secreting cells following their simultaneous inactivation. This defect is due to a blockage of the initiation of endocrine cell differentiation. Conclusions This study demonstrates that NEUROG3 is not the unique pancreatic endocrine cell fate determinant in vertebrates. A general survey of endocrine cell fate determinants in the whole digestive system among vertebrates indicates that they all belong to the ARP/ASCL family but not necessarily to the Neurog3 subfamily. The identity of the ARP/ASCL factor involved depends not only on the organ but also on the species. One could, therefore, consider differentiating stem cells into insulin-producing cells without the involvement of NEUROG3 but via another ARP/ASCL factor.
Collapse
Affiliation(s)
- Lydie C Flasse
- Laboratory of zebrafish development and disease models, University of Liege (ULg), Liege 4000, Belgium
| | | | | | | | | | | | | |
Collapse
|
44
|
Omae M, Takada N, Yamamoto S, Nakajima H, Sato TN. Identification of inter-organ vascular network: vessels bridging between organs. PLoS One 2013; 8:e65720. [PMID: 23799039 PMCID: PMC3683054 DOI: 10.1371/journal.pone.0065720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/25/2013] [Indexed: 12/20/2022] Open
Abstract
Development and homeostasis of organs and whole body is critically dependent on the circulatory system. In particular, the circulatory system, the railways shuttling oxygen and nutrients among various organs, is indispensible for inter-organ humoral communication. Since the modern view of the anatomy and mechanics of the circulatory system was established in 17(th) century, it has been assumed that humoral factors are carried to and from organs via vascular branches of the central arteries and veins running along the body axis. Over the past few decades, major advances have been made in understanding molecular and cellular mechanisms underlying the vascularization of organs. However, very little is known about how each organ is linked by vasculature (i.e., inter-organ vascular networks). In fact, the exact anatomy of inter-organ vascular networks has remained obscure. Herein, we report the identification of four distinct vessels, V1(LP), V2(LP), V3(LP) and V4(LP), that bridge between two organs, liver and pancreas in developing zebrafish. We found that these inter-organ vessels can be classified into two types: direct and indirect types. The direct type vessels are those that bridge between two organs via single distinct vessel, to which V1(LP) and V2(LP) vessels belong. The indirect type bridges between two organs via separate branches that emanate from a stem vessel, and V3(LP) and V4(LP) vessels belong to this type. Our finding of V1(LP), V2(LP), V3(LP) and V4(LP) vessels provides the proof of the existence of inter-organ vascular networks. These and other yet-to-be-discovered inter-organ vascular networks may facilitate the direct exchange of humoral factors that are necessary for the coordinated growth, differentiation and homeostasis of the connected organs. It is also possible that the inter-organ vessels serve as tracks for their connected organs to follow during their growth to establish their relative positions and size differences.
Collapse
Affiliation(s)
- Madoka Omae
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Norio Takada
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Shohei Yamamoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Thomas N. Sato
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
- Centenary Institute, Sydney, Australia
| |
Collapse
|
45
|
Moss LG, Caplan TV, Moss JB. Imaging beta cell regeneration and interactions with islet vasculature in transparent adult zebrafish. Zebrafish 2013; 10:249-57. [PMID: 23682836 PMCID: PMC3673648 DOI: 10.1089/zeb.2012.0813] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Blood vessel networks provide nutrients and gaseous exchange that are essential for functions. Pancreatic islet capillaries deliver oxygen to endocrine cells while transporting hormones to organs and peripheral locations throughout the body. We have developed a zebrafish diabetes model in which adult islets can be followed in vivo during beta cell regeneration while calibrating changes in beta cell mass and fasting blood glucose levels. After genetic ablation, beta cells are initially dysfunctional or dying, and blood glucose levels increase fourfold. During a 2-week period, hyperglycemia eventually normalizes as beta cell mass regenerates. We show that mCherry-fluorescent, insulin-positive beta cells re-emerge in close contact with the vascular endothelium. Alterations in the dense vascular network of zebrafish islets were visualized by the expression of green fluorescent protein (GFP) in endothelial cells derived from the Fli transcription factor promoter. The rapid destruction and regeneration of beta cell mass was evaluated in the same animal over time, providing a functional model for investigating the interactions of islet cell types with vascular cells as well as the consequences of hyperglycemia on other tissues. Regenerating adult zebrafish can be utilized as vertebrate, metabolically active models for generating new insights into treatments for type 2 diabetes.
Collapse
Affiliation(s)
- Larry G Moss
- Division of Endocrinology, Metabolism and Nutrition, Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center , Durham, NC 27704, USA
| | | | | |
Collapse
|
46
|
Yee NS, Kazi AA, Yee RK. Translating discovery in zebrafish pancreatic development to human pancreatic cancer: biomarkers, targets, pathogenesis, and therapeutics. Zebrafish 2013; 10:132-146. [PMID: 23682805 PMCID: PMC3673615 DOI: 10.1089/zeb.2012.0817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer.
Collapse
Affiliation(s)
- Nelson S Yee
- Division of Hematology-Oncology, Program of Experimental Therapeutics, Department of Medicine, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Hershey Cancer Institute, Pennsylvania State University , Hershey, PA 17033-0850, USA.
| | | | | |
Collapse
|
47
|
Asaoka Y, Terai S, Sakaida I, Nishina H. The expanding role of fish models in understanding non-alcoholic fatty liver disease. Dis Model Mech 2013; 6:905-14. [PMID: 23720231 PMCID: PMC3701210 DOI: 10.1242/dmm.011981] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a condition in which excessive fat accumulates in the liver of an individual who has not consumed excessive alcohol. Non-alcoholic steatohepatitis (NASH), a severe form of NAFLD, can progress to hepatic cirrhosis and/or hepatocellular carcinoma (HCC). NAFLD is considered to be a hepatic manifestation of metabolic syndrome, and its incidence has risen worldwide in lockstep with the increased global prevalence of obesity. Over the last decade, rodent studies have yielded an impressive list of molecules associated with NAFLD and NASH pathogenesis. However, the identification of currently unknown metabolic factors using mammalian model organisms is inefficient and expensive compared with studies using fish models such as zebrafish (Danio rerio) and medaka (Oryzias latipes). Substantial advances in unraveling the molecular pathogenesis of NAFLD have recently been achieved through unbiased forward genetic screens using small fish models. Furthermore, these easily manipulated organisms have been used to great advantage to evaluate the therapeutic effectiveness of various chemical compounds for the treatment of NAFLD. In this Review, we summarize aspects of NAFLD (specifically focusing on NASH) pathogenesis that have been previously revealed by rodent models, and discuss how small fish are increasingly being used to uncover factors that contribute to normal hepatic lipid metabolism. We describe the various types of fish models in use for this purpose, including those generated by mutation, transgenesis, or dietary or chemical treatment, and contrast them with rodent models. The use of small fish in identifying novel potential therapeutic agents for the treatment of NAFLD and NASH is also addressed.
Collapse
Affiliation(s)
- Yoichi Asaoka
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | |
Collapse
|
48
|
Wilfinger A, Arkhipova V, Meyer D. Cell type and tissue specific function of islet genes in zebrafish pancreas development. Dev Biol 2013; 378:25-37. [PMID: 23518338 PMCID: PMC3657195 DOI: 10.1016/j.ydbio.2013.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 02/06/2013] [Accepted: 03/11/2013] [Indexed: 12/21/2022]
Abstract
Isl1 is a LIM homeobox transcription factor showing conserved expression in the developing and mature vertebrate pancreas. So far, functions of pancreatic Isl1 have mainly been studied in the mouse, where Isl1 has independent functions during formation of exocrine and endocrine tissues. Here, we take advantage of a recently described isl1 mutation in zebrafish to address pancreatic isl1 functions in a non-mammalian system. Isl1 in zebrafish, as in mouse, shows transient expression in mesenchyme flanking the pancreatic endoderm, and continuous expression in all endocrine cells. In isl1 mutants, endocrine cells are specified in normal numbers but more than half of these cells fail to establish expression of endocrine hormones. By using a lineage tracking approach that highlights cells leaving cell cycle early in development, we show that isl1 functions are different in first and second wave endocrine cells. In isl1 mutants, early forming first wave cells show virtually no glucagon expression and a reduced number of cells expressing insulin and somatostatin, while in the later born second wave cells somatostatin expressing cells are strongly reduced and insulin and glucagon positive cells form in normal numbers. Isl1 mutant zebrafish also display a smaller exocrine pancreas. We find that isl1 expression in the pancreatic mesenchyme overlaps with that of the related genes isl2a and isl2b and that pancreatic expression of isl-genes is independent of each other. As a combined block of two or three isl1/2 genes results in a dose-dependent reduction of exocrine tissue, our data suggest that all three genes cooperatively contribute to non-cell autonomous exocrine pancreas extension. The normal expression of the pancreas mesenchyme markers meis3, fgf10 and fgf24 in isl1/2 depleted embryos suggests that this activity is independent of isl-gene function in pancreatic mesenchyme formation as was found in mouse. This indicates species-specific differences in the requirement for isl-genes in pancreatic mesenchyme formation. Overall, our data reveal a novel interaction of isl1 and isl2 genes in exocrine pancreas expansion and cell type specific requirements during endocrine cell maturation. • Overlapping functions of islet1, islet2a and islet2b in exocrine pancreas formation. • Islet1/2a/2b are not required for pancreatic mesenchyme formation. • Islet1 but not islet2a/b is required for endocrine cell maturation. • Endocrine cell types are differently affected by the loss of islet1.
Collapse
Affiliation(s)
- Armin Wilfinger
- Institute for Molecular Biology/ CMBI, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria.
| | | | | |
Collapse
|
49
|
Cass AN, Servetnick MD, McCune AR. Expression of a lung developmental cassette in the adult and developing zebrafish swimbladder. Evol Dev 2013; 15:119-32. [DOI: 10.1111/ede.12022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Amanda N. Cass
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca, NY; 14853; USA
| | - Marc D. Servetnick
- Science and Technology Program; University of Washington; Bothell, WA; 98011; USA
| | - Amy R. McCune
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca, NY; 14853; USA
| |
Collapse
|
50
|
Yee NS. Toward the goal of personalized therapy in pancreatic cancer by targeting the molecular phenotype. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 779:91-143. [PMID: 23288637 DOI: 10.1007/978-1-4614-6176-0_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this article is to provide a critical review of the molecular alterations in pancreatic cancer that are clinically investigated as therapeutic targets and their potential impact on clinical outcomes. Adenocarcinoma of exocrine pancreas is generally associated with poor prognosis and the conventional therapies are marginally effective. Advances in understanding the genetic regulation of normal and neoplastic development of pancreas have led to development and clinical evaluation of new therapeutic strategies that target the signaling pathways and molecular alterations in pancreatic cancer. Applications have begun to utilize the genetic targets as biomarkers for prediction of therapeutic responses and selection of treatment options. The goal of accomplishing personalized tumor-specific therapy with tolerable side effects for patients with pancreatic cancer is hopefully within reach in the foreseeable future.
Collapse
Affiliation(s)
- Nelson S Yee
- Division of Hematology-Oncology, Department of Medicine, Penn State College of Medicine, Penn State Hershey Cancer Institute, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033-0850, USA.
| |
Collapse
|