1
|
Wang XX, Ding MJ, Gao J, Zhao L, Cao R, Wang XW. Modulation of host lipid metabolism by virus infection leads to exoskeleton damage in shrimp. PLoS Pathog 2024; 20:e1012228. [PMID: 38739679 PMCID: PMC11115362 DOI: 10.1371/journal.ppat.1012228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/23/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The arthropod exoskeleton provides protection and support and is vital for survival and adaption. The integrity and mechanical properties of the exoskeleton are often impaired after pathogenic infection; however, the detailed mechanism by which infection affects the exoskeleton remains largely unknown. Here, we report that the damage to the shrimp exoskeleton is caused by modulation of host lipid profiles after infection with white spot syndrome virus (WSSV). WSSV infection disrupts the mechanical performance of the exoskeleton by inducing the expression of a chitinase (Chi2) in the sub-cuticle epidermis and decreasing the cuticle chitin content. The induction of Chi2 expression is mediated by a nuclear receptor that can be activated by certain enriched long-chain saturated fatty acids after infection. The damage to the exoskeleton, an aftereffect of the induction of host lipogenesis by WSSV, significantly impairs the motor ability of shrimp. Blocking the WSSV-caused lipogenesis restored the mechanical performance of the cuticle and improved the motor ability of infected shrimp. Therefore, this study reveals a mechanism by which WSSV infection modulates shrimp internal metabolism resulting in phenotypic impairment, and provides new insights into the interactions between the arthropod host and virus.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ming-Jie Ding
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jie Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ling Zhao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Rong Cao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Li Z, Wang L, Yi T, Liu D, Li G, Jin DC. The nuclear receptor gene E75 plays a key role in regulating the molting process of the spider mite, Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:1-11. [PMID: 38112881 DOI: 10.1007/s10493-023-00868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023]
Abstract
The nuclear receptor gene Ecdysone-induced protein 75 (E75), as the component of ecdysone response genes in the ecdysone signaling pathway, has important regulatory function for insect molting. However, the regulatory function of E75 during the molting process of spider mites is not yet clear. In this study, the expression pattern of E75 in the molting process of the spider mite Tetranychus urticae was analyzed. The results showed that there was a peak at 8 h post-molting, followed by a decline 8 h after entering each respective quiescent stage across various developmental stages. During the deutonymph stage, the expression dynamics of E75, observed at 4-h intervals, indicated that the transcript levels of TuE75 peaked at 24 h, coinciding with the onset of molting in the mites. To investigate the function of TuE75 during the molting process, silencing TuE75 through dsRNA injection into deutonymph mites at the age of 8 h yielded a notable outcome: 78% of the deutonymph mites were unable to progress to the adult stage. Among these phenotypic mites, 37% were incapable of transitioning into the quiescent state and eventually succumbed after a certain period. An additional 41% of the mites successfully entered the quiescent state but encountered difficulties in shedding the old epidermis, leading to eventual mortality. In summary, these results suggested that TuE75 plays a key role in the molting process of T. urticae.
Collapse
Affiliation(s)
- Zhuo Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Liang Wang
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Tianci Yi
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Dongdong Liu
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Gang Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China.
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China.
| |
Collapse
|
3
|
Guo Z, Xu L, Wang W, Chen W, Ma C, Zhang F, Ma L, Liu Z, Ma K. Molecular characterization and transcriptional response to TiO 2-GO nanomaterial exposure of two molt-related genes in the juvenile prawn, Macrobrachium rosenbergii. Sci Rep 2023; 13:10392. [PMID: 37369682 DOI: 10.1038/s41598-023-37626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, with the widespread use of TiO2-GO nanocomposite in industry, especially in the remediation of water environments, its toxic effects on aquatic organisms have received increasing attention. As molting is extremely important for crustaceans in their growth, in this study, we cloned the full-length cDNA sequences of two key genes related to molting, nuclear hormone receptor E75 (E75) and nuclear hormone receptor HR3 (HR3), in Macrobrachium rosenbergii, examined the gene expression profile, and investigated their toxicological effects on crustacean molting through nanomaterial exposure. The amino acid sequences for E75 and HR3 were respectively determined to encode 1138 and 363 acid residues. Sequence analysis showed that both E75 and HR3 contain a HOLI domain, with the E75 of M. rosenbergii being more closely related to the E75 of Palaemon carinicauda. These two genes were expressed at the highest levels in muscle, followed by hepatopancreas. The results showed that the expressions of E75 and HR3 in hepatopancreas and muscle tissues were significantly decreased after exposure to 0.1 mg/L of TiO2-GO composite nanoparticles (P < 0.05). This study will serve as a foundation for subsequent research into the evaluation of nanomaterial toxicity on crustacean species.
Collapse
Affiliation(s)
- Ziqi Guo
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Pudong New Area, Shanghai, 201306, People's Republic of China
| | - Likun Xu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China
| | - Wei Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China
| | - Wei Chen
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China
| | - Chunyan Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China
| | - Fengying Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China
| | - Lingbo Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China
| | - Zhiqiang Liu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China.
| | - Keyi Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.300 Jungong Road, Yangpu Area, Shanghai, 200090, People's Republic of China.
| |
Collapse
|
4
|
Zheng H, Yan Y, Wei G, Merchant A, Gu Y, Zhou X, Zhu X, Zhang Y, Li X. Functional Characterization of the Nuclear Receptor Gene SaE75 in the Grain Aphid, Sitobion avenae. INSECTS 2023; 14:383. [PMID: 37103198 PMCID: PMC10144623 DOI: 10.3390/insects14040383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Ecdysteroid hormones are key regulators of insect development and metamorphosis. Ecdysone-inducible E75, a major component of insect ecdysone signaling pathway, has been well characterized in holometabolous insects, however, barely in hemimetabolous species. In this study, a total of four full-length E75 cDNAs from the English grain aphid, Sitobion avenae, were identified, cloned, and characterized. The four SaE75 cDNAs contained 3048, 2625, 2505, and 2179 bp open reading frames (ORF), encoding 1015, 874, 856, and 835 amino acids, respectively. Temporal expression profiles showed that SaE75 expression was low in adult stages, while high in pseudo embryo and nymphal stages. SaE75 was differentially expressed between winged and wingless morphs. RNAi-mediated suppression of SaE75 led to substantial biological impacts, including mortality and molting defects. As for the pleiotropic effects on downstream ecdysone pathway genes, SaHr3 (hormone receptor like in 46) was significantly up-regulated, while Sabr-c (broad-complex core protein gene) and Saftz-f1 (transcription factor 1) were significantly down-regulated. These combined results not only shed light on the regulatory role of E75 in the ecdysone signaling pathway, but also provide a potential novel target for the long-term sustainable management of S. avenae, a devastating global grain pest.
Collapse
Affiliation(s)
- Haixia Zheng
- College of Plant Protection, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Yi Yan
- College of Plant Protection, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guohua Wei
- College of Plant Protection, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Yaxin Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Wexler J, Pick L, Chipman A. Segmental expression of two ecdysone pathway genes during embryogenesis of hemimetabolous insects. Dev Biol 2023; 498:87-96. [PMID: 36967076 DOI: 10.1016/j.ydbio.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023]
Abstract
Signaling networks are redeployed across different developmental times and places to generate phenotypic diversity from a limited genetic toolkit. Hormone signaling networks in particular have well-studied roles in multiple developmental processes. In insects, the ecdysone pathway controls critical events in late embryogenesis and throughout post-embryonic development. While this pathway has not been shown to function in the earliest stage of embryonic development in the model insect Drosophila melanogaster, one component of the network, the nuclear receptor E75A, is necessary for proper segment generation in the milkweed bug Oncopeltus fasciatus. Published expression data from several other species suggests possible conservation of this role across hundreds of millions of years of insect evolution. Previous work also demonstrates a second nuclear receptor in the ecdysone pathway, Ftz-F1, plays a role in segmentation in multiple insect species. Here we report tightly linked expression patterns of ftz-F1 and E75A in two hemimetabolous insect species, the German cockroach Blattella germanica and the two-spotted cricket Gryllus bimaculatus. In both species, the genes are expressed segmentally in adjacent cells, but they are never co-expressed. Using parental RNAi, we show the two genes have distinct roles in early embryogenesis. E75A appears necessary for abdominal segmentation in B. germanica, while ftz-F1 is essential for proper germband formation. Our results suggest that the ecdysone network is critical for early embryogenesis in hemimetabolous insects.
Collapse
Affiliation(s)
- Judith Wexler
- Department of Ecology, Evolution and Behavior, The Hebrew University in Jerusalem, Israel; Department of Entomology, University of Maryland, USA.
| | - Leslie Pick
- Department of Entomology, University of Maryland, USA
| | - Ariel Chipman
- Department of Ecology, Evolution and Behavior, The Hebrew University in Jerusalem, Israel
| |
Collapse
|
6
|
Benrabaa S, Orchard I, Lange AB. A critical role for ecdysone response genes in regulating egg production in adult female Rhodnius prolixus. PLoS One 2023; 18:e0283286. [PMID: 36940230 PMCID: PMC10027210 DOI: 10.1371/journal.pone.0283286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/03/2023] [Indexed: 03/21/2023] Open
Abstract
Ecdysteroids control ovary growth and egg production through a complex gene hierarchy. In the female Rhodnius prolixus, a blood-gorging triatomine and the vector of Chagas disease, we have identified the ecdysone response genes in the ovary using transcriptomic data. We then quantified the expression of the ecdysone response gene transcripts (E75, E74, BR-C, HR3, HR4, and FTZ-F1) in several tissues, including the ovary, following a blood meal. These results confirm the presence of these transcripts in several tissues in R. prolixus and show that the ecdysone response genes in the ovary are mostly upregulated during the first three days post blood meal (PBM). Knockdown of E75, E74, or FTZ-F1 transcripts using RNA interference (RNAi) was used to understand the role of the ecdysone response genes in vitellogenesis and egg production. Knockdown significantly decreases the expression of the transcripts for the ecdysone receptor and Halloween genes in the fat body and the ovaries and reduces the titer of ecdysteroid in the hemolymph. Knockdown of each of these transcription factors typically alters the expression of the other transcription factors. Knockdown also significantly decreases the expression of vitellogenin transcripts, Vg1 and Vg2, in the fat body and ovaries and reduces the number of eggs produced and laid. Some of the laid eggs have an irregular shape and smaller volume, and their hatching rate is decreased. Knockdown also influences the expression of the chorion gene transcripts Rp30 and Rp45. The overall effect of knockdown is a decrease in number of eggs produced and a severe reduction in number of eggs laid and their hatching rate. Clearly, ecdysteroids and ecdysone response genes play a significant role in reproduction in R. prolixus.
Collapse
Affiliation(s)
- Samiha Benrabaa
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
7
|
Yuan H, Zhang W, Qiao H, Jin S, Jiang S, Xiong Y, Gong Y, Fu H. MnHR4 Functions during Molting of Macrobrachium nipponense by Regulating 20E Synthesis and Mediating 20E Signaling. Int J Mol Sci 2022; 23:ijms232012528. [PMID: 36293382 PMCID: PMC9604295 DOI: 10.3390/ijms232012528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 12/05/2022] Open
Abstract
HR4, a member of the nuclear receptor family, has been extensively studied in insect molting and development, but reports on crustaceans are still lacking. In the current study, the MnHR4 gene was identified in Macrobrachium nipponense. To further improve the molting molecular mechanism of M. nipponense, this study investigated whether MnHR4 functions during the molting process of M. nipponense. The domain, phylogenetic relationship and 3D structure of MnHR4 were analyzed by bioinformatics. Quantitative real-time PCR (qRT-PCR) analysis showed that MnHR4 was highly expressed in the ovary. In different embryo stages, the highest mRNA expression was observed in the cleavage stage (CS). At different individual stages, the mRNA expression of MnHR4 reached its peak on the fifteenth day after hatching (L15). The in vivo injection of 20-hydroxyecdysone (20E) can effectively promote the expression of the MnHR4 gene, and the silencing of the MnHR4 gene increased the content of 20E in M. nipponense. The regulatory role of MnHR4 in 20E synthesis and 20E signaling was further investigated by RNAi. Finally, the function of the MnHR4 gene in the molting process of M. nipponense was studied by counting the molting frequency. After knocking down MnHR4, the molting frequency of M. nipponense decreased significantly. It was proved that MnHR4 plays a pivotal role in the molting process of M. nipponense.
Collapse
Affiliation(s)
- Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Correspondence: ; Tel.: +86-510-8555-8835
| |
Collapse
|
8
|
Zhu S, Liu Y, Liao M, Yang Y, Bai Y, Li N, Li S, Luan Y, Chen N. Evaluation of Reference Genes for Transcriptional Profiling in Two Cockroach Models. Genes (Basel) 2021; 12:genes12121880. [PMID: 34946836 PMCID: PMC8701133 DOI: 10.3390/genes12121880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 02/02/2023] Open
Abstract
The German cockroach, Blattella germanica, and the American cockroach, Periplaneta americana are the most common and synanthropic household pests of interest to public health. While they have increasingly served as model systems in hemimetabolous insects for studying many biological issues, there is still a lack of stable reference gene evaluation for reliable quantitative real-time PCR (qPCR) outputs and functional genomics. Here, we evaluated the expression variation of common insect reference genes, including the historically used actin, across various tissues and developmental stages, and also under experimental treatment conditions in these two species by using three individual algorithms (geNorm, BestKeeper, and NormFinder) and a comprehensive program (RefFinder). RPL32 in B. germanica and EF1α in P. americana showed the overall lowest variation among all examined samples. Based on the stability rankings by RefFinder, the optimal but varied reference genes under specific conditions were selected for qPCR normalization. In addition, the combination of RPL32 and EF1α was recommended for all the tested tissues and stages in B. germanica, whereas the combination of multiple reference genes was unfavorable in P. americana. This study provides a condition-specific resource of reference gene selection for accurate gene expression profiling and facilitating functional genomics in these two important cockroaches.
Collapse
Affiliation(s)
- Shen Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Yongjun Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Mingtao Liao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Yunxia Luan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
- Correspondence:
| |
Collapse
|
9
|
Nascimento PVP, Almeida-Oliveira F, Macedo-Silva A, Ausina P, Motinha C, Sola-Penna M, Majerowicz D. Gene annotation of nuclear receptor superfamily genes in the kissing bug Rhodnius prolixus and the effects of 20-hydroxyecdysone on lipid metabolism. INSECT MOLECULAR BIOLOGY 2021; 30:297-314. [PMID: 33455040 DOI: 10.1111/imb.12696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/29/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The hormone 20-hydroxyecdysone is fundamental for regulating moulting and metamorphosis in immature insects, and it plays a role in physiological regulation in adult insects. This hormone acts by binding and activating a receptor, the ecdysone receptor, which is part of the nuclear receptor gene superfamily. Here, we analyse the genome of the kissing bug Rhodnius prolixus to annotate the nuclear receptor superfamily genes. The R. prolixus genome displays a possible duplication of the HNF4 gene. All the analysed insect organs express most nuclear receptor genes as shown by RT-PCR. The quantitative PCR analysis showed that the RpEcR and RpUSP genes are highly expressed in the testis, while the RpHNF4-1 and RpHNF4-2 genes are more active in the fat body and ovaries and in the anterior midgut, respectively. Feeding does not induce detectable changes in the expression of these genes in the fat body. However, the expression of the RpHNF4-2 gene is always higher than that of RpHNF4-1. Treating adult females with 20-hydroxyecdysone increased the amount of triacylglycerol stored in the fat bodies by increasing their lipogenic capacity. These results indicate that 20-hydroxyecdysone acts on the lipid metabolism of adult insects, although the underlying mechanism is not clear.
Collapse
Affiliation(s)
- P V P Nascimento
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - F Almeida-Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A Macedo-Silva
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - P Ausina
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - C Motinha
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Sola-Penna
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - D Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Sapin GD, Tomoda K, Tanaka S, Shinoda T, Miura K, Minakuchi C. Involvement of the transcription factor E75 in adult cuticular formation in the red flour beetle Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 126:103450. [PMID: 32818622 DOI: 10.1016/j.ibmb.2020.103450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/02/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Insect adult metamorphosis generally proceeds with undetectable levels of juvenile hormone (JH). In adult development of the red flour beetle Tribolium castaneum, biosynthesis of adult cuticle followed by its pigmentation and sclerotization occurs, and dark coloration of the cuticle becomes visible in pharate adults. Here, we examined the molecular mechanism of adult cuticular formation in more detail. We noticed that an exogenous JH mimic (JHM) treatment of Day 0 pupae did not inhibit pigmentation or sclerotization, but instead, induced precocious pigmentation of adult cuticle two days in advance. Quantitative RT-PCR analyses revealed that ecdysone-induced protein 75B (E75) is downregulated in JHM-treated pupae. Meanwhile, tyrosine hydroxylase (Th), an enzyme involved in cuticular pigmentation and sclerotization, was precociously induced, whereas a structural cuticular protein CPR27 was downregulated, by exogenous JHM treatment. RNA interference-mediated knockdown of E75 resulted in precocious adult cuticular pigmentation, which resembled the phenotype caused by JHM treatment. Notably, upregulation of Th as well as suppression of CPR27 were observed with E75 knockdown. Meanwhile, JHM treatment suppressed the expression of genes involved in melanin synthesis, such as Yellow-y and Laccase 2, but E75 knockdown did not result in marked reduction in their expression. Taken together, these results provided insights into the regulatory mechanisms of adult cuticular formation; the transcription of genes involved in adult cuticular formation proceeds in a proper timing with undetectable JH, and exogenous JHM treatment disturbs their transcription. For some of these genes such as Th and CPR27, E75 is involved in transcriptional regulation. This study shed light on the molecular mode of action of JHM as insecticides; exogenous JHM treatment disturbed the expression of genes involved in the adult cuticular formation, which resulted in lethality as pharate adults.
Collapse
Affiliation(s)
- Gelyn D Sapin
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Kai Tomoda
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Sayumi Tanaka
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Tetsuro Shinoda
- National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba, 305-8634, Japan; Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Ken Miura
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Chieka Minakuchi
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan; National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba, 305-8634, Japan.
| |
Collapse
|
11
|
Ramos S, Chelemen F, Pagone V, Elshaer N, Irles P, Piulachs MD. Eyes absent in the cockroach panoistic ovaries regulates proliferation and differentiation through ecdysone signalling. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103407. [PMID: 32417417 DOI: 10.1016/j.ibmb.2020.103407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/26/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Eyes absent (Eya), is a protein structurally conserved from hydrozoans to humans, for which two basic roles have been reported: it can act as a transcription cofactor and as a protein tyrosine phosphatase. Eya was discovered in the fly Drosophila melanogaster in relation to its function in eye development, and the same function was later reported in other insects. Eya is also involved in insect oogenesis, although studies in this sense are limited to D. melanogaster, which has meroistic ovaries, and where eya mutations abolish gonad formation. In the present work we studied the function of eya in the panoistic ovary of the cockroach Blattella germanica. We show that eya is essential for correct development of panoistic ovaries. In B. germanica, eya acts at different level and in a distinct way in the germarium and the vitellarium. In the germarium, eya contributes to maintain the correct number of somatic and germinal cells by regulating the expression of steroidogenic genes in the ovary. In the vitellarium, eya facilitates follicle cells proliferation and contributes to regulate the cell program, in the context of basal ovarian follicle maturation. Thus, eya-depleted females of B. germanica arrest the growth and maturation of basal ovarian follicles and become sterile.
Collapse
Affiliation(s)
- S Ramos
- Institut de Biologia Evolutiva (CSIC- Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta, 37, 08003, Barcelona, Spain
| | - F Chelemen
- Institut de Biologia Evolutiva (CSIC- Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta, 37, 08003, Barcelona, Spain
| | - V Pagone
- Institut de Biologia Evolutiva (CSIC- Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta, 37, 08003, Barcelona, Spain
| | - N Elshaer
- Institut de Biologia Evolutiva (CSIC- Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta, 37, 08003, Barcelona, Spain; Department of Plant Protection, Faculty of Agriculture, Zagazig University, Egypt
| | - P Irles
- Institut de Biologia Evolutiva (CSIC- Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta, 37, 08003, Barcelona, Spain; Instituto de Ciencias Agronomicas y Veterinarias, Universidad de O'Higgins, Chile
| | - M D Piulachs
- Institut de Biologia Evolutiva (CSIC- Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta, 37, 08003, Barcelona, Spain.
| |
Collapse
|
12
|
Muramatsu M, Tsuji T, Tanaka S, Shiotsuki T, Jouraku A, Miura K, Vea IM, Minakuchi C. Sex-specific expression profiles of ecdysteroid biosynthesis and ecdysone response genes in extreme sexual dimorphism of the mealybug Planococcus kraunhiae (Kuwana). PLoS One 2020; 15:e0231451. [PMID: 32282855 PMCID: PMC7153872 DOI: 10.1371/journal.pone.0231451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 01/22/2023] Open
Abstract
Insect molting hormone (ecdysteroids) and juvenile hormone regulate molting and metamorphic events in a variety of insect species. Mealybugs undergo sexually dimorphic metamorphosis: males develop into winged adults through non-feeding, pupa-like stages called prepupa and pupa, while females emerge as neotenic wingless adults. We previously demonstrated, in the Japanese mealybug Planococcus kraunhiae (Kuwana), that the juvenile hormone titer is higher in males than in females at the end of the juvenile stage, which suggests that juvenile hormone may regulate male-specific adult morphogenesis. Here, we examined the involvement of ecdysteroids in sexually dimorphic metamorphosis. To estimate ecdysteroid titers, quantitative RT-PCR analyses of four Halloween genes encoding for cytochrome P450 monooxygenases in ecdysteroid biosynthesis, i.e., spook, disembodied, shadow and shade, were performed. Overall, their expression levels peaked before each nymphal molt. Transcript levels of spook, disembodied and shadow, genes that catalyze the steps in ecdysteroid biosynthesis in the prothoracic gland, were higher in males from the middle of the second nymphal instar to adult emergence. In contrast, the expression of shade, which was reported to be involved in the conversion of ecdysone into 20-hydroxyecdysone in peripheral tissues, was similar between males and females. These results suggest that ecdysteroid biosynthesis in the prothoracic gland is more active in males than in females, although the final conversion into 20-hydroxyecdysone occurs at similar levels in both sexes. Moreover, expression profiles of ecdysone response genes, ecdysone receptor and ecdysone-induced protein 75B, were also analyzed. Based on these expression profiles, we propose that the changes in ecdysteroid titer differ between males and females, and that high ecdysteroid titer is essential for directing male adult development.
Collapse
Affiliation(s)
- Miyuki Muramatsu
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tomohiro Tsuji
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sayumi Tanaka
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takahiro Shiotsuki
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Ken Miura
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Isabelle Mifom Vea
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Chieka Minakuchi
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
13
|
The β-oxidation pathway is downregulated during diapause termination in Calanus copepods. Sci Rep 2019; 9:16686. [PMID: 31723179 PMCID: PMC6853931 DOI: 10.1038/s41598-019-53032-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/28/2019] [Indexed: 12/22/2022] Open
Abstract
Calanus copepods are keystone species in marine ecosystems, mainly due to their high lipid content, which is a nutritious food source for e.g. juvenile fish. Accumulated lipids are catabolized to meet energy requirements during dormancy (diapause), which occurs during the last copepodite stage (C5). The current knowledge of lipid degradation pathways during diapause termination is limited. We characterized changes in lipid fullness and generated transcriptional profiles in C5s during termination of diapause and progression towards adulthood. Lipid fullness of C5s declined linearly during developmental progression, but more β-oxidation genes were upregulated in early C5s compared to late C5s and adults. We identified four possible master regulators of energy metabolism, which all were generally upregulated in early C5s, compared to late C5s and adults. We discovered that one of two enzymes in the carnitine shuttle is absent from the calanoid copepod lineage. Based on the geographical location of the sampling site, the field-samples were initially presumed to consist of C. finmarchicus. However, the identification of C. glacialis in some samples underlines the need for performing molecular analyses to reliably identify Calanus species. Our findings contributes to a better understanding of molecular events occurring during diapause and diapause termination in calanoid copepods.
Collapse
|
14
|
Skottene E, Tarrant AM, Olsen AJ, Altin D, Hansen BH, Choquet M, Olsen RE, Jenssen BM. A Crude Awakening: Effects of Crude Oil on Lipid Metabolism in Calanoid Copepods Terminating Diapause. THE BIOLOGICAL BULLETIN 2019; 237:90-110. [PMID: 31714858 DOI: 10.1086/705234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Calanus finmarchicus and Calanus glacialis are keystone zooplankton species in North Atlantic and Arctic marine ecosystems because they form a link in the trophic transfer of nutritious lipids from phytoplankton to predators on higher trophic levels. These calanoid copepods spend several months of the year in deep waters in a dormant state called diapause, after which they emerge in surface waters to feed and reproduce during the spring phytoplankton bloom. Disruption of diapause timing could have dramatic consequences for marine ecosystems. In the present study, Calanus C5 copepodites were collected in a Norwegian fjord during diapause and were subsequently experimentally exposed to the water-soluble fraction of a naphthenic North Sea crude oil during diapause termination. The copepods were sampled repeatedly while progressing toward adulthood and were analyzed for utilization of lipid stores and for differential expression of genes involved in lipid metabolism. Our results indicate that water-soluble fraction exposure led to a temporary pause in lipid catabolism, suggested by (i) slower utilization of lipid stores in water-soluble fraction-exposed C5 copepodites and (ii) more genes in the β-oxidation pathway being downregulated in water-soluble fraction-exposed C5 copepodites than in the control C5 copepodites. Because lipid content and/or composition may be an important trigger for termination of diapause, our results imply that the timing of diapause termination and subsequent migration to the surface may be delayed if copepods are exposed to oil pollution during diapause or diapause termination. This delay could have detrimental effects on ecosystem dynamics.
Collapse
|
15
|
Swevers L. An update on ecdysone signaling during insect oogenesis. CURRENT OPINION IN INSECT SCIENCE 2019; 31:8-13. [PMID: 31109678 DOI: 10.1016/j.cois.2018.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/04/2018] [Indexed: 06/09/2023]
Abstract
An overview is presented of the different functions of ecdysone signaling during insect oogenesis. An extensive genetic toolkit allowed analysis with unprecedented temporal and spatial detail in Drosophila where functions were revealed in stem cell proliferation and niche maintenance, germline cyst differentiation and follicle formation, integration of nutrient and lipid signaling, follicle maturation and ovulation. Besides putative autocrine/paracrine signaling, hormonal networks were identified that integrate ecdysone with other endocrine signaling pathways. In other insects, progress in oogenesis has lagged behind although recently RNAi emerged as a new tool to analyze gene function in ovaries in hemimetabolous insects and Tribolium.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, NCSR "Demokritos", Aghia Paraskevi, Greece.
| |
Collapse
|
16
|
Kamsoi O, Belles X. Myoglianin triggers the premetamorphosis stage in hemimetabolan insects. FASEB J 2018; 33:3659-3669. [DOI: 10.1096/fj.201801511r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Orathai Kamsoi
- Institute of Evolutionary BiologySpanish National Research Council (CSIC)Universitat Pompeu Fabra Barcelona Spain
| | - Xavier Belles
- Institute of Evolutionary BiologySpanish National Research Council (CSIC)Universitat Pompeu Fabra Barcelona Spain
| |
Collapse
|
17
|
Honda Y, Ishiguro W, Ogihara MH, Kataoka H, Taylor D. Identification and expression of nuclear receptor genes and ecdysteroid titers during nymphal development in the spider Agelena silvatica. Gen Comp Endocrinol 2017; 247:183-198. [PMID: 28174130 DOI: 10.1016/j.ygcen.2017.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 01/26/2017] [Accepted: 01/28/2017] [Indexed: 01/03/2023]
Abstract
Ecdysteroids play an essential role in the regulation of the molting processes of arthropods. Nuclear receptors of the spider Agelena silvatica that showed high homology with other arthropods especially in the functional domains were identified, two isoforms of ecdysone receptor (AsEcRA, AsEcRB), retinoid X receptor (AsRXR) and two isoforms of E75 (AsE75A, AsE75D). AsEcR and AsRXR mRNA did not show major changes in expression but occurred throughout the third instar nymphal stage. AsE75DBD was low or non-existent at first then showed a sudden increase from D7 to D10. On the other hand, AsE75D was expressed in the first half and decreased from D6 to D10. Ecdysteroid titers showed a peak on D6 in A. silvatica third instar nymphs. LC-MS/MS analysis of the ecdysteroid peak revealed only 20-hydroxyecdysone (20E) was present. The 20E peak on D6 and increase in AsE75DBD from D7 is likely a result of ecdysteroids binding to the heterodimer formed with constant expression of the AsEcR and AsRXR receptors. These findings indicate the mechanisms regulating molting widely conserved in insects and other arthropods also similarly function in spiders.
Collapse
Affiliation(s)
- Yoshiko Honda
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; Research and Development Department, Fumakilla Limited, Hatsukaichi, Hiroshima, Japan.
| | - Wataru Ishiguro
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mari H Ogihara
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| | - Hiroshi Kataoka
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - DeMar Taylor
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
18
|
Wulff JP, Sierra I, Sterkel M, Holtof M, Van Wielendaele P, Francini F, Broeck JV, Ons S. Orcokinin neuropeptides regulate ecdysis in the hemimetabolous insect Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 81:91-102. [PMID: 28089691 DOI: 10.1016/j.ibmb.2017.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/14/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
To grow and develop insects must undergo ecdysis. During this process, the individual sheds the old cuticle to emerge as the following developmental stage. During ecdysis, different programed behaviors are regulated by neuropeptidergic pathways. In general, components of these pathways are better characterized in crustacean and holometabolous insects than in hemimetabola. In insects, the orkoninin gene produces two different neuropeptide precursors by alternative splicing: orcokinin A and orcokinin B. Although orcokinins are well conserved in insect species, their physiological role remains elusive. Here we describe a new splicing variant of the orcokinin gene in the hemimetabolous triatomine Rhodnius prolixus. We further analyze the expression pattern and the function of the alternatively spliced RhoprOK transcripts by means of immunohistochemistry and RNAi-mediated gene silencing. Our results indicate that orkoninis play an essential role in the peptidergic signaling pathway regulating ecdysis in the hemimetabolous insect Rhodnius prolixus.
Collapse
Affiliation(s)
- Juan Pedro Wulff
- Laboratory of Genetics and Functional Genomics, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 y 62, 1900, La Plata, Buenos Aires, Argentina.
| | - Ivana Sierra
- Laboratory of Genetics and Functional Genomics, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 y 62, 1900, La Plata, Buenos Aires, Argentina.
| | - Marcos Sterkel
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, bloco D, Prédio do CCS, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil.
| | - Michiel Holtof
- Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Zoological Institute, K.U. Leuven, Leuven, Belgium.
| | - Pieter Van Wielendaele
- Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Zoological Institute, K.U. Leuven, Leuven, Belgium.
| | - Flavio Francini
- Centre of Experimental and Applied Endocrinology, National University of La Plata, School of Medicine, 60 Street y 120, 1900, La Plata, Buenos Aires, Argentina.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Zoological Institute, K.U. Leuven, Leuven, Belgium.
| | - Sheila Ons
- Laboratory of Genetics and Functional Genomics, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 y 62, 1900, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Borras-Castells F, Nieva C, Maestro JL, Maestro O, Belles X, Martín D. Juvenile hormone biosynthesis in adult Blattella germanica requires nuclear receptors Seven-up and FTZ-F1. Sci Rep 2017; 7:40234. [PMID: 28074850 PMCID: PMC5225475 DOI: 10.1038/srep40234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/02/2016] [Indexed: 12/19/2022] Open
Abstract
In insects, the transition from juvenile development to the adult stage is controlled by juvenile hormone (JH) synthesized from the corpora allata (CA) glands. Whereas a JH-free period during the last juvenile instar triggers metamorphosis and the end of the growth period, the reappearance of this hormone after the imaginal molt marks the onset of reproductive adulthood. Despite the importance of such transition, the regulatory mechanism that controls it remains mostly unknown. Here, using the hemimetabolous insect Blattella germanica, we show that nuclear hormone receptors Seven-up-B (BgSvp-B) and Fushi tarazu-factor 1 (BgFTZ-F1) have essential roles in the tissue- and stage-specific activation of adult CA JH-biosynthetic activity. Both factors are highly expressed in adult CA cells. Moreover, RNAi-knockdown of either BgSvp-B or BgFTZ-F1 results in adult animals with a complete block in two critical JH-dependent reproductive processes, vitellogenesis and oogenesis. We show that this reproductive blockage is the result of a dramatic impairment of JH biosynthesis, due to the CA-specific reduction in the expression of two key JH biosynthetic enzymes, 3-hydroxy-3-methylglutaryl coenzyme A synthase-1 (BgHMG-S1) and HMG-reductase (BgHMG-R). Our findings provide insights into the regulatory mechanisms underlying the specific changes in the CA gland necessary for the proper transition to adulthood.
Collapse
Affiliation(s)
- Ferran Borras-Castells
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Claudia Nieva
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - José L Maestro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Oscar Maestro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| |
Collapse
|
20
|
The Function and Evolution of Nuclear Receptors in Insect Embryonic Development. Curr Top Dev Biol 2017; 125:39-70. [DOI: 10.1016/bs.ctdb.2017.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
The nuclear receptor E75 from the swimming crab, Portunus trituberculatus: cDNA cloning, transcriptional analysis, and putative roles on expression of ecdysteroid-related genes. Comp Biochem Physiol B Biochem Mol Biol 2016; 200:69-77. [DOI: 10.1016/j.cbpb.2016.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/24/2023]
|
22
|
Lenaerts C, Van Wielendaele P, Peeters P, Vanden Broeck J, Marchal E. Ecdysteroid signalling components in metamorphosis and development of the desert locust, Schistocerca gregaria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:10-23. [PMID: 27180725 DOI: 10.1016/j.ibmb.2016.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
The arthropod-specific hormone family of ecdysteroids plays an important role in regulating diverse physiological processes, such as moulting and metamorphosis, reproduction, diapause and innate immunity. Ecdysteroids mediate their response by binding to a heterodimeric complex of two nuclear receptors, the ecdysone receptor (EcR) and the retinoid-X-receptor/ultraspiracle (RXR/USP). In this study we investigated the role of EcR and RXR in metamorphosis and development of the desert locust, Schistocerca gregaria. The desert locust is a voracious, phytophagous, swarming pest that can ruin crops and harvests in some of the world's poorest countries. A profound knowledge of the ecdysteroid signalling pathway can be used in the development of more target-specific insecticides to combat this harmful plague insect. Here we report an in-depth profiling study of the transcript levels of EcR and RXR, as well as its downstream response genes, in different tissues isolated throughout the last larval stage of a hemimetabolous insect, showing a clear correlation with circulating ecdysteroid titres. Using RNA interference (RNAi), the role of SgEcR/SgRXR in moulting and development was investigated. We have proven the importance of the receptor components for successful moulting of locust nymphs into the adult stage. Some SgEcR/SgRXR knockdown females were arrested in the last larval stage, and 65 % of them initiated vitellogenesis and oocyte maturation, which normally only occurs in adults. Furthermore, our results clearly indicate that at the peak of ecdysteroid synthesis, on day six of the last larval stage, knockdown of SgEcR/SgRXR is affecting the transcript levels of the Halloween genes, Spook, Shadow and Shade.
Collapse
Affiliation(s)
- Cynthia Lenaerts
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Pieter Van Wielendaele
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Paulien Peeters
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium.
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| |
Collapse
|
23
|
Guo WC, Liu XP, Fu KY, Shi JF, Lü FG, Li GQ. Nuclear receptor ecdysone-induced protein 75 is required for larval-pupal metamorphosis in the Colorado potato beetle Leptinotarsa decemlineata (Say). INSECT MOLECULAR BIOLOGY 2016; 25:44-57. [PMID: 26542892 DOI: 10.1111/imb.12197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
20-hydroxyecdysone (20E) and juvenile hormone (JH) are key regulators of insect development. In this study, three Leptinotarsa decemlineata Ecdysone-induced protein 75 (LdE75) cDNAs (LdE75A, B and C) were cloned from L. decemlineata. The three LdE75 isoforms were highly expressed just before or right after each moult. Within the fourth larval instar, they showed a small rise and a big peak 40 and 80 h after ecdysis. The expression peaks of the three LdE75s coincided with the peaks of circulating 20E levels. In vitro midgut culture and in vivo bioassay revealed that 20E and an ecdysteroid agonist halofenozide (Hal) enhanced LdE75 expression in the day 1 final larval instars. Conversely, a decrease in 20E by feeding a double-stranded RNA (dsRNA) against an ecdysteroidogenesis gene, Shade (LdSHD), repressed the expression of LdE75. Moreover, Hal upregulated the expression of the three LdE75s in LdSHD-silenced larvae. Thus, 20E pulses activate the transcription of LdE75s. Furthermore, ingesting dsE75-1 and dsE75-2 from a common fragment of the three isoforms successfully knocked down these LdE75s, and caused developmental arrest. Finally, knocking down LdE75s significantly repressed the transcription of three ecdysteroidogenesis genes, lowered the 20E titre and affected the expression of two 20E-response genes. Silencing LdE75s also induced the expression of a JH biosynthesis gene, increased JH titre and activated the transcription of a JH early-inducible gene. Thus, Ld E75s are required for larval-pupal metamorphosis and act mainly by modulating 20E and JH titres and mediating their signalling pathways.
Collapse
Affiliation(s)
- W-C Guo
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - X-P Liu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - K-Y Fu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - J-F Shi
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - F-G Lü
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - G-Q Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Fernandez-Nicolas A, Belles X. CREB-binding protein contributes to the regulation of endocrine and developmental pathways in insect hemimetabolan pre-metamorphosis. Biochim Biophys Acta Gen Subj 2015; 1860:508-15. [PMID: 26706852 DOI: 10.1016/j.bbagen.2015.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/10/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND CREB-binding protein (CBP) is a promiscuous transcriptional co-regulator. In insects, CBP has been studied in the fly Drosophila melanogaster, where it is known as Nejire. Studies in D. melanogaster have revealed that Nejire is involved in the regulation of many pathways during embryo development, especially in anterior/posterior polarity, through Hedgehog and Wingless signaling, and in dorsal/ventral patterning, through TGF-ß signaling. Regarding post-embryonic development, Nejire influences histone acetyl transferase activity on the ecdysone signaling pathway. METHODS AND RESULTS Functional genomics studies using RNAi have shown that CBP contributes to the regulation of feeding and ecdysis during the pre-metamorphic nymphal instar of the cockroach Blattella germanica and is involved in TGF-ß, ecdysone, and MEKRE93 pathways, contributing to the activation of Kr-h1 and E93 expression. In D. melanogaster, Nejire's involvement in the ecdysone pathway in pre-metamorphic stages is conserved, whereas the TGF-ß pathway has only been described in the embryo. CBP role in ecdysis pathway and in the activation of Kr-h1 and E93 expression is described here for the first time. CONCLUSIONS Studies in D. melanogaster may have been suggestive that CBP functions in insects are concentrated in the embryo. Results obtained in B. germanica indicate, however, that CBP have diverse and important functions in post-embryonic development and metamorphosis, especially regarding endocrine signaling. GENERAL SIGNIFICANCE Further research into a higher diversity of models will probably reveal that the multiple post-embryonic roles of CBP observed in B. germanica are general in insects.
Collapse
Affiliation(s)
- Ana Fernandez-Nicolas
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain
| | - Xavier Belles
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain.
| |
Collapse
|
25
|
Ureña E, Pirone L, Chafino S, Pérez C, Sutherland JD, Lang V, Rodriguez MS, Lopitz-Otsoa F, Blanco FJ, Barrio R, Martín D. Evolution of SUMO Function and Chain Formation in Insects. Mol Biol Evol 2015; 33:568-84. [PMID: 26538142 PMCID: PMC4866545 DOI: 10.1093/molbev/msv242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
SUMOylation, the covalent binding of Small Ubiquitin-like Modifier (SUMO) to target proteins, is a posttranslational modification that regulates critical cellular processes in eukaryotes. In insects, SUMOylation has been studied in holometabolous species, particularly in the dipteran Drosophila melanogaster, which contains a single SUMO gene (smt3). This has led to the assumption that insects contain a single SUMO gene. However, the analysis of insect genomes shows that basal insects contain two SUMO genes, orthologous to vertebrate SUMO1 and SUMO2/3. Our phylogenetical analysis reveals that the SUMO gene has been duplicated giving rise to SUMO1 and SUMO2/3 families early in Metazoan evolution, and that later in insect evolution the SUMO1 gene has been lost after the Hymenoptera divergence. To explore the consequences of this loss, we have examined the characteristics and different biological functions of the two SUMO genes (SUMO1 and SUMO3) in the hemimetabolous cockroach Blattella germanica and compared them with those of Drosophila Smt3. Here, we show that the metamorphic role of the SUMO genes is evolutionary conserved in insects, although there has been a regulatory switch from SUMO1 in basal insects to SUMO3 in more derived ones. We also show that, unlike vertebrates, insect SUMO3 proteins cannot form polySUMO chains due to the loss of critical lysine residues within the N-terminal part of the protein. Furthermore, the formation of polySUMO chains by expression of ectopic human SUMO3 has a deleterious effect in Drosophila. These findings contribute to the understanding of the functional consequences of the evolution of SUMO genes.
Collapse
Affiliation(s)
- Enric Ureña
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Lucia Pirone
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Silvia Chafino
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Coralia Pérez
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | | | - Valérie Lang
- Cancer Unit, Inbiomed, San Sebastian, Gipuzkoa, Spain
| | | | | | - Francisco J Blanco
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Rosa Barrio
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
26
|
Matsumoto H, Ueno C, Nakamura Y, Kinjoh T, Ito Y, Shimura S, Noda H, Imanishi S, Mita K, Fujiwara H, Hiruma K, Shinoda T, Kamimura M. Identification of two juvenile hormone inducible transcription factors from the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2015; 80:31-41. [PMID: 25770979 DOI: 10.1016/j.jinsphys.2015.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/30/2015] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
Juvenile hormone (JH) regulates many physiological processes in insects. However, the signal cascades in which JH is active have not yet been fully elucidated, particularly in comparison to another major hormone ecdysteroid. Here we identified two JH inducible transcription factors as candidate components of JH signaling pathways in the silkworm, Bombyx mori. DNA microarray analysis showed that expression of two transcription factor genes, E75 and Enhancer of split mβ (E(spl)mβ), was induced by juvenile hormone I (JH I) in NIAS-Bm-aff3 cells. Real time RT-PCR analysis confirmed that expression of four E75 isoforms (E75A, E75B, E75C and E75D) and E(spl)mβ was 3-8 times greater after JH I addition. Addition of the protein synthesis inhibitor cycloheximide did not suppress JH-induced expression of the genes, indicating that they were directly induced by JH. JH-induced expression of E75 and E(spl)mβ was also observed in four other B. mori cell lines and in larval hemocytes of final instar larvae. Notably, E75A expression was induced very strongly in larval hemocytes by topical application of the JH analog fenoxycarb; the level of induced expression was comparable to that produced by feeding larvae with 20-hydroxyecdysone. These results suggest that E75 and E(spl)mβ are general and direct target genes of JH and that the transcription factors encoded by these genes play important roles in JH signaling.
Collapse
Affiliation(s)
- Hitoshi Matsumoto
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Chihiro Ueno
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Yuki Nakamura
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Terunori Kinjoh
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan; Faculty of Agriculture and Life Sciences, Hirosaki University, Hirosaki, Aomori, Japan
| | - Yuka Ito
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Sachiko Shimura
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Hiroaki Noda
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Shigeo Imanishi
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Kazuei Mita
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kiyoshi Hiruma
- Faculty of Agriculture and Life Sciences, Hirosaki University, Hirosaki, Aomori, Japan
| | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Manabu Kamimura
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
27
|
Ylla G, Belles X. Towards understanding the molecular basis of cockroach tergal gland morphogenesis. A transcriptomic approach. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:104-112. [PMID: 26086932 DOI: 10.1016/j.ibmb.2015.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 06/04/2023]
Abstract
The tergal gland is a structure exclusive of adult male cockroaches that produces substances attractive to the female and facilitates mating. It is formed de novo in tergites 7 and 8 during the transition from the last nymphal instar to the adult. Thus, the tergal gland can afford a suitable case study to investigate the molecular basis of a morphogenetic process occurring during metamorphosis. Using Blattella germanica as model, we constructed transcriptomes from male tergites 7-8 in non-metamorphosing specimens, and from the same tergites in metamorphosing specimens. We performed a de novo assembly all available transcriptomes to construct a reference transcriptome and we identified transcripts by homology. Finally we mapped all reads into the reference transcriptome in order to perform analysis of differentially expressed genes and a GO-enrichment test. A total of 5622 contigs appeared to be overrepresented in the transcriptome of metamorphosing specimens with respect to those specimens that did not metamorphose. Among these genes, there were six GO-terms with a p-value lower than 0.05 and among them GO: 0003676 ("nucleic acid binding") was especially interesting since it included transcription factors (TFs). Examination of TF-Pfam-motifs revealed that the transcriptome of metamorphosing specimens contains the highest diversity of these motifs, with 29 different types (seven of them exclusively expressed in this stage) compared with that of non-metamorphosing specimens, which contained 24 motif types. Transcriptome comparisons suggest that TFs are important drivers of the process of tergal gland formation during metamorphosis.
Collapse
Affiliation(s)
- Guillem Ylla
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain.
| |
Collapse
|
28
|
Guo WC, Liu XP, Fu KY, Shi JF, Lü FG, Li GQ. Functions of nuclear receptor HR3 during larval-pupal molting in Leptinotarsa decemlineata (Say) revealed by in vivo RNA interference. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:23-33. [PMID: 26005119 DOI: 10.1016/j.ibmb.2015.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/12/2015] [Accepted: 05/16/2015] [Indexed: 06/04/2023]
Abstract
Our previous results revealed that RNA interference-aided knockdown of Leptinotarsa decemlineata FTZ-F1 (LdFTZ-F1) reduced 20E titer, and impaired pupation. In this study, we characterized a putative LdHR3 gene, an early-late 20E-response gene upstream of LdFTZ-F1. Within the first, second and third larval instars, three expression peaks of LdHR3 occurred just before the molt. In the fourth (final) larval instar 80 h after ecdysis and prepupal stage 3 days after burying into soil, two LdHR3 peaks occurred. The LdHR3 expression peaks coincide with the peaks of circulating 20E level. In vitro midgut culture and in vivo bioassay revealed that 20E and an ecdysteroid agonist halofenozide (Hal) enhanced LdHR3 expression in the final larval instars. Conversely, a decrease in 20E by feeding a double-stranded RNA (dsRNA) against an ecdysteroidogenesis gene Ldshd repressed the expression. Moreover, Hal rescued the transcript levels in the Ldshd-silenced larvae. Thus, 20E peaks activate the expression of LdHR3. Furthermore, ingesting dsRNA against LdHR3 successfully knocked down the target gene, and impaired pupation. Finally, knockdown of LdHR3 upregulated the transcription of three ecdysteroidogenesis genes (Ldphm, Lddib and Ldshd), increased 20E titer, and activated the expression of two 20E-response genes (LdEcR and LdFTZ-F1). Thus, LdHR3 functions in regulation of pupation in the Colorado potato beetle.
Collapse
Affiliation(s)
- Wen-Chao Guo
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Xin-Ping Liu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kai-Yun Fu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ji-Feng Shi
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng-Gong Lü
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
29
|
Hariharan IK, Wake DB, Wake MH. Indeterminate Growth: Could It Represent the Ancestral Condition? Cold Spring Harb Perspect Biol 2015. [PMID: 26216720 DOI: 10.1101/cshperspect.a019174] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although we are used to the idea that many organisms stop growing when they reach a predictable size, in many taxa, growth occurs throughout the life of an organism, a phenomenon referred to as indeterminate growth. Our comparative analysis suggests that indeterminate growth may indeed represent the ancestral condition, whereas the permanent arrest of growth may be a more derived state. Consistent with this idea, in diverse taxa, the basal branches show indeterminate growth, whereas more derived branches arrest their growth. Importantly, in some closely related taxa, the termination of growth has evolved in mechanistically distinct ways. Also, even within a single organism, different organs can differ with respect to whether they terminate their growth or not. Finally, the study of tooth development indicates that, even at the level of a single tissue, multiple determinate patterns of growth can evolve from an ancestral one that is indeterminate.
Collapse
Affiliation(s)
- Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - David B Wake
- Department of Integrative Biology, University of California, Berkeley, California 94720
| | - Marvalee H Wake
- Department of Integrative Biology, University of California, Berkeley, California 94720
| |
Collapse
|
30
|
Herboso L, Oliveira MM, Talamillo A, Pérez C, González M, Martín D, Sutherland JD, Shingleton AW, Mirth CK, Barrio R. Ecdysone promotes growth of imaginal discs through the regulation of Thor in D. melanogaster. Sci Rep 2015. [PMID: 26198204 PMCID: PMC4510524 DOI: 10.1038/srep12383] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animals have a determined species-specific body size that results from the combined action of hormones and signaling pathways regulating growth rate and duration. In Drosophila, the steroid hormone ecdysone controls developmental transitions, thereby regulating the duration of the growth period. Here we show that ecdysone promotes the growth of imaginal discs in mid-third instar larvae, since imaginal discs from larvae with reduced or no ecdysone synthesis are smaller than wild type due to smaller and fewer cells. We show that insulin-like peptides are produced and secreted normally in larvae with reduced ecdysone synthesis, and upstream components of insulin/insulin-like signaling are activated in their discs. Instead, ecdysone appears to regulate the growth of imaginal discs via Thor/4E-BP, a negative growth regulator downstream of the insulin/insulin-like growth factor/Tor pathways. Discs from larvae with reduced ecdysone synthesis have elevated levels of Thor, while mutations in Thor partially rescue their growth. The regulation of organ growth by ecdysone is evolutionarily conserved in hemimetabolous insects, as shown by our results obtained using Blattella germanica. In summary, our data provide new insights into the relationship between components of the insulin/insulin-like/Tor and ecdysone pathways in the control of organ growth.
Collapse
Affiliation(s)
- Leire Herboso
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Marisa M Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Ana Talamillo
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Coralia Pérez
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Monika González
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - David Martín
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | - Christen K Mirth
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Rosa Barrio
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| |
Collapse
|
31
|
Bombyx E75 isoforms display stage- and tissue-specific responses to 20-hydroxyecdysone. Sci Rep 2015; 5:12114. [PMID: 26166384 PMCID: PMC4499807 DOI: 10.1038/srep12114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/27/2015] [Indexed: 01/06/2023] Open
Abstract
Resulted from alternative splicing of the 5′ exons, the nuclear receptor gene E75 in the silkworm, Bombyx mori, processes three mRNA isoforms, BmE75A, BmE75B and BmE75C. From the early 5th larval instar to the prepupal stages, BmE75A mRNA and protein levels in the prothoracic glands display developmental profiles similar to ecdysteroid titer. In the fat body, mRNA levels but not protein levels of all three BmE75 isoforms correlate with ecdysteroid titer; moreover, proteins of all three BmE75 isoforms disappear at the prepupal stages, and a modified BmE75 protein with smaller molecular weight and cytoplasm localization occurs. At the early 5th larval instar stage, treatment of the prothoracic glands and fat body with 20-hydroxyecdysone (20E) and/or cycloheximide (CHX) revealed that BmE75A is 20E primary-responsive at both mRNA and protein levels, while BmE75B and BmE75C exhibit various responses to 20E. At the early wandering stage, RNAi-mediated reduction of gene expression of the 20E nuclear receptor complex, EcR-USP, significantly decreased mRNA and protein levels of all three BmE75 isoforms in both tissues. In conclusion, BmE75 isoforms display stage- and tissue-specific responses to 20E at both mRNA and protein levels; moreover, they are regulated by other unknown factors at the protein level.
Collapse
|
32
|
Clark KF, Greenwood SJ, Acorn AR, Byrne PJ. Molecular immune response of the American lobster (Homarus americanus) to the White Spot Syndrome Virus. J Invertebr Pathol 2013; 114:298-308. [PMID: 24045127 DOI: 10.1016/j.jip.2013.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 01/09/2023]
Abstract
The adult American lobster (Homarus americanus) is susceptible to few naturally occurring pathogens, and no viral pathogen is known to exist. Despite this, relatively little is known about the H. americanus immune system and nothing is known about its potential viral immune response. Hundreds of rural communities in Atlantic Canada rely on the lobster fishery for their economic sustainability and could be devastated by large-scale pathogen-mediated mortality events. The White Spot Syndrome Virus is the most economically devastating viral pathogen to global shrimp aquaculture production and has been proposed to be capable of infecting all decapod crustaceans including the European Lobster. An in vivo WSSV injection challenge was conducted in H. americanus and WSSV was found to be capable of infecting and replicating within lobsters held at 20°C. The in vivo WSSV challenge also generated the first viral disease model of H. americanus and allowed for the high-throughput examination of transcriptomic changes that occur during viral infection. Microarray analysis found 136 differentially expressed genes and the expression of a subset of these genes was verified using RT-qPCR. Anti-lipopolysaccharide isoforms and acute phase serum amyloid protein A expression did not change during WSSV infection, contrary to previous findings during bacterial and parasitic infection of H. americanus. This, along with the differential gene expression of thioredoxin and trypsin isoforms, provides compelling evidence that H. americanus is capable of mounting an immune response specific to infection by different pathogen classes.
Collapse
Affiliation(s)
- K Fraser Clark
- AVC Lobster Science Centre, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island C1A 4P3, Canada; Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island C1A 4P3, Canada.
| | | | | | | |
Collapse
|
33
|
Kolliopoulou A, Swevers L. Functional analysis of the RNAi response in ovary-derived silkmoth Bm5 cells. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:654-663. [PMID: 23669468 DOI: 10.1016/j.ibmb.2013.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/01/2013] [Indexed: 06/02/2023]
Abstract
Experiments of dsRNA-mediated gene silencing in lepidopteran insects in vivo are characterized by high variability although lepidopteran cell cultures have shown an efficient response to RNAi in transfection experiments. In order to identify the core RNAi factors that regulate the RNAi response of Lepidoptera, we employed the silkmoth ovary-derived Bm5 cells as a test system since this cell line is known to respond potently in silencing after dsRNA transfection. Two parallel approaches were used; involving knock-down of the core RNAi genes or over-expression of the main siRNA pathway factors, in order to study possible inhibition or stimulation of the RNAi silencing response, respectively. Components from all three main small RNA pathways (BmAgo-1 for miRNA, BmAgo-2/BmDcr-2 for siRNA, and BmAgo-3 for piRNA) were found to be involved in the RNAi response that is triggered by dsRNA. Since BmAgo-3, a factor in the piRNA pathway that functions independent of Dicer in Drosophila, was identified as a limiting factor in the RNAi response, sense and antisense ssRNA was also tested to induce gene silencing but proved to be ineffective, suggesting a dsRNA-dependent role for BmAgo-3 in Bombyx mori. After efficient over-expression of the main siRNA factors, immunofluorescence staining revealed a predominant cytoplasmic localization in Bm5 cells. This is the first study in Lepidoptera to provide evidence for possible overlapping of all three known small RNA pathways in the regulation of the dsRNA-mediated silencing response using transfected B. mori-derived Bm5 cells as experimental system.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology Group, Institute of Biosciences and Applications, National Centre for Scientific Research, Demokritos, Neapoleos & Patriarchou Grigoriou, 153 10, Aghia Paraskevi Attikis, Athens, Greece
| | | |
Collapse
|
34
|
Luan JB, Ghanim M, Liu SS, Czosnek H. Silencing the ecdysone synthesis and signaling pathway genes disrupts nymphal development in the whitefly. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:740-6. [PMID: 23748027 DOI: 10.1016/j.ibmb.2013.05.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 05/13/2023]
Abstract
Sap-sucking insects are important pests in agriculture and good models to study insect biology. The role of ecdysone pathway genes in the life history of this group of insects is largely unknown likely due to a lack of efficient gene silencing methods allowing functional genetic analyses. Here, we developed a new and high throughput method to silence whitefly genes using a leaf-mediated dsRNA feeding method. We have applied this method to explore the roles of genes within the molting hormone-ecdysone synthesis and signaling pathway for the survival, reproduction and development of whiteflies. Silencing of genes in the ecdysone pathway had a limited effect on the survival and fecundity of adult whiteflies. However, gene silencing reduced survival and delayed development of the whitefly during nymphal stages. These data suggest that the silencing method developed here provides a useful tool for functional gene discovery studies of sap-sucking insects, and further indicate the potential of regulating the ecdysone pathway in whitefly control.
Collapse
Affiliation(s)
- Jun-Bo Luan
- Ministry of Agriculture, Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | |
Collapse
|
35
|
Garbutt JS, Bellés X, Richards EH, Reynolds SE. Persistence of double-stranded RNA in insect hemolymph as a potential determiner of RNA interference success: evidence from Manduca sexta and Blattella germanica. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:171-8. [PMID: 22664137 DOI: 10.1016/j.jinsphys.2012.05.013] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 05/17/2012] [Accepted: 05/22/2012] [Indexed: 05/03/2023]
Abstract
RNA interference (RNAi) is a specific gene silencing mechanism mediated by double-stranded RNA (dsRNA), which has been harnessed as a useful reverse genetics tool in insects. Unfortunately, however, this technology has been limited by the variable sensitivity of insect species to RNAi. We propose that rapid degradation of dsRNA in insect hemolymph could impede gene silencing by RNAi and experimentally investigate the dynamics of dsRNA persistence in two insects, the tobacco hornworm, Manduca sexta, a species in which experimental difficulty has been experienced with RNAi protocols and the German cockroach, Blattella germanica, which is known to be highly susceptible to experimental RNAi. An ex vivo assay revealed that dsRNA was rapidly degraded by an enzyme in M. sexta hemolymph plasma, whilst dsRNA persisted much longer in B. germanica plasma. A quantitative reverse transcription PCR-based assay revealed that dsRNA, accordingly, disappeared rapidly from M. sexta hemolymph in vivo. The M. sexta dsRNAse is inactivated by exposure to high temperature and is inhibited by EDTA. These findings lead us to propose that the rate of persistence of dsRNA in insect hemolymph (mediated by the action of one or more nucleases) could be an important factor in determining the susceptibility of insect species to RNAi.
Collapse
Affiliation(s)
- Jennie S Garbutt
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | | | | | | |
Collapse
|
36
|
Aicart-Ramos C, Valhondo Falcón M, Ortiz de Montellano PR, Rodriguez-Crespo I. Covalent attachment of heme to the protein moiety in an insect E75 nitric oxide sensor. Biochemistry 2012; 51:7403-16. [PMID: 22946928 DOI: 10.1021/bi300848x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have recombinantly expressed and purified the ligand binding domains (LBDs) of four insect nuclear receptors of the E75 family. The Drosophila melanogaster and Bombyx mori nuclear receptors were purified as ferric hemoproteins with Soret maxima at 424 nm, whereas their ferrous forms had a Soret maximum at 425 nm that responds to (•)NO and CO binding. In contrast, the purified LBD of Oncopeltus fasciatus displayed a Soret maximum at 415 nm for the ferric protein that shifted to 425 nm in its ferrous state. Binding of (•)NO to the heme moiety of the D. melanogaster and B. mori E75 LBD resulted in the appearance of a peak at 385 nm, whereas this peak appeared at 416 nm in the case of the O. fasciatus hemoprotein, resembling the behavior displayed by its human homologue, Rev-erbβ. High-performance liquid chromatography analysis revealed that, unlike the D. melanogaster and B. mori counterparts, the heme group of O. fasciatus is covalently attached to the protein through the side chains of two amino acids. The high degree of sequence homology with O. fasciatus E75 led us to clone and express the LBD of Blattella germanica, which established that its spectral properties closely resemble those of O. fasciatus and that it also has the heme group covalently bound to the protein. Hence, (•)NO/CO regulation of the transcriptional activity of these nuclear receptors might be differently controlled among various insect species. In addition, covalent heme binding provides strong evidence that at least some of these nuclear receptors function as diatomic gas sensors rather than heme sensors. Finally, our findings expand the classes of hemoproteins in which the heme group is normally covalently attached to the polypeptide chain.
Collapse
Affiliation(s)
- Clara Aicart-Ramos
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
37
|
Cruz J, Mane-Padros D, Zou Z, Raikhel AS. Distinct roles of isoforms of the heme-liganded nuclear receptor E75, an insect ortholog of the vertebrate Rev-erb, in mosquito reproduction. Mol Cell Endocrinol 2012; 349:262-71. [PMID: 22115961 PMCID: PMC3306807 DOI: 10.1016/j.mce.2011.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/15/2011] [Accepted: 11/07/2011] [Indexed: 11/24/2022]
Abstract
Mosquitoes are adapted to using vertebrate blood as a nutrient source to promote egg development and as a consequence serve as disease vectors. Blood-meal activated reproductive events in female mosquitoes are hormonally and nutritionally controlled with an insect steroid hormone 20-hydroxyecdysone (20E) playing a central role. The nuclear receptor E75 is an essential factor in the 20E genetic hierarchy, however functions of its three isoforms - E75A, E75B, and E75C - in mosquito reproduction are unclear. By means of specific RNA interference depletion of E75 isoforms, we identified their distinct roles in regulating the level and timing of expression of key genes involved in vitellogenesis in the fat body (an insect analog of vertebrate liver and adipose tissue) of the mosquito Aedes aegypti. Heme is required in a high level of expression of 20E-controlled genes in the fat body, and this heme action depends on E75. Thus, in mosquitoes, heme is an important signaling molecule, serving as a sensor of the availability of a protein meal for egg development. Disruption of this signaling pathway could be explored in the design of mosquito control approaches.
Collapse
Affiliation(s)
| | | | | | - Alexander S. Raikhel
- Corresponding author: Department of Entomology and Institute of Integrative Genome Biology, 900 University Avenue, Riverside, CA 92521, USA. Tel: +1 951 827 2129;
| |
Collapse
|
38
|
Mané-Padrós D, Borràs-Castells F, Belles X, Martín D. Nuclear receptor HR4 plays an essential role in the ecdysteroid-triggered gene cascade in the development of the hemimetabolous insect Blattella germanica. Mol Cell Endocrinol 2012; 348:322-30. [PMID: 21945476 DOI: 10.1016/j.mce.2011.09.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 09/09/2011] [Accepted: 09/10/2011] [Indexed: 01/20/2023]
Abstract
Despite the differences in the developmental strategies between hemimetabolous and holometabolous insects, a common feature between both types of development is that periodic pulses of the steroid hormone 20-hydroxyecdysone (20E) dictate each developmental transition. Although the molecular action of 20E has been extensively studied in holometabolous insects, data on hemimetabolous is scarce. To address this, we have used the German cockroach Blattella germanica to show that 20E signals through a transcriptional cascade of the nuclear hormone receptor-encoding genes BgE75, BgHR3 and BgFTZ-F1. Here, we report the isolation and functional characterization of BgHR4, another nuclear receptor involved in this cascade. Expression studies along with tissue incubations and RNAi experiments show that cross-regulation between BgE75 and BgHR3 directs the expression of BgHR4. Finally, we have also shown that BgHR4 is an essential gene required for successfully completing nymphal-nymphal and nymphal-adult transitions, by allowing the appropriate delay in the induction of BgFTZ-F1.
Collapse
Affiliation(s)
- Daniel Mané-Padrós
- Institute of Evolutionary Biology (CSIC-UPF), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
39
|
Lozano J, Belles X. Conserved repressive function of Krüppel homolog 1 on insect metamorphosis in hemimetabolous and holometabolous species. Sci Rep 2011; 1:163. [PMID: 22355678 PMCID: PMC3240953 DOI: 10.1038/srep00163] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/08/2011] [Indexed: 11/26/2022] Open
Abstract
Insect metamorphosis is regulated by ecdysteroids, which induce molts, and juvenile hormone
(JH), which inhibits metamorphic changes. The molecular action of ecdysteroids has been
thoroughly studied, but that of JH is poorly understood, with data currently only being
available for holometabolous species, like Drosophila melanogaster and Tribolium
castaneum. We studied the function of Krüppel homolog 1 (Kr-h1) in Blattella
germanica, a hemimetabolous model. Kr-h1 is a Zn finger transcription factor whose
function as transductor of the antimetamorphic action of JH has recently been demonstrated
in D. melanogaster and T. castaneum. The RNAi experiments reported herein
indicated that Kr-h1 transduces the antimetamorphic action of JH also in B.
germanica, thereby suggesting that this role is an ancestral condition that has been
conserved in insect evolution from hemimetabolous to holometabolous species.
Collapse
Affiliation(s)
- Jesus Lozano
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Martim de la Barceloneta 37 , 08003 Barcelona, Spain
| | | |
Collapse
|
40
|
Abstract
The nuclear receptors (NRs) of metazoans are an ancient family of transcription factors defined by conserved DNA- and ligand-binding domains (DBDs and LBDs, respectively). The Drosophila melanogaster genome project revealed 18 canonical NRs (with DBDs and LBDs both present) and 3 receptors with the DBD only. Annotation of subsequently sequenced insect genomes revealed only minor deviations from this pattern. A renewed focus on functional analysis of the isoforms of insect NRs is therefore required to understand the diverse roles of these transcription factors in embryogenesis, metamorphosis, reproduction, and homeostasis. One insect NR, ecdysone receptor (EcR), functions as a receptor for the ecdysteroid molting hormones of insects. Researchers have developed nonsteroidal ecdysteroid agonists for EcR that disrupt molting and can be used as safe pesticides. An exciting new technology allows EcR to be used in chimeric, ligand-inducible gene-switch systems with applications in pest management and medicine.
Collapse
Affiliation(s)
- Susan E Fahrbach
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109, USA.
| | | | | |
Collapse
|
41
|
Cristino AS, Tanaka ED, Rubio M, Piulachs MD, Belles X. Deep sequencing of organ- and stage-specific microRNAs in the evolutionarily basal insect Blattella germanica (L.) (Dictyoptera, Blattellidae). PLoS One 2011; 6:e19350. [PMID: 21552535 PMCID: PMC3084283 DOI: 10.1371/journal.pone.0019350] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 04/02/2011] [Indexed: 01/28/2023] Open
Abstract
Background microRNAs (miRNAs) have been reported as key regulators at post-transcriptional level in eukaryotic cells. In insects, most of the studies have focused in holometabolans while only recently two hemimetabolans (Locusta migratoria and Acyrthosiphon pisum) have had their miRNAs identified. Therefore, the study of the miRNAs of the evolutionarily basal hemimetabolan Blattella germanica may provide valuable insights on the structural and functional evolution of miRNAs. Methodology/Principal Findings Small RNA libraries of the cockroach B. germanica were built from the whole body of the last instar nymph, and the adult ovaries. The high throughput Solexa sequencing resulted in approximately 11 and 8 million reads for the whole-body and ovaries, respectively. Bioinformatic analyses identified 38 known miRNAs as well as 11 known miRNA*s. We also found 70 miRNA candidates conserved in other insects and 170 candidates specific to B. germanica. The positive correlation between Solexa data and real-time quantitative PCR showed that number of reads can be used as a quantitative approach. Five novel miRNA precursors were identified and validated by PCR and sequencing. Known miRNAs and novel candidates were also validated by decreasing levels of their expression in dicer-1 RNAi knockdown individuals. The comparison of the two libraries indicates that whole-body nymph contain more known miRNAs than ovaries, whereas the adult ovaries are enriched with novel miRNA candidates. Conclusions/Significance Our study has identified many known miRNAs and novel miRNA candidates in the basal hemimetabolan insect B. germanica, and most of the specific sequences were found in ovaries. Deep sequencing data reflect miRNA abundance and dicer-1 RNAi assay is shown to be a reliable method for validation of novel miRNAs.
Collapse
Affiliation(s)
- Alexandre S. Cristino
- The Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland, Australia
| | - Erica D. Tanaka
- Institute of Evolutionary Biology (CSIC-UPF), Passeig Maritim de la Barceloneta, Barcelona, Spain
| | - Mercedes Rubio
- Institute of Evolutionary Biology (CSIC-UPF), Passeig Maritim de la Barceloneta, Barcelona, Spain
| | - Maria-Dolors Piulachs
- Institute of Evolutionary Biology (CSIC-UPF), Passeig Maritim de la Barceloneta, Barcelona, Spain
- * E-mail: (MDP); (XB)
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-UPF), Passeig Maritim de la Barceloneta, Barcelona, Spain
- * E-mail: (MDP); (XB)
| |
Collapse
|
42
|
Kaneko Y, Kinjoh T, Kiuchi M, Hiruma K. Stage-specific regulation of juvenile hormone biosynthesis by ecdysteroid in Bombyx mori. Mol Cell Endocrinol 2011; 335:204-10. [PMID: 21256183 DOI: 10.1016/j.mce.2011.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 01/12/2011] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
Abstract
In the penultimate (4th) instar larvae of Bombyx mori, juvenile hormone (JH) synthesis by corpora allata (CA) fluctuates. When diet containing 20-hydroxyecdysone (20E) was fed, JH synthetic activity of the CA was first stimulated as the ecdysteroid titer increased, then suppressed slightly by the higher molting concentration of ecdysteroids (>250 ng/ml). The overall JH biosynthetic activity was modulated by the expression of JH biosynthetic enzymes in the CA: primarily JH acid O-methyltransferase (JHAMT), isopentenyl diphosphate isomerase, and farnesyl diphosphate synthase 1. After the last (5th) larval ecdysis, the artificially increased high ecdysteroid level due to the 20E diet activated JH synthesis by the CA, which required intact nervous connections with the brain. A factor(s) from the 20E-activated brain controls mainly JHAMT and HMG Co-A reductase expression to stimulate the JH synthesis. In the normal last instar larvae, the ecdysteroid titer declines so that these activation mechanisms are absent; therefore the decline of the ecdysteroid titer after the final larval ecdysis is one of the factors which induces the cessation of the JH synthesis by CA.
Collapse
Affiliation(s)
- Yu Kaneko
- Faculty of Agriculture and Life Sciences, Hirosaki University, Hirosaki 036-8561, Japan
| | | | | | | |
Collapse
|
43
|
Mané-Padrós D, Cruz J, Vilaplana L, Nieva C, Ureña E, Bellés X, Martín D. The hormonal pathway controlling cell death during metamorphosis in a hemimetabolous insect. Dev Biol 2010; 346:150-60. [DOI: 10.1016/j.ydbio.2010.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/28/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
|
44
|
Maestro JL, Pascual N, Treiblmayr K, Lozano J, Bellés X. Juvenile hormone and allatostatins in the German cockroach embryo. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:660-665. [PMID: 20542115 DOI: 10.1016/j.ibmb.2010.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 05/29/2023]
Abstract
Levels of juvenile hormone III (JH), FGLamide allatostatin peptides (ASTs), ASTs precursor (preproAST) mRNA and methyl farnesoate epoxidase (CYP15A1) mRNA were measured in embryos of the cockroach Blattella germanica. JH starts to rise just after dorsal closure, reaches maximal levels between 60% and 80% of embryogenesis, and decrease subsequently to undetectable levels. ASTs show low levels during the first two thirds of embryogenesis, increase thereafter and maintain high levels until hatching. PreproAST mRNA shows quite high levels during the two days following oviposition, thus behaving as a maternal transcript, the levels then become very low until mid embryogenesis, and increase afterwards, peaking towards the end of embryo development. CYP15A1 transcripts were detected around 25% embryogenesis and the levels tended to increase through embryogenesis, although differences amongst the days studied were not statistically significant. The opposite patterns of JH and AST towards the end of embryo development, along with the detection of AST immunoreactivity in corpora allata from late embryos, suggest that JH decline is caused by the increase of AST. Moreover, the uncorrelated patterns of JH concentration and CYP15A1 mRNA levels suggest that CYP15A1 expression does not modulate JH production.
Collapse
Affiliation(s)
- José L Maestro
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
45
|
Priya TJ, Li F, Zhang J, Yang C, Xiang J. Molecular characterization of an ecdysone inducible gene E75 of Chinese shrimp Fenneropenaeus chinensis and elucidation of its role in molting by RNA interference. Comp Biochem Physiol B Biochem Mol Biol 2010; 156:149-57. [DOI: 10.1016/j.cbpb.2010.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Revised: 02/06/2010] [Accepted: 02/08/2010] [Indexed: 11/24/2022]
|
46
|
Iga M, Manaboon M, Matsui H, Sakurai S. Ca2+-PKC-caspase 3-like protease pathway mediates DNA and nuclear fragmentation in ecdysteroid-induced programmed cell death. Mol Cell Endocrinol 2010; 321:146-51. [PMID: 20193735 DOI: 10.1016/j.mce.2010.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 02/21/2010] [Accepted: 02/23/2010] [Indexed: 11/20/2022]
Abstract
20-Hydroxyecdysone (20E) induces programmed cell death in the anterior silk gland of the silkworm. Here, we report the direct interaction between Ca(2+) and protein kinase C (PKC)-caspase 3-like protease pathway in the 20E-induced cell death. The calcium ionophore can mimic 20E effects in inducing DNA and nuclear fragmentation, but such mimicry is only possible in the glands precultured for 18 h with 20E. The simultaneous presence of translation inhibitor with 20E in the preculture showed that de novo protein synthesis was needed to mimic 20E effects by the calcium ionophore. Both a PKC inhibitor and a caspase 3 inhibitor inhibited the mimicking effects. After substitution of the calcium ionophore for 20E, caspase 3-like protease was fully activated 12h later, and DNA and nuclear fragmentation occurred faster than continuous 20E stimuli. The results show the presence of a Ca(2+)-PKC-caspase 3-like protease pathway in 20E signaling, and possible involvement of the pathway up to the mobilization of Ca(2+) in regulating the timing of cell death in vivo.
Collapse
Affiliation(s)
- Masatoshi Iga
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan.
| | | | | | | |
Collapse
|
47
|
Level of CYP4G19 Expression Is Associated with Pyrethroid Resistance in Blattella germanica. J Parasitol Res 2010; 2010. [PMID: 20700426 PMCID: PMC2911607 DOI: 10.1155/2010/517534] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/16/2009] [Accepted: 01/26/2010] [Indexed: 11/17/2022] Open
Abstract
German cockroaches have become a large problem in the Shenzhen area because of their pesticide resistance, especially to pyrethroid. A pyrethroid called “Jia Chong Qing” to prevent pests for a long time were found to be resistant to “Jia Chong Qing” with resistance index of 3.88 measured using RT-PCR and immunohistochemistry analysis showed that both CYP4G19 mRNA and CYP4G19 protein expression levels in the wild strain were substantially higher than that of a sensitive strain. dsRNA segments derived from the target gene CYP4G19 were prepared using in vitro transcription and were microinjected into abdomens of the wild strain. Two to eight days after injection, the result showed that CYP4G19 mRNA expressions were significantly reduced in the groups injected with dsRNAs.
Collapse
|
48
|
Abstract
The increasing availability of insect genomes has revealed a large number of genes with unknown functions and the resulting problem of how to discover these functions. The RNA interference (RNAi) technique, which generates loss-of-function phenotypes by depletion of a chosen transcript, can help to overcome this challenge. RNAi can unveil the functions of new genes, lead to the discovery of new functions for old genes, and find the genes for old functions. Moreover, the possibility of studying the functions of homologous genes in different species can allow comparisons of the genetic networks regulating a given function in different insect groups, thereby facilitating an evolutionary insight into developmental processes. RNAi also has drawbacks and obscure points, however, such as those related to differences in species sensitivity. Disentangling these differences is one of the main challenges in the RNAi field.
Collapse
Affiliation(s)
- Xavier Bellés
- Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain.
| |
Collapse
|
49
|
Abstract
How does a juvenile insect transform into an adult? This question, which sums up the wonder of insect metamorphosis, has fascinated mankind since ancient times. Modern physiology has established the endocrine basis regulating these transformations, which mainly depend on two hormone types: ecdysteroids, which promote molts, and juvenile hormones, which repress the transformation into the adult stage. The interplay of these two hormones regulates the genes involved in juvenile and adult programs and the shift from one to the other. microRNAs (miRNAs) are small noncoding RNAs, which participate in many biological processes, and we wondered whether they might be also involved in insect metamorphosis. In insects, Dicer-1 ribonuclease transforms miRNA precursors into mature miRNAs. Thus, using systemic RNA interference (RNAi) to silence the expression of Dicer-1 in the hemimetabolan insect Blattella germanica, we depleted miRNA contents in the last instar nymph. This practically inhibited metamorphosis after the next molt, as the resulting specimens showed nymphoid features and were able to molt again. The experiments show that miRNAs play a key role in hemimetabolan metamorphosis, perhaps regulating genes that are juvenile hormone targets.
Collapse
|
50
|
Erezyilmaz DF, Kelstrup HC, Riddiford LM. The nuclear receptor E75A has a novel pair-rule-like function in patterning the milkweed bug, Oncopeltus fasciatus. Dev Biol 2009; 334:300-10. [PMID: 19580803 PMCID: PMC2749522 DOI: 10.1016/j.ydbio.2009.06.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/17/2009] [Accepted: 06/27/2009] [Indexed: 12/16/2022]
Abstract
Genetic studies of the fruit fly Drosophila have revealed a hierarchy of segmentation genes (maternal, gap, pair-rule and HOX) that subdivide the syncytial blastoderm into sequentially finer-scale coordinates. Within this hierarchy, the pair-rule genes translate gradients of information into periodic stripes of expression. How pair-rule genes function during the progressive mode of segmentation seen in short and intermediate-germ insects is an ongoing question. Here we report that the nuclear receptor Of'E75A is expressed with double segment periodicity in the head and thorax. In the abdomen, Of'E75A is expressed in a unique pattern during posterior elongation, and briefly resembles a sequence that is typical of pair-rule genes. Depletion of Of'E75A mRNA caused loss of a subset of odd-numbered parasegments, as well as parasegment 6. Because these parasegments straddle segment boundaries, we observe fusions between adjacent segments. Finally, expression of Of'E75A in the blastoderm requires even-skipped, which is a gap gene in Oncopeltus. These data show that the function of Of'E75A during embryogenesis shares many properties with canonical pair-rule genes in other insects. They further suggest that parasegment specification may occur through irregular and episodic pair-rule-like activity.
Collapse
Affiliation(s)
- Deniz F Erezyilmaz
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| | | | | |
Collapse
|