1
|
Jeon SB, Kang HG, Kim MJ, Yun JH, Choi EY, Song BS, Kim SU, Cho SK, Jeong PS, Sim BW. NEK2 supports porcine embryonic development by modulating the AKT signaling pathway. Life Sci 2025; 372:123640. [PMID: 40239862 DOI: 10.1016/j.lfs.2025.123640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/28/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
AIMS Serine/threonine kinase NIMA-related kinase 2 (NEK2) plays a crucial role in regulating the cell cycle and DNA damage response. This study explored the mechanisms by which NEK2 inhibition affects porcine embryonic development. MATERIALS AND METHODS To explore the role of NEK2 in porcine embryonic development, we used the NEK2 inhibitor JH295 and the AKT activator SC79. Various staining methods, including EdU, EU, OPP, TUNEL assay, real-time PCR, immunocytochemistry, and Western blotting, were used to identify the effects of NEK2 inhibition on developmental competence, DNA damage, and the related mechanisms in porcine embryos. KEY FINDINGS NEK2 inhibition significantly reduced the cleavage rate and blastocyst formation rate. Abnormal development was associated with decreased expression of genes related to zygotic genome activation and significantly reduced the levels of EdU, EU, and OPP. Notably, NEK2 inhibition decreased the levels of p-AKT and AKT, as well as their transcript levels. While NEK2 inhibition reduced the rates of cleavage and blastocyst formation as well as total cell number, all of these effects were reversed by SC79 co-treatment. The proportions of expanded blastocyst and cell survival and the trophectoderm cell numbers were similarly restored to control levels following combined treatment with SC79. Furthermore, the reduced levels of EdU, EU, and OPP by NEK2 inhibition were completely restored by SC79 co-treatment. NEK2 inhibition had a negative impact on DNA integrity, and this effect was inhibited by SC79 co-treatment. SIGNIFICANCE Together, these results suggest that NEK2 plays a crucial role in porcine embryonic development by regulating the AKT signaling pathway.
Collapse
Affiliation(s)
- Se-Been Jeon
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min Ju Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ji Hyeon Yun
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; Department of Animal BioScience, School of Animal Life Convergence, Hankyong National University, Ansung 17579, Republic of Korea
| | - Eun Young Choi
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Seong-Keun Cho
- Department of Animal Science, Life and Industry Convergence Research Institute (RICRI), College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Pil-Soo Jeong
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea.
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
2
|
Oh D, Choi H, Kim M, Jawad A, Lee J, Oh BC, Hyun SH. Interleukin-7 promotes porcine early embryogenesis in vitro and inner cell mass development through PI3K/AKT pathway after parthenogenetic activation. Sci Rep 2025; 15:13850. [PMID: 40263539 PMCID: PMC12015589 DOI: 10.1038/s41598-025-98574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
Interleukin-7 (IL-7) plays a crucial role in cell survival and proliferation through the phosphatidylinositol-3-kinase (PI3K)/AKT signaling. While we previously demonstrated the beneficial role of IL-7 in early porcine embryonic development, the underlying molecular mechanisms remained unclear. We hypothesized that IL-7 would enhance early embryogenesis and promote inner cell mass (ICM) formation via PI3K/AKT pathway activation. To test this, embryos were cultured with wortmannin (Wort), a PI3K inhibitor, with or without IL-7 after parthenogenetic activation. IL-7 supplementation significantly increased cleavage and blastocyst formation rates compared to the control (p < 0.05), while mitigating Wort-induced developmental impairment. Moreover, IL-7 significantly reduced blastocyst apoptosis and increased total cell numbers compared to the control (p < 0.05), thereby counteracting pro-apoptotic effects of Wort. Furthermore, IL-7 treatment significantly promoted ICM formation through the PI3K/AKT pathway, as demonstrated by increased SOX2 + cell numbers and ICM-specific gene expression, with elevated phosphorylated AKT levels compared to the control (p < 0.05). Notably, IL-7 significantly improved mitochondrial function and biogenesis-related gene expression compared to the control (p < 0.05) through a PI3K/AKT-independent pathway. These findings suggest that IL-7-mediated PI3K/AKT signaling enhances porcine early embryonic development in vitro, providing insights into mechanisms that regulate early embryonic development in mammals.
Collapse
Affiliation(s)
- Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Ali Jawad
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Joohyeong Lee
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
- Department of Companion Animal Industry, Semyung University, Jecheon, 27136, Republic of Korea
| | - Byoung Chol Oh
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea.
- Vet-ICT Convergence Education and Research Center (VICERC), Chungbuk National University, Cheongju, Republic of Korea.
- Chungbuk National University Hospital, Cheongju, Republic of Korea.
| |
Collapse
|
3
|
Huang B, Wang H, An Z, Yang Z, Cao J, Wang L, Luo X, Qi H. Compromised Peroxisome Proliferator-Activated Receptor γ-Mediated Impaired Placental Glucose Transport Via the Phosphatidylinositol 3-Kinase/Protein Kinase B Signaling Pathway Is Associated With Fetal Growth Restriction. J Transl Med 2025; 105:104103. [PMID: 39909142 DOI: 10.1016/j.labinv.2025.104103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
Fetal growth restriction (FGR) is a condition in which a fetus cannot grow to its full potential during pregnancy. It is a leading cause of perinatal mortality and morbidity. However, the underlying etiology remains elusive. Here, we report that peroxisome proliferator-activated receptor γ (PPARγ) is inactivated in the trophoblasts of the human placenta of FGR-complicated pregnancies. In the FGR placentas, p-PI3KTyr458 and p-AKTSer473 levels were also lowered. Additionally, there was a reduction in GLUT3 and GLUT4 levels in the cell membrane. Consistently, FGR patients showed decreased glucose concentrations in both the placenta and umbilical cord blood compared with that in normal pregnancy. In mouse models, deletion of Pparg in trophoblasts and reduced uterine perfusion pressure surgery successfully induced FGR and replicated these changes. Modulating PPARγ activity using rosiglitazone or GW9662 in BeWo cells, a model of syncytiotrophoblasts, resulted in the activation or inhibition of the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, as well as the promotion or reduction of membrane translocation of GLUT3 and GLUT4, ultimately affecting glucose uptake in trophoblast cells. MK-2206 blocked these regulatory effects of rosiglitazone in BeWo cells. Furthermore, the administration of rosiglitazone encapsulated in placenta-targeting nanoparticles improved the growth and development of fetal mice in the reduced uterine perfusion pressure group. In summary, PPARγ in trophoblast cells orchestrates the translocation of GLUT3 and GLUT4 to the cellular membrane via the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, thereby regulating cellular glucose uptake and transport. Dysfunctions in this mechanism are strongly associated with FGR. Therefore, targeted activation of PPARγ in the placenta may be a potentially efficacious intrauterine intervention for FGR.
Collapse
Affiliation(s)
- Biao Huang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education International Collaborative Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongling An
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education International Collaborative Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongmei Yang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education International Collaborative Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jinfeng Cao
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education International Collaborative Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lan Wang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaofang Luo
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education International Collaborative Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China; Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hongbo Qi
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education International Collaborative Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Bourdais A, Viard P, Bormann J, Sesboüé C, Guerrier D, Therville N, Guillermet-Guibert J, Carroll J, Halet G. Distinct requirements for PI3K isoforms p110α and p110δ for PIP3 synthesis in mouse oocytes and early embryos. Development 2025; 152:dev204398. [PMID: 39982048 DOI: 10.1242/dev.204398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt pathway is thought to regulate key steps of mammalian oogenesis, such as dormant oocyte awakening during follicular activation, meiotic resumption and oocyte maturation. Supporting evidence is, however, indirect, as oocyte PI3K activation has never been formally demonstrated, and the PI3K isoforms involved have not been revealed. Here, we employed fluorescent PIP3 biosensors to characterize PI3K dynamics in mouse oocytes and we investigated the contribution of the PI3K isoform p110α by conditional genetic ablation. Prophase oocytes showed baseline PI3K/Akt activation that could be further stimulated by adding Kit ligand. Contrary to previous reports, maternal PI3K proved dispensable for oocyte maturation in vitro, yet it was required for PIP3 synthesis in early embryos. We further show that oocyte p110α is not essential for oogenesis and female fertility. Accordingly, our data suggest that Kit ligand activates isoform p110δ for PIP3 synthesis in oocytes. In contrast, constitutive PIP3 synthesis in early embryos is achieved by maternal p110α acting redundantly with p110δ. This study highlights the relevance of PIP3 biosensors in establishing the dynamics, mechanisms and roles of maternal PI3K signaling during mammalian oogenesis.
Collapse
Affiliation(s)
- Anne Bourdais
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Patricia Viard
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Jenny Bormann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 2, 45117 Essen, Germany
| | - Côme Sesboüé
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Daniel Guerrier
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Nicole Therville
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centres de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Julie Guillermet-Guibert
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centres de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - John Carroll
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Guillaume Halet
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
5
|
Jiang X, Xu W, Sun J, Lin J, Lin Z, Lian X, Liao S, Luo S, Liu Y, Wang S. Trps1 regulates mouse zygotic genome activation and preimplantation embryo development via the PDE4D/AKT/CREB signaling pathway. Cell Biol Toxicol 2025; 41:48. [PMID: 39979480 PMCID: PMC11842480 DOI: 10.1007/s10565-025-09999-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Despite zygotic genome activation (ZGA) is crucial for early embryonic development, its regulatory mechanism is still unclear in mammals. In the present study, we demonstrate that TRPS1, a maternal factor, plays an essential role in mouse early embryogenesis by regulating the transition from 2-cell to 4-cell embryos during preimplantation development. The absence of Trps1 could leads to impaired ZGA through AKT/CREB signaling pathway. Furthermore, our findings suggest that TRPS1 may modulate the transcription of Pde4d to influence AKT and CREB phosphorylation. Interestingly, compared to Trps1 knockdown alone, co-injection of Trps1 siRNA and Pde4d mRNA significantly enhances the development rate of 4-cell embryos. Collectively, these results indicate a negative involvement of Trps1 in mouse preimplantation embryo development by targeting the PDE4D/AKT/CREB pathway to regulate ZGA.
Collapse
Affiliation(s)
- Xia Jiang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Weiwei Xu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Jiandong Sun
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
- Department of Andrology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350122, People's Republic of China
- Department of Reproductive Medicine Centre, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Jianmin Lin
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Zihang Lin
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Xiuli Lian
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Shumin Liao
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Shanshan Luo
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Yue Liu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China.
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China.
| | - Shie Wang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China.
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China.
| |
Collapse
|
6
|
Karami N, Taei A, Hassani SN, Alizadeh N, Eftekhari-Yazdi P, Hassani F. The effects of insulin-transferrin-selenium (ITS) and CHIR99021 on the development of pre-implantation human arrested embryos in vitro. Sci Rep 2025; 15:5006. [PMID: 39929940 PMCID: PMC11811121 DOI: 10.1038/s41598-025-89460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Pre-implantation development arrest poses a significant challenge in infertility treatment cycles. This study aims to evaluate the effect of Insulin, Transferrin, Selenium (ITS), and CHIR99021 on arrested human embryos. Arrested human embryos were obtained from the Embryology Department of the Royan Institute. After determining optimal concentrations, the embryos were assigned to control, CHIR99021, and ITS groups and cultured for 48-72 h. The arrest rate significantly decreased in the ITS and CHIR99021 groups compared to the control group (P < 0.05). The developmental rate up to the pre-morula stage significantly increased in the CHIR99021 group compared to the control group (P < 0.05). Additionally, there were significant increases in the expression of SOX2 in the CHIR99021 group and CCNA2 in the ITS group compared to the control group (P < 0.05). Immunofluorescent staining confirmed the expression of NANOG protein in the experimental groups. GSK3 inhibition by CHIR99021 and the application of ITS can alleviate arrest in human embryos, promote cell cycle induction, and enable progression to the blastocyst stage. Comprehensive characterization of these blastocysts in future studies is crucial to support ITS and CHIR99021 probable application in culture systems, particularly for women of advanced maternal age and those experiencing severe male factor infertility.
Collapse
Affiliation(s)
- Narges Karami
- MSC., Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Adeleh Taei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nazanin Alizadeh
- MSC., Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box 16635-148, Tehran, Iran.
| | - Fatemeh Hassani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box 16635-148, Tehran, Iran.
| |
Collapse
|
7
|
Geiselmann A, Micouin A, Vandormael-Pournin S, Laville V, Chervova A, Mella S, Navarro P, Cohen-Tannoudji M. PI3K/AKT signaling controls ICM maturation and proper epiblast and primitive endoderm specification in mice. Dev Cell 2025; 60:204-219.e6. [PMID: 39461340 DOI: 10.1016/j.devcel.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 05/07/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
The inner cell mass (ICM) of early mouse embryos is specified into epiblast (Epi) and primitive endoderm (PrE) lineages during blastocyst formation. The antagonistic transcription factors (TFs) NANOG and GATA-binding protein 6 (GATA6) in combination with fibroblast growth factor (FGF)/extracellular-signal-regulated kinase (ERK) signaling are central actors in ICM fate choice. However, what initiates the specification of ICM progenitors into Epi or PrE and whether other factors are involved in this process has not been fully understood yet. Here, we show that phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) is constitutively active during preimplantation development. Using pharmacological inhibition, we demonstrate that PI3K/AKT enables the formation of a functional ICM capable of giving rise to both the Epi and the PrE: it maintains the expression of the TF NANOG, which specifies the Epi, and confers responsiveness to FGF4, which is essential for PrE specification. Our work thus identifies PI3K/AKT signaling as an upstream regulator controlling the molecular events required for both Epi and PrE specification.
Collapse
Affiliation(s)
- Anna Geiselmann
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Sorbonne Université, Complexité du Vivant, 75005 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France
| | - Adèle Micouin
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France; Université Paris Cité, BioSPC, 75013 Paris, France
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France
| | - Vincent Laville
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 75015 Paris, France; Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Almira Chervova
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Sébastien Mella
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Pablo Navarro
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Michel Cohen-Tannoudji
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France.
| |
Collapse
|
8
|
Shang Y, Zhang Q, Ding Y, Wang Y, Gu S, Zang X, Xu Z, Huang S, Li Z, Wu Z, Gu T, Hong L, Cai G. The Expression Pattern and Functional Analysis of Extracellular Vesicle Long Non-Coding RNAs from Uterine Fluid During Implantation in Pig. Animals (Basel) 2025; 15:245. [PMID: 39858245 PMCID: PMC11758334 DOI: 10.3390/ani15020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) act as competing endogenous RNAs and play significant roles in porcine embryo development. Extracellular vesicles (EVs) in the uterine fluid (UF) can target and deliver maternal endometrial signalling molecules to embryonic trophoblast cells, exerting crucial regulatory effects during embryo implantation. However, the specific roles of lncRNAs carried by UF-EVs during the embryo implantation period have not been thoroughly reported in the literature. In the present study, high-throughput sequencing and biological tools were applied to analyse lncRNAs in UF-EVs on days 9, 12, and 15 of pregnancy to identify key regulatory lncRNAs in UF-EVs during the porcine embryonic implantation period and to explore their expression patterns and functional roles. A total of 30,203 lncRNAs were identified and 7879 differentially expressed lncRNAs were screened, and qRT-PCR was used to verify the sequencing data. Days 9-12 of pregnancy represent a critical stage of embryo implantation characterised by substantial morphological changes in porcine embryos. During this period, we identified a total of 4348 differentially expressed lncRNAs. Through screening and validation, we discovered that LNC_026212 was highly expressed on day 12 of pregnancy and can promote the proliferation and migration of porcine trophoblast cells (PTr cells). These novel findings contribute to our understanding of the impact of lncRNAs on porcine reproductive processes, offering new research directions to improve the success rate of embryo implantation in pigs.
Collapse
Affiliation(s)
- Yijun Shang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Qiuping Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yue Ding
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yongzhong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Shengchen Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Xupeng Zang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zheng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Sixiu Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zicong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527300, China
- National Regional Gene Bank of Livestock and Poultry (Gene Bank of Guangdong Livestock and Poultry), Guangzhou 510642, China
| | - Ting Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- National Regional Gene Bank of Livestock and Poultry (Gene Bank of Guangdong Livestock and Poultry), Guangzhou 510642, China
| | - Linjun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- National Regional Gene Bank of Livestock and Poultry (Gene Bank of Guangdong Livestock and Poultry), Guangzhou 510642, China
| | - Gengyuan Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527300, China
- National Regional Gene Bank of Livestock and Poultry (Gene Bank of Guangdong Livestock and Poultry), Guangzhou 510642, China
| |
Collapse
|
9
|
Segura-Benítez M, Carbajo-García MC, Quiñonero A, De Los Santos MJ, Pellicer A, Cervelló I, Ferrero H. Endometrial extracellular vesicles regulate processes related to embryo development and implantation in human blastocysts. Hum Reprod 2025; 40:56-68. [PMID: 39576620 DOI: 10.1093/humrep/deae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/26/2024] [Indexed: 01/07/2025] Open
Abstract
STUDY QUESTION What is the transcriptomic response of human blastocysts following internalization of extracellular vesicles (EVs) secreted by the human endometrium? SUMMARY ANSWER EVs secreted by the maternal endometrium induce a transcriptomic response in human embryos that modulates molecular mechanisms related to embryo development and implantation. WHAT IS KNOWN ALREADY EVs mediate intercellular communication by transporting various molecules, and endometrial EVs have been postulated to be involved in the molecular regulation of embryo implantation. Our previous studies showed that endometrial EVs carry miRNAs and proteins associated with implantation events that can be taken up by human blastocysts; however, no studies have yet investigated the transcriptomic response of human embryos to this EV uptake, which is crucial to demonstrate the functional significance of this communication system. STUDY DESIGN, SIZE, DURATION A prospective descriptive study was performed. Primary human endometrial epithelial cells (pHEECs), derived from endometrial biopsies collected from fertile oocyte donors (n = 20), were cultured in vitro to isolate secreted EVs. Following EV characterization, Day 5 human blastocysts (n = 24) were cultured in the presence or absence of the EVs for 24 h and evaluated by RNA-sequencing. PARTICIPANTS/MATERIALS, SETTING, METHODS EVs were isolated from the conditioned culture media using ultracentrifugation, and characterization was performed using western blot, nanoparticle tracking analysis, and transmission electron microscopy. Human blastocysts were devitrified, divided into two groups (n = 12/group), and cultured in vitro for 24 h with or without previously isolated EVs. RNA-sequencing analysis was performed, and DESeq2 was used to identify differentially expressed genes (DEGs) (FDR < 0.05). QIAGEN Ingenuity Pathway Analysis was used to perform the functional enrichment analysis and integration with our recently published data from the pHEECs' EV-miRNA cargo. MAIN RESULTS AND THE ROLE OF CHANCE Characterization confirmed the isolation of EVs from pHEECs' conditioned culture media. Among the DEGs in blastocysts co-cultured with EVs, we found 519 were significantly upregulated and 395 were significantly downregulated. These DEGs were significantly enriched in upregulated functions related to embryonic development, cellular invasion and migration, cell cycle, cellular organization and assembly, gene expression, and cell viability; and downregulated functions related to cell death and DNA fragmentation. Further, the intracellular signaling pathways regulated by the internalization of endometrial EVs were previously related to early embryo development and implantation potential, for their role in pluripotency, cellular homeostasis, early embryogenesis, and implantation-related processes. Finally, integrating data from miRNA cargo of EVs, we found that the miRNAs carried by endometrial EVs targeted nearly 80% of the DEGs in human blastocysts. LIMITATIONS, REASONS FOR CAUTION This is an in vitro study in which conditions of endometrial cell culture could not mimic the intrauterine environment. WIDER IMPLICATIONS OF THE FINDINGS This study provides novel insights into the functional relevance of EVs secreted by the human endometrium, and particularly the role of EV-miRNA regulation on global transcriptome behavior of human blastocysts during early embryogenesis and embryo implantation. It provides potential biomarkers that could become useful diagnostic targets for predicting implantation success. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Spanish Ministry of Education through FPU awarded to M.S.-B. (FPU18/03735), Generalitat Valenciana through VALi+d Programme awarded to M.C.C.-G. (ACIF/2019/139), and Instituto de Salud Carlos III and cofounded by the European Social Fund (ESF) "Investing in your future" through the Miguel Servet Program (CP20/00120 [H.F.]; CP19/00149 [I.C.]). The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Marina Segura-Benítez
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Maria Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Alicia Quiñonero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María José De Los Santos
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Valencia, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Rome, Rome, Italy
| | - Irene Cervelló
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
10
|
Curcio AG, Ribeiro TIS, Gomes HF, Carvalho CSPD, Bussiere MCC, Dias AJB. Increased in vitro production of bovine embryos resulting from oocyte maturation in the presence of triciribine, a specific inhibitor of AKT. Theriogenology 2025; 231:222-227. [PMID: 39488152 DOI: 10.1016/j.theriogenology.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
The aim of this study was to evaluate the effect of different concentrations of triciribine, a selective Akt inhibitor, on various aspects of oocyte maturation and on the IVF of bovine embryos. Cumulus-oocyte complexes (COCs) were matured in vitro in medium supplemented with: 0 (control), 1, 5, 10, and 20 μM of triciribine. The nuclear maturation was assessed by staining with acetic orcein, while the cytoplasmic maturation was evaluated by mitochondrial (MitoTracker® Red CMXRos) and lipid droplets distribution (LipidTOX). COCs were fertilized in vitro and cultured for nine days. Cleavage rates, blastocyst production, and hatching rates were determined on days three, seven, and nine of in vitro culture, respectively. Oocytes from COCs treated with 1 μM of triciribine were stained at 3, 6, and 9 h of IVM to determine the inhibitor's involvement in germinal vesicle breakdown. Analysis of variance (ANOVA) of the data was performed and the means were compared using the SNK test at a 5 % significance level. Exposure of COCs to 1, 5, and 10 μM of triciribine did not alter the number of matured oocytes (P < 0.05), a concentration of 20 μM reduced the number of oocytes in MII with a consequent increase in oocytes in MI (P < 0.05). This concentration markedly reduced the number of oocytes with peripheral cortical granules and the rates of cleavage and blastocysts (P < 0.05). On the other hand, when COCs were matured in the presence of 1 μM, there was an increase in the blastocyst rate (P < 0.05), but without altering the timing of meiosis resumption (P < 0.05). It is concluded that the Akt pathway participates in the nuclear and cytoplasmic events of in vitro maturation of bovine oocytes, but through mechanisms that do not interfere with germinal vesicle breakdown. Modulation of Akt activity in bovine COCs during IVM with 1 μM of triciribine increases the in vitro production of bovine embryos.
Collapse
Affiliation(s)
- A G Curcio
- Laboratory of Animal Breeding and Genetic Improvement - Norte Fluminense State University, Brazil
| | - T I S Ribeiro
- Laboratory of Animal Breeding and Genetic Improvement - Norte Fluminense State University, Brazil
| | - H F Gomes
- Laboratory of Biochemistry and Cell Biology of Glycoconjugates, Department of Glycobiology - Federal University of Rio de Janeiro, Brazil
| | - C S Paes de Carvalho
- Laboratory of Animal Breeding and Genetic Improvement - Norte Fluminense State University, Brazil
| | - M C C Bussiere
- Laboratory of Animal Breeding and Genetic Improvement - Norte Fluminense State University, Brazil
| | - A J B Dias
- Laboratory of Animal Breeding and Genetic Improvement - Norte Fluminense State University, Brazil.
| |
Collapse
|
11
|
Liu C, Fukui E, Matsumoto H. Molecular and cellular regulators of embryo implantation and their application in improving the implantation potential of IVF-derived blastocysts. Reprod Med Biol 2025; 24:e12633. [PMID: 39866379 PMCID: PMC11759885 DOI: 10.1002/rmb2.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
Background In vitro fertilization (IVF) and embryo transfer (ET) are widely used in reproductive biology. Despite the transfer of high-quality blastocysts, the implantation rate of IVF-derived blastocysts remains low after ET. Methods This article provides a comprehensive review of current research on embryo implantation regulators and their application to improve the implantation potential of IVF-derived blastocysts. Main Findings The in vivo mouse model revealed selective proteolysis immediately after expression in activated blastocysts, that is, degradation of ERα expression in activated blastocysts regulated by the ubiquitin-proteasome pathway, followed by completion of blastocyst implantation. Treatment of blastocysts to induce appropriate protein expression during in vitro culture prior to ET is a useful approach for improving implantation rates. This approach showed that combined treatment with PRL, EGF, and 4-OH-E2 (PEC) improved the blastocyst implantation rates. Furthermore, arginine and leucine drive reactive oxygen species (ROS)-mediated integrin α5β1 expression and promote blastocyst implantation. Conclusion Findings based on analysis of molecular and cellular regulators are useful for improving the implantation potential of IVF-derived blastocysts. These approaches may help to elucidate the mechanisms underlying the completion of the blastocyst implantation, although further investigation is required to improve the success of implantation and pregnancy.
Collapse
Affiliation(s)
- Chunyan Liu
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiyaTochigiJapan
| | - Emiko Fukui
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiyaTochigiJapan
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiyaTochigiJapan
| | - Hiromichi Matsumoto
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiyaTochigiJapan
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiyaTochigiJapan
| |
Collapse
|
12
|
Karami N, Taei A, Eftekhari-Yazdi P, Hassani F. Signaling pathway regulators in preimplantation embryos. J Mol Histol 2024; 56:57. [PMID: 39729177 DOI: 10.1007/s10735-024-10338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Embryonic development during the preimplantation stages is highly sensitive and critically dependent on the reception of signaling cues. The precise coordination of diverse pathways and signaling factors is essential for successful embryonic progression. Even minor disruptions in these factors can result in physiological dysfunction, fetal malformations, or embryonic arrest. This issue is particularly evident in assisted reproductive technologies, such as in vitro fertilization, where embryonic arrest is frequently observed. A detailed understanding of these pathways enhances insight into the fundamental mechanisms underlying cellular processes and their contributions to embryonic development. The significance of elucidating signaling pathways and their regulatory factors in preimplantation development cannot be overstated. The application of this knowledge in laboratory settings has the potential to support strategies for modeling developmental stages and diseases, drug screening, therapeutic discovery, and reducing embryonic arrest. Furthermore, using various factors, small molecules, and pharmacological agents can enable the development or optimization of culture media for enhanced embryonic viability. While numerous pathways influence preimplantation development, this study examines several critical signaling pathways in this contex.
Collapse
Affiliation(s)
- Narges Karami
- MSc., Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Adeleh Taei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O.Box 16635-148, Tehran, Iran
| | - Fatemeh Hassani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O.Box 16635-148, Tehran, Iran.
| |
Collapse
|
13
|
Klohonatz K, Durrant B, Sirard MA, Ruggeri E. Granulosa cells provide transcriptomic information on ovarian follicle dynamics in southern white rhinoceros. Sci Rep 2024; 14:19321. [PMID: 39164442 PMCID: PMC11336098 DOI: 10.1038/s41598-024-70235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Much remains unknown about the reproductive physiology of southern white rhinoceros (SWR) and the effect of ovarian stimulation prior to ovum pickup (OPU) have not been fully elucidated. Granulosa cells (GC) provide valuable insight into follicle growth and oocyte maturation status. The goals of this study were to evaluate transcriptomic changes in GC from three stages of follicle development and to identify biomarkers possibly associated with follicular growth and maturation as a result of ovarian stimulation. GC collected from SWRs following OPU were assigned stages based upon follicle size. Total RNA was isolated, and cDNA libraries were prepared and sequenced on a NovaSeq 6000. All bioinformatics analyses were performed utilizing the Galaxy web platform. Reads were aligned to CerSimCot1.0, and the manual curation was performed with EquCab3.0. Overall, 39,455 transcripts (21,612 genes) were identified across follicle stages, and manual curation yielded a 61% increase in gene identification from the original annotation. Granulosa cells from preovulatory follicles expressed the highest number of unique transcripts. The following seven biomarkers were determined based upon cluster analysis and patterns of expression: COL1A1, JMY, FBXW11, NRG1, TMPO, MACIR and COL4A1. These data can be used to potentially evaluate the effects of different ovarian stimulation protocols on follicle dynamics, improve OPU results, and support conservation efforts in this species.
Collapse
Affiliation(s)
- Kristin Klohonatz
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara Durrant
- Reproductive Sciences, Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, CA, USA
| | - Marc-André Sirard
- Département des Sciences Animales, Université Laval, Québec City, Québec, Canada
| | - Elena Ruggeri
- Reproductive Sciences, Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, CA, USA.
| |
Collapse
|
14
|
Xue Y, Cheng X, Ma ZQ, Wang HP, Zhou C, Li J, Zhang DL, Hu LL, Cui YF, Huang J, Luo T, Zheng LP. Polystyrene nanoplastics induce apoptosis, autophagy, and steroidogenesis disruption in granulosa cells to reduce oocyte quality and fertility by inhibiting the PI3K/AKT pathway in female mice. J Nanobiotechnology 2024; 22:460. [PMID: 39090717 PMCID: PMC11293132 DOI: 10.1186/s12951-024-02735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Nanoplastics (NPs) are emerging pollutants that pose risks to living organisms. Recent findings have unveiled the reproductive harm caused by polystyrene nanoparticles (PS-NPs) in female animals, yet the intricate mechanism remains incompletely understood. Under this research, we investigated whether sustained exposure to PS-NPs at certain concentrations in vivo can enter oocytes through the zona pellucida or through other routes that affect female reproduction. RESULTS We show that PS-NPs disrupted ovarian functions and decreased oocyte quality, which may be a contributing factor to lower female fertility in mice. RNA sequencing of mouse ovaries illustrated that the PI3K-AKT signaling pathway emerged as the predominant environmental information processing pathway responding to PS-NPs. Western blotting results of ovaries in vivo and cells in vitro showed that PS-NPs deactivated PI3K-AKT signaling pathway by down-regulating the expression of PI3K and reducing AKT phosphorylation at the protein level, PI3K-AKT signaling pathway which was accompanied by the activation of autophagy and apoptosis and the disruption of steroidogenesis in granulosa cells. Since PS-NPs penetrate granulosa cells but not oocytes, we examined whether PS-NPs indirectly affect oocyte quality through granulosa cells using a granulosa cell-oocyte coculture system. Preincubation of granulosa cells with PS-NPs causes granulosa cell dysfunction, resulting in a decrease in the quality of the cocultured oocytes that can be reversed by the addition of 17β-estradiol. CONCLUSIONS This study provides findings on how PS-NPs impact ovarian function and include transcriptome sequencing analysis of ovarian tissue. The study demonstrates that PS-NPs impair oocyte quality by altering the functioning of ovarian granulosa cells. Therefore, it is necessary to focus on the research on the effects of PS-NPs on female reproduction and the related methods that may mitigate their toxicity.
Collapse
Affiliation(s)
- Yue Xue
- School of Basic Medical Sciences and School of Public and Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiu Cheng
- School of Basic Medical Sciences and School of Public and Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, China
| | - Zhang-Qiang Ma
- School of Basic Medical Sciences and School of Public and Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, China
| | - Hou-Peng Wang
- School of Basic Medical Sciences and School of Public and Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, China
| | - Chong Zhou
- School of Basic Medical Sciences and School of Public and Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jia Li
- School of Basic Medical Sciences and School of Public and Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Da-Lei Zhang
- School of Basic Medical Sciences and School of Public and Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, China
| | - Liao-Liao Hu
- The 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yan-Fan Cui
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Jian Huang
- School of Basic Medical Sciences and School of Public and Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Tao Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, China.
| | - Li-Ping Zheng
- School of Basic Medical Sciences and School of Public and Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
15
|
Göttig L, Schreiner S. E4orf1: The triple agent of adenovirus - Unraveling its roles in oncogenesis, infectious obesity and immune responses in virus replication and vector therapy. Tumour Virus Res 2024; 17:200277. [PMID: 38428735 PMCID: PMC10937242 DOI: 10.1016/j.tvr.2024.200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
Human Adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous sub-types that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating cellular pathways such as PI3K-Akt-mTOR, Ras, the immune response and further HAdV replication stages than previously anticipated. In this review, we aim to explore the structure, molecular mechanisms, and biological functions of E4orf1, shedding light on its potentially multifaceted roles during HAdV infection, including metabolic diseases and oncogenesis. Furthermore, we discuss the role of functional E4orf1 in biotechnological applications such as Adenovirus (AdV) vaccine vectors and oncolytic AdV. By dissecting the intricate relationships between HAdV types and E4orf1 proteins, this review provides valuable insights into viral pathogenesis and points to promising areas of future research.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover, Germany; Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
16
|
Göttig L, Jummer S, Staehler L, Groitl P, Karimi M, Blanchette P, Kosulin K, Branton PE, Schreiner S. The human adenovirus PI3K-Akt activator E4orf1 is targeted by the tumor suppressor p53. J Virol 2024; 98:e0170123. [PMID: 38451084 PMCID: PMC11019960 DOI: 10.1128/jvi.01701-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/13/2024] [Indexed: 03/08/2024] Open
Abstract
Human adenoviruses (HAdV) are classified as DNA tumor viruses due to their potential to mediate oncogenic transformation in non-permissive mammalian cells and certain human stem cells. To achieve transformation, the viral early proteins of the E1 and E4 regions must block apoptosis and activate proliferation: the former predominantly through modulating the cellular tumor suppressor p53 and the latter by activating cellular pro-survival and pro-metabolism protein cascades, such as the phosphoinositide 3-kinase (PI3K-Akt) pathway, which is activated by HAdV E4orf1. Focusing on HAdV-C5, we show that E4orf1 is necessary and sufficient to stimulate Akt activation through phosphorylation in H1299 cells, which is not only hindered but repressed during HAdV-C5 infection with a loss of E4orf1 function in p53-positive A549 cells. Contrary to other research, E4orf1 localized not only in the common, cytoplasmic PI3K-Akt-containing compartment, but also in distinct nuclear aggregates. We identified a novel inhibitory mechanism, where p53 selectively targeted E4orf1 to destabilize it, also stalling E4orf1-dependent Akt phosphorylation. Co-IP and immunofluorescence studies showed that p53 and E4orf1 interact, and since p53 is bound by the HAdV-C5 E3 ubiquitin ligase complex, we also identified E4orf1 as a novel factor interacting with E1B-55K and E4orf6 during infection; overexpression of E4orf1 led to less-efficient E3 ubiquitin ligase-mediated proteasomal degradation of p53. We hypothesize that p53 specifically subverts the pro-survival function of E4orf1-mediated PI3K-Akt activation to protect the cell from metabolic hyper-activation or even transformation.IMPORTANCEHuman adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous subtypes that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. Nonetheless, E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating the cellular pathways such as phosphoinositide 3-kinase-Akt-mTOR. Our study reveals a novel and general impact of E4orf1 on host mechanisms, providing a novel basis for innovative antiviral strategies in future therapeutic settings. Ongoing investigations of the cellular pathways modulated by HAdV are of great interest, particularly since adenovirus-based vectors actually serve as vaccine or gene vectors. HAdV constitute an ideal model system to analyze the underlying molecular principles of virus-induced tumorigenesis.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Simone Jummer
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Luisa Staehler
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Groitl
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maryam Karimi
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Paola Blanchette
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| | - Karin Kosulin
- Molecular Microbiology, Children’s Cancer Research Institute, Vienna, Austria
| | - Philip E. Branton
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Freiburg, Germany
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Rémillard-Labrosse G, Cohen S, Boucher É, Gagnon K, Vasilev F, Mihajlović AI, FitzHarris G. Oocyte and embryo culture under oil profoundly alters effective concentrations of small molecule inhibitors. Front Cell Dev Biol 2024; 12:1337937. [PMID: 38544820 PMCID: PMC10966923 DOI: 10.3389/fcell.2024.1337937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/19/2024] [Indexed: 11/11/2024] Open
Abstract
Culture of oocytes and embryos in media under oil is a cornerstone of fertility treatment, and extensively employed in experimental investigation of early mammalian development. It has been noted anecdotally by some that certain small molecule inhibitors might lose activity in oil-covered culture systems, presumably by drug partitioning into the oil. Here we took a pseudo-pharmacological approach to appraise this formally using mouse oocytes and embryos. Using different culture dish designs with defined media:oil volume ratios, we show that the EC50 of the widely employed microtubule poison nocodazole shifts as a function of the media:oil ratio, such that nocodazole concentrations that prevent cell division in oil-free culture fail to in oil-covered media drops. Relatively subtle changes in culture dish design lead to measurable changes in EC50. This effect is not specific to one type of culture oil, and can be readily observed both in oocyte and embryo culture experiments. We subsequently applied a similar approach to a small panel of widely employed cell cycle-related inhibitors, finding that most lose activity in standard oil-covered oocyte/embryo culture systems. Our data suggest that loss of small molecule activity in oil-covered oocyte and embryo culture is a widespread phenomenon with potentially far-reaching implications for data reproducibility, and we recommend avoiding oil-covered culture for experiments employing inhibitors/drugs wherever possible.
Collapse
Affiliation(s)
| | - Sydney Cohen
- Centre de Recherche du Centre Hospitalier de I’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Éliane Boucher
- Centre de Recherche du Centre Hospitalier de I’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Kéryanne Gagnon
- Centre de Recherche du Centre Hospitalier de I’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Filip Vasilev
- Centre de Recherche du Centre Hospitalier de I’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Aleksandar I. Mihajlović
- Centre de Recherche du Centre Hospitalier de I’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Greg FitzHarris
- Centre de Recherche du Centre Hospitalier de I’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Obstetrics and Gynaecology, Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
18
|
Xing X, Zeng Z, Wang Y, Pan B, Huang X. Identification of potential molecular mechanism related to craniofacial dysmorphism caused by FOXI3 deficiency. Mol Genet Genomic Med 2024; 12:e2411. [PMID: 38433559 PMCID: PMC10910234 DOI: 10.1002/mgg3.2411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Hemifacial macrosomia (HFM, OMIM 164210) is a complex and highly heterogeneous disease. FORKHEAD BOX I3 (FOXI3) is a susceptibility gene for HFM, and mice with loss of function of Foxi3 did exhibit a phenotype similar to craniofacial dysmorphism. However, the specific pathogenesis of HFM caused by FOXI3 deficiency remains unclear till now. METHOD In this study, we first constructed a Foxi3 deficiency (Foxi3-/- ) mouse model to verify the craniofacial phenotype of Foxi3-/- mice, and then used RNAseq data for gene differential expression analysis to screen candidate pathogenic genes, and conducted gene expression verification analysis using quantitative real-time PCR. RESULTS By observing the phenotype of Foxi3-/- mice, we found that craniofacial dysmorphism was present. The results of comprehensive bioinformatics analysis suggested that the craniofacial dysmorphism caused by Foxi3 deficiency may be involved in the PI3K-Akt signaling pathway. Quantitative real-time PCR results showed that the expression of PI3K-Akt signaling pathway-related gene Akt2 was significantly increased in Foxi3-/- mice. CONCLUSION The craniofacial dysmorphism caused by the deficiency of Foxi3 may be related to the expression of Akt2 and PI3K-Akt signaling pathway. This study laid a foundation for understanding the function of FOXI3 and the pathogenesis and treatment of related craniofacial dysmorphism caused by FOXI3 dysfunction.
Collapse
Affiliation(s)
- Xiao‐Liang Xing
- School of Basic MedicineNingxia Medical UniversityYinchuanNingxiaChina
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese MedicineHunan University of MedicineChangshaChina
| | - Ziqiang Zeng
- School of Basic MedicineNingxia Medical UniversityYinchuanNingxiaChina
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese MedicineHunan University of MedicineChangshaChina
| | - Yana Wang
- School of Basic MedicineNingxia Medical UniversityYinchuanNingxiaChina
| | - Bo Pan
- Department of Auricular Reconstruction, Plastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xueshuang Huang
- School of Basic MedicineNingxia Medical UniversityYinchuanNingxiaChina
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese MedicineHunan University of MedicineChangshaChina
| |
Collapse
|
19
|
Park W, Park H, Park S, Lim W, Song G. Bifenox compromises porcine trophectoderm and luminal epithelial cells in early pregnancy by arresting cell cycle progression and impairing mitochondrial and calcium homeostasis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105628. [PMID: 37945262 DOI: 10.1016/j.pestbp.2023.105628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 11/12/2023]
Abstract
Bifenox is a widely used herbicide that contains a diphenyl ether group. However its global usage, the cell physiological effects that induce toxicity have not been elucidated. In this study, the effect of bifenox was examined in porcine trophectoderm and uterine epithelial cells to investigate the potential toxicity of the implantation process. To uncover the toxic effects of bifenox, cell viability and apoptosis following treatment with bifenox were evaluated. To investigate the underlying cellular mechanisms, mitochondrial and calcium homeostasis were investigated in both cell lines. In addition, the dysregulation of cell signal transduction and transcriptional alterations were also demonstrated. Bifenox reduced cell viability and significantly increased the number of cells arrested at the sub-G1 stage. Moreover, bifenox depolarized the mitochondrial membrane and upregulated the calcium flux into the mitochondria in both cell lines. Cytosolic calcium flux increased in porcine trophectoderm (pTr) cells and decreased in porcine luminal epithelium (pLE) cells. In addition, bifenox activated the mitogen-activated protein kinase and phosphoinositide 3-kinase signaling pathways. Furthermore, bifenox inhibited the expression of retinoid receptor genes, such as RXRA, RXRB, and RXRG. Chemokine CCL8 was also downregulated at the mRNA level, whereas CCL5 expression remained unchanged. Overall, the results of this study suggest that bifenox deteriorates cell viability by arresting cell cycle progression, damaging mitochondria, and controlling calcium levels in pTr and pLE cells. The present study indicates the toxic potential of bifenox in the trophectoderm and luminal epithelial cells, which can lead to implantation disorders in early pregnancy.
Collapse
Affiliation(s)
- Wonhyoung Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
20
|
Pal A, Karanwal S, Chera JS, Batra V, Kumaresan A, Sarwalia P, Datta TK, Kumar R. Circulatory extracellular vesicle derived miR-195-5p promotes cellular apoptosis and suppresses cell proliferation in the buffalo endometrial primary cell culture. Sci Rep 2023; 13:16703. [PMID: 37794118 PMCID: PMC10551009 DOI: 10.1038/s41598-023-43530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
In pregnant animals, communication between the mother and conceptus occurs via extracellular vesicles (EVs) that carry several biomolecules such as nucleic acids (miRNAs, mRNAs), proteins, and lipids. At the time of implantation, the endometrium undergoes several morphological and physiological changes, such as angiogenesis, apoptosis, and cell proliferation regulation at the implantation site, to attain a receptive state. This study was conducted to detect pregnancy-specific miRNAs derived from extracellular vesicles in the systemic circulation of Bubalus bubalis (water buffalo) and to assess their functional significance in the modulation of endometrial primary cells. The extracellular vesicles were isolated from the blood plasma using a precipitation-based method and further characterized by various methods such as Differential light scattering, Nanoparticle tracking assay, Western blot, and transmission electron microscopy. The relative expression of the selected extracellular vesicles associated miRNAs (EV-miRNA) at different intervals (days 15, 19, 25, and 30) post artificial insemination (AI) was analyzed using RT-qPCR, and expression of miR-195-5p was found to be significantly higher (P < 0.01) in pregnant animals on day 19 post AI (implantation window) as compared to day 15 post AI. The elevated expression might indicate the involvement of this miRNA in the maternal-conceptus cross-talk occurring during the implantation period. The KEGG pathway enrichment and Gene Ontology analyses of the miR-195-5p target genes revealed that these were mostly involved in the PI3-Akt, MAPK, cell cycle, ubiquitin-mediated proteolysis, and mTOR signaling pathways, which are related to the regulation of cell proliferation. Transfecting the in vitro cultured cells with miR-195-5p mimic significantly suppressed (P < 0.05) the expression of its target genes such as YWHAQ, CDC27, AKT-3, FGF-7, MAPK8, SGK1, VEGFA, CACAND1, CUL2, MKNK1, and CACAN2D1. Furthermore, the downregulation of the miR-195-5p target genes was positively correlated with a significant increase in the apoptotic rate and a decrease in the proliferation. In conclusion, the current findings provide vital information on the presence of EV miR-195-5p in maternal circulation during the implantation window indicating its important role in the modulation of buffalo endometrium epithelial cells via promoting cell death. Altogether, the milieu of miR-195-5p may serve as a novel and potential molecular factor facilitating the implantation of the early embryo during the establishment of pregnancy in buffaloes. Thus, miR-195-5p may be identified as a unique circulatory EV biomarker related to establishing pregnancy in buffaloes as early as day 19 post-AI.
Collapse
Affiliation(s)
- Ankit Pal
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Seema Karanwal
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Jatinder Singh Chera
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Vipul Batra
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Theriogenelogy Laboratory, SRS of National Dairy Research Institute, Bengaluru, India
| | - Parul Sarwalia
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Tirtha K Datta
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India.
| |
Collapse
|
21
|
Xiong X, Yang M, Hai Z, Fei X, Zhu Y, Pan B, Yang Q, Xie Y, Cheng Y, Xiong Y, Lan D, Fu W, Li J. Maternal Kdm2a-mediated PI3K/Akt signaling and E-cadherin stimulate the morula-to-blastocyst transition revealing crucial roles in early embryonic development. Theriogenology 2023; 209:60-75. [PMID: 37356280 DOI: 10.1016/j.theriogenology.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Histone methylation plays an essential role in oocyte growth and preimplantation embryonic development. The modification relies on histone methyl-transferases and demethylases, and one of these, lysine-specific demethylase 2a (Kdm2a), is responsible for modulating histone methylation during oocyte and early embryonic development. The mechanism of how Kdm2a deficiency disrupts early embryonic development and fertility remains elusive. To determine if maternally deposited Kdm2a is required for preimplantation embryonic development, the expression profile of Kdm2a during early embryos was detected via immunofluorescence staining and RT-qPCR. The Kdm2a gene in oocytes was specifically deleted with the Zp3-Cre/LoxP system and the effects of maternal Kdm2a loss were studied through a comprehensive range of female reproductive parameters including fertilization, embryo development, and the number of births. RNA transcriptome sequencing was performed to determine differential mRNA expression, and the interaction between Kdm2a and the PI3K/Akt pathway was studied with a specific inhibitor and activator. Our results revealed that Kdm2a was continuously expressed in preimplantation embryos and loss of maternal Kdm2a suppressed the morula-to-blastocyst transition, which may have been responsible for female subfertility. After the deletion of Kdm2a, the global H3K36me2 methylation in mutant embryos was markedly increased, but the expression of E-cadherin decreased significantly in morula embryos compared to controls. Mechanistically, RNA-seq analysis revealed that deficiency of maternal Kdm2a altered the mRNA expression profile, especially in the PI3K/Akt signaling pathway. Interestingly, the addition of a PI3K/Akt inhibitor (LY294002) to the culture medium blocked embryo development at the stage of morula; however, the developmental block caused by maternal Kdm2a loss was partially rescued with a PI3K/Akt activator (SC79). In summary, our results indicate that loss of Kdm2a influences the transcriptome profile and disrupts the PI3K/Akt signaling pathway during the development of preimplantation embryo. This can result in embryo block at the morula stage and female subfertility, which suggests that maternal Kdm2a is a potential partial redundancy with other genes encoding enzymes in the dynamics of early embryonic development. Our results provide further insight into the role of histone modification, especially on Kdm2a, in preimplantation embryonic development in mice.
Collapse
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Manzhen Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Zhuo Hai
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Xixi Fei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Yanjin Zhu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Bangting Pan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Qinhui Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Yumian Xie
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Yuying Cheng
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Wei Fu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
22
|
Lou Y, Pinel L, Dufort D. Uterine WNTS modulates fibronectin binding activity required for blastocyst attachment through the WNT/CA 2+ signaling pathway in mice. Reprod Biol Endocrinol 2023; 21:85. [PMID: 37715251 PMCID: PMC10503100 DOI: 10.1186/s12958-023-01135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Adhesion of the implanting blastocyst involves the interaction between integrin proteins expressed by trophoblast cells and components present in the basement membrane of the endometrial luminal epithelium. Although several factors regulating integrins and their adhesion to fibronectin are already known, we showed that Wnt signaling is involved in the regulation of blastocyst adhesion through the trafficking of integrins expressed by trophoblast cells. Localization of Itgα5β1 by immunofluorescence and FN-binding assays were conducted on peri-implantation blastocysts treated with either Wnt5a or Wnt7a proteins. Both Wnt5a and Wnt7a induced a translocation of Itgα5β1 at the surface of the blastocyst and an increase in FN-binding activity. We further demonstrated that uterine fluid is capable of inducing integrin translocation and this activity can be specifically inhibited by the Wnt inhibitor sFRP2. To identify the Wnt signaling pathway involved in this activity, blastocysts were incubated with inhibitors of either p38MAPK, PI3K pathway or CamKII prior to the addition of Wnts. Whereas inhibition of p38MAPK and PI3K had not effect, inhibition of CamKII reduced FN-binding activity induced by Wnts. Finally, we demonstrated that inhibition of Wnts by sFRP2 reduced the binding efficiency of the blastocyst to uterine epithelial cells. Our findings provide new insight into the mechanism that regulates integrin trafficking and FN-binding activity and identifies Wnts as a key player in blastocyst attachment to the uterine epithelium.
Collapse
Affiliation(s)
- Yuefei Lou
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, H4A 3J1, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Laurie Pinel
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, H4A 3J1, Canada
- Child Health and Human Development Program, Montreal, QC, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Daniel Dufort
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, H4A 3J1, Canada.
- Child Health and Human Development Program, Montreal, QC, H4A 3J1, Canada.
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
23
|
Yu L, Logsdon D, Pinzon-Arteaga CA, Duan J, Ezashi T, Wei Y, Ribeiro Orsi AE, Oura S, Liu L, Wang L, Liu K, Ding X, Zhan L, Zhang J, Nahar A, Stobbe C, Katz-Jaffe M, Schoolcraft WB, Tan T, Hon GC, Yuan Y, Wu J. Large-scale production of human blastoids amenable to modeling blastocyst development and maternal-fetal cross talk. Cell Stem Cell 2023; 30:1246-1261.e9. [PMID: 37683605 DOI: 10.1016/j.stem.2023.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/07/2023] [Accepted: 08/03/2023] [Indexed: 09/10/2023]
Abstract
Recent advances in human blastoids have opened new avenues for modeling early human development and implantation. One limitation of our first protocol for human blastoid generation was relatively low efficiency. We now report an optimized protocol for the efficient generation of large quantities of high-fidelity human blastoids from naive pluripotent stem cells. This enabled proteomics analysis that identified phosphosite-specific signatures potentially involved in the derivation and/or maintenance of the signaling states in human blastoids. Additionally, we uncovered endometrial stromal effects in promoting trophoblast cell survival, proliferation, and syncytialization during co-culture with blastoids and blastocysts. Side-by-side single-cell RNA sequencing revealed similarities and differences in transcriptome profiles between pre-implantation blastoids and blastocysts, as well as post-implantation cultures, and uncovered a population resembling early migratory trophoblasts during co-culture with endometrial stromal cells. Our optimized protocol will facilitate broader use of human blastoids as an accessible, perturbable, scalable, and tractable model for human blastocysts.
Collapse
Affiliation(s)
- Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Deirdre Logsdon
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA
| | - Carlos A Pinzon-Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jialei Duan
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Toshihiko Ezashi
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA
| | - Yulei Wei
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China, Agricultural University, Beijing, 100193, China
| | - Ana Elisa Ribeiro Orsi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, São Paulo, Brazil
| | - Seiya Oura
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lizhong Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kun Liu
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA; Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Xiaoyun Ding
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Linfeng Zhan
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Yunan Key Laboratory of Primate Biomedical Research, Kunming 650500, Yunnan, China
| | - Junfei Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China, Agricultural University, Beijing, 100193, China
| | - Asrafun Nahar
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA
| | - Caitlen Stobbe
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA
| | - Mandy Katz-Jaffe
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA
| | | | - Tao Tan
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Yunan Key Laboratory of Primate Biomedical Research, Kunming 650500, Yunnan, China
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ye Yuan
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
24
|
Meng S, Liu X, Zhu S, Xie P, Fang H, Pan Q, Fang K, Li F, Zhang J, Che Z, Zhang Q, Mao G, Wang Y, Hu P, Chen K, Sun F, Xie W, Luo Z, Lin C. Young LINE-1 transposon 5' UTRs marked by elongation factor ELL3 function as enhancers to regulate naïve pluripotency in embryonic stem cells. Nat Cell Biol 2023; 25:1319-1331. [PMID: 37591949 DOI: 10.1038/s41556-023-01211-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
LINE-1s are the major clade of retrotransposons with autonomous retrotransposition activity. Despite the potential genotoxicity, LINE-1s are highly activated in early embryos. Here we show that a subset of young LINE-1s, L1Md_Ts, are marked by the RNA polymerase II elongation factor ELL3, and function as enhancers in mouse embryonic stem cells. ELL3 depletion dislodges the DNA hydroxymethylase TET1 and the co-repressor SIN3A from L1Md_Ts, but increases the enrichment of the Bromodomain protein BRD4, leading to loss of 5hmC, gain of H3K27ac, and upregulation of the L1Md_T nearby genes. Specifically, ELL3 occupies and represses the L1Md_T-based enhancer located within Akt3, which encodes a key regulator of AKT pathway. ELL3 is required for proper ERK activation and efficient shutdown of naïve pluripotency through inhibiting Akt3 during naïve-primed transition. Our study reveals that the enhancer function of a subset of young LINE-1s controlled by ELL3 in transcription regulation and mouse early embryo development.
Collapse
Affiliation(s)
- Siyan Meng
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoxu Liu
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shiqi Zhu
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Peng Xie
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Haitong Fang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Qingyun Pan
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Ke Fang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Fanfan Li
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jin Zhang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zhuanzhuan Che
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Quanyong Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Guangyao Mao
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Kai Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Fei Sun
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Wei Xie
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zhuojuan Luo
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, China.
- Shenzhen Research Institute, Southeast University, Shenzhen, China.
| | - Chengqi Lin
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Shenzhen Research Institute, Southeast University, Shenzhen, China.
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, China.
| |
Collapse
|
25
|
Kalous J, Aleshkina D, Anger M. A Role of PI3K/Akt Signaling in Oocyte Maturation and Early Embryo Development. Cells 2023; 12:1830. [PMID: 37508495 PMCID: PMC10378481 DOI: 10.3390/cells12141830] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
A serine/threonine-specific protein kinase B (PKB), also known as Akt, is a key factor in the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway that regulates cell survival, metabolism and proliferation. Akt phosphorylates many downstream specific substrates, which subsequently control the nuclear envelope breakdown (NEBD), centrosome maturation, spindle assembly, chromosome segregation, and cytokinesis. In vertebrates, Akt is also an important player during oogenesis and preimplantation development. In the signaling pathways regulating mRNA translation, Akt is involved in the control of mammalian target of rapamycin complex 1 (mTORC1) and thereby regulates the activity of a translational repressor, the eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1). In this review, we summarize the functions of Akt in mitosis, meiosis and early embryonic development. Additionally, the role of Akt in the regulation of mRNA translation is addressed with respect to the significance of this process during early development.
Collapse
Affiliation(s)
- Jaroslav Kalous
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
| | - Daria Aleshkina
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 00 Praha, Czech Republic
| | - Martin Anger
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
| |
Collapse
|
26
|
A Comparative Review of Pregnancy and Cancer and Their Association with Endoplasmic Reticulum Aminopeptidase 1 and 2. Int J Mol Sci 2023; 24:ijms24043454. [PMID: 36834865 PMCID: PMC9965492 DOI: 10.3390/ijms24043454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The fundamental basis of pregnancy and cancer is to determine the fate of the survival or the death of humanity. However, the development of fetuses and tumors share many similarities and differences, making them two sides of the same coin. This review presents an overview of the similarities and differences between pregnancy and cancer. In addition, we will also discuss the critical roles that Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and 2 may play in the immune system, cell migration, and angiogenesis, all of which are essential for fetal and tumor development. Even though the comprehensive understanding of ERAP2 lags that of ERAP1 due to the lack of an animal model, recent studies have shown that both enzymes are associated with an increased risk of several diseases, including pregnancy disorder pre-eclampsia (PE), recurrent miscarriages, and cancer. The exact mechanisms in both pregnancy and cancer need to be elucidated. Therefore, a deeper understanding of ERAP's role in diseases can make it a potential therapeutic target for pregnancy complications and cancer and offer greater insight into its impact on the immune system.
Collapse
|
27
|
Uterine Flushing Fluid-Derived Let-7b Targets CXCL10 to Regulate Uterine Receptivity in Goats during Embryo Implantation. Int J Mol Sci 2023; 24:ijms24032799. [PMID: 36769111 PMCID: PMC9917504 DOI: 10.3390/ijms24032799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Exosomes have the ability to carry a wide range of chemicals, convey them to target cells or target regions, and act as "messengers." For the purpose of investigating embryo attachment, it is helpful to comprehend the range of exosomal mRNAs and miRNAs derived from the uterine flushing fluid before and after embryo attachment. In this study, we recovered exosomes from goat uterine rinsing fluid at 5, 15, and 18 days of gestation and used RNA-Seq to identify the mRNA and miRNA profiles of exosomes obtained from uterine rinsing fluid before and after embryo implantation. In total, 91 differently expressed miRNAs and 27,487 differentially expressed mRNAs were found. The target genes predicted by the differentially expressed miRNAs and the differentially expressed mRNAs were mainly membrane-related organelles with catalytic activity, binding activity, transcriptional regulation activity, and involved in metabolism, biological regulation, development, and other processes. This was revealed by GO analysis. Furthermore, KEGG analysis revealed that they were abundant in signaling pathways associated with embryo implantation, including the "PI3K-Akt signaling pathway," "Toll-like receptor signaling pathway," "TGF-beta signaling route," "Notch signaling pathway," and others. Moreover, our research has demonstrated, for the first time, that chi-let-7b-5p specifically targets the 3'UTR of CXCL10. Our research offers a fresh viewpoint on the mechanics of embryo attachment.
Collapse
|
28
|
Oh D, Choi H, Kim M, Cai L, Lee J, Jawad A, Kim S, Zheng H, Lee G, Jeon Y, Hyun SH. Interleukin-7 enhances in vitro development and blastocyst quality in porcine parthenogenetic embryos. Front Vet Sci 2022; 9:1052856. [PMID: 36570506 PMCID: PMC9772438 DOI: 10.3389/fvets.2022.1052856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Interleukin-7 (IL-7), a vital factor that affects cell development, proliferation, and survival, plays an important role in oocyte maturation. However, its role in embryonic development remains unknown. Therefore, in this study, we aimed to investigate the effects of IL-7 supplementation on in vitro culture (IVC) of porcine embryos after parthenogenetic activation (PA) based on characteristics such as cleavage, blastocyst formation rate, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels in cleaved embryos, total cell number, apoptosis rate, and cell lineage specification in blastocysts. Immunofluorescence revealed that IL-7 and its receptor, IL-7Rα (IL-7R) localized in the cytoplasm of porcine parthenote embryos. By supplementing the IVC medium (PZM5) with various concentrations of IL-7, an optimal concentration that enhanced embryonic development, promoted intracellular GSH, and decreased ROS levels in the cleavage stage during porcine embryo IVC was determined. Investigation of mRNA expression patterns via qRT-PCR suggested that IL-7 possibly regulated maternal mRNA clearance and zygotic genome activation. Furthermore, IL-7 supplementation reduced blastocyst apoptosis, enhanced the expression of the inner cell mass marker SOX2, and phosphorylated STAT5 levels in the blastocysts. Moreover, it altered the transcription patterns of genes that regulate apoptosis, IL-7 signaling, and development. Thus, we demonstrated the localization of IL-7 and IL-7R in porcine preimplantation embryos in vitro for the first time. Furthermore, we suggest that IL-7 supplementation can be employed to enhance embryonic development and blastocyst quality based on the activation of the transcripts of genes that are involved in developmental competence and IL-7 signaling during in vitro porcine embryo development following PA.
Collapse
Affiliation(s)
- Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea,Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea,Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea,Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea,Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea,Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
| | - Joohyeong Lee
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea,Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Ali Jawad
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea,Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Sohee Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea,Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Haomiao Zheng
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea,Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Gabsang Lee
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins Medicine, Baltimore, ML, United States
| | - Yubyeol Jeon
- Laboratory of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea,*Correspondence: Yubyeol Jeon
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea,Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea,Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea,Sang-Hwan Hyun
| |
Collapse
|
29
|
Hazra R, Brine L, Garcia L, Benz B, Chirathivat N, Shen MM, Wilkinson JE, Lyons SK, Spector DL. Platr4 is an early embryonic lncRNA that exerts its function downstream on cardiogenic mesodermal lineage commitment. Dev Cell 2022; 57:2450-2468.e7. [PMID: 36347239 PMCID: PMC9680017 DOI: 10.1016/j.devcel.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 08/22/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
Abstract
The mammalian genome encodes thousands of long non-coding RNAs (lncRNAs), many of which are developmentally regulated and differentially expressed across tissues, suggesting their potential roles in cellular differentiation. Despite this expression pattern, little is known about how lncRNAs influence lineage commitment at the molecular level. Here, we demonstrate that perturbation of an embryonic stem cell/early embryonic lncRNA, pluripotency-associated transcript 4 (Platr4), directly influences the specification of cardiac-mesoderm-lineage differentiation. We show that Platr4 acts as a molecular scaffold or chaperone interacting with the Hippo-signaling pathway molecules Yap and Tead4 to regulate the expression of a downstream target gene, Ctgf, which is crucial to the cardiac-lineage program. Importantly, Platr4 knockout mice exhibit myocardial atrophy and valve mucinous degeneration, which are both associated with reduced cardiac output and sudden heart failure. Together, our findings provide evidence that Platr4 is required in cardiac-lineage specification and adult heart function in mice.
Collapse
Affiliation(s)
- Rasmani Hazra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lily Brine
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Libia Garcia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brian Benz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Napon Chirathivat
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael M Shen
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Scott K Lyons
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW To succinctly review the basic mechanisms of implantation and luteal phase endometrial differentiation, the etiologies of impaired endometrial function and receptivity, and the current methods that exist to evaluate and treat impaired endometrial receptivity. RECENT FINDINGS Human embryo implantation requires bidirectional communication between blastocyst and a receptive endometrium. Etiologies of impaired endometrial receptivity are varied. Some of these include delayed endometrial maturation, structural abnormalities, inflammation, and progesterone resistance. Current methods to evaluate endometrial receptivity include ultrasonography, hysteroscopy, and endometrial biopsy. Treatments are limited, but include operative hysteroscopy, treatment of endometriosis, and personalized timing of embryo transfer. SUMMARY Although some mechanisms of impaired endometrial receptivity are well understood, treatment options remain limited. Future efforts should be directed towards developing interventions targeted towards the known mediators of impaired endometrial receptivity.
Collapse
|
31
|
He B, Bai J, Wu Z. Glucosamine enhances proliferation, barrier, and anti-oxidative functions in porcine trophectoderm cells. Food Funct 2022; 13:4551-4561. [PMID: 35352734 DOI: 10.1039/d1fo04086c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trophectoderm (TE) is the first epithelium that appears during mammalian embryogenesis, and is a polarized transporting single cell layer that comprises the wall of the blastocyst. Previous studies have revealed the functional roles of glucose (Gluc), fructose (Fruc), and glutamine (Gln), which play a positive role in porcine trophectoderm (pTr) cell proliferation and migration, suggesting the importance of nutrients for normal development of the conceptus and implantation. This work was conducted to test the hypothesis that glucosamine (GlcN), which is synthesized from Gln and Fruc-6-phosphate through the hexosamine biosynthesis pathway (HBP), can stimulate proliferation and sustain the barrier and anti-oxidative functions of pTr cells. Cells were treated with 0, 0.25, or 0.5 mmol L-1 GlcN in the presence or absence of adiquat (DQ) for the indicated time points. The results showed that 0.25 or 0.5 mmol L-1 GlcN stimulated pTr cell viability and DNA replication compared to the control group. The addition of 0.25 mmol L-1 GlcN enhanced the phosphorylation of mTOR signaling proteins, which can be inhibited by the inhibitor of phosphatidylinositol 3-kinase (PI3K), LY294002. Transepithelial electrical resistance (TEER) was increased, and paracellular permeability was correspondingly reduced in GlcN treatment. GlcN attenuated DQ-induced cell death and reduced the level of reactive oxygen species (ROS). The decreased TEER values and increased paracellular permeability caused by DQ treatment were also inhibited by GlcN treatment. The addition of 0.5 mmol L-1 GlcN increased the protein expression of zonula occludens-3 (ZO-3), claudin-3, and claudin-4 in pTr cells, while inhibited the downregulation protein of claudin-1 and claudin-3 brought about by oxidative stress. Collectively, GlcN plays an important role in promoting proliferation and stimulating the mTOR cell signaling pathway, as well as ameliorating oxidative stress and augmenting barrier functions in pTr cells.
Collapse
Affiliation(s)
- Beibei He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193.
| | - Jun Bai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193.
| |
Collapse
|
32
|
Li M, Zhang Z, Joynauth J, Zhan X, Du L. Intrauterine growth restriction neonates present with increased angiogenesis through the Notch1 signaling pathway. Microvasc Res 2022; 140:104308. [PMID: 34995552 DOI: 10.1016/j.mvr.2021.104308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
Intrauterine growth restriction (IUGR) is associated with increased perinatal mortality and morbidity, and plays an important role in the development of adult cardiovascular diseases. This study brings forward a hypothesis that Human umbilical vein endothelial cells (HUVECs) from IUGR newborns present dysfunctions and varying changes of signaling pathways as compared to the Control group. Similar pathways may also be present in pulmonary or systemic vasculatures. HUVECs were derived from newborns. There were three groups according to the different fetal origins: normal newborns (Control), IUGR from poor maternal nutrition (IUGR1), and pregnancy-induced hypertension (IUGR2). We found that IUGR-derived HUVECs showed a proliferative phenotype compared to those from normal subjects. Interestingly, two types IUGR could cause varying degrees of cellular dysfunction. Meanwhile, the Notch1 signaling pathway showed enhanced activation in the two IUGR-induced HUVECs, with subsequent activation of Akt or extracellular signal regulated protein kinases1/2 (ERK1/2). Pharmacological inhibition or gene silencing of Notch1 impeded the proliferative phenotype of IUGR-induced HUVECs and reduced the activation of ERK1/2 and AKT. In summary, elevated Notch1 levels might play a crucial role in IUGR-induced HUVECs disorders through the activation of ERK1/2 and AKT. These pathways could be potential therapeutic targets for prevention of the progression of IUGR associated diseases later in life.
Collapse
Affiliation(s)
- Min Li
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang, China
| | - Zhiqun Zhang
- Department of Neonatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Jyotsnav Joynauth
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang, China
| | - Xueqin Zhan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang, China
| | - Lizhong Du
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang, China.
| |
Collapse
|
33
|
Li R, Wang X, Huang Z, Balaji J, Kim TH, Wang T, Zhou L, Deleon A, Cook ME, Marbrey MW, Wu SP, Jeong JW, Arora R, DeMayo FJ. The role of epithelial progesterone receptor isoforms in embryo implantation. iScience 2021; 24:103487. [PMID: 34934913 DOI: 10.1016/j.isci.2021.103487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/27/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
The loss of uterine epithelial progesterone receptor (PGR) is crucial for successful embryo implantation in both humans and mice. The two major isoforms PGRA and PGRB have divergent functions under both physiological and pathological conditions. The present study compares phenotypes and gene signatures of PGRA and PGRB in uterine epithelium using uterine epithelial-specific constitutively expressed PGRA or PGRB mouse models. The cistrome and transcriptome analysis reveals substantial overlap between epithelial PGRA and PGRB, and both disrupt embryo implantation through FOXO1 pathways. Constitutive epithelial PGRA and PGRB expression impairs ESR1 occupancy at the promoter of Lif leading to reduced Lif transcription and further exaggerates SGK1 expression leading to enhanced PI3K-SGK1 activities, and both contribute to the decline of nuclear FOXO1 expression. Our study demonstrates that PGRA and PGRB in the uterine epithelium act on a similar set of target genes and commonly regulate the LIF-SGK1-FOXO1 signaling pathway for embryo implantation.
Collapse
Affiliation(s)
- Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Xiaoqiu Wang
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Zhenyao Huang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jayani Balaji
- Department of Obstetrics, Gynecology and Reproductive Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing 48823, MI, USA.,Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing 48823, MI, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing 48823, MI, USA
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Lecong Zhou
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Ashley Deleon
- Laser Capture Microdissection Core Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA.,Kelly Government Solutions, Rockville, MD, 20852, USA
| | - Molly E Cook
- Epigenomics and DNA Sequencing Core, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Margeaux W Marbrey
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Jae Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing 48823, MI, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing 48823, MI, USA.,Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing 48823, MI, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
34
|
Park W, Lim W, Song G. Exposure to fipronil induces cell cycle arrest, DNA damage, and apoptosis in porcine trophectoderm and endometrial epithelium, leading to implantation defects during early pregnancy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118234. [PMID: 34582916 DOI: 10.1016/j.envpol.2021.118234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Fipronil, a phenyl-pyrazole insecticide, has a wide range of uses, from agriculture to veterinary medicine. Due to its large-scale applications, the risk of environmental and occupational exposure and bioaccumulation raises concerns. Moreover, relatively little is known about the intracellular mechanisms of fipronil in trophoblasts and the endometrium involved in implantation. Here, we demonstrated that fipronil reduced the viability of porcine trophectoderm and luminal epithelial cells. Fipronil induced cell cycle arrest at the sub-G1 phase and apoptotic cell death through DNA fragmentation and inhibition of DNA replication. These reactions were accompanied by homeostatic changes, including mitochondrial depolarization and cytosolic calcium depletion. In addition, we found that exposure to fipronil compromised the migration and implantation ability of pTr and pLE cells. Moreover, alterations in PI3K-AKT and MAPK-ERK1/2 signal transduction were observed in fipronil-treated pTr and pLE cells. Finally, the antiproliferative and apoptotic effects of fipronil were also demonstrated in 3D cell culture conditions. In summary, our results suggest that fipronil impairs implantation potentials in fetal trophectoderm and maternal endometrial cells during early pregnancy.
Collapse
Affiliation(s)
- Wonhyoung Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
35
|
Cajas YN, Cañón-Beltrán K, Núñez-Puente C, Gutierrez-Adán A, González EM, Agirregoitia E, Rizos D. Nobiletin-induced partial abrogation of deleterious effects of AKT inhibition on preimplantation bovine embryo development in vitro. Biol Reprod 2021; 105:1427-1442. [PMID: 34617564 DOI: 10.1093/biolre/ioab184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/20/2021] [Accepted: 09/23/2021] [Indexed: 11/14/2022] Open
Abstract
During preimplantational embryo development, PI3K/AKT regulates cell proliferation and differentiation and nobiletin modulates this pathway to promote cell survival. Therefore, we aimed to establish whether, when the AKT cascade is inhibited using inhibitors III and IV, nobiletin supplementation to in vitro culture media during the minor (2 to 8-cell stage, MNEGA) or major (8 to 16-cell stage, MJEGA) phases of EGA is able to modulate the development and quality of bovine embryos. In vitro zygotes were cultured during MNEGA or MJEGA phase in SOF + 5% FCS or supplemented with: 15 μM AKT-InhIII; 10 μM AKT-InhIV; 10 μM nobiletin; nobiletin+AKT-InhIII; nobiletin+AKT-InhIV; 0.03% DMSO. Embryo development was lower in treatments with AKT inhibitors, while combination of nobiletin with AKT inhibitors was able to recover their adverse developmental effect and also increase blastocyst cell number. The mRNA abundance of GPX1, NFE2L2, and POU5F1 was partially increased in 8- and 16-cell embryos from nobiletin with AKT inhibitors. Besides, nobiletin increased the p-rpS6 level whether or not AKT inhibitors were present. In conclusion, nobiletin promotes bovine embryo development and quality and partially recovers the adverse developmental effect of AKT inhibitors which infers that nobiletin probably uses another signalling cascade that PI3K/AKT during early embryo development in bovine.
Collapse
Affiliation(s)
- Yulia N Cajas
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - Karina Cañón-Beltrán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - Carolina Núñez-Puente
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - Alfonso Gutierrez-Adán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - Encina M González
- Department of Anatomy and Embryology, Veterinary Faculty, Complutense University of Madrid (UCM), 28040, Madrid, Spain
| | - Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and Nursing, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| |
Collapse
|
36
|
Cao Z, Tong X, Yin H, Zhou N, Zhang X, Zhang M, Wang X, Liu Q, Yan Y, Ma Y, Yu T, Li Y, Zhang Y. Histone Arginine Methyltransferase CARM1-Mediated H3R26me2 Is Essential for Morula-to-Blastocyst Transition in Pigs. Front Cell Dev Biol 2021; 9:678282. [PMID: 34150772 PMCID: PMC8206646 DOI: 10.3389/fcell.2021.678282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is involved in both establishment of first pluripotent lineage and pluripotency maintenance of embryonic stem cells (ESCs) in mice. However, the histone substrates and role of CARM1 in early embryonic development remain largely unknown. Here, we show that CARM1 specifically catalyzes H3R26me2 to promote porcine blastocyst formation. The putative histone substrates of CARM1, including H3R2me2, H3R17me2, and H3R26me2, are present in pig early embryos. The changes of CARM1 mRNA during early embryogenesis parallel that of H3R26me2. Functional studies using a combinational approach of chemical inhibition and RNA interference (RNAi) showed that catalytic activity inhibition of CARM1 protein or knockdown (KD) of CARM1 mRNA did not alter the levels of both H3R2me2 and H3R17me2, but significantly reduced H3R26me2 levels in porcine embryos. Furthermore, CARM1 inhibition or KD did not affect embryo development to the 2-cell, 4-cell, 8-cell, and morula stages, but severely compromised blastocyst development. CARM1 knocked down embryos that developed to the blastocyst stage had fewer total cells, inner cell mass (ICM), and trophectoderm (TE) cells. Mechanistically, single embryo RNA-sequencing analysis revealed that CARM1 KD altered the transcriptome characterized by downregulation of key genes associated with Hippo and PI3K-AKT signaling pathways. Taken together, these results demonstrate that CARM1 specifically catalyzes H3R26me2 in porcine embryos and participates in blastocyst development.
Collapse
Affiliation(s)
- Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xu Tong
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Huiqun Yin
- Reproductive Medicine Center, The 901st Hospital, Hefei, China
| | - Naru Zhou
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Reproductive and Genetic Branch, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Xiangdong Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Mengya Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xin Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qiuchen Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yelian Yan
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yangyang Ma
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tong Yu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
37
|
Liu C, Su K, Chen L, Zhao Z, Wang X, Yuan C, Liang Y, Ji H, Li C, Zhou X. Prediction of oocyte quality using mRNA transcripts screened by RNA sequencing of human granulosa cells. Reprod Biomed Online 2021; 43:413-420. [PMID: 34400084 DOI: 10.1016/j.rbmo.2021.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 01/17/2023]
Abstract
RESEARCH QUESTION Can RNA transcripts of granulosa cells be used to assess oocyte quality? The possibility of predicting the developmental competence of oocytes by RNA sequencing analysis of granulosa cells was evaluated. DESIGN Granulosa cell samples were collected from 29 women undergoing assisted reproductive technology treatment and divided into two groups: 14 samples from the high blastocyst rate group and 15 from the low blastocyst rate group. Ten samples from each group were selected for RNA sequencing. RESULTS A total of 129 differentially expressed genes associated with high developmental competence of oocytes were identified. COL1A2, renin and COL1A1 were selected and further examined by quantitative real-time polymerase chain reaction (qRT-PCR). Expression levels of COL1A2 and renin by qRT-PCR were consistent with the results of RNA sequencing. CONCLUSION RNA sequencing data could provide novel marker genes for the non-invasive evaluation of oocyte quality and embryo developmental competence.
Collapse
Affiliation(s)
- Chengjun Liu
- College of Animal Sciences, Jilin University, Changchun 130062, China; Beijing Dairy Cattle Center, Beijing 100192, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100095, China
| | - Ketong Su
- Reproductive Medical Center, Zhanjiang Jiuhe Hospital, Zhanjiang 524094, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Zijiao Zhao
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xin Wang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Chenfeng Yuan
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yuqi Liang
- Reproductive Medical Center, Zhanjiang Jiuhe Hospital, Zhanjiang 524094, China
| | - Huili Ji
- Reproductive Medical Center, Zhanjiang Jiuhe Hospital, Zhanjiang 524094, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun 130062, China.
| |
Collapse
|
38
|
Poh QH, Rai A, Carmichael II, Salamonsen LA, Greening DW. Proteome reprogramming of endometrial epithelial cells by human trophectodermal small extracellular vesicles reveals key insights into embryo implantation. Proteomics 2021; 21:e2000210. [PMID: 33860638 DOI: 10.1002/pmic.202000210] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023]
Abstract
Embryo implantation into the receptive endometrium is critical in pregnancy establishment, initially requiring reciprocal signalling between outer layer of the blastocyst (trophectoderm cells) and endometrial epithelium; however, factors regulating this crosstalk remain poorly understood. Although endometrial extracellular vesicles (EVs) are known to signal to the embryo during implantation, the role of embryo-derived EVs remains largely unknown. Here, we provide a comprehensive proteomic characterisation of a major class of EVs, termed small EVs (sEVs), released by human trophectoderm cells (Tsc-sEVs) and their capacity to reprogram protein landscape of endometrial epithelium in vitro. Highly purified Tsc-sEVs (30-200 nm, ALIX+ , TSG101+ , CD9/63/81+ ) were enriched in known players of implantation (LIFR, ICAM1, TAGLN2, WNT5A, FZD7, ROR2, PRICKLE2), antioxidant activity (SOD1, PRDX1/4/6), tissue integrity (EZR, RAC1, RHOA, TNC), and focal adhesions (FAK, ITGA2/V, ITGB1/3). Functionally, Tsc-sEVs were taken up by endometrial cells, altered transepithelial electrical resistance, and upregulated proteins implicated in embryo attachment (ITGA2/V, ITGB1/3), immune regulation (CD59, CD276, LGALS3), and antioxidant activity (GPX1/3/4, PRDX1/2/4/5/6): processes that are critical for successful implantation. Collectively, we provide critical insights into Tsc-sEV-mediated regulation of endometrial function that contributes to our understanding of the molecular basis of implantation.
Collapse
Affiliation(s)
- Qi Hui Poh
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Irena Iśka Carmichael
- Monash Micro Imaging, Monash, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
KŠiŇanovÁ M, KovaŘÍkovÁ V, ŠefČÍkovÁ Z, ŠpirkovÁ A, ČikoŠ Š, Pisko J, Fabian D. Different response of embryos originating from control and obese mice to insulin in vitro. J Reprod Dev 2021; 67:25-34. [PMID: 33250503 PMCID: PMC7902211 DOI: 10.1262/jrd.2020-096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of the present work was to investigate the impact of maternal obesity on DNA methylation in ovulated oocytes, and to compare the response of in vitro-developing preimplantation embryos originating from control and obese mice to insulin. An intergenerational, diet-induced obesity model was used to produce outbred mice with an increased body weight and body fat. Two-cell and eight-cell embryos recovered from obese and control mice were cultured in a medium supplemented with 1 or 10 ng/ml insulin until blastocyst formation. In the derived blastocysts, cell proliferation, differentiation, and death rates were determined. The results of immunochemical visualization of 5-methylcytosine indicated a slightly higher DNA methylation in ovulated metaphase II oocytes recovered from obese females; however, the difference between groups did not reach statistical significance. Expanded blastocysts developed from embryos provided by control dams showed increased mean cell numbers (two and eight-cell embryos exposed to 10 ng/ml), an increased inner-cell-mass/trophectoderm ratio (two-cell embryos exposed to 1 ng/ml and eight-cell embryos exposed to 10 ng/ml), and a reduced level of apoptosis (two and eight-cell embryos exposed to 10 ng/ml). In contrast, embryos originating from obese mice were significantly less sensitive to insulin; indeed, no difference was recorded in any tested variable between the embryos exposed to insulin and those cultured in insulin-free medium. Real-time RT-PCR analysis showed a significant increase in the amount of insulin receptor transcripts in blastocysts recovered from obese dams. These results suggest that maternal obesity might modulate the mitogenic and antiapoptotic responses of preimplantation embryos to insulin.
Collapse
Affiliation(s)
- Martina KŠiŇanovÁ
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 01 Košice, Slovak Republic
| | - Veronika KovaŘÍkovÁ
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 01 Košice, Slovak Republic
| | - Zuzana ŠefČÍkovÁ
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 01 Košice, Slovak Republic
| | - Alexandra ŠpirkovÁ
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 01 Košice, Slovak Republic
| | - Štefan ČikoŠ
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 01 Košice, Slovak Republic
| | - Jozef Pisko
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 01 Košice, Slovak Republic
| | - Dušan Fabian
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 01 Košice, Slovak Republic
| |
Collapse
|
40
|
Azhari F, Pence S, Hosseini MK, Balci BK, Cevik N, Bastu E, Gunel T. The role of the serum exosomal and endometrial microRNAs in recurrent implantation failure. J Matern Fetal Neonatal Med 2020; 35:815-825. [PMID: 33249960 DOI: 10.1080/14767058.2020.1849095] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE It has been identified that endometrium specific microRNAs have different expression levels in endometrial tissues and maternal serum during endometrial cycle. The aim of this study was to analyze microRNA expression levels in recurrent implantation failure patients and healthy controls endometrial samples for enlightening the aetiopathogenesis of the disease. The second aim was to search for a potential noninvasive molecular biomarker in early diagnosis and treatment of Recurrent Implantation Failure (RIF) patients. METHODS Endometrium and serum samples in two different phases (PP; proliferative phase and SP; secretory phase) from the same cases (RIF; n = 12 and Control; n = 8) were obtained. The expression levels of the microRNA by RT-qPCR method were measured. The expression levels of the healthy controls and study group were compared. Lastly performed target genes analysis of significantly dysregulated miRNA by target analyze databases for obtained related biological pathways. RESULTS This study showed that has-miR-145, has-miR-23b, has-miR-31 and has-miR-30b were significantly up-regulated in PP and down-regulated in SP endometrium samples. In serum samples, has-miR-145 and hsa-miR-23b were significantly down-regulated in both of PP and SP. Target gene and pathway analysis for dysregulated miRNAs identified important, validated and predicted genes for the implantation process. CONCLUSIONS This study is the first study to obtain endometrium and serum samples in two different phases from the same cases and measure the candidate miRNAs expression. Our finding suggests that expression level of four candidate miRNAs may be involved in RIF development in women. Furthermore, these miRNAs can be potential biomarker for early diagnosis of RIF patients.
Collapse
Affiliation(s)
- Fatemeh Azhari
- Department of Molecular Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sadrettin Pence
- Department of Molecular Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mohammad Kazem Hosseini
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | | | - Nazife Cevik
- Department of Computer Engineering, Engineering-Architecture Faculty, Arel University, Istanbul, Turkey
| | - Ercan Bastu
- Department of Obstetrics and Gynecology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Tuba Gunel
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
41
|
Wu C, Blondin P, Vigneault C, Labrecque R, Sirard MA. Sperm miRNAs- potential mediators of bull age and early embryo development. BMC Genomics 2020; 21:798. [PMID: 33198638 PMCID: PMC7667858 DOI: 10.1186/s12864-020-07206-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/29/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Sperm miRNAs were reported to regulate spermatogenesis and early embryonic development in some mammals including bovine. The dairy cattle breeding industry now tends to collect semen from younger bulls under high selection pressure at a time when semen quality may be suboptimal compared to adult bulls. Whether the patterns of spermatic miRNAs are affected by paternal age and/or impact early embryogenesis is not clear. Hence, we generated small non-coding RNA libraries of sperm collected from same bulls at 10, 12, and 16 months of age, using 16 months as control for differential expression and functional analysis. RESULTS We firstly excluded all miRNAs present in measurable quantity in oocytes according to the literature. Of the remaining miRNAs, ten sperm-borne miRNAs were significantly differentially expressed in younger bulls (four in the 10 vs 16 months contrast and six in the 12 vs 16 months contrast). Targets of miRNAs were identified and compared to the transcriptomic database of two-cell embryos, to genes related to two-cell competence, and to the transcriptomic database of blastocysts. Ingenuity pathway analysis of the targets of these miRNAs suggested potential influence on the developmental competence of two-cell embryos and on metabolism and protein synthesis in blastocysts. CONCLUSIONS The results showed that miRNA patterns in sperm are affected by the age of the bull and may mediate the effects of paternal age on early embryonic development.
Collapse
Affiliation(s)
- Chongyang Wu
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Québec, Canada
| | | | | | | | - Marc-André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
42
|
Zamfirescu RC, Day ML, Morris MB. mTORC1/2 signaling is downregulated by amino acid-free culture of mouse preimplantation embryos and is only partially restored by amino acid readdition. Am J Physiol Cell Physiol 2020; 320:C30-C44. [PMID: 33052068 DOI: 10.1152/ajpcell.00385.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Development of the mammalian preimplantation embryo is influenced by autocrine/paracrine factors and the availability of nutrients. Deficiencies of these during in vitro culture reduce the success of assisted reproductive technologies. The mechanistic target of rapamycin complex 1 (mTORC1) pathway integrates external and internal signals, including those by amino acids (AAs), to promote normal preimplantation development. For this reason, AAs are often included in embryo culture media. In this study, we examined how withdrawal and addition of AAs to culture media modulate mTORC1 pathway activity compared with its activity in mouse embryos developed in vivo. Phosphorylation of signaling components downstream of mTORC1, namely, p70 ribosomal protein S6 kinase (p70S6K), ribosomal protein S6, and 4E binding protein 1 (4E-BP1), and that of protein kinase B (Akt), which lies upstream of mTORC1, changed significantly across stages of embryos developed in vivo. For freshly isolated blastocysts placed in vitro, the absence of AAs in the culture medium, even for a few hours, decreased mTORC1 signaling, which could only be partially restored by their addition. Long-term culture of early embryos to blastocysts in the absence of AAs decreased mTORC1 signaling to a greater extent and again this could only be partially restored by their inclusion. This failure to fully restore is probably due to decreased phosphatidylinositol 3-kinase (PI3K)/Akt/mTORC2 signaling in culture, as indicated by decreased P-AktS473. mTORC2 lies upstream of mTORC1 and is insensitive to AAs, and its reduced activity probably results from loss of maternal/autocrine factors. These data highlight reduced mTORC1/2 signaling activity correlating with compromised development in vitro and show that the addition of AAs can only partially offset these effects.
Collapse
Affiliation(s)
- Radu C Zamfirescu
- Discipline of Physiology and Bosch Institute, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Margot L Day
- Discipline of Physiology and Bosch Institute, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Michael B Morris
- Discipline of Physiology and Bosch Institute, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
43
|
Azizi E, Ghaffari Novin M, Naji M, Amidi F, Hosseinirad H, Shams Mofarahe Z. Effect of vitrification on biogenesis pathway and expression of development-related microRNAs in preimplantation mouse embryos. Cell Tissue Bank 2020; 22:103-114. [PMID: 33033964 DOI: 10.1007/s10561-020-09870-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/15/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Vitrification of embryos has been known as the most efficient cryopreservation method in assisted reproductive technology clinics. Vitrification of preimplantation embryo might be associated with altered gene expression profile and biochemical changes of vitrified embryos. Stringent regulation of gene expression in early embryonic stages is very critical for normal development. In the present study, we investigated the effect of vitrification on the canonical miRNA biogenesis pathway, and also the expression of developmental related miRNAs, in 8-cell and blastocyst mouse embryos. Although the expression pattern of the miRNA biogenesis pathway genes differed between 8-cell and blastocyst mouse embryos, vitrification did not affect the expression level of these genes in preimplantation embryos. The expression levels of miR-21 and let-7a were significantly decreased in vitrified 8-cell embryos and fresh blastocysts when compared with fresh 8-cell embryos. The expression of Stat3 was significantly reduced in blastocysts after vitrification. The alteration in the expression pattern of miRNAs, due to their mode of action, can affect broad downstream key developmental signaling pathways. Therefore, the blastocyst stage is the preferred point for embryo vitrification as they are less susceptible to cryo-damages regarding the stability of miRNAs related to the developmental and implantation competence of embryo.
Collapse
Affiliation(s)
- Elham Azizi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Infertility and Reproductive Health Research Center (IRHRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Naji
- Urology and Nephrology Research Center (UNRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Hosseinirad
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Boschen KE, Ptacek TS, Simon JM, Parnell SE. Transcriptome-Wide Regulation of Key Developmental Pathways in the Mouse Neural Tube by Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2020; 44:1540-1550. [PMID: 32557641 DOI: 10.1111/acer.14389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/02/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Early gestational alcohol exposure is associated with severe craniofacial and CNS dysmorphologies and behavioral abnormalities during adolescence and adulthood. Alcohol exposure during the formation of the neural tube (gestational day [GD] 8 to 10 in mice; equivalent to4th week of human pregnancy) disrupts development of ventral midline brain structures such as the pituitary, septum, and ventricles. This study identifies transcriptomic changes in the rostroventral neural tube (RVNT), the region of the neural tube that gives rise to the midline structures sensitive to alcohol exposure during neurulation. METHODS Female C57BL/6J mice were administered 2 doses of alcohol (2.9 g/kg) or vehicle 4 hours apart on GD 9.0. The RVNTs of embryos were collected 6 or 24 hours after the first dose and processed for RNA-seq. RESULTS Six hours following GD 9.0 alcohol exposure (GD 9.25), over 2,300 genes in the RVNT were determined to be differentially regulated by alcohol. Enrichment analysis determined that PAE affected pathways related to cell proliferation, p53 signaling, ribosome biogenesis, and immune activation. In addition, over 100 genes involved in primary cilia formation and function and regulation of morphogenic pathways were altered 6 hours after alcohol exposure. The changes to gene expression were largely transient, as only 91 genes identified as differentially regulated by prenatal alcohol at GD 10 (24 hours postexposure). Functionally, the differentially regulated genes at GD 10 were related to organogenesis and cell migration. CONCLUSIONS These data give a comprehensive view of the changing landscape of the embryonic transcriptome networks in regions of the neural tube that give rise to brain structures impacted by a neurulation-stage alcohol exposure. Identification of gene networks dysregulated by alcohol will help elucidate the pathogenic mechanisms of alcohol's actions.
Collapse
Affiliation(s)
- Karen E Boschen
- From the Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Travis S Ptacek
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeremy M Simon
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott E Parnell
- From the Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
45
|
Nicotinamide Supplementation during the In Vitro Maturation of Oocytes Improves the Developmental Competence of Preimplantation Embryos: Potential Link to SIRT1/AKT Signaling. Cells 2020; 9:cells9061550. [PMID: 32630550 PMCID: PMC7348965 DOI: 10.3390/cells9061550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Nicotinamide (NAM), the amide form of vitamin B3, plays pivotal roles in regulating various cellular processes including energy production and maintenance of genomic stability. The current study aimed at deciphering the effect of NAM, when administered during in vitro maturation (IVM), on the developmental competence of bovine preimplantation embryos. Our results showed that low NAM concentrations reduced the oxidative stress and improved mitochondrial profile, total cleavage and 8–16 cell stage embryo development whereas the opposite profile was observed upon exposure to high NAM concentrations (10 mM onward). Remarkably, the hatching rates of day-7 and day-8 blastocysts were significantly improved under 0.1 mM NAM treatment. Using RT-qPCR and immunofluorescence, the autophagy-related (Beclin-1 (BECN1), LC3B, and ATG5) and the apoptotic (Caspases; CASP3 and 9) markers were upregulated in oocytes exposed to high NAM concentration (40 mM), whereas only CASP3 was affected, downregulated, following 0.1 mM treatment. Additionally, the number of cells per blastocyst and the levels of SIRT1, PI3K, AKT, and mTOR were higher, while the inner cell mass-specific transcription factors GATA6, SOX2, and OCT4 were more abundant, in day-8 embryos of NAM-treated group. Taken together, to our knowledge, this is the first study reporting that administration of low NAM concentrations during IVM can ameliorate the developmental competence of embryos through the potential regulation of oxidative stress, apoptosis, and SIRT1/AKT signaling.
Collapse
|
46
|
Warzych E, Pawlak P, Lechniak D, Madeja ZE. WNT signalling supported by MEK/ERK inhibition is essential to maintain pluripotency in bovine preimplantation embryo. Dev Biol 2020; 463:63-76. [PMID: 32360193 DOI: 10.1016/j.ydbio.2020.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Abstract
Capturing stable embryonic stem cell (ESC) lines from domesticated animals still remains one of the challenges of non-rodent embryology. The stake is high, as stable ESCs derived from species such as cattle present high economic and scientific value. Understanding of the processes leading to the embryonic lineage segregation is crucial to provide species-orientated molecular environment capable of supporting self-renewal and pluripotency. Therefore, the aim of this study was to validate the action of the two core regulatory pathways (WNT and MEK/ERK) during bovine embryo development. In vitro produced bovine embryos were obtained in the presence of inhibitors (i), which enable activation of the WNT pathway (via GSK3i, CHIR99021) and suppression of MEK signalling by PD0325901 in the 2i system and PD184325 and SU5402 in the 3i system. We have followed the changes in the distribution of the key lineage specific markers both at the transcript and protein level. Our results showed that WNT signalling promotes the expression of key inner cell mass (ICM) specific markers in bovine embryos, regardless of the MEK/ERK inhibitor cocktail used. MEK/ERK downregulation is crucial to maintain OCT4 and NANOG expression within the ICM and to prevent their exclusion from the trophectoderm (TE). At the same time, the classical TE marker (CDX2) was downregulated at the mRNA and protein level. As a follow up for the observed pluripotency stimulating effect of the inhibitors, we have tested the potential of the 2i and the 3i culture conditions (supported by LIF) to derive primary bovine ESC lines. As a result, we propose a model in which all of the primary signalling pathways determining embryonic cell fate are active in bovine embryos, yet the requirement for pluripotency maintenance in cattle may differ from the described standards. WNT activation leads to the formation (and stabilisation of the ICM) and MEK/ERK signalling is maintained at low levels. Unlike in the mouse, GATA6 is expressed in both ICM and TE. MEK/ERK signalling affects HP formation in cattle, but this process is activated at the post-blastocyst stage. With regard to self-renewal, 2i is preferable, as 3i also blocks the FGF receptor, what may prevent PI3K signalling, important for pluripotency and self-renewal.
Collapse
Affiliation(s)
- Ewelina Warzych
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| | - Piotr Pawlak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| | - Dorota Lechniak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| | - Zofia Eliza Madeja
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| |
Collapse
|
47
|
Javvaji PK, Dhali A, Francis JR, Kolte AP, Roy SC, Selvaraju S, Mech A, Sejian V. IGF-1 treatment during in vitro maturation improves developmental potential of ovine oocytes through the regulation of PI3K/Akt and apoptosis signaling. Anim Biotechnol 2020; 32:798-805. [PMID: 32293977 DOI: 10.1080/10495398.2020.1752703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study aimed to assess the effect of the insulin-like grow factor 1 (IGF-1) treatment during in vitro maturation on the gene expression and developmental ability of ovine oocytes. Ovine cumulus-oocyte complexes (COC) were matured in vitro without (control) or with the supplementation of IGF-1 (100 ng/ml) and then subjected to in vitro fertilization and culture. The rate of oocyte maturation and embryo development was recorded and expression of the selected genes (involved in the PI3K/Akt and apoptosis signaling) was assessed in the matured oocytes. The IGF-1 treatment significantly (p < .05) improved the oocyte maturation rate (%) as compared to the control (81.5 ± 2.40 vs. 73.6 ± 0.94). Similarly, as compared to the control, the IGF-1 treatment significantly (p < .05) improved the rate (%) of cleavage (54.7 ± 1.58 vs. 67.2 ± 3.65) and the formation of 4-8 cell embryos (30.7 ± 2.89 vs. 44.1 ± 4.01) and morula (20.7 ± 2.08 vs. 32.8 ± 2.78). The IGF-1 treatment significantly (p < .05) upregulated the expression of IGF1R, PI3KR1, AKT1 and BCL2 and downregulated the expression of GSK3β, FOXO3 and CASP9 in the matured oocytes. In conclusion, the IGF-1 treatment significantly improved the developmental competence of ovine oocytes through the regulation of the PI3K/Akt and apoptosis signaling.
Collapse
Affiliation(s)
- Pradeep Krishna Javvaji
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India.,Centre for Post Graduate Studies, Jain University, Bengaluru, India
| | - Arindam Dhali
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Joseph Rabinson Francis
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India.,Centre for Post Graduate Studies, Jain University, Bengaluru, India
| | - Atul P Kolte
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Sudhir C Roy
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Sellappan Selvaraju
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Anjumoni Mech
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Veerasamy Sejian
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| |
Collapse
|
48
|
La Y, He X, Zhang L, Di R, Wang X, Gan S, Zhang X, Zhang J, Hu W, Chu M. Comprehensive Analysis of Differentially Expressed Profiles of mRNA, lncRNA, and circRNA in the Uterus of Seasonal Reproduction Sheep. Genes (Basel) 2020; 11:genes11030301. [PMID: 32178360 PMCID: PMC7140836 DOI: 10.3390/genes11030301] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022] Open
Abstract
Photoperiod is one of the important factors leading to seasonal reproduction of sheep. However, the molecular mechanisms underlying the photoperiod regulation of seasonal reproduction remain poorly understood. In this study, we compared the expression profiles of mRNAs, lncRNAs, and circRNAs in uterine tissues from Sunite sheep during three different photoperiods, namely, the short photoperiod (SP), short transfer to long photoperiod (SLP), and long photoperiod (LP). The results showed that 298, 403, and 378 differentially expressed (DE) mRNAs, 171, 491, and 499 DE lncRNAs, and 124, 270, and 400 DE circRNAs were identified between SP and LP, between SP and SLP, and between LP and SLP, respectively. Furthermore, functional enrichment analysis showed that the differentially expressed RNAs were mainly involved in the GnRH signaling pathway, thyroid hormone synthesis, and thyroid hormone signaling pathway. In addition, co-expression networks of lncRNA–mRNA were constructed based on the correlation analysis between the differentially expressed RNAs. Our study provides new insights into the expression changes of RNAs in different photoperiods, which might contribute to understanding the molecular mechanisms of seasonal reproduction in sheep.
Collapse
Affiliation(s)
- Yongfu La
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.)
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.)
| | - Wenping Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
- Correspondence: (W.H.); (M.C.); Tel.: +86-15901106848 (W.H.); +86-010-62819850 (M.C.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
- Correspondence: (W.H.); (M.C.); Tel.: +86-15901106848 (W.H.); +86-010-62819850 (M.C.)
| |
Collapse
|
49
|
Fiorenza MT, Russo G, Narducci MG, Bresin A, Mangia F, Bevilacqua A. Protein kinase Akt2/PKBβ is involved in blastomere proliferation of preimplantation mouse embryos. J Cell Physiol 2019; 235:3393-3401. [PMID: 31552693 DOI: 10.1002/jcp.29229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022]
Abstract
Activation of Akt/Protein Kinase B (PKB) by phosphatidylinositol-3-kinase (PI3K) controls several cellular functions largely studied in mammalian cells, including preimplantation embryos. We previously showed that early mouse embryos inherit active Akt from oocytes and that the intracellular localization of this enzyme at the two-cell stage depends on the T-cell leukemia/lymphoma 1 oncogenic protein, Tcl1. We have now investigated whether Akt isoforms, namely Akt1, Akt2 and Akt3, exert a specific role in blastomere proliferation during preimplantation embryo development. We show that, in contrast to other Akt family members, Akt2 enters male and female pronuclei of mouse preimplantation embryos at the late one-cell stage and thereafter maintains a nuclear localization during later embryo cleavage stages. Depleting one-cell embryos of single Akt family members by microinjecting Akt isoform-specific antibodies into wild-type zygotes, we observed that: (a) Akt2 is necessary for normal embryo progression through cleavage stages; and (b) the specific nuclear targeting of Akt2 in two-cell embryos depends on Tcl1. Our results indicate that preimplantation mouse embryos have a peculiar regulation of blastomere proliferation based on the activity of the Akt/PKB family member Akt2, which is mediated by the oncogenic protein Tcl1. Both Akt2 and Tcl1 are essential for early blastomere proliferation and embryo development.
Collapse
Affiliation(s)
- Maria Teresa Fiorenza
- Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | | | - Franco Mangia
- Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Rome, Italy
| | - Arturo Bevilacqua
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, and Systems Biology Group Lab, Rome, Italy
| |
Collapse
|
50
|
FoxO transcription factors 1 regulate mouse preimplantation embryo development. J Assist Reprod Genet 2019; 36:2121-2133. [PMID: 31396850 DOI: 10.1007/s10815-019-01555-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022] Open
Abstract
PURPOSE The aim of the present study is to investigate role of FoxO transcription factors in preimplantation embryo development by knocking down FoxO1, FoxO3, and FoxO4 genes and also to assess cell cycle arrest related proteins, p53 and p21, and apoptosis-related proteins, fas ligand (FASL), and cleaved caspase 3. METHODS Knockdown of FoxOs using siRNA was confirmed utilizing RT-PCR and qRT-PCR in gene level and using immunofluorescence in protein level. Following knockdown of FoxO1, FoxO3, and FoxO4 in two-cell mouse embryos with or without resveratrol treatment; developmental competence of embryos and expression patterns of SIRT1, p53, p21, FASL, and CLEAVED CASPASE 3 proteins in embryos by immunofluorescence were assessed after 48 h. ROS levels were measured in knockdown embryos. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to determine resveratrol dose. RESULTS Successful knockdown of FoxO genes in mouse embryos utilizing a non-invasive siRNA method was achieved. Significantly, knockdown of FoxO genes impaired preimplantation embryo development which cannot be prevented by resveratrol treatment. Immunofluorescence results showed that resveratrol could protect embryos from cell cycle arrest and apoptosis. FOXO proteins regulate apoptosis and cell cycle related proteins in mouse preimplantation embryos. Moreover, there might be an autofeedback mechanism where FOXO1, FOXO3, and FOXO4 regulate SIRT1 protein expression. CONCLUSIONS These results suggest that FOXO transcription factors could contribute to mouse preimplantation embryo development, and it remains to investigate whether they have crucial roles in human preimplantation embryo and infertility.
Collapse
|