1
|
Cai S, Dai Q. Progress in preclinical research on induced pluripotent stem cell therapy for acute myocardial infarction. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:244-253. [PMID: 38594961 PMCID: PMC11057988 DOI: 10.3724/zdxbyxb-2023-0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
Induced pluripotent stem cells (iPSCs) are obtained by introducing exogenous genes or adding chemicals to the culture medium to induce somatic cell differentiation. Similarly to embryonic stem cells, iPSCs have the ability to differentiate into all three embryonic cell lines. iPSCs can differentiate into cardiac muscle cells through two-dimensional differentiation methods such as monolayer cell culture and co-culture, or through embryoid body and scaffold-based three-dimensional differentiation methods. In addition, the process of iPSCs differentiation into cardiac muscle cells also requires activation or inhibition of specific signaling pathways,such as Wnt, BMP, Notch signaling pathways to mimic the development of the heart in vivo. In recent years, suspension culturing in bioreactors has been shown to produce large number of iPSCs derived cardiac muscle cells (iPSC-CMs). Before transplantation, it is necessary to purify iPSC-CMs through metabolic regulation or cell sorting to eliminate undifferentiated iPSCs, which may lead to teratoma formation. The transplantation methods for iPSC-CMs are mainly injection of cell suspension and transplantation of cell patches into the infarcted myocardium. Animal studies have shown that transplantation of iPSC-CMs into the infarcted myocardium can improve cardiac function. This article reviews the progress in preclinical studies on iPSC-CMs therapy for acute myocardial infarction and discusses the limitations and challenges of its clinical application to provide references for further clinical research and application.
Collapse
Affiliation(s)
- Songyan Cai
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| | - Qingyuan Dai
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
2
|
Sinibaldi L, Garone G, Mandarino A, Iarossi G, Chioma L, Dentici ML, Merla G, Agolini E, Micalizzi A, Mancini C, Niceta M, Macchiaiolo M, Diodato D, Onesimo R, Blandino R, Delogu AB, De Rosa G, Trevisan V, Iademarco M, Zampino G, Tartaglia M, Novelli A, Bartuli A, Digilio MC, Calcagni G. Congenital heart defects in CTNNB1 syndrome: Raising clinical awareness. Clin Genet 2023; 104:528-541. [PMID: 37455656 DOI: 10.1111/cge.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
CTNNB1 [OMIM *116806] encodes β-catenin, an integral part of the cadherin/catenin complex, which functions as effector of Wnt signaling. CTNNB1 is highly expressed in brain as well as in other tissues, including heart. Heterozygous CTNNB1 pathogenic variations are associated with a neurodevelopmental disorder characterized by spastic diplegia and visual defects (NEDSDV) [OMIM #615075], featuring psychomotor delay, intellectual disability, behavioral disturbances, movement disorders, visual defects and subtle facial and somatic features. We report on a new series of 19 NEDSDV patients (mean age 10.3 years), nine of whom bearing novel CTNNB1 variants. Notably, five patients showed congenital heart anomalies including absent pulmonary valve with intact ventricular septum, atrioventricular canal with hypoplastic aortic arch, tetralogy of Fallot, and mitral valve prolapse. We focused on the cardiac phenotype characterizing such cases and reviewed the congenital heart defects in previously reported NEDSDV patients. While congenital heart defects had occasionally been reported so far, the present findings configure a higher rate of cardiac anomalies, suggesting dedicated heart examination to NEDSDV clinical management.
Collapse
Affiliation(s)
- Lorenzo Sinibaldi
- Medical Genetics Unit, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Giacomo Garone
- Clinical and Experimental Neurology, IRCCS Bambino Gesù Children Hospital, Rome, Italy
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Alessandra Mandarino
- Child and Adolescent Neuropsychiatry Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giancarlo Iarossi
- Department of Ophthalmology, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Laura Chioma
- Endocrinology and Diabetology Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Giuseppe Merla
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
- Department of Molecular Medicine & Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Alessia Micalizzi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Cecilia Mancini
- Molecular Genetics and Functional Genomics, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Marcello Niceta
- Molecular Genetics and Functional Genomics, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Marina Macchiaiolo
- Rare Diseases and Medical Genetics Unit, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Daria Diodato
- Neuromuscular and Neurodegenerative Disorders Unit, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Roberta Onesimo
- Rare Diseases Unit, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
- Pediatric Unit, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Rita Blandino
- Pediatric Unit, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | | | - Gabriella De Rosa
- Pediatric Unit, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Valentina Trevisan
- Rare Diseases Unit, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Mariella Iademarco
- Rare Diseases Unit, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Giuseppe Zampino
- Rare Diseases Unit, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
- Pediatric Unit, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Università Cattolica Sacro Cuore, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Andrea Bartuli
- Rare Diseases and Medical Genetics Unit, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | | | - Giulio Calcagni
- Department of Cardiac Surgery, Cardiology and Heart and Lung Transplant, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW The pathological remodeling of cardiac tissue after injury or disease leads to scar formation. Our knowledge of the role of nonmyocytes, especially fibroblasts, in cardiac injury and repair continues to increase with technological advances in both experimental and clinical studies. Here, we aim to elaborate on cardiac fibroblasts by describing their origins, dynamic cellular states after injury, and heterogeneity in order to understand their role in cardiac injury and repair. RECENT FINDINGS With the improvement in genetic lineage tracing technologies and the capability to profile gene expression at the single-cell level, we are beginning to learn that manipulating a specific population of fibroblasts could mitigate severe cardiac fibrosis and promote cardiac repair after injury. Cardiac fibroblasts play an indispensable role in tissue homeostasis and in repair after injury. Activated fibroblasts or myofibroblasts have time-dependent impacts on cardiac fibrosis. Multiple signaling pathways are involved in modulating fibroblast states, resulting in the alteration of fibrosis. Modulating a specific population of cardiac fibroblasts may provide new opportunities for identifying novel treatment options for cardiac fibrosis.
Collapse
Affiliation(s)
- Maoying Han
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
4
|
Du Y, Demillard LJ, Ren J. Catecholamine-induced cardiotoxicity: A critical element in the pathophysiology of stroke-induced heart injury. Life Sci 2021; 287:120106. [PMID: 34756930 DOI: 10.1016/j.lfs.2021.120106] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/20/2023]
Abstract
Cerebrovascular diseases such as ischemic stroke, brain hemorrhage, and subarachnoid hemorrhage provoke cardiac complications such as heart failure, neurogenic stress-related cardiomyopathy and Takotsubo cardiomyopathy. With regards to the pathophysiology of stroke-induced heart injury, several mechanisms have been postulated to contribute to this complex interaction between brain and heart, including damage from gut dysbiosis, immune and systematic inflammatory responses, microvesicle- and microRNA-mediated vascular injury and damage from a surge of catecholamines. All these cerebrovascular diseases may trigger pronounced catecholamine surges through diverse ways, including stimulation of hypothalamic-pituitary adrenal axis, dysregulation of autonomic system, and secretion of adrenocorticotropic hormone. Primary catecholamines involved in this pathophysiological response include norepinephrine (NE) and epinephrine. Both are important neurotransmitters that connect the nervous system with the heart, leading to cardiac damage via myocardial ischemia, calcium (Ca2+) overload, oxidative stress, and mitochondrial dysfunction. In this review, we will aim to summarize the molecular mechanisms behind catecholamine-induced cardiotoxicity including Ca2+ overload, oxidative stress, apoptosis, cardiac hypertrophy, interstitial fibrosis, and inflammation. In addition, we will focus on how synchronization among these pathways evokes cardiotoxicity.
Collapse
Affiliation(s)
- Yuxin Du
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Laurie J Demillard
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
5
|
Lee JW, Lee CS, Ryu YR, Lee J, Son H, Cho HJ, Kim HS. Lysophosphatidic Acid Receptor 4 Is Transiently Expressed during Cardiac Differentiation and Critical for Repair of the Damaged Heart. Mol Ther 2021; 29:1151-1163. [PMID: 33160074 PMCID: PMC7934582 DOI: 10.1016/j.ymthe.2020.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/05/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022] Open
Abstract
Efficient differentiation of pluripotent stem cells (PSCs) into cardiac cells is essential for the development of new therapeutic modalities to repair damaged heart tissue. We identified a novel cell surface marker, the G protein-coupled receptor lysophosphatidic acid receptor 4 (LPAR4), specific to cardiac progenitor cells (CPCs) and determined its functional significance and therapeutic potential. During in vitro differentiation of mouse and human PSCs toward cardiac lineage, LPAR4 expression peaked after 3−7 days of differentiation in cardiac progenitors and then declined. In vivo, LPAR4 was specifically expressed in the early stage of embryonal heart development, and as development progressed, LPAR4 expression decreased and was non-specifically distributed. We identified the effective agonist octadecenyl phosphate and a p38 MAPK blocker as the downstream signal blocker. Sequential stimulation and inhibition of LPAR4 using these agents enhanced the in vitro efficiency of cardiac differentiation from mouse and human PSCs. Importantly, in vivo, this sequential stimulation and inhibition of LPAR4 reduced the infarct size and rescued heart dysfunction in mice. In conclusion, LPAR4 is a novel CPC marker transiently expressed only in heart during embryo development. Modulation of LPAR4-positive cells may be a promising strategy for repairing myocardium after myocardial infarction.
Collapse
Affiliation(s)
- Jin-Woo Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - Choon-Soo Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - Yong-Rim Ryu
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jaewon Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - HyunJu Son
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - Hyun-Jai Cho
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea.
| | - Hyo-Soo Kim
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
6
|
Wu Y, Liu X, Zheng H, Zhu H, Mai W, Huang X, Huang Y. Multiple Roles of sFRP2 in Cardiac Development and Cardiovascular Disease. Int J Biol Sci 2020; 16:730-738. [PMID: 32071544 PMCID: PMC7019133 DOI: 10.7150/ijbs.40923] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/14/2019] [Indexed: 12/13/2022] Open
Abstract
The Wnt signaling pathway plays important roles in organ development and disease processes. Secreted frizzled-related protein 2 (sFRP2), a vital molecule of Wnt signaling, can regulate cardiac development and cardiovascular disease. Recent studies have suggested that sFRP2 is not only an antagonist of the canonical Wnt signaling pathway, but also has a more complex relationship in myocardial fibrosis, angiogenesis, cardiac hypertrophy and cardiac regeneration. Here, we review the role of sFRP2 and Wnt signaling in cardiac development and cardiovascular disease.
Collapse
Affiliation(s)
- Yu Wu
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Xinyue Liu
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Haoxiao Zheng
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Hailan Zhu
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Weiyi Mai
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou
| | - Xiaohui Huang
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Yuli Huang
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
- The George Institute for Global Health, NSW 2042 Australia
| |
Collapse
|
7
|
Zhang Y, Zhang L, Fan X, Yang W, Yu B, Kou J, Li F. Captopril attenuates TAC-induced heart failure via inhibiting Wnt3a/β-catenin and Jak2/Stat3 pathways. Biomed Pharmacother 2019; 113:108780. [PMID: 30889487 DOI: 10.1016/j.biopha.2019.108780] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/28/2019] [Accepted: 03/13/2019] [Indexed: 12/23/2022] Open
Abstract
Captopril (Cap) as angiotensin-converting enzyme inhibitor (ACEi) is commonly used to treat hypertension and some types of congestive heart failure. However, few studies reported on whether Cap exerts a protective effect on myocardial apoptosis induced by transverse aortic constriction (TAC). This study aimed at investigating the possible mechanism of Cap on myocardial apoptosis induced by pressure overload. Results showed that Cap significantly decreased heart-to-body weight ratios (HBWR). Cap markedly improved cardiac function, and reduced inner diameter of ascending aorta (Asc Ao) in TAC mice as shown by echocardiography. Enzyme-linked immunosorbent assay (ELISA) results demonstrated that Cap treatment also markedly decreased the level of N-terminal pro-B-type natriuretic peptide (NT-proBNP), atrial natriuretic peptide (ANP), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Cardiac pathological changes and fibrosis have been improved after Cap treatment as shown by hematoxylin-eosin (H&E) staining and Masson's trichrome staining. Moreover, Terminal deoxynucleotidyl transferase-mediated dexoxyuridine triphosphate nick-end labeling (TUNEL) staining result indicated Cap treatment also significantly inhibited cardiac apoptosis. Western Blot results showed that Cap obviously decreased the expression of cleaved capase-3, Bax, phosphorylated Jak2 (p-Jak2), phosphorylated Stat3 (p-Stat3), Wnt3a and β-catenin proteins, as well as increased Bcl-2 expression. In conclusion, Cap showed a protective effect on TAC-induced cardiac apoptosis, which could be attributed to the inhibition of Wnt3a/β-catenin signaling pathway. Cap also attenuated myocardial hypertrophy induced by TAC via suppression of Jak2/Stat3 pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ling Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoxue Fan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weiwei Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
8
|
Meyer IS, Jungmann A, Dieterich C, Zhang M, Lasitschka F, Werkmeister S, Haas J, Müller OJ, Boutros M, Nahrendorf M, Katus HA, Hardt SE, Leuschner F. The cardiac microenvironment uses non-canonical WNT signaling to activate monocytes after myocardial infarction. EMBO Mol Med 2018; 9:1279-1293. [PMID: 28774883 PMCID: PMC5582413 DOI: 10.15252/emmm.201707565] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A disturbed inflammatory response following myocardial infarction (MI) is associated with poor prognosis and increased tissue damage. Monocytes are key players in healing after MI, but little is known about the role of the cardiac niche in monocyte activation. This study investigated microenvironment‐dependent changes in inflammatory monocytes after MI. RNA sequencing analysis of murine Ly6Chigh monocytes on day 3 after MI revealed differential regulation depending on location. Notably, the local environment strongly impacted components of the WNT signaling cascade. Analysis of WNT modulators revealed a strong upregulation of WNT Inhibitory Factor 1 (WIF1) in cardiomyocytes—but not fibroblasts or endothelial cells—upon hypoxia. Compared to wild‐type (WT) littermates, WIF1 knockout mice showed severe adverse remodeling marked by increased scar size and reduced ejection fraction 4 weeks after MI. While FACS analysis on day 1 after MI revealed no differences in neutrophil numbers, the hearts of WIF1 knockouts contained significantly more inflammatory monocytes than hearts from WT animals. Next, we induced AAV‐mediated cardiomyocyte‐specific WIF1 overexpression, which attenuated the monocyte response and improved cardiac function after MI, as compared to control‐AAV‐treated animals. Finally, WIF1 overexpression in isolated cardiomyocytes limited the activation of non‐canonical WNT signaling and led to reduced IL‐1β and IL‐6 expression in monocytes/macrophages. Taken together, we investigated the cardiac microenvironment's interaction with recruited monocytes after MI and identified a novel mechanism of monocyte activation. The local initiation of non‐canonical WNT signaling shifts the accumulating myeloid cells toward a pro‐inflammatory state and impacts healing after myocardial infarction.
Collapse
Affiliation(s)
- Ingmar Sören Meyer
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany
| | - Andreas Jungmann
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Christoph Dieterich
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany
| | - Min Zhang
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Felix Lasitschka
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Tissue Bank of the National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Susann Werkmeister
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Jan Haas
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany
| | - Oliver J Müller
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany
| | - Michael Boutros
- DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany.,Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hugo A Katus
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany
| | - Stefan E Hardt
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Florian Leuschner
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany .,DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany
| |
Collapse
|
9
|
Majidinia M, Aghazadeh J, Jahanban‐Esfahlani R, Yousefi B. The roles of Wnt/β‐catenin pathway in tissue development and regenerative medicine. J Cell Physiol 2018; 233:5598-5612. [DOI: 10.1002/jcp.26265] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research CenterUrmia University of Medical SciencesUrmiaIran
| | - Javad Aghazadeh
- Department of NeurosurgeryUrmia University of Medical SciencesUrmiaIran
| | - Rana Jahanban‐Esfahlani
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
| | - Bahman Yousefi
- Stem Cell and Regenerative Medicine InstituteTabriz University of Medical SciencesTabrizIran
- Molecular Targeting Therapy Research GroupFaculty of MedicineTabriz University ofMedical SciencesTabrizIran
| |
Collapse
|
10
|
Guo X, Bai Y, Zhang L, Zhang B, Zagidullin N, Carvalho K, Du Z, Cai B. Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: new regulators and its implications. Stem Cell Res Ther 2018; 9:44. [PMID: 29482607 PMCID: PMC5828435 DOI: 10.1186/s13287-018-0773-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the past years, cardiac mortality has decreased, but cardiac diseases are still responsible for millions of deaths every year worldwide. Bone-marrow mesenchymal stem cells (BMSCs) transplantation may be a promising therapeutic strategy because of its capacity to differentiate into cardiac cells. Current research indicates that chemical substances, microRNAs, and cytokines have biological functions that regulate the cardiomyocytes differentiation of BMSCs. In this review, we chiefly summarize the regulatory factors that induce BMSCs to differentiate into cardiomyocytes.
Collapse
Affiliation(s)
- Xiaofei Guo
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Yan Bai
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Li Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Bo Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Naufal Zagidullin
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Katherine Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pequeno Príncipe Faculty, Pelé Pequeno Príncipe Institute, Curitiba, Brazil
| | - Zhimin Du
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Benzhi Cai
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China.
| |
Collapse
|
11
|
Ye X, Lin J, Lin Z, Xue A, Li L, Zhao Z, Liu L, Shen Y, Cong B. Axin1 up-regulated 1 accelerates stress-induced cardiomyocytes apoptosis through activating Wnt/β-catenin signaling. Exp Cell Res 2017; 359:441-448. [PMID: 28830684 DOI: 10.1016/j.yexcr.2017.08.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Stress-induced cardiomyocyte apoptosis contributes to the pathogenesis of a variety of cardiovascular diseases, but how stress induces cardiomyocyte apoptosis remains largely unclear. The present study aims to investigate the effects of Axin1 up-regulated 1 (Axud1), a novel pro-apoptotic protein, on the cardiomyocyte survival and the underlying mechanisms. To this end, a rat model under restraint stress (RS) was established and in vitro stress-induced cardiomyocytes culture was achieved. Our data showed that Axud1 was upregulated in the rat myocardia after exposure to RS. Anti-apoptotic Bcl-2 was decreased, whereas pro-apoptotic Bax and Cleaved caspase-3 (Cc3) were increased in a time-dependent manner. The Wnt/β-catenin signaling was observed to be interestingly activated in heart undergoing RS. In addition, the treatment of norepinephrine (NE) to in vitro cardiomyocytes increased Axud1 level and induced cell apoptosis. Wnt/β-catenin signaling was consistently activated. Knockdown of Axud1 using specific siRNA blunted NE-induced cardiomyocytes apoptosis and also inactivated the Wnt/β-catenin signaling. XAV-939, an inhibitor of Wnt/β-catenin signaling, partially reversed the pro-apoptotic effect of NE. In conclusion, Axud1 accelerated stress-induced cardiomyocytes apoptosis through activation of Wnt/β-catenin signaling pathway. Our data provided novel evidence that therapeutic strategies against Axud1 or Wnt/β-catenin signaling might be promising in relation to RS-induced myocardial injury.
Collapse
MESH Headings
- Animals
- Apoptosis
- Apoptosis Regulatory Proteins/antagonists & inhibitors
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Caspase 3/genetics
- Caspase 3/metabolism
- Cell Line
- Gene Expression Regulation
- Heterocyclic Compounds, 3-Ring/pharmacology
- Immobilization
- Male
- Mice
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Norepinephrine/antagonists & inhibitors
- Norepinephrine/pharmacology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Wnt Signaling Pathway
- bcl-2-Associated X Protein/genetics
- bcl-2-Associated X Protein/metabolism
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Xing Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Junyi Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Zebin Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Aimin Xue
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Ziqin Zhao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Li Liu
- The 8th Brigade of General Division of Criminal Investigation, Beijing Municipal Public Security Bureau, Beijing 100192, PR China
| | - Yiwen Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Bin Cong
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, Hebei Province 050017, PR China.
| |
Collapse
|
12
|
Inhibition of Histone Methyltransferase, Histone Deacetylase, and β-Catenin Synergistically Enhance the Cardiac Potential of Bone Marrow Cells. Stem Cells Int 2017; 2017:3464953. [PMID: 28791052 PMCID: PMC5534312 DOI: 10.1155/2017/3464953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/02/2017] [Accepted: 05/17/2017] [Indexed: 11/17/2022] Open
Abstract
Previously, we reported that treatment with the G9a histone methyltransferase inhibitor BIX01294 causes bone marrow mesenchymal stem cells (MSCs) to exhibit a cardiocompetent phenotype, as indicated by the induction of the precardiac markers Mesp1 and brachyury. Here, we report that combining the histone deacetylase inhibitor trichostatin A (TSA) with BIX01294 synergistically enhances MSC cardiogenesis. Although TSA by itself had no effect on cardiac gene expression, coaddition of TSA to MSC cultures enhanced BIX01294-induced levels of Mesp1 and brachyury expression 5.6- and 7.2-fold. Moreover, MSCs exposed to the cardiogenic stimulus Wnt11 generated 2.6- to 5.6-fold higher levels of the cardiomyocyte markers GATA4, Nkx2.5, and myocardin when pretreated with TSA in addition to BIX01294. MSC cultures also showed a corresponding increase in the prevalence of sarcomeric protein-positive cells when treated with these small molecule inhibitors. These results correlated with data showing synergism between (1) TSA and BIX01294 in promoting acetylation of lysine 27 on histone H3 and (2) BIX01294 and Wnt11 in decreasing β-catenin accumulation in MSCs. The implications of these findings are discussed in light of observations in the early embryo on the importance of β-catenin signaling and histone modifications for cardiomyocyte differentiation and heart development.
Collapse
|
13
|
Ren M, Wang T, Huang L, Ye X, Xv Z, Ouyang C, Han Z. Role of VR1 in the differentiation of bone marrow-derived mesenchymal stem cells into cardiomyocytes associated with Wnt/β-catenin signaling. Cardiovasc Ther 2017; 34:482-488. [PMID: 27662603 DOI: 10.1111/1755-5922.12228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM Accumulating evidence showed that transient receptor potential channels play an important role in the regulation of cardiomyocyte differentiation. The vanilloid receptor 1 (VR1) is a member of the transient receptor channel super family and is expressed in cardiomyocytes. However, its function in cardiomyocytes remains unclear. METHODS Herein, the aim of this study was to investigate the functional role of VR1 in the cardiomyocyte differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and to elucidate the potential molecular mechanisms. RESULTS Immunofluorescence assay showed that cardiomyocyte marker cardiac troponin T (cTnT) was found significantly elevated in differentiated BMSCs induced by 5-azacytidine compared with control. Similarly, VR1 expression was also found significantly increased in induced BMSCs differentiation. Additionally, we examined the role of VR1 in BMSC differentiation processes through VR1 siRNAs. We found that the expression of cardiomyocyte marker genes, such as alpha-myosin heavy chain (α-MHC), α-cardiac actin, and Nkx2.5 (cardiac-specific transcription factor), was significantly decreased when VR1 was silenced. Furthermore, we found that inhibition of VR1 expression is associated with downregulation of Wnt/β-catenin signaling. CONCLUSIONS To summarize, our data demonstrate important role of VR1 in BMSCs differentiation into cardiomyocytes in conjunction of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Mingming Ren
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Tao Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Xiaoqiang Ye
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Zhifeng Xv
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Chun Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
14
|
Abstract
Soluble morphogen gradients have long been studied in the context of heart specification and patterning. However, recent data have begun to challenge the notion that long-standing in vivo observations are driven solely by these gradients alone. Evidence from multiple biological models, from stem cells to ex vivo biophysical assays, now supports a role for mechanical forces in not only modulating cell behavior but also inducing it de novo in a process termed mechanotransduction. Structural proteins that connect the cell to its niche, for example, integrins and cadherins, and that couple to other growth factor receptors, either directly or indirectly, seem to mediate these changes, although specific mechanistic details are still being elucidated. In this review, we summarize how the wingless (Wnt), transforming growth factor-β, and bone morphogenetic protein signaling pathways affect cardiomyogenesis and then highlight the interplay between each pathway and mechanical forces. In addition, we will outline the role of integrins and cadherins during cardiac development. For each, we will describe how the interplay could change multiple processes during cardiomyogenesis, including the specification of undifferentiated cells, the establishment of heart patterns to accomplish tube and chamber formation, or the maturation of myocytes in the fully formed heart.
Collapse
Affiliation(s)
- Cassandra L Happe
- From the Department of Bioengineering, University of California, San Diego, La Jolla; and Sanford Consortium for Regenerative Medicine, La Jolla, CA
| | - Adam J Engler
- From the Department of Bioengineering, University of California, San Diego, La Jolla; and Sanford Consortium for Regenerative Medicine, La Jolla, CA.
| |
Collapse
|
15
|
Chen Z, Zhu JY, Fu Y, Richman A, Han Z. Wnt4 is required for ostia development in the Drosophila heart. Dev Biol 2016; 413:188-98. [PMID: 26994311 DOI: 10.1016/j.ydbio.2016.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 12/31/2022]
Abstract
The Drosophila ostia are valve-like structures in the heart with functional similarity to vertebrate cardiac valves. The Wnt/β-catenin signaling pathway is critical for valve development in zebrafish and mouse, but the key ligand(s) for valve induction remains unclear. We observed high levels of Wnt4 gene expression in Drosophila ostia progenitor cells, immediately prior to morphological differentiation of these cells associated with ostia formation. This differentiation was blocked in Wnt4 mutants and in flies expressing canonical Wnt signaling pathway inhibitors but not inhibitors of the planar cell polarity pathway. High levels of Wnt4 dependent activation of a canonical Wnt signaling reporter was observed specifically in ostia progenitor cells. In vertebrate valve formation Wnt signaling is active in cells undergoing early endothelial-mesenchymal transition (EMT) and the Wnt9 homolog of Drosophila Wnt4 is expressed in valve progenitors. In demonstrating an essential role for Wnt4 in ostia development we have identified similarities between molecular and cellular events associated with early EMT during vertebrate valve development and the differentiation and partial delamination of ostia progenitor cells in the process of ostia formation.
Collapse
Affiliation(s)
- Zhimin Chen
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | - Jun-Yi Zhu
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | - Yulong Fu
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | - Adam Richman
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | - Zhe Han
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC 20010, USA; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA.
| |
Collapse
|
16
|
Chen B, Song G, Liu M, Qian L, Wang L, Gu H, Shen Y. Inhibition of miR-29c promotes proliferation, and inhibits apoptosis and differentiation in P19 embryonic carcinoma cells. Mol Med Rep 2016; 13:2527-35. [PMID: 26848028 PMCID: PMC4769000 DOI: 10.3892/mmr.2016.4832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 12/23/2015] [Indexed: 01/23/2023] Open
Abstract
In our previous study, the upregulation of microRNA (miR)-29c was identified in the mother of a fetus with a congenital heart defect. However, the functional and regulatory mechanisms of miR-29c in the development of the heart remain to be elucidated. In the present study, the role and mechanism of miR-29c inhibition in heart development were investigated in an embryonic carcinoma cell model. Inhibition of miR-29c promoted proliferation, and suppressed the apoptosis and differentiation of P19 cells. It was also demonstrated that Wingless-related MMTV integration site 4 (Wnt4) was a target of miR-29c, determined using bioinformatic analysis combined with luciferase assays. The inhibition of miR-29c stimulated the WNT4/β-catenin pathway, promoting proliferation of the P19 cells, but suppressing their differentiation into cardiomyocytes. Furthermore, the inhibition of miR-29c promoted the expression of B cell lymphoma-2 and inhibited cell apoptosis. These results demonstrate the significance of miR-29c in the process of cardiac development and suggest that miR-29c dysregulation may be associated with the occurrence of CHD. Thus, miR-29c may have therapeutic potential in the future.
Collapse
Affiliation(s)
- Bin Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guixian Song
- Department of Cardiology and Respiratory Medicine, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Ming Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lingmei Qian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lihua Wang
- Department of Neonatology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Haitao Gu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yahui Shen
- Department of Cardiology and Respiratory Medicine, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
17
|
Ruiz-Villalba A, Hoppler S, van den Hoff MJB. Wnt signaling in the heart fields: Variations on a common theme. Dev Dyn 2016; 245:294-306. [PMID: 26638115 DOI: 10.1002/dvdy.24372] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/27/2022] Open
Abstract
Wnt signaling plays an essential role in development and differentiation. Heart development is initiated with the induction of precardiac mesoderm requiring the tightly and spatially controlled regulation of canonical and noncanonical Wnt signaling pathways. The role of Wnt signaling in subsequent development of the heart fields is to a large extent unclear. We will discuss the role of Wnt signaling in the development of the arterial and venous pole of the heart, highlighting the dual roles of Wnt signaling with respect to its time- and dosage-dependent effects and the balance between the canonical and noncanonical signaling. Canonical signaling appears to be involved in retaining the cardiac precursors in a proliferative and precursor state, whereas noncanonical signaling promotes their differentiation. Thereafter, both canonical and noncanonical signaling regulate specific steps in differentiation of the cardiac compartments. Because heart development is a contiguous, rather than a sequential, process, analyses tend only to show a single timeframe of development. The repetitive alternating and reciprocal effect of canonical and noncanonical signaling is lost when studied in homogenates. Without the simultaneous in vivo visualization of the different Wnt signaling pathways, the mechanism of Wnt signaling in heart development remains elusive.
Collapse
Affiliation(s)
- Adrián Ruiz-Villalba
- Academic Medical Center, Department of Anatomy, Embryology and Physiology, Amsterdam, The Netherlands
| | - Stefan Hoppler
- Cardiovascular Biology and Medicine Research Programme, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Maurice J B van den Hoff
- Academic Medical Center, Department of Anatomy, Embryology and Physiology, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Kim IM, Norris KC, Artaza JN. Vitamin D and Cardiac Differentiation. VITAMINS AND HORMONES 2015; 100:299-320. [PMID: 26827957 DOI: 10.1016/bs.vh.2015.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Calcitriol (1,25-dihydroxycholecalciferol or 1,25-D3) is the hormonally active metabolite of vitamin D. Experimental studies of vitamin D receptors and 1,25-D3 establish calcitriol to be a critical regulator of the structure and function of the heart. Clinical studies link vitamin D deficiency with cardiovascular disease (CVD). Emerging evidence demonstrates that calcitriol is highly involved in CVD-related signaling pathways, particularly the Wnt signaling pathway. Addition of 1,25-D3 to cardiomyocyte cells and examination of its effects on cardiomyocytes and mainly Wnt11 signaling allowed the specific characterization of the role of calcitriol in cardiac differentiation. 1,25-D3 is demonstrated to: (i) inhibit cell proliferation without promoting apoptosis; (ii) decrease expression of genes related to the regulation of the cell cycle; (iii) promote formation of cardiomyotubes; (iv) induce expression of casein kinase-1-α1, a negative regulator of the canonical Wnt signaling pathway; and (v) increase expression of noncanonical Wnt11, which has been recognized to induce cardiac differentiation during embryonic development and in adult cells. Thus, it appears that vitamin D promotes cardiac differentiation through negative modulation of the canonical Wnt signaling pathway and upregulation of noncanonical Wnt11 expression. Future work to elucidate the role(s) of vitamin D in cardiovascular disorders will hopefully lead to improvement and potentially prevention of CVD, including abnormal cardiac differentiation in settings such as postinfarction cardiac remodeling.
Collapse
Affiliation(s)
- Irene M Kim
- Department of Health & Life Sciences, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
| | - Keith C Norris
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jorge N Artaza
- Department of Health & Life Sciences, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| |
Collapse
|
19
|
Alex A, Li A, Zeng X, Tate RE, McKee ML, Capen DE, Zhang Z, Tanzi RE, Zhou C. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy. PLoS One 2015; 10:e0137236. [PMID: 26348211 PMCID: PMC4565115 DOI: 10.1371/journal.pone.0137236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/13/2015] [Indexed: 01/21/2023] Open
Abstract
Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry) is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold) in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM) system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR) and cardiac activity period (CAP) of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time) OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays an essential role in heart morphogenesis and function.
Collapse
Affiliation(s)
- Aneesh Alex
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, United States of America, 18015
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA, United States of America, 18015
| | - Airong Li
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02129
| | - Xianxu Zeng
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, United States of America, 18015
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA, United States of America, 18015
- Department of Pathology, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Rebecca E. Tate
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02129
| | - Mary L. McKee
- Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02115
| | - Diane E. Capen
- Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02115
| | - Zhan Zhang
- Department of Pathology, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02129
- * E-mail: (R.E. Tanzi); (CZ)
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, United States of America, 18015
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA, United States of America, 18015
- Bioengineering Program, Lehigh University, Bethlehem, PA, United States of America, 18015
- * E-mail: (R.E. Tanzi); (CZ)
| |
Collapse
|
20
|
Chen Y, Zeng D, Ding L, Li XL, Liu XT, Li WJ, Wei T, Yan S, Xie JH, Wei L, Zheng QS. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling. BMC Cell Biol 2015; 16:22. [PMID: 26335746 PMCID: PMC4558999 DOI: 10.1186/s12860-015-0067-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/21/2015] [Indexed: 12/26/2022] Open
Abstract
Background Environmental factors are important for stem cell lineage specification, and increasing evidence indicates that the nanoscale geometry/topography of the extracellular matrix (ECM) directs stem cell fate. Recently, many three-dimensional (3D) biomimetic nanofibrous scaffolds resembling many characteristics of the native ECM have been used in stem cell-based myocardial tissue engineering. However, the biophysical role and underlying mechanism of 3D nanofibrous scaffolds in cardiomyocyte differentiation of induced pluripotent stem cells (iPSCs) remain unclear. Results Here, we fabricated a 3D poly-(ε-caprolactone) (PCL) nanofibrous scaffold using the electrospinning method and verified its nanotopography and porous structure by scanning electron microscopy. We seeded murine iPSCs (miPSCs) directly on the 3D PCL nanofibrous scaffold and initiated non-directed, spontaneous differentiation using the monolayer method. After the 3D PCL nanofibrous scaffold was gelatin coated, it was suitable for monolayer miPSC cultivation and cardiomyocyte differentiation. At day 15 of differentiation, miPSCs differentiated into functional cardiomyocytes on the 3D PCL nanofibrous scaffold as evidenced by positive immunostaining of cardiac-specific proteins including cardiac troponin T (cTnT) and myosin light chain 2a (MLC2a). In addition, flow cytometric analysis of cTnT-positive cells and cardiac-specific gene and protein expression of cTnT and sarcomeric alpha actinin (α-actinin) demonstrated that the cardiomyocyte differentiation of miPSCs was more efficient on the 3D PCL nanofibrous scaffold than on normal tissue culture plates (TCPs). Furthermore, early inhibition of Wnt/β-catenin signaling by the selective antagonist Dickkopf-1 significantly reduced the activity of Wnt/β-catenin signaling and decreased the cardiomyocyte differentiation of miPSCs cultured on the 3D PCL nanofibrous scaffold, while the early activation of Wnt/β-catenin signaling by CHIR99021 further increased the cardiomyocyte differentiation of miPSCs. Conclusion These results indicated that the electrospun 3D PCL nanofibrous scaffolds directly promoted the cardiomyocyte differentiation of miPSCs, which was mediated by the activation of the Wnt/β-catenin signaling during the early period of differentiation. These findings highlighted the biophysical role of 3D nanofibrous scaffolds during the cardiomyocyte differentiation of miPSCs and revealed its underlying mechanism involving Wnt/β-catenin signaling, which will be helpful in guiding future stem cell- and scaffold-based myocardium bioengineering. Electronic supplementary material The online version of this article (doi:10.1186/s12860-015-0067-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Chen
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China.,Department of Emergency, Chinese PLA No.401 Hospital, 22 Minjiang Road, Qingdao, 266071, China
| | - Di Zeng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Lu Ding
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Xiao-Li Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Xiong-Tao Liu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Wen-Ju Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Ting Wei
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Song Yan
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Jiang-Hui Xie
- Department of Emergency, Chinese PLA No.401 Hospital, 22 Minjiang Road, Qingdao, 266071, China
| | - Li Wei
- Department of Cardiology, Chinese PLA No.401 Hospital, 22 Minjiang Road, Qingdao, 266071, China
| | - Qiang-Sun Zheng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China.
| |
Collapse
|
21
|
Variants in the Regulatory Region of WNT5A Reduced Risk of Cardiac Conotruncal Malformations in the Chinese Population. Sci Rep 2015; 5:13120. [PMID: 26278011 PMCID: PMC4538571 DOI: 10.1038/srep13120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/17/2015] [Indexed: 12/23/2022] Open
Abstract
WNT5A is one of the most highly investigated non-canonical Wnt ligands and is involved in the embryonic heart development, especially in formation of the cardiac conotruncal region by regulating the migration and differentiation of cardiac neural crest (CNC) and second heart field (SHF) cells. No study to date has comprehensively characterized the WNT5A regulatory variants in patients with congenital heart malformations (CHMs). The association between regulatory variants of the WNT5A gene and CHMs was examined in case-control association study in 1,210 CHMs and 798 controls. Individuals carrying a homozygous genotype CC (rs524153) or GG (rs504849) had a similarly reduced risk of conotruncal malformations. The homozygous genotypes (CC for rs524153 and GG for rs504849) were associated with a lower WNT5A transcriptional level compared with the transcriptional level of those with wild-type genotypes. Further functional analysis revealed that an additional upstream single nucleotide polymorphisms (SNP) rs371954924 (–5244GCCA > CC) in a linkage disequilibrium (LD) block with the above genotyped SNPs decreased WNT5A expression through the attenuated binding affinity with the transcription factor SOX9. This is the first demonstration that genetic variants in the regulatory regions of WNT5A play a vital role in sporadic conotruncal malformations susceptibility through the changeable expression of the WNT5A gene.
Collapse
|
22
|
Hlaing SM, Garcia LA, Contreras JR, Norris KC, Ferrini MG, Artaza JN. 1,25-Vitamin D3 promotes cardiac differentiation through modulation of the WNT signaling pathway. J Mol Endocrinol 2014; 53:303-17. [PMID: 25139490 PMCID: PMC4198487 DOI: 10.1530/jme-14-0168] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. Low levels of vitamin D are associated with high risk of myocardial infarction, even after controlling for factors associated with coronary artery disease. A growing body of evidence indicates that vitamin D plays an important role in CVD-related signaling pathways. However, little is known about the molecular mechanism by which vitamin D modulates heart development. The WNT signaling pathway plays a pivotal role in tissue development by controlling stem cell renewal, lineage selection and, even more importantly, heart development. In this study, we examined the role of 1,25-D3 (the active form of vitamin D) on cardiomyocyte proliferation, apoptosis, cell phenotype, cell cycle progression and differentiation into cardiomyotubes. We determined that the addition of 1,25-D3 to cardiomyocytes cells: i) inhibits cell proliferation without promoting apoptosis; ii) decreases expression of genes related to the regulation of the cell cycle; iii) promotes formation of cardiomyotubes; iv) induces the expression of casein kinase-1-α1, a negative regulator of the canonical WNT signaling pathway; and v) increases the expression of the noncanonical WNT11, which it has been demonstrated to induce cardiac differentiation during embryonic development and in adult cells. In conclusion, we postulate that vitamin D promotes cardiac differentiation through a negative modulation of the canonical WNT signaling pathway and by upregulating the expression of WNT11. These results indicate that vitamin D repletion to prevent and/or improve cardiovascular disorders that are linked with abnormal cardiac differentiation, such as post infarction cardiac remodeling, deserve further study.
Collapse
Affiliation(s)
- Su M Hlaing
- Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Leah A Garcia
- Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Jaime R Contreras
- Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Keith C Norris
- Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Monica G Ferrini
- Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Jorge N Artaza
- Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA Departments of Internal MedicineHealth and Life SciencesDivision of EndocrinologyMetabolism and Molecular Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USADepartment of MedicineDavid Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| |
Collapse
|
23
|
Javadov S, Jang S, Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives. Pharmacol Ther 2014; 144:202-25. [PMID: 24924700 DOI: 10.1016/j.pharmthera.2014.05.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases cause more mortality and morbidity worldwide than any other diseases. Although many intracellular signaling pathways influence cardiac physiology and pathology, the mitogen-activated protein kinase (MAPK) family has garnered significant attention because of its vast implications in signaling and crosstalk with other signaling networks. The extensively studied MAPKs ERK1/2, p38, JNK, and ERK5, demonstrate unique intracellular signaling mechanisms, responding to a myriad of mitogens and stressors and influencing the signaling of cardiac development, metabolism, performance, and pathogenesis. Definitive relationships between MAPK signaling and cardiac dysfunction remain elusive, despite 30 years of extensive clinical studies and basic research of various animal/cell models, severities of stress, and types of stimuli. Still, several studies have proven the importance of MAPK crosstalk with mitochondria, powerhouses of the cell that provide over 80% of ATP for normal cardiomyocyte function and play a crucial role in cell death. Although many questions remain unanswered, there exists enough evidence to consider the possibility of targeting MAPK-mitochondria interactions in the prevention and treatment of heart disease. The goal of this review is to integrate previous studies into a discussion of MAPKs and MAPK-mitochondria signaling in cardiac diseases, such as myocardial infarction (ischemia), hypertrophy and heart failure. A comprehensive understanding of relevant molecular mechanisms, as well as challenges for studies in this area, will facilitate the development of new pharmacological agents and genetic manipulations for therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA.
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| | - Bryan Agostini
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| |
Collapse
|
24
|
Li A, Ahsen OO, Liu JJ, Du C, McKee ML, Yang Y, Wasco W, Newton-Cheh CH, O'Donnell CJ, Fujimoto JG, Zhou C, Tanzi RE. Silencing of the Drosophila ortholog of SOX5 in heart leads to cardiac dysfunction as detected by optical coherence tomography. Hum Mol Genet 2013; 22:3798-806. [PMID: 23696452 DOI: 10.1093/hmg/ddt230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The SRY-related HMG-box 5 (SOX5) gene encodes a member of the SOX family of transcription factors. Recently, genome-wide association studies have implicated SOX5 as a candidate gene for susceptibility to four cardiac-related endophenotypes: higher resting heart rate (HR), the electrocardiographic PR interval, atrial fibrillation and left ventricular mass. We have determined that human SOX5 has a highly conserved Drosophila ortholog, Sox102F, and have employed transgenic Drosophila models to quantitatively measure cardiac function in adult flies. For this purpose, we have developed a high-speed and ultrahigh-resolution optical coherence tomography imaging system, which enables rapid cross-sectional imaging of the heart tube over various cardiac cycles for the measurement of cardiac structural and dynamical parameters such as HR, dimensions and areas of heart chambers, cardiac wall thickness and wall velocities. We have found that the silencing of Sox102F resulted in a significant decrease in HR, heart chamber size and cardiac wall velocities, and a significant increase in cardiac wall thickness that was accompanied by disrupted myofibril structure in adult flies. In addition, the silencing of Sox102F in the wing led to increased L2, L3 and wing marginal veins and increased and disorganized expression of wingless, the central component of the Wnt signaling pathway. Collectively, the silencing of Sox102F resulted in severe cardiac dysfunction and structural defects with disrupted Wnt signaling transduction in flies. This implicates an important functional role for SOX5 in heart and suggests that the alterations in SOX5 levels may contribute to the pathogenesis of multiple cardiac diseases or traits.
Collapse
Affiliation(s)
- Airong Li
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rana MS, Christoffels VM, Moorman AFM. A molecular and genetic outline of cardiac morphogenesis. Acta Physiol (Oxf) 2013; 207:588-615. [PMID: 23297764 DOI: 10.1111/apha.12061] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 10/26/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022]
Abstract
Perturbations in cardiac development result in congenital heart disease, the leading cause of birth defect-related infant morbidity and mortality. Advances in cardiac developmental biology have significantly augmented our understanding of signalling pathways and transcriptional networks underlying heart formation. Cardiogenesis is initiated with the formation of mesodermal multipotent cardiac progenitor cells and is governed by cross-talk between developmental cues emanating from endodermal, mesodermal and ectodermal cells. The molecular and transcriptional machineries that direct the specification and differentiation of these cardiac precursors are part of an evolutionarily conserved programme that includes the Nkx-, Gata-, Hand-, T-box- and Mef2 family of transcription factors. Unravelling the hierarchical networks governing the fate and differentiation of cardiac precursors is crucial for our understanding of congenital heart disease and future stem cell-based and gene therapies. Recent molecular and genetic lineage analyses have revealed that subpopulations of cardiac progenitor cells follow distinctive specification and differentiation paths, which determine their final contribution to the heart. In the last decade, progenitor cells that contribute to the arterial pole and right ventricle have received much attention, as abnormal development of these cells frequently results in congenital defects of the aortic and pulmonary outlets, representing the most commonly occurring congenital cardiac defects. In this review, we provide an overview of the building plan of the vertebrate four-chambered heart, with a special focus on cardiac progenitor cell specification, differentiation and deployment during arterial pole development.
Collapse
Affiliation(s)
- M. S. Rana
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| | - V. M. Christoffels
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| | - A. F. M. Moorman
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| |
Collapse
|
26
|
Effects of miR-19b Overexpression on Proliferation, Differentiation, Apoptosis and Wnt/β-Catenin Signaling Pathway in P19 Cell Model of Cardiac Differentiation In Vitro. Cell Biochem Biophys 2013; 66:709-22. [DOI: 10.1007/s12013-013-9516-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Brenner C, David R, Franz WM. Cardiovascular Stem Cells. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
28
|
Targeting the Wnt/frizzled signaling pathway after myocardial infarction: a new tool in the therapeutic toolbox? Trends Cardiovasc Med 2012; 23:121-7. [PMID: 23266229 DOI: 10.1016/j.tcm.2012.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 11/20/2022]
Abstract
Wnt/frizzled signaling in the adult heart is quiescent under normal conditions; however it is reactivated after myocardial infarction (MI). Any intervention at the various levels of this pathway can modulate its signaling. Several studies have targeted Wnt/frizzled signaling after MI with the majority of them indicating that the inhibition of the pathway is beneficial since it improves infarct healing and prevents heart failure. This suggests that blocking the Wnt/frizzled signaling pathway could be a potential novel therapeutic target to prevent the adverse cardiac remodeling after MI.
Collapse
|
29
|
Mezentseva NV, Yang J, Kaur K, Iaffaldano G, Rémond MC, Eisenberg CA, Eisenberg LM. The histone methyltransferase inhibitor BIX01294 enhances the cardiac potential of bone marrow cells. Stem Cells Dev 2012; 22:654-67. [PMID: 22994322 DOI: 10.1089/scd.2012.0181] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bone marrow (BM) has long been considered a potential stem cell source for cardiac repair due to its abundance and accessibility. Although previous investigations have generated cardiomyocytes from BM, yields have been low, and far less than produced from ES or induced pluripotent stem cells (iPSCs). Since differentiation of pluripotent cells is difficult to control, we investigated whether BM cardiac competency could be enhanced without making cells pluripotent. From screens of various molecules that have been shown to assist iPSC production or maintain the ES cell phenotype, we identified the G9a histone methyltransferase inhibitor BIX01294 as a potential reprogramming agent for converting BM cells to a cardiac-competent phenotype. BM cells exposed to BIX01294 displayed significantly elevated expression of brachyury, Mesp1, and islet1, which are genes associated with embryonic cardiac progenitors. In contrast, BIX01294 treatment minimally affected ectodermal, endodermal, and pluripotency gene expression by BM cells. Expression of cardiac-associated genes Nkx2.5, GATA4, Hand1, Hand2, Tbx5, myocardin, and titin was enhanced 114, 76, 276, 46, 635, 123, and 5-fold in response to the cardiogenic stimulator Wnt11 when BM cells were pretreated with BIX01294. Immunofluorescent analysis demonstrated that BIX01294 exposure allowed for the subsequent display of various muscle proteins within the cells. The effect of BIX01294 on the BM cell phenotype and differentiation potential corresponded to an overall decrease in methylation of histone H3 at lysine9, which is the primary target of G9a histone methyltransferase. In summary, these data suggest that BIX01294 inhibition of chromatin methylation reprograms BM cells to a cardiac-competent progenitor phenotype.
Collapse
Affiliation(s)
- Nadejda V Mezentseva
- New York Medical College/Westchester Medical Center Stem Cell Laboratory, Department of Physiology, New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Forte G, Pietronave S, Nardone G, Zamperone A, Magnani E, Pagliari S, Pagliari F, Giacinti C, Nicoletti C, Musaró A, Rinaldi M, Ribezzo M, Comoglio C, Traversa E, Okano T, Minieri M, Prat M, Di Nardo P. Human cardiac progenitor cell grafts as unrestricted source of supernumerary cardiac cells in healthy murine hearts. Stem Cells 2012; 29:2051-61. [PMID: 22009661 DOI: 10.1002/stem.763] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human heart harbors a population of resident progenitor cells that can be isolated by stem cell antigen-1 antibody and expanded in culture. These cells can differentiate into cardiomyocytes in vitro and contribute to cardiac regeneration in vivo. However, when directly injected as single cell suspension, less than 1%-5% survive and differentiate. Among the major causes of this failure are the distressing protocols used to culture in vitro and implant progenitor cells into damaged hearts. Human cardiac progenitors obtained from the auricles of patients were cultured as scaffoldless engineered tissues fabricated using temperature-responsive surfaces. In the engineered tissue, progenitor cells established proper three-dimensional intercellular relationships and were embedded in self-produced extracellular matrix preserving their phenotype and multipotency in the absence of significant apoptosis. After engineered tissues were leant on visceral pericardium, a number of cells migrated into the murine myocardium and in the vascular walls, where they integrated in the respective textures. The study demonstrates the suitability of such an approach to deliver stem cells to the myocardium. Interestingly, the successful delivery of cells in murine healthy hearts suggests that myocardium displays a continued cell cupidity that is strictly regulated by the limited release of progenitor cells by the adopted source. When an unregulated cell source is added to the system, cells are delivered to the myocardium. The exploitation of this novel concept may pave the way to the setup of new protocols in cardiac cell therapy.
Collapse
Affiliation(s)
- Giancarlo Forte
- Laboratorio di Cardiologia Molecolare e Cellulare, Dipartimento di Medicina Interna, Università di Roma Tor Vergata, Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Martin LK, Bratoeva M, Mezentseva NV, Bernanke JM, Rémond MC, Ramsdell AF, Eisenberg CA, Eisenberg LM. Inhibition of heart formation by lithium is an indirect result of the disruption of tissue organization within the embryo. Dev Growth Differ 2012; 54:153-66. [PMID: 22150286 PMCID: PMC3288208 DOI: 10.1111/j.1440-169x.2011.01313.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lithium is a commonly used drug for the treatment of bipolar disorder. At high doses, lithium becomes teratogenic, which is a property that has allowed this agent to serve as a useful tool for dissecting molecular pathways that regulate embryogenesis. This study was designed to examine the impact of lithium on heart formation in the developing frog for insights into the molecular regulation of cardiac specification. Embryos were exposed to lithium at the beginning of gastrulation, which produced severe malformations of the anterior end of the embryo. Although previous reports characterized this deformity as a posteriorized phenotype, histological analysis revealed that the defects were more comprehensive, with disfigurement and disorganization of all interior tissues along the anterior-posterior axis. Emerging tissues were poorly segregated and cavity formation was decreased within the embryo. Lithium exposure also completely ablated formation of the heart and prevented myocardial cell differentiation. Despite the complete absence of cardiac tissue in lithium treated embryos, exposure to lithium did not prevent myocardial differentiation of precardiac dorsal marginal zone explants. Moreover, precardiac tissue freed from the embryo subsequent to lithium treatment at gastrulation gave rise to cardiac tissue, as demonstrated by upregulation of cardiac gene expression, display of sarcomeric proteins, and formation of a contractile phenotype. Together these data indicate that lithium's effect on the developing heart was not due to direct regulation of cardiac differentiation, but an indirect consequence of disrupted tissue organization within the embryo.
Collapse
Affiliation(s)
- Lisa K. Martin
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Momka Bratoeva
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Nadejda V. Mezentseva
- New York Medical College/Westchester Medical Center Stem Cell Laboratory, Departments of Physiology and Medicine, New York Medical College. Valhalla, NY 10595, USA
| | - Jayne M. Bernanke
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Mathieu C. Rémond
- New York Medical College/Westchester Medical Center Stem Cell Laboratory, Departments of Physiology and Medicine, New York Medical College. Valhalla, NY 10595, USA
| | - Ann F. Ramsdell
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Carol A. Eisenberg
- New York Medical College/Westchester Medical Center Stem Cell Laboratory, Departments of Physiology and Medicine, New York Medical College. Valhalla, NY 10595, USA
| | - Leonard M. Eisenberg
- New York Medical College/Westchester Medical Center Stem Cell Laboratory, Departments of Physiology and Medicine, New York Medical College. Valhalla, NY 10595, USA
| |
Collapse
|
32
|
Wnt signaling and cardiac differentiation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:153-74. [PMID: 22917230 DOI: 10.1016/b978-0-12-398459-3.00007-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Wnt family of secreted glycoproteins participates in a wide array of biological processes, including cellular differentiation, proliferation, survival, apoptosis, adhesion, angiogenesis, hypertrophy, and aging. The canonical Wnt signaling primarily utilizes β-catenin-mediated activation of transcription, while the noncanonical mechanisms involve a calcium-dependent protein kinase C-mediated Wnt/Ca(2+) pathway and a dishevelled-dependent c-Jun N-terminal kinase-mediated planar cell polarity pathway. Although both canonical and noncanonical Wnts have been implicated in cardiac specification, morphogenesis, and differentiation; the molecular events remain unclear and often depend on the cell type and biological context. In this regard, growing evidence indicates that Wnt11 is able to induce cardiogenesis not only during embryonic development but also in adult cells. The cardiogenic properties of Wnt11 may prove useful for preprogramming adult stem cells before myocardial transplantation. Further, elucidation of the molecular steps in Wnt11-induced cardiac differentiation will be necessary to enhance the outcomes of cardiac cell therapy.
Collapse
|
33
|
Li A, Zhou C, Moore J, Zhang P, Tsai TH, Lee HC, Romano DM, McKee ML, Schoenfeld DA, Serra MJ, Raygor K, Cantiello HF, Fujimoto JG, Tanzi RE. Changes in the expression of the Alzheimer’s disease-associated presenilin gene in drosophila heart leads to cardiac dysfunction. Curr Alzheimer Res 2011; 8:313-22. [PMID: 21524270 DOI: 10.2174/156720511795563746] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/15/2010] [Indexed: 12/22/2022]
Abstract
Mutations in the presenilin genes cause the majority of early-onset familial Alzheimer’s disease. Recently, presenilin mutations have been identified in patients with dilated cardiomyopathy (DCM), a common cause of heart failure and the most prevalent diagnosis in cardiac transplantation patients. However, the molecular mechanisms, by which presenilin mutations lead to either AD or DCM, are not yet understood. We have employed transgenic Drosophila models and optical coherence tomography imaging technology to analyze cardiac function in live adult Drosophila. Silencing of Drosophila ortholog of presenilins (dPsn) led to significantly reduced heart rate and remarkably age-dependent increase in end-diastolic vertical dimensions. In contrast, overexpression of dPsn increased heart rate. Either overexpression or silencing of dPsn resulted in irregular heartbeat rhythms accompanied by cardiomyofibril defects and mitochondrial impairment. The calcium channel receptor activities in cardiac cells were quantitatively determined via real-time RT-PCR. Silencing of dPsn elevated dIP3R expression, and reduced dSERCA expression; overexprerssion of dPsn led to reduced dRyR expression. Moreover, overexpression of dPsn in wing disc resulted in loss of wing phenotype and reduced expression of wingless. Our data provide novel evidence that changes in presenilin level leads to cardiac dysfunction, owing to aberrant calcium channel receptor activities and disrupted Wnt signaling transduction, indicating a pathogenic role for presenilin mutations in DCM pathogenesis.
Collapse
Affiliation(s)
- A Li
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J 2011; 31:429-42. [PMID: 22085926 PMCID: PMC3261567 DOI: 10.1038/emboj.2011.418] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 10/24/2011] [Indexed: 12/18/2022] Open
Abstract
Wnts are required for cardiogenesis but the role of specific Wnts in cardiac repair remains unknown. In this report, we show that a dynamic Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. Acute ischaemic cardiac injury upregulates Wnt1 that is initially expressed in the epicardium and subsequently by cardiac fibroblasts in the region of injury. Following cardiac injury, the epicardium is activated organ-wide in a Wnt-dependent manner, expands, undergoes epithelial-mesenchymal transition (EMT) to generate cardiac fibroblasts, which localize in the subepicardial space. The injured regions in the heart are Wnt responsive as well and Wnt1 induces cardiac fibroblasts to proliferate and express pro-fibrotic genes. Disruption of downstream Wnt signalling in epicardial cells decreases epicardial expansion, EMT and leads to impaired cardiac function and ventricular dilatation after cardiac injury. Furthermore, disruption of Wnt/βcatenin signalling in cardiac fibroblasts impairs wound healing and decreases cardiac performance as well. These findings reveal that a pro-fibrotic Wnt1/βcatenin injury response is critically required for preserving cardiac function after acute ischaemic cardiac injury.
Collapse
|
35
|
Planar cell polarity signaling pathway in congenital heart diseases. J Biomed Biotechnol 2011; 2011:589414. [PMID: 22131815 PMCID: PMC3205795 DOI: 10.1155/2011/589414] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/31/2011] [Indexed: 12/14/2022] Open
Abstract
Congenital heart disease (CHD) is a common cardiac disorder in humans. Despite many advances in the understanding of CHD and the identification of many associated genes, the fundamental etiology for the majority of cases remains unclear. The planar cell polarity (PCP) signaling pathway, responsible for tissue polarity in Drosophila and gastrulation movements and cardiogenesis in vertebrates, has been shown to play multiple roles during cardiac differentiation and development. The disrupted function of PCP signaling is connected to some CHDs. Here, we summarize our current understanding of how PCP factors affect the pathogenesis of CHD.
Collapse
|
36
|
Rai M, Walthall JM, Hu J, Hatzopoulos AK. Continuous antagonism by Dkk1 counter activates canonical Wnt signaling and promotes cardiomyocyte differentiation of embryonic stem cells. Stem Cells Dev 2011; 21:54-66. [PMID: 21861760 DOI: 10.1089/scd.2011.0326] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Embryonic stem (ES) cells give rise to mesodermal progenitors that differentiate to hematopoietic and cardiovascular cells. The wnt signaling pathway plays multiple roles in cardiovascular development through a network of intracellular effectors. To monitor global changes in wnt signaling during ES cell differentiation, we generated independent ES cell lines carrying the luciferase gene under promoters that uniquely respond to specific wnt pathway branches. Our results show that successive, mutually exclusive waves of noncanonical and canonical wnt signaling precede mesoderm differentiation. Blocking the initial noncanonical JNK/AP-1 signaling with SP60125 aborts cardiovascular differentiation and promotes hematopoiesis, whereas interference with the subsequent peak of canonical wnt signaling using Dkk1 has the opposite effect. Dkk1 blockade triggers counter mechanisms that lead to delayed and extended activation of canonical wnt signaling and mesoderm differentiation that appear to favor the cardiomyocytic lineage at the expense of hematopoietic cells. The cardiomyocytic yield can be further enhanced by overexpression of Wnt11 leading to approximately 95-fold enrichment in contracting cells. Our results suggest that the initial noncanonical wnt signaling is necessary for subsequent activation of canonical signaling and that the latter operates under a regulatory loop which responds to suppression with hyperactivation of compensatory mechanisms. This model provides new insights on wnt signaling during ES cell differentiation and points to a method to induce cardiomyocytic differentiation without precise timing of wnt signaling manipulation. Taking into account the heterogeneity of pluripotent cells, these findings might present an advantage to enhance the cardiogenic potential of stem cells.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Cell Differentiation
- Cell Line
- Embryonic Stem Cells/drug effects
- Embryonic Stem Cells/metabolism
- Embryonic Stem Cells/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Intercellular Signaling Peptides and Proteins/pharmacology
- Luciferases, Firefly/biosynthesis
- Luciferases, Firefly/genetics
- Mice
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Promoter Regions, Genetic
- Real-Time Polymerase Chain Reaction
- Transcriptional Activation
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- Wnt Signaling Pathway
Collapse
Affiliation(s)
- Meena Rai
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232-6300, USA
| | | | | | | |
Collapse
|
37
|
Hudson JE, Zimmermann WH. Tuning Wnt-signaling to enhance cardiomyogenesis in human embryonic and induced pluripotent stem cells. J Mol Cell Cardiol 2011; 51:277-9. [PMID: 21723872 DOI: 10.1016/j.yjmcc.2011.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 02/02/2023]
|
38
|
Verhoeven MC, Haase C, Christoffels VM, Weidinger G, Bakkers J. Wnt signaling regulates atrioventricular canal formation upstream of BMP and Tbx2. ACTA ACUST UNITED AC 2011; 91:435-40. [PMID: 21567896 DOI: 10.1002/bdra.20804] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/18/2011] [Accepted: 02/08/2011] [Indexed: 11/12/2022]
Abstract
In the developing heart, the atrioventricular canal (AVC) is essential for separation and alignment of the cardiac chambers, for valve formation, and serves to delay the electrical impulse from the atria to the ventricles. Defects in various aspects of its formation are the most common form of congenital heart defects. Using mutant and transgenic approaches in zebrafish, this study demonstrates that Wnt/β-catenin signaling is both sufficient and required for the induction of BMP4 and Tbx2b expression in the AVC and consequently the proper patterning of the myocardium. Furthermore, genetic analysis shows that Wnt/β-catenin signaling is upstream and in a linear pathway with BMP and Tbx2 during AVC specification.
Collapse
Affiliation(s)
- Manon C Verhoeven
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Martin LK, Mezentseva NV, Bratoeva M, Ramsdell AF, Eisenberg CA, Eisenberg LM. Canonical WNT signaling enhances stem cell expression in the developing heart without a corresponding inhibition of cardiogenic differentiation. Stem Cells Dev 2011; 20:1973-83. [PMID: 21351874 DOI: 10.1089/scd.2010.0490] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
WNT signaling has been shown to influence the development of the heart. Although recent data suggested that canonical WNTs promote the emergence and expansion of cardiac progenitors in the pregastrula embryo, it has long been accepted that once gastrulation begins, canonical WNT signaling needs to be suppressed for cardiac development to proceed. Yet, this latter supposition appears to be odds with the expression of multiple canonical WNTs in the developing heart. The present study examining the effect of ectopic canonical WNT signaling on cardiogenesis in the developing frog was designed to test the hypothesis that heart formation is dependent on the inhibition of canonical WNT activity at the onset of gastrulation. Here we report that cardiac differentiation of explanted precardiac tissue from the dorsal marginal zone was not suppressed by exposure to WNT1 protein, although expression of Tbx5, Tbx20, and Nkx2.5 was selectively reduced. Pharmacological activation of WNT signaling in intact embryos using the GSK3 inhibitor SB415286 did not prevent the formation of an anatomically normal and functionally sound heart, with the only defect observed being lower levels of the cardiac transcription factor Nkx2.5. In both the explant and whole embryo studies, expression of muscle genes and proteins was unaffected by ectopic canonical WNT signaling. In contrast, canonical Wnt signaling upregulated expression of the cardiac stem cell marker c-kit and pluripotency genes Oct25 and Oct60. However, this regulatory stimulation of stem cells did not come at the expense of blocking cardiac progenitors from differentiating.
Collapse
Affiliation(s)
- Lisa K Martin
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | |
Collapse
|
40
|
Afouda BA, Hoppler S. Different requirements for GATA factors in cardiogenesis are mediated by non-canonical Wnt signaling. Dev Dyn 2011; 240:649-62. [DOI: 10.1002/dvdy.22570] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2010] [Indexed: 01/21/2023] Open
|
41
|
Alfaro MP, Saraswati S, Young PP. Molecular mediators of mesenchymal stem cell biology. VITAMINS AND HORMONES 2011; 87:39-59. [PMID: 22127236 DOI: 10.1016/b978-0-12-386015-6.00023-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) have the ability to self-renew and differentiate into multiple lineages making them an appropriate candidate for stem cell therapy. In spite of achieving considerable success in preclinical models, limited success has been achieved in clinical settings with MSCs. A major impediment that is faced is low survival of MSCs in injured tissues following implantation. In order to enhance the reparative properties of MSCs, it is vital to understand the molecular signals that regulate MSC survival and self-renewal. This review assimilates information that characterizes MSCs and mentions their utilization in myocardial infarction therapy. Additionally, our attempt herein is to gather pertinent published information regarding the role of canonical Wnt and BMP signaling in regulating the potential of MSCs to self-renew, proliferate, differentiate, and survive.
Collapse
Affiliation(s)
- Maria P Alfaro
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
42
|
Cardiovascular Stem Cells. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
43
|
Abstract
The myocardium of the heart is composed of multiple highly specialized myocardial lineages, including those of the ventricular and atrial myocardium, and the specialized conduction system. Specification and maturation of each of these lineages during heart development is a highly ordered, ongoing process involving multiple signaling pathways and their intersection with transcriptional regulatory networks. Here, we attempt to summarize and compare much of what we know about specification and maturation of myocardial lineages from studies in several different vertebrate model systems. To date, most research has focused on early specification, and although there is still more to learn about early specification, less is known about factors that promote subsequent maturation of myocardial lineages required to build the functioning adult heart.
Collapse
Affiliation(s)
- Sylvia M. Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences Department of Medicine University of California San Diego 9500 Gilman Drive La Jolla CA 92093
| | - Deborah Yelon
- Division of Biological Sciences University of California, San Diego 9500 Gilman Drive La Jolla, CA 92093
| | - Frank L. Conlon
- Department of Genetics 220 Fordham Hall Medical Drive University of North Carolina Chapel Hill, NC 27599-3280
| | - Margaret L. Kirby
- Departments of Pediatrics and Cell Biology 403 Jones Building Research Drive Duke University Durham, NC 27710
| |
Collapse
|
44
|
Saraswati S, Alfaro MP, Thorne CA, Atkinson J, Lee E, Young PP. Pyrvinium, a potent small molecule Wnt inhibitor, promotes wound repair and post-MI cardiac remodeling. PLoS One 2010; 5:e15521. [PMID: 21170416 PMCID: PMC2993965 DOI: 10.1371/journal.pone.0015521] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/12/2010] [Indexed: 11/23/2022] Open
Abstract
Wnt signaling plays an important role in developmental and stem cell biology. To test the hypothesis that temporary inhibition of Wnt signaling will enhance granulation tissue and promote angiogenesis in tissue repair, we employed a recently characterized small molecule Wnt inhibitor. Pyrvinium is an FDA-approved drug that we identified as a Wnt inhibitor in a chemical screen for small molecules that stabilize β-catenin and inhibit Axin degradation. Our subsequent characterization of pyrvinium has revealed that its critical cellular target in the Wnt pathway is Casein Kinase 1α. Daily administration of pyrvinium directly into polyvinyl alcohol (PVA) sponges implanted subcutaneously in mice generated better organized and vascularized granulation tissue; this compound also increased the proliferative index of the tissue within the sponges. To evaluate its effect in myocardial repair, we induced a myocardial infarction (MI) by coronary artery ligation and administered a single intramyocardial dose of pyrvinium. Mice were evaluated by echocardiography at 7 and 30 days post-MI and treatment; post mortem hearts were evaluated by histology at 30 days. Pyrvinium reduced adverse cardiac remodeling demonstrated by decreased left ventricular internal diameter in diastole (LVIDD) as compared to a control compound. Increased Ki-67+ cells were observed in peri-infarct and distal myocardium of pyrvinium-treated animals. These results need to be further followed-up to determine if therapeutic inhibition of canonical Wnt may avert adverse remodeling after ischemic injury and its impact on myocardial repair and regeneration.
Collapse
Affiliation(s)
- Sarika Saraswati
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Maria P. Alfaro
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Curtis A. Thorne
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James Atkinson
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- The Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States of America
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Pampee P. Young
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- The Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States of America
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
45
|
Wnt11 promotes cardiomyocyte development by caspase-mediated suppression of canonical Wnt signals. Mol Cell Biol 2010; 31:163-78. [PMID: 21041481 DOI: 10.1128/mcb.01539-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Specification and early patterning of the vertebrate heart are dependent on both canonical and noncanonical wingless (Wnt) signal pathways. However, the impact of each Wnt pathway on the later stages of myocardial development and differentiation remains controversial. Here, we report that the components of each Wnt signal conduit are expressed in the developing and postnatal heart, yet canonical/β-catenin activity is restricted to nonmyocardial regions. Subsequently, we observed that noncanonical Wnt (Wnt11) enhanced myocyte differentiation while preventing stabilization of the β-catenin protein, suggesting active repression of canonical Wnt signals. Wnt11 stimulation was synonymous with activation of a caspase 3 signal cascade, while inhibition of caspase activity led to accumulation of β-catenin and a dramatic reduction in myocyte differentiation. Taken together, these results suggest that noncanonical Wnt signals promote myocyte maturation through caspase-mediated inhibition of β-catenin activity.
Collapse
|
46
|
Funato Y, Terabayashi T, Sakamoto R, Okuzaki D, Ichise H, Nojima H, Yoshida N, Miki H. Nucleoredoxin Sustains Wnt/β-Catenin Signaling by Retaining a Pool of Inactive Dishevelled Protein. Curr Biol 2010; 20:1945-52. [DOI: 10.1016/j.cub.2010.09.065] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/10/2010] [Accepted: 09/29/2010] [Indexed: 10/18/2022]
|
47
|
Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 2010; 90:1507-46. [PMID: 20959622 PMCID: PMC3808831 DOI: 10.1152/physrev.00054.2009] [Citation(s) in RCA: 574] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among the myriad of intracellular signaling networks that govern the cardiac development and pathogenesis, mitogen-activated protein kinases (MAPKs) are prominent players that have been the focus of extensive investigations in the past decades. The four best characterized MAPK subfamilies, ERK1/2, JNK, p38, and ERK5, are the targets of pharmacological and genetic manipulations to uncover their roles in cardiac development, function, and diseases. However, information reported in the literature from these efforts has not yet resulted in a clear view about the roles of specific MAPK pathways in heart. Rather, controversies from contradictive results have led to a perception that MAPKs are ambiguous characters in heart with both protective and detrimental effects. The primary object of this review is to provide a comprehensive overview of the current progress, in an effort to highlight the areas where consensus is established verses the ones where controversy remains. MAPKs in cardiac development, cardiac hypertrophy, ischemia/reperfusion injury, and pathological remodeling are the main focuses of this review as these represent the most critical issues for evaluating MAPKs as viable targets of therapeutic development. The studies presented in this review will help to reveal the major challenges in the field and the limitations of current approaches and point to a critical need in future studies to gain better understanding of the fundamental mechanisms of MAPK function and regulation in the heart.
Collapse
Affiliation(s)
- Beth A Rose
- Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, Molecular Biology, Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
48
|
Wu X. Wg signaling in Drosophila heart development as a pioneering model. J Genet Genomics 2010; 37:593-603. [DOI: 10.1016/s1673-8527(09)60079-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 06/12/2010] [Accepted: 07/03/2010] [Indexed: 12/21/2022]
|
49
|
Gessert S, Kühl M. The multiple phases and faces of wnt signaling during cardiac differentiation and development. Circ Res 2010; 107:186-99. [PMID: 20651295 DOI: 10.1161/circresaha.110.221531] [Citation(s) in RCA: 300] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding heart development on a molecular level is a prerequisite for uncovering the causes of congenital heart diseases. Therapeutic approaches that try to enhance cardiac regeneration or that involve the differentiation of resident cardiac progenitor cells or patient-specific induced pluripotent stem cells will also benefit tremendously from this knowledge. Wnt proteins have been shown to play multiple roles during cardiac differentiation and development. They are extracellular growth factors that activate different intracellular signaling branches. Here, we summarize our current understanding of how these factors affect different aspects of cardiogenesis, starting from early specification of cardiac progenitors and continuing on to later developmental steps, such as morphogenetic processes, valve formation, and establishment of the conduction system.
Collapse
Affiliation(s)
- Susanne Gessert
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | |
Collapse
|
50
|
Weisel KC, Kopp HG, Moore MA, Studer L, Barberi T. Wnt1 Overexpression Leads to Enforced Cardiomyogenesis and Inhibition of Hematopoiesis in Murine Embryonic Stem Cells. Stem Cells Dev 2010; 19:745-51. [DOI: 10.1089/scd.2008.0356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Katja C. Weisel
- University of Tübingen, Medical Center, Department of Hematology, Oncology and Immunology, Tübingen, Germany
| | - Hans-Georg Kopp
- University of Tübingen, Medical Center, Department of Hematology, Oncology and Immunology, Tübingen, Germany
| | - Malcolm A.S. Moore
- James Ewing Laboratory of Developmental Hematopoiesis, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lorenz Studer
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Tiziano Barberi
- Department of Neurosciences, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|