1
|
Shah A, Bush CO, Perry RJ. Genetic underpinnnings of type 2 diabetes. ADVANCES IN GENETICS 2025; 113:54-75. [PMID: 40409800 DOI: 10.1016/bs.adgen.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Genetics is a significant risk factor for developing type 2 diabetes, with a family history conferring a 1.5-3-fold increased risk. Intriguingly, this heritable risk is higher when the affected parent is the mother, suggesting a potential role of mitochondrial genetics -maternally inherited DNA - in diabetes pathogenesis, a hypothesis this chapter will explore. While obesity mediates some of the genetic risk of type 2 diabetes, the chapter and will focus on genetic influences on diabetes independent of obesity. Mechanistically, genetic variants directly or indirectly contribute to insulin resistance across key tissues, including liver, muscle and adipose tissue. This insulin resistance prevents the liver from efficiently suppressing glucose production in response to insulin and impairs glucose uptake in muscle during postprandial states. Insulin resistance is driven by complex interactions between the genome and environmental, which can, in turn, influence gene expression and contribute to worsening of metabolic dysfunction. This chapter examines how tissue-specific genetic changes drive insulin resistance in individual organs and how these localized dysfunctions contribute to the broader, multi-organ metabolic dysfunction that characterize type 2 diabetes.
Collapse
Affiliation(s)
- Aditya Shah
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale University, New Haven, CT, United States; Woodbridge Academy Magnet School, Middlesex County, NJ, United States
| | - Clancy O Bush
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale University, New Haven, CT, United States; Brain Cognition and Brain Diseases Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
| | - Rachel J Perry
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale University, New Haven, CT, United States.
| |
Collapse
|
2
|
Jeyagaran A, Lu CE, Zbinden A, Birkenfeld AL, Brucker SY, Layland SL. Type 1 diabetes and engineering enhanced islet transplantation. Adv Drug Deliv Rev 2022; 189:114481. [PMID: 36002043 PMCID: PMC9531713 DOI: 10.1016/j.addr.2022.114481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting β-cell biology, as well as the mechanisms responsible for their autoimmune destruction. β-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic β-cells, pathology of T1D and current state of β-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Aline Zbinden
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Munich, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
3
|
Role of the Transcription Factor MAFA in the Maintenance of Pancreatic β-Cells. Int J Mol Sci 2022; 23:ijms23094478. [PMID: 35562869 PMCID: PMC9101179 DOI: 10.3390/ijms23094478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic β-cells are specialized to properly regulate blood glucose. Maintenance of the mature β-cell phenotype is critical for glucose metabolism, and β-cell failure results in diabetes mellitus. Recent studies provide strong evidence that the mature phenotype of β-cells is maintained by several transcription factors. These factors are also required for β-cell differentiation from endocrine precursors or maturation from immature β-cells during pancreatic development. Because the reduction or loss of these factors leads to β-cell failure and diabetes, inducing the upregulation or inhibiting downregulation of these transcription factors would be beneficial for studies in both diabetes and stem cell biology. Here, we discuss one such factor, i.e., the transcription factor MAFA. MAFA is a basic leucine zipper family transcription factor that can activate the expression of insulin in β-cells with PDX1 and NEUROD1. MAFA is indeed indispensable for the maintenance of not only insulin expression but also function of adult β-cells. With loss of MAFA in type 2 diabetes, β-cells cannot maintain their mature phenotype and are dedifferentiated. In this review, we first briefly summarize the functional roles of MAFA in β-cells and then mainly focus on the molecular mechanism of cell fate conversion regulated by MAFA.
Collapse
|
4
|
Liang J, Chirikjian M, Pajvani UB, Bartolomé A. MafA Regulation in β-Cells: From Transcriptional to Post-Translational Mechanisms. Biomolecules 2022; 12:535. [PMID: 35454124 PMCID: PMC9033020 DOI: 10.3390/biom12040535] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
β-cells are insulin-producing cells in the pancreas that maintain euglycemic conditions. Pancreatic β-cell maturity and function are regulated by a variety of transcription factors that enable the adequate expression of the cellular machinery involved in nutrient sensing and commensurate insulin secretion. One of the key factors in this regulation is MAF bZIP transcription factor A (MafA). MafA expression is decreased in type 2 diabetes, contributing to β-cell dysfunction and disease progression. The molecular biology underlying MafA is complex, with numerous transcriptional and post-translational regulatory nodes. Understanding these complexities may uncover potential therapeutic targets to ameliorate β-cell dysfunction. This article will summarize the role of MafA in normal β-cell function and disease, with a special focus on known transcriptional and post-translational regulators of MafA expression.
Collapse
Affiliation(s)
- Jiani Liang
- Department of Medicine, Columbia University, New York, NY 10032, USA; (J.L.); (M.C.); (U.B.P.)
| | - Margot Chirikjian
- Department of Medicine, Columbia University, New York, NY 10032, USA; (J.L.); (M.C.); (U.B.P.)
| | - Utpal B. Pajvani
- Department of Medicine, Columbia University, New York, NY 10032, USA; (J.L.); (M.C.); (U.B.P.)
| | - Alberto Bartolomé
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
5
|
Alpha-to-beta cell trans-differentiation for treatment of diabetes. Biochem Soc Trans 2021; 49:2539-2548. [PMID: 34882233 PMCID: PMC8786296 DOI: 10.1042/bst20210244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus is a significant cause of morbidity and mortality in the United States and worldwide. According to the CDC, in 2017, ∼34.2 million of the American population had diabetes. Also, in 2017, diabetes was the seventh leading cause of death and has become the number one biomedical financial burden in the United States. Insulin replacement therapy and medications that increase insulin secretion and improve insulin sensitivity are the main therapies used to treat diabetes. Unfortunately, there is currently no radical cure for the different types of diabetes. Loss of β cell mass is the end result that leads to both type 1 and type 2 diabetes. In the past decade, there has been an increased effort to develop therapeutic strategies to replace the lost β cell mass and restore insulin secretion. α cells have recently become an attractive target for replacing the lost β cell mass, which could eventually be a potential strategy to cure diabetes. This review highlights the advantages of using α cells as a source for generating new β cells, the various investigative approaches to convert α cells into insulin-producing cells, and the future prospects and problems of this promising diabetes therapeutic strategy.
Collapse
|
6
|
Brovkina O, Dashinimaev E. Advances and complications of regenerative medicine in diabetes therapy. PeerJ 2020; 8:e9746. [PMID: 33194345 PMCID: PMC7485501 DOI: 10.7717/peerj.9746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022] Open
Abstract
The rapid development of technologies in regenerative medicine indicates clearly that their common application is not a matter of if, but of when. However, the regeneration of beta-cells for diabetes patients remains a complex challenge due to the plurality of related problems. Indeed, the generation of beta-cells masses expressing marker genes is only a first step, with maintaining permanent insulin secretion, their protection from the immune system and avoiding pathological modifications in the genome being the necessary next developments. The prospects of regenerative medicine in diabetes therapy were promoted by the emergence of promising results with embryonic stem cells (ESCs). Their pluripotency and proliferation in an undifferentiated state during culture have ensured the success of ESCs in regenerative medicine. The discovery of induced pluripotent stem cells (iPSCs) derived from the patients’ own mesenchymal cells has provided further hope for diabetes treatment. Nonetheless, the use of stem cells has significant limitations related to the pluripotent stage, such as the risk of development of teratomas. Thus, the direct conversion of mature cells into beta-cells could address this issue. Recent studies have shown the possibility of such transdifferentiation and have set trends for regeneration medicine, directed at minimizing genome modifications and invasive procedures. In this review, we will discuss the published results of beta-cell regeneration and the advantages and disadvantages illustrated by these experiments.
Collapse
Affiliation(s)
- Olga Brovkina
- Federal Research Clinical Center for Specialized Types of Health Care and Medical Technologies of Federal Medical and Biology Agency, Moscow, Russia
| | - Erdem Dashinimaev
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
7
|
Wang Y, Sun J, Lin Z, Zhang W, Wang S, Wang W, Wang Q, Ning G. m 6A mRNA Methylation Controls Functional Maturation in Neonatal Murine β-Cells. Diabetes 2020; 69:1708-1722. [PMID: 32404350 DOI: 10.2337/db19-0906] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/08/2020] [Indexed: 11/13/2022]
Abstract
The N 6-methyladenosine (m6A) RNA modification is essential during embryonic development of various organs. However, its role in embryonic and early postnatal islet development remains unknown. Mice in which RNA methyltransferase-like 3/14 (Mettl3/14) were deleted in Ngn3+ endocrine progenitors (Mettl3/14 nKO ) developed hyperglycemia and hypoinsulinemia at 2 weeks after birth. We found that Mettl3/14 specifically regulated both functional maturation and mass expansion of neonatal β-cells before weaning. Transcriptome and m6A methylome analyses provided m6A-dependent mechanisms in regulating cell identity, insulin secretion, and proliferation in neonatal β-cells. Importantly, we found that Mettl3/14 were dispensable for β-cell differentiation but directly regulated essential transcription factor MafA expression at least partially via modulating its mRNA stability. Failure to maintain this modification impacted the ability to fulfill β-cell functional maturity. In both diabetic db/db mice and patients with type 2 diabetes (T2D), decreased Mettl3/14 expression in β-cells was observed, suggesting its possible role in T2D. Our study unraveled the essential role of Mettl3/14 in neonatal β-cell development and functional maturation, both of which determined functional β-cell mass and glycemic control in adulthood.
Collapse
Affiliation(s)
- Yanqiu Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Sun
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Science, Peking University Health Science Center, Beijing, China
| | - Shu Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
β-Cell specific transcription factors in the context of diabetes mellitus and β-cell regeneration. Mech Dev 2020; 163:103634. [PMID: 32711047 DOI: 10.1016/j.mod.2020.103634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
All pancreatic cell populations arise from the standard gut endoderm layer in developing embryos, requiring a regulatory gene network to originate and maintain endocrine lineages and endocrine function. The pancreatic organogenesis is regulated by the temporal expression of transcription factors and plays a diverse role in the specification, development, differentiation, maturation, and functional maintenance. Altered expression and activity of these transcription factors are often associated with diabetes mellitus. Recent advancements in the stem cells and invitro derived islets to treat diabetes mellitus has attracted a great deal of interest in the understanding of factors regulating the development, differentiation, and functions of islets including transcription factors. This review discusses the myriad of transcription factors regulating the development of the pancreas, differentiation of β-islets, and how these factors regulated in normal and disease states. Exploring these factors in such critical context and exogenous or endogenous expression of development and differentiation-specific transcription factors with improved epigenetic plasticity/signaling axis in diabetic milieu would useful for the development of β-cells from other cell sources.
Collapse
|
9
|
Bartolome A, Zhu C, Sussel L, Pajvani UB. Notch signaling dynamically regulates adult β cell proliferation and maturity. J Clin Invest 2018; 129:268-280. [PMID: 30375986 DOI: 10.1172/jci98098] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/25/2018] [Indexed: 12/13/2022] Open
Abstract
Notch signaling regulates differentiation of the pancreatic endocrine lineage during embryogenesis, but the role of Notch in mature β cells is unclear. We found that islets derived from lean mice show modest β cell Notch activity, which increases in obesity and in response to high glucose. This response appeared maladaptive, as mice with β cell-specific-deficient Notch transcriptional activity showed improved glucose tolerance when subjected to high-fat diet feeding. Conversely, mice with β cell-specific Notch gain of function (β-NICD) had a progressive loss of β cell maturity, due to proteasomal degradation of MafA, leading to impaired glucose-stimulated insulin secretion and glucose intolerance with aging or obesity. Surprisingly, Notch-active β cells had increased proliferative capacity, leading to increased but dysfunctional β cell mass. These studies demonstrate a dynamic role for Notch in developed β cells for simultaneously regulating β cell function and proliferation.
Collapse
Affiliation(s)
- Alberto Bartolome
- Department of Medicine, Columbia University, New York, New York, USA
| | - Changyu Zhu
- Department of Medicine, Columbia University, New York, New York, USA
| | - Lori Sussel
- Department of Pediatrics, University of Colorado, Denver, Colorado, USA
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
10
|
Açiksari A, Duruksu G, Karaöz E. Improved insulin-secreting properties of pancreatic islet mesenchymal stem cells by constitutive expression of Pax4 and MafA. Turk J Biol 2017; 41:979-991. [PMID: 30814862 DOI: 10.3906/biy-1707-79] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
For long-term treatment of diabetes type 1, transplantation of insulin-producing beta cells may be a promising method, but the limited number of islets for transplantation requires the development of different approaches. In this study, we aimed to generate betalike insulin-producing cells. For this purpose, MafA, Pax4, and Ngn3 genes were transferred into pancreatic islet-derived mesenchymal stem cells, and the effect of their ectopic expressions on differentiation efficiency was examined. Stemness properties of pancreatic islet stem cells were characterized. The 3 genes were transfected by electroporation and expressed constitutively. The transfected cells were further stimulated to differentiate by using chemical induction. Pax4 expression had significant effects on differentiation into insulin-producing cells. Although it caused morphological alterations in cells, similar to epithelial cells, the insulin secretion levels remained lower than those of the cell line cotransfected with MafA and Pax4. Cotransfection of the 3 transcription factors did not further improve the beta-like cell generation. MafA and Pax4 ectopic expression resulted in improved differentiation efficiency into insulin-secreting cells. However, support of this differentiation process using additional chemical induction may sufice to overcome control by endogenous regulatory pathways.
Collapse
Affiliation(s)
- Ayşegül Açiksari
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University , İzmit, Kocaeli , Turkey.,Department of Stem Cell, Institute of Health Sciences, Kocaeli University , İzmit, Kocaeli , Turkey
| | - Gökhan Duruksu
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University , İzmit, Kocaeli , Turkey.,Department of Stem Cell, Institute of Health Sciences, Kocaeli University , İzmit, Kocaeli , Turkey
| | - Erdal Karaöz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research and Manufacturing , İstanbul , Turkey
| |
Collapse
|
11
|
Generation of glucose-sensitive insulin-secreting beta-like cells from human embryonic stem cells by incorporating a synthetic lineage-control network. J Biotechnol 2017; 259:39-45. [DOI: 10.1016/j.jbiotec.2017.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 12/15/2022]
|
12
|
Prasadan K, Shiota C, Xiangwei X, Ricks D, Fusco J, Gittes G. A synopsis of factors regulating beta cell development and beta cell mass. Cell Mol Life Sci 2016; 73:3623-37. [PMID: 27105622 PMCID: PMC5002366 DOI: 10.1007/s00018-016-2231-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/24/2016] [Accepted: 04/14/2016] [Indexed: 12/29/2022]
Abstract
The insulin-secreting beta cells in the endocrine pancreas regulate blood glucose levels, and loss of functional beta cells leads to insulin deficiency, hyperglycemia (high blood glucose) and diabetes mellitus. Current treatment strategies for type-1 (autoimmune) diabetes are islet transplantation, which has significant risks and limitations, or normalization of blood glucose with insulin injections, which is clearly not ideal. The type-1 patients can lack insulin counter-regulatory mechanism; therefore, hypoglycemia is a potential risk. Hence, a cell-based therapy offers a better alternative for the treatment of diabetes. Past research was focused on attempting to generate replacement beta cells from stem cells; however, recently there has been an increasing interest in identifying mechanisms that will lead to the conversion of pre-existing differentiated endocrine cells into beta cells. The goal of this review is to provide an overview of several of the key factors that regulate new beta cell formation (neogenesis) and beta cell proliferation.
Collapse
Affiliation(s)
- Krishna Prasadan
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Chiyo Shiota
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Xiao Xiangwei
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - David Ricks
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Joseph Fusco
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - George Gittes
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
13
|
Corritore E, Lee YS, Pasquale V, Liberati D, Hsu MJ, Lombard CA, Van Der Smissen P, Vetere A, Bonner-Weir S, Piemonti L, Sokal E, Lysy PA. V-Maf Musculoaponeurotic Fibrosarcoma Oncogene Homolog A Synthetic Modified mRNA Drives Reprogramming of Human Pancreatic Duct-Derived Cells Into Insulin-Secreting Cells. Stem Cells Transl Med 2016; 5:1525-1537. [PMID: 27405779 DOI: 10.5966/sctm.2015-0318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/12/2016] [Indexed: 12/17/2022] Open
Abstract
: β-Cell replacement therapy represents the most promising approach to restore β-cell mass and glucose homeostasis in patients with type 1 diabetes. Safety and ethical issues associated with pluripotent stem cells stimulated the search for adult progenitor cells with endocrine differentiation capacities. We have already described a model for expansion and differentiation of human pancreatic duct-derived cells (HDDCs) into insulin-producing cells. Here we show an innovative and robust in vitro system for large-scale production of β-like cells from HDDCs using a nonintegrative RNA-based reprogramming technique. Synthetic modified RNAs for pancreatic transcription factors (pancreatic duodenal homeobox 1, neurogenin3, and V-Maf musculoaponeurotic fibrosarcoma oncogene homolog A [MAFA]) were manufactured and daily transfected in HDDCs without strongly affecting immune response and cell viability. MAFA overexpression was efficient and sufficient to induce β-cell differentiation of HDDCs, which acquired a broad repertoire of mature β-cell markers while downregulating characteristic epithelial-mesenchymal transition markers. Within 7 days, MAFA-reprogrammed HDDC populations contained 37% insulin-positive cells and a proportion of endocrine cells expressing somatostatin and pancreatic polypeptide. Ultrastructure analysis of differentiated HDDCs showed both immature and mature insulin granules with light-backscattering properties. Furthermore, in vitro HDDC-derived β cells (called β-HDDCs) secreted human insulin and C-peptide in response to glucose, KCl, 3-isobutyl-1-methylxanthine, and tolbutamide stimulation. Transplantation of β-HDDCs into diabetic SCID-beige mice confirmed their functional glucose-responsive insulin secretion and their capacity to mitigate hyperglycemia. Our data describe a new, reliable, and fast procedure in adult human pancreatic cells to generate clinically relevant amounts of new β cells with potential to reverse diabetes. SIGNIFICANCE β-Cell replacement therapy represents the most promising approach to restore glucose homeostasis in patients with type 1 diabetes. This study shows an innovative and robust in vitro system for large-scale production of β-like cells from human pancreatic duct-derived cells (HDDCs) using a nonintegrative RNA-based reprogramming technique. V-Maf musculoaponeurotic fibrosarcoma oncogene homolog A overexpression was efficient and sufficient to induce β-cell differentiation and insulin secretion from HDDCs in response to glucose stimulation, allowing the cells to mitigate hyperglycemia in diabetic SCID-beige mice. The data describe a new, reliable, and fast procedure in adult human pancreatic cells to generate clinically relevant amounts of new β cells with the potential to reverse diabetes.
Collapse
Affiliation(s)
- Elisa Corritore
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yong-Syu Lee
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Valentina Pasquale
- Diabetes Research Institute, Istituti di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Liberati
- Diabetes Research Institute, Istituti di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Mei-Ju Hsu
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Catherine Anne Lombard
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | | | - Amedeo Vetere
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Susan Bonner-Weir
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lorenzo Piemonti
- Diabetes Research Institute, Istituti di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Etienne Sokal
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Philippe A Lysy
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Pediatric Endocrinology Unit, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
14
|
Saxena P, Heng BC, Bai P, Folcher M, Zulewski H, Fussenegger M. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells. Nat Commun 2016; 7:11247. [PMID: 27063289 PMCID: PMC4831023 DOI: 10.1038/ncomms11247] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/04/2016] [Indexed: 02/06/2023] Open
Abstract
Synthetic biology has advanced the design of standardized transcription control
devices that programme cellular behaviour. By coupling synthetic signalling cascade-
and transcription factor-based gene switches with reverse and differential
sensitivity to the licensed food additive vanillic acid, we designed a synthetic
lineage-control network combining vanillic acid-triggered mutually exclusive
expression switches for the transcription factors Ngn3 (neurogenin 3; OFF-ON-OFF)
and Pdx1 (pancreatic and duodenal homeobox 1; ON-OFF-ON) with the concomitant
induction of MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A;
OFF-ON). This designer network consisting of different network topologies
orchestrating the timely control of transgenic and genomic Ngn3, Pdx1 and MafA
variants is able to programme human induced pluripotent stem cells (hIPSCs)-derived
pancreatic progenitor cells into glucose-sensitive insulin-secreting beta-like
cells, whose glucose-stimulated insulin-release dynamics are comparable to human
pancreatic islets. Synthetic lineage-control networks may provide the missing link
to genetically programme somatic cells into autologous cell phenotypes for
regenerative medicine. Synthetic biology offers the potential for the design and
implementation of rationally designed, complex genetic programmes. Here the authors
design a genetic network to trigger the differentiation of patient derived IPSCs into
beta-like cells.
Collapse
Affiliation(s)
- Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Boon Chin Heng
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Peng Bai
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Marc Folcher
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Henryk Zulewski
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland.,Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland.,Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
15
|
Paul L, Walker EM, Drosos Y, Cyphert HA, Neale G, Stein R, South J, Grosveld G, Herrera PL, Sosa-Pineda B. Lack of Prox1 Downregulation Disrupts the Expansion and Maturation of Postnatal Murine β-Cells. Diabetes 2016; 65:687-98. [PMID: 26631740 PMCID: PMC4764148 DOI: 10.2337/db15-0713] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/20/2015] [Indexed: 12/18/2022]
Abstract
Transcription factor expression fluctuates during β-cell ontogeny, and disruptions in this pattern can affect the development or function of those cells. Here we uncovered that murine endocrine pancreatic progenitors express high levels of the homeodomain transcription factor Prox1, whereas both immature and mature β-cells scarcely express this protein. We also investigated if sustained Prox1 expression is incompatible with β-cell development or maintenance using transgenic mouse approaches. We discovered that Prox1 upregulation in mature β-cells has no functional consequences; in contrast, Prox1 overexpression in immature β-cells promotes acute fasting hyperglycemia. Using a combination of immunostaining and quantitative and comparative gene expression analyses, we determined that Prox1 upregulation reduces proliferation, impairs maturation, and enables apoptosis in postnatal β-cells. Also, we uncovered substantial deficiency in β-cells that overexpress Prox1 of the key regulator of β-cell maturation MafA, several MafA downstream targets required for glucose-stimulated insulin secretion, and genes encoding important components of FGF signaling. Moreover, knocking down PROX1 in human EndoC-βH1 β-cells caused increased expression of many of these same gene products. These and other results in our study indicate that reducing the expression of Prox1 is beneficial for the expansion and maturation of postnatal β-cells.
Collapse
Affiliation(s)
- Leena Paul
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Emily M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN
| | - Yiannis Drosos
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Holly A Cyphert
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN
| | - Jack South
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Gerard Grosveld
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Beatriz Sosa-Pineda
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
16
|
Potter SJ, Kumar DL, DeFalco T. Origin and Differentiation of Androgen-Producing Cells in the Gonads. Results Probl Cell Differ 2016; 58:101-134. [PMID: 27300177 DOI: 10.1007/978-3-319-31973-5_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sexual reproduction is dependent on the activity of androgenic steroid hormones to promote gonadal development and gametogenesis. Leydig cells of the testis and theca cells of the ovary are critical cell types in the gonadal interstitium that carry out steroidogenesis and provide key androgens for reproductive organ function. In this chapter, we will discuss important aspects of interstitial androgenic cell development in the gonad, including: the potential cellular origins of interstitial steroidogenic cells and their progenitors; the molecular mechanisms involved in Leydig cell specification and differentiation (including Sertoli-cell-derived signaling pathways and Leydig-cell-related transcription factors and nuclear receptors); the interactions of Leydig cells with other cell types in the adult testis, such as Sertoli cells, germ cells, peritubular myoid cells, macrophages, and vascular endothelial cells; the process of steroidogenesis and its systemic regulation; and a brief discussion of the development of theca cells in the ovary relative to Leydig cells in the testis. Finally, we will describe the dynamics of steroidogenic cells in seasonal breeders and highlight unique aspects of steroidogenesis in diverse vertebrate species. Understanding the cellular origins of interstitial steroidogenic cells and the pathways directing their specification and differentiation has implications for the study of multiple aspects of development and will help us gain insights into the etiology of reproductive system birth defects and infertility.
Collapse
Affiliation(s)
- Sarah J Potter
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Deepti Lava Kumar
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
17
|
El Khattabi I, Sharma A. Proper activation of MafA is required for optimal differentiation and maturation of pancreatic β-cells. Best Pract Res Clin Endocrinol Metab 2015; 29:821-31. [PMID: 26696512 PMCID: PMC4690007 DOI: 10.1016/j.beem.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A key therapeutic approach for the treatment of Type 1 diabetes (T1D) is transplantation of functional islet β-cells. Despite recent advances in generating stem cell-derived glucose-responsive insulin(+) cells, their further maturation to fully functional adult β-cells still remains a daunting task. Conquering this hurdle will require a better understanding of the mechanisms driving maturation of embryonic insulin(+) cells into adult β-cells, and the implementation of that knowledge to improve current differentiation protocols. Here, we will review our current understanding of β-cell maturation, and discuss the contribution of key β-cell transcription factor MafA, to this process. The fundamental importance of MafA in regulating adult β-cell maturation and function indicates that enhancing MafA expression may improve the generation of definitive β-cells for transplantation. Additionally, we suggest that the temporal control of MafA induction at a specific stage of β-cell differentiation will be the next critical challenge for achieving optimum maturation of β-cells.
Collapse
Affiliation(s)
| | - Arun Sharma
- Cardiovascular and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, USA.
| |
Collapse
|
18
|
Zulewski H. From substitution of insulin to replacement of insulin producing cells: New therapeutic opportunities from research on pancreas development and stem cell differentiation. Best Pract Res Clin Endocrinol Metab 2015; 29:815-20. [PMID: 26696511 DOI: 10.1016/j.beem.2015.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Henryk Zulewski
- Division of Endocrinology and Diabetes, Stadtspital Triemli Zürich, Birmensdorferstrasse 497, 8063 Zürich, Switzerland; Department of Biosystems Science and Engineering at the Swiss Federal Institute of Technology Zurich (ETH Zürich), Mattenstrasse 26, 4058 Basel, Switzerland; Faculty of Medicine, University of Basel, Switzerland.
| |
Collapse
|
19
|
Nishimura W, Kapoor A, El Khattabi I, Jin W, Yasuda K, Bonner-Weir S, Sharma A. Compensatory Response by Late Embryonic Tubular Epithelium to the Reduction in Pancreatic Progenitors. PLoS One 2015; 10:e0142286. [PMID: 26540252 PMCID: PMC4635002 DOI: 10.1371/journal.pone.0142286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 10/20/2015] [Indexed: 02/05/2023] Open
Abstract
Early in pancreatic development, epithelial cells of pancreatic buds function as primary multipotent progenitor cells (1°MPC) that specify all three pancreatic cell lineages, i.e., endocrine, acinar and duct. Bipotent "Trunk" progenitors derived from 1°MPC are implicated in directly regulating the specification of endocrine progenitors. It is unclear if this specification process is initiated in the 1°MPC where some 1°MPC become competent for later specification of endocrine progenitors. Previously we reported that in Pdx1tTA/+;tetOMafA (bigenic) mice inducing expression of transcription factor MafA in Pdx1-expressing (Pdx1+) cells throughout embryonic development inhibited the proliferation and differentiation of 1°MPC cells, resulting in reduced pancreatic mass and endocrine cells by embryonic day (E) 17.5. Induction of the transgene only until E12.5 in Pdx1+ 1°MPC was sufficient for this inhibition of endocrine cells and pancreatic mass at E17.5. However, by birth (P0), as we now report, such bigenic pups had significantly increased pancreatic and endocrine volumes with endocrine clusters containing all pancreatic endocrine cell types. The increase in endocrine cells resulted from a higher proliferation of tubular epithelial cells expressing the progenitor marker Glut2 in E17.5 bigenic embryos and increased number of Neurog3-expressing cells at E19.5. A BrdU-labeling study demonstrated that inhibiting proliferation of 1°MPC by forced MafA-expression did not lead to retention of those progenitors in E17.5 tubular epithelium. Our data suggest that the forced MafA expression in the 1°MPC inhibits their competency to specify endocrine progenitors only until E17.5, and after that compensatory proliferation of tubular epithelium gives rise to a distinct pool of endocrine progenitors. Thus, these bigenic mice provide a novel way to characterize the competency of 1°MPC for their ability to specify endocrine progenitors, a critical limitation in our understanding of endocrine differentiation.
Collapse
Affiliation(s)
- Wataru Nishimura
- Section of Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Division of Anatomy, Bio-imaging and Neuro-cell Science, Jichi Univerisity, Tochigi, Japan
| | - Archana Kapoor
- Section of Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ilham El Khattabi
- Section of Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wanzhu Jin
- Section of Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kazuki Yasuda
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Susan Bonner-Weir
- Section of Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Arun Sharma
- Section of Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
20
|
Nishimura W, Takahashi S, Yasuda K. MafA is critical for maintenance of the mature beta cell phenotype in mice. Diabetologia 2015; 58:566-74. [PMID: 25500951 DOI: 10.1007/s00125-014-3464-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS The plasticity of adult somatic cells allows for their dedifferentiation or conversion to different cell types, although the relevance of this to disease remains elusive. Perturbation of beta cell identity leading to dedifferentiation may be implicated in the compromised functions of beta cells in diabetes, which is a current topic of islet research. This study aims to investigate whether or not v-Maf musculoaponeurotic fibrosarcoma oncogene family, protein A (MafA), a mature beta cell marker, is involved in maintaining mature beta cell phenotypes. METHODS The fate and gene expression of beta cells were analysed in Mafa knockout (KO) mice and mouse models of diabetes in which the expression of MafA was reduced in the majority of beta cells. RESULTS Loss of MafA reduced the beta to alpha cell ratio in pancreatic islets without elevating blood glucose to diabetic levels. Lineage tracing analyses showed reduced/lost expression of insulin in most beta cells, with a minority of the former beta cells converted to glucagon-expressing cells in Mafa KO mice. The upregulation of genes that are normally repressed in mature beta cells or transcription factors that are transiently expressed in endocrine progenitors was identified in Mafa KO islets as a hallmark of dedifferentiation. The compromised beta cells in db/db and multiple low-dose streptozotocin mice underwent similar dedifferentiation with expression of Mafb, which is expressed in immature beta cells. CONCLUSIONS/INTERPRETATION The maturation factor MafA is critical for the homeostasis of mature beta cells and regulates cell plasticity. The loss of MafA in beta cells leads to a deeper loss of cell identity, which is implicated in diabetes pathology.
Collapse
Affiliation(s)
- Wataru Nishimura
- Department of Metabolic Disorders, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan,
| | | | | |
Collapse
|
21
|
Berneman-Zeitouni D, Molakandov K, Elgart M, Mor E, Fornoni A, Domínguez MR, Kerr-Conte J, Ott M, Meivar-Levy I, Ferber S. The temporal and hierarchical control of transcription factors-induced liver to pancreas transdifferentiation. PLoS One 2014; 9:e87812. [PMID: 24504462 PMCID: PMC3913675 DOI: 10.1371/journal.pone.0087812] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/31/2013] [Indexed: 12/23/2022] Open
Abstract
Lineage-specific transcription factors (TFs) display instructive roles in directly reprogramming adult cells into alternate developmental fates, in a process known as transdifferentiation. The present study analyses the hypothesis that despite being fast, transdifferentiation does not occur in one step but is rather a consecutive and hierarchical process. Using ectopic expression of Pdx1 in human liver cells, we demonstrate that while glugacon and somatostatin expression initiates within a day, insulin gene expression becomes evident only 2–3 days later. To both increase transdifferentiation efficiency and analyze whether the process indeed display consecutive and hierarchical characteristics, adult human liver cells were treated by three pancreatic transcription factors, Pdx1, Pax4 and Mafa (3pTFs) that control distinct hierarchical stages of pancreatic development in the embryo. Ectopic expression of the 3pTFs in human liver cells, increased the transdifferentiation yield, manifested by 300% increase in the number of insulin positive cells, compared to each of the ectopic factors alone. However, only when the 3pTFs were sequentially supplemented one day apart from each other in a direct hierarchical manner, the transdifferentiated cells displayed increased mature β-cell-like characteristics. Ectopic expression of Pdx1 followed by Pax4 on the 2nd day and concluded by Mafa on the 3rd day resulted in increased yield of transdifferentiation that was associated by increased glucose regulated c-peptide secretion. By contrast, concerted or sequential administration of the ectopic 3pTFs in an indirect hierarchical mode resulted in the generation of insulin and somatostatin co-producing cells and diminished glucose regulated processed insulin secretion. In conclusion transcription factors induced liver to pancreas transdifferentiation is a progressive and hierarchical process. It is reasonable to assume that this characteristic is general to wide ranges of tissues. Therefore, our findings could facilitate the development of cell replacement therapy modalities for many degenerative diseases including diabetes.
Collapse
Affiliation(s)
- Dana Berneman-Zeitouni
- Sheba Regenerative Medicine, Stem cells and Tissue engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kfir Molakandov
- Sheba Regenerative Medicine, Stem cells and Tissue engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Marina Elgart
- Sheba Regenerative Medicine, Stem cells and Tissue engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Eytan Mor
- Rabin Medical Ctr., Beilinson Campus, Petah-Tiqva, Israel
| | - Alessia Fornoni
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Miriam Ramírez Domínguez
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | | | - Michael Ott
- Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany; Twincore, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Irit Meivar-Levy
- Sheba Regenerative Medicine, Stem cells and Tissue engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Sarah Ferber
- Sheba Regenerative Medicine, Stem cells and Tissue engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
22
|
The temporal and hierarchical control of transcription factors-induced liver to pancreas transdifferentiation. PLoS One 2014. [PMID: 24504462 DOI: 10.1371/journal.pone.0087812.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lineage-specific transcription factors (TFs) display instructive roles in directly reprogramming adult cells into alternate developmental fates, in a process known as transdifferentiation. The present study analyses the hypothesis that despite being fast, transdifferentiation does not occur in one step but is rather a consecutive and hierarchical process. Using ectopic expression of Pdx1 in human liver cells, we demonstrate that while glucagon and somatostatin expression initiates within a day, insulin gene expression becomes evident only 2-3 days later. To both increase transdifferentiation efficiency and analyze whether the process indeed display consecutive and hierarchical characteristics, adult human liver cells were treated by three pancreatic transcription factors, Pdx1, Pax4 and Mafa (3pTFs) that control distinct hierarchical stages of pancreatic development in the embryo. Ectopic expression of the 3pTFs in human liver cells, increased the transdifferentiation yield, manifested by 300% increase in the number of insulin positive cells, compared to each of the ectopic factors alone. However, only when the 3pTFs were sequentially supplemented one day apart from each other in a direct hierarchical manner, the transdifferentiated cells displayed increased mature β-cell-like characteristics. Ectopic expression of Pdx1 followed by Pax4 on the 2(nd) day and concluded by Mafa on the 3(rd) day resulted in increased yield of transdifferentiation that was associated by increased glucose regulated c-peptide secretion. By contrast, concerted or sequential administration of the ectopic 3pTFs in an indirect hierarchical mode resulted in the generation of insulin and somatostatin co-producing cells and diminished glucose regulated processed insulin secretion. In conclusion transcription factors induced liver to pancreas transdifferentiation is a progressive and hierarchical process. It is reasonable to assume that this characteristic is general to wide ranges of tissues. Therefore, our findings could facilitate the development of cell replacement therapy modalities for many degenerative diseases including diabetes.
Collapse
|
23
|
Miyashita K, Miyatsuka T, Matsuoka TA, Sasaki S, Takebe S, Yasuda T, Watada H, Kaneto H, Shimomura I. Sequential introduction and dosage balance of defined transcription factors affect reprogramming efficiency from pancreatic duct cells into insulin-producing cells. Biochem Biophys Res Commun 2014; 444:514-9. [PMID: 24472553 DOI: 10.1016/j.bbrc.2014.01.083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/18/2014] [Indexed: 11/28/2022]
Abstract
While the exogenous expression of a combination of transcription factors have been shown to induce the conversion of non-β cells into insulin-producing cells, the reprogramming efficiency remains still low. In order to develop an in vitro screening system for an optimized reprogramming protocol, we generated the reporter cell line mPac-MIP-RFP in which the reprogramming efficiency can be quantified with red fluorescent protein expressed under the control of the insulin promoter. Analysis with mPac-MIP-RFP cells sequentially infected with adenoviruses expressing Pdx1, Neurog3, and Mafa revealed that expression of Pdx1 prior to Neurog3 or Mafa augments the reprogramming efficiency. Next, infection with a polycistronic adenoviral vector expressing Pdx1, Neurog3 and Mafa significantly increased the expression level of insulin compared with the simultaneous infection of three adenoviruses carrying each transcription factor, although excessive expression of Mafa together with the polycistronic vector dramatically inhibited the reprogramming into insulin-producing cells. Thus, in vitro screening with the mPac-MIP-RFP reporter cell line demonstrated that the timing and dosage of gene delivery with defined transcription factors influence the reprogramming efficiency. Further investigation should optimize the reprogramming conditions for the future cell therapy of diabetes.
Collapse
Affiliation(s)
- Kazuyuki Miyashita
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Miyatsuka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Taka-Aki Matsuoka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shugo Sasaki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satomi Takebe
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuyuki Yasuda
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hirotaka Watada
- Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideaki Kaneto
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
24
|
He KH, Juhl K, Karadimos M, El Khattabi I, Fitzpatrick C, Bonner-Weir S, Sharma A. Differentiation of pancreatic endocrine progenitors reversibly blocked by premature induction of MafA. Dev Biol 2013; 385:2-12. [PMID: 24183936 DOI: 10.1016/j.ydbio.2013.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 12/12/2022]
Abstract
Specification and maturation of insulin(+) cells accompanies a transition in expression of Maf family of transcription factors. In development, MafA is expressed after specification of insulin(+) cells that are expressing another Maf factor, MafB; after birth, these insulin(+) MafA(+) cells stop MafB expression and gain glucose responsiveness. Current differentiation protocols for deriving insulin-producing β-cells from stem cells result in β-cells lacking both MafA expression and glucose-stimulated insulin secretion. So driving expression of MafA, a β-cell maturation factor in endocrine precursors could potentially generate glucose-responsive MafA(+) β cells. Using inducible transgenic mice, we characterized the final stages of β-cell differentiation and maturation with MafA pause/release experiments. We found that forcing MafA transgene expression, out of its normal developmental context, in Ngn3(+) endocrine progenitors blocked endocrine differentiation and prevented the formation of hormone(+) cells. However, this arrest was reversible such that with stopping the transgene expression, the cells resumed their differentiation to hormone(+) cells, including α-cells, indicating that the block likely occurred after progenitors had committed to a specific hormonal fate. Interestingly, this delayed resumption of endocrine differentiation resulted in a greater proportion of immature insulin(+)MafB(+) cells at P5, demonstrating that during maturation the inhibition of MafB in β-cell transitioning from insulin(+)MafB(+) to insulin(+)MafB(-) stage is regulated by cell-autonomous mechanisms. These results demonstrate the importance of proper context of initiating MafA expression on the endocrine differentiation and suggest that generating mature Insulin(+)MafA(+) β-cells will require the induction of MafA in a narrow temporal window to achieve normal endocrine differentiation.
Collapse
Affiliation(s)
- KaiHui Hu He
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Kirstine Juhl
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Michael Karadimos
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Ilham El Khattabi
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Connor Fitzpatrick
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Susan Bonner-Weir
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Arun Sharma
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| |
Collapse
|
25
|
Yamamoto K, Matsuoka TA, Kawashima S, Takebe S, Kubo N, Miyatsuka T, Kaneto H, Shimomura I. A novel function of Onecut1 protein as a negative regulator of MafA gene expression. J Biol Chem 2013; 288:21648-58. [PMID: 23775071 PMCID: PMC3724624 DOI: 10.1074/jbc.m113.481424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/10/2013] [Indexed: 11/06/2022] Open
Abstract
The transcription factor MafA is a key regulator of insulin gene expression and maturation of islet β cells. Despite its importance, the regulatory mechanism of MafA gene expression is still unclear. To identify the transcriptional regulators of MafA, we examined various transcription factors, which are potentially involved in β cell differentiation. An adenovirus-mediated overexpression study clearly demonstrated that Onecut1 suppresses the promoter activity of MafA through the Foxa2-binding cis-element on the MafA enhancer region (named area A). However, ChIP analysis showed that Foxa2 but not Onecut1 could directly bind to area A. Furthermore, overexpression of Onecut1 inhibited the binding of Foxa2 onto area A upon ChIP analysis. Importantly, insertion of a mutation in the Foxa2-binding site of area A significantly decreased the promoter activity of MafA. These findings suggest that Onecut1 suppresses MafA gene expression through the Foxa2-binding site. In the mouse pancreas, MafA expression was first detected at the latest stage of β cell differentiation and was scarcely observed in Onecut1-positive cells during pancreas development. In addition, Onecut1 expression was significantly increased in the islets of diabetic db/db mice, whereas MafA expression was markedly decreased. The improved glucose levels of db/db mice with insulin injections significantly reduced Onecut1 expression and rescued the reduction of MafA expression. These in vivo experiments also suggest that Onecut1 is a negative regulator of MafA gene expression. This study implicates the novel role of Onecut1 in the control of normal β cell differentiation and its involvement in β cell dysfunction under diabetic conditions by suppressing MafA gene expression.
Collapse
MESH Headings
- Animals
- Binding Sites/genetics
- Blotting, Western
- Cell Differentiation/genetics
- Cell Line, Tumor
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Enhancer Elements, Genetic/genetics
- Gene Expression
- Gene Expression Regulation, Developmental
- Hepatocyte Nuclear Factor 3-beta/genetics
- Hepatocyte Nuclear Factor 3-beta/metabolism
- Hepatocyte Nuclear Factor 6/genetics
- Hepatocyte Nuclear Factor 6/metabolism
- Hepatocyte Nuclear Factor 6/physiology
- Immunohistochemistry
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Maf Transcription Factors, Large/genetics
- Maf Transcription Factors, Large/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Models, Genetic
- Pancreas/embryology
- Pancreas/growth & development
- Pancreas/metabolism
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Kaoru Yamamoto
- From the Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, 565-0871 Suita, Japan
| | - Taka-aki Matsuoka
- From the Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, 565-0871 Suita, Japan
| | - Satoshi Kawashima
- From the Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, 565-0871 Suita, Japan
| | - Satomi Takebe
- From the Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, 565-0871 Suita, Japan
| | - Noriyo Kubo
- From the Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, 565-0871 Suita, Japan
| | - Takeshi Miyatsuka
- From the Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, 565-0871 Suita, Japan
| | - Hideaki Kaneto
- From the Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, 565-0871 Suita, Japan
| | - Iichiro Shimomura
- From the Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, 565-0871 Suita, Japan
| |
Collapse
|
26
|
Feng ZC, Riopel M, Li J, Donnelly L, Wang R. Downregulation of Fas activity rescues early onset of diabetes in c-Kit(Wv/+) mice. Am J Physiol Endocrinol Metab 2013; 304:E557-65. [PMID: 23269409 DOI: 10.1152/ajpendo.00453.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
c-Kit and its ligand stem cell factor (SCF) are important for β-cell survival and maturation; meanwhile, interactions between the Fas receptor (Fas) and Fas ligand are capable of triggering β-cell apoptosis. Disruption of c-Kit signaling leads to severe loss of β-cell mass and function with upregulation of Fas expression in c-Kit(Wv/+) mouse islets, suggesting that there is a critical balance between c-Kit and Fas activation in β-cells. In the present study, we investigated the interrelationship between c-Kit and Fas activation that mediates β-cell survival and function. We generated double mutant, c-Kit(Wv/+);Fas(lpr/lpr) (Wv(-/-)), mice to study the physiological and functional role of Fas with respect to β-cell function in c-Kit(Wv/+) mice. Isolated islets from these mice and the INS-1 cell line were used. We observed that islets in c-Kit(Wv/+) mice showed a significant increase in β-cell apoptosis along with upregulated p53 and Fas expression. These results were verified in vitro in INS-1 cells treated with SCF or c-Kit siRNA combined with a p53 inhibitor and Fas siRNA. In vivo, Wv(-/-) mice displayed improved β-cell function, with significantly enhanced insulin secretion and increased β-cell mass and proliferation compared with Wv(+/+) mice. This improvement was associated with downregulation of the Fas-mediated caspase-dependent apoptotic pathway and upregulation of the cFlip/NF-κB pathway. These findings demonstrate that a balance between the c-Kit and Fas signaling pathways is critical in the regulation of β-cell survival and function.
Collapse
Affiliation(s)
- Zhi-Chao Feng
- Children's Health Research Institute, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
27
|
Feng ZC, Li J, Turco BA, Riopel M, Yee SP, Wang R. Critical role of c-Kit in beta cell function: increased insulin secretion and protection against diabetes in a mouse model. Diabetologia 2012; 55:2214-25. [PMID: 22581040 DOI: 10.1007/s00125-012-2566-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 03/30/2012] [Indexed: 10/28/2022]
Abstract
AIMS/HYPOTHESIS The receptor tyrosine kinase, c-Kit, and its ligand, stem cell factor, control a variety of cellular processes, including pancreatic beta cell survival and differentiation as revealed in c-Kit ( Wv ) mice, which have a point mutation in the c-Kit allele leading to loss of kinase activity and develop diabetes. The present study further investigated the intrinsic role of c-Kit in beta cells, especially the underlying mechanisms that influence beta cell function. METHODS We generated a novel transgenic mouse model with c-KIT overexpression specifically in beta cells (c-KitβTg) to further examine the physiological and functional roles of c-Kit in beta cells. Isolated islets from these mice were used to investigate the underlying molecular pathway of c-Kit in beta cells. We also characterised the ability of c-Kit to protect animals from high-fat-diet-induced diabetes, as well as to rescue c-Kit ( Wv ) mice from early onset of diabetes. RESULTS c-KitβTg mice exhibited improved beta cell function, with significantly improved insulin secretion, and increased beta cell mass and proliferation in response to high-fat-diet-induced diabetes. c-KitβTg islets exhibited upregulation of: (1) insulin receptor and IRSs; (2) Akt and glycogen synthase kinase 3β phosphorylation; and (3) transcription factors important for islet function. c-KIT overexpression in beta cells also rescued diabetes observed in c-Kit ( Wv ) mice. CONCLUSIONS/INTERPRETATION These findings demonstrate that c-Kit plays a direct protective role in beta cells, by regulating glucose metabolism and beta cell function. c-Kit may therefore represent a novel target for treating diabetes.
Collapse
Affiliation(s)
- Z C Feng
- Victoria Research Laboratories, Room A5-140, 800 Commissioners Road East, London, ON, Canada, N6C 2V5
| | | | | | | | | | | |
Collapse
|
28
|
Schuit F, Van Lommel L, Granvik M, Goyvaerts L, de Faudeur G, Schraenen A, Lemaire K. β-cell-specific gene repression: a mechanism to protect against inappropriate or maladjusted insulin secretion? Diabetes 2012; 61:969-75. [PMID: 22517647 PMCID: PMC3331770 DOI: 10.2337/db11-1564] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Frans Schuit
- Gene Expression Unit, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Classic experiments such as somatic cell nuclear transfer into oocytes and cell fusion demonstrated that differentiated cells are not irreversibly committed to their fate. More recent work has built on these conclusions and discovered defined factors that directly induce one specific cell type from another, which may be as distantly related as cells from different germ layers. This suggests the possibility that any specific cell type may be directly converted into any other if the appropriate reprogramming factors are known. Direct lineage conversion could provide important new sources of human cells for modeling disease processes or for cellular-replacement therapies. For future applications, it will be critical to carefully determine the fidelity of reprogramming and to develop methods for robustly and efficiently generating human cell types of interest.
Collapse
Affiliation(s)
- Thomas Vierbuchen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
30
|
Vargas N, Álvarez-Cubela S, Giraldo JA, Nieto M, Fort NM, Cechin S, García E, Espino-Grosso P, Fraker CA, Ricordi C, Inverardi L, Pastori RL, Domínguez-Bendala J. TAT-mediated transduction of MafA protein in utero results in enhanced pancreatic insulin expression and changes in islet morphology. PLoS One 2011; 6:e22364. [PMID: 21857924 PMCID: PMC3150355 DOI: 10.1371/journal.pone.0022364] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/24/2011] [Indexed: 01/01/2023] Open
Abstract
Alongside Pdx1 and Beta2/NeuroD, the transcription factor MafA has been shown to be instrumental in the maintenance of the beta cell phenotype. Indeed, a combination of MafA, Pdx1 and Ngn3 (an upstream regulator of Beta2/NeuroD) was recently reported to lead to the effective reprogramming of acinar cells into insulin-producing beta cells. These experiments set the stage for the development of new strategies to address the impairment of glycemic control in diabetic patients. However, the clinical applicability of reprogramming in this context is deemed to be poor due to the need to use viral vehicles for the delivery of the above factors. Here we describe a recombinant transducible version of the MafA protein (TAT-MafA) that penetrates across cell membranes with an efficiency of 100% and binds to the insulin promoter in vitro. When injected in utero into living mouse embryos, TAT-MafA significantly up-regulates target genes and induces enhanced insulin production as well as cytoarchitectural changes consistent with faster islet maturation. As the latest addition to our armamentarium of transducible proteins (which already includes Pdx1 and Ngn3), the purification and characterization of a functional TAT-MafA protein opens the door to prospective therapeutic uses that circumvent the use of viral delivery. To our knowledge, this is also the first report on the use of protein transduction in utero.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western
- Cell Line, Tumor
- Cells, Cultured
- Female
- Gene Expression
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- Insulin/genetics
- Insulin/metabolism
- Islets of Langerhans/cytology
- Islets of Langerhans/metabolism
- Maf Transcription Factors, Large/genetics
- Maf Transcription Factors, Large/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Pancreas/embryology
- Pancreas/metabolism
- Pregnancy
- Promoter Regions, Genetic/genetics
- Protein Binding
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transfection
- Uterus/metabolism
Collapse
Affiliation(s)
- Nancy Vargas
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Silvia Álvarez-Cubela
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Jaime A. Giraldo
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Biomedical Engineering, University of Miami, Miami, Florida, United States of America
| | - Margarita Nieto
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Nicholas M. Fort
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Sirlene Cechin
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Enrique García
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Pedro Espino-Grosso
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Christopher A. Fraker
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Biomedical Engineering, University of Miami, Miami, Florida, United States of America
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Luca Inverardi
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Ricardo L. Pastori
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
31
|
Differentiation diversity of mouse parthenogenetic embryonic stem cells in chimeric mice. Theriogenology 2010; 74:135-45. [DOI: 10.1016/j.theriogenology.2010.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 01/16/2010] [Accepted: 01/30/2010] [Indexed: 11/17/2022]
|