1
|
Chipman AD. The development and evolution of arthropod tagmata. Proc Biol Sci 2025; 292:20242950. [PMID: 40237508 PMCID: PMC12001983 DOI: 10.1098/rspb.2024.2950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The segmented body is a hallmark of the arthropod body plan. Morphological segments are formed during embryogenesis, through a complex procedure involving the activation of a series of gene regulatory networks. The segments of the arthropod body are organized into functional units known as tagmata, and these tagmata are different among the arthropod classes (e.g. head, thorax and abdomen in insects). Based on embryological work on segment generation in a number of arthropod species, coupled with a survey of classical descriptions of arthropod development, I suggest a new framework for the evolution of arthropod tagmata. The ancestral condition involves three developmental tagmata: the pre-gnathal segments, a tagma that is formed within a pre-existing developmental field and a tagma that is formed through the activity of a segment-addition zone that may be embryonic or post-embryonic. These embryonic tagmata may fuse post-embryonically to generate more complex adult tagmata. This framework is consistent with the evolution of tagmosis seen in the early arthropod fossil record. It also calls for a re-thinking of the decades-old division of arthropod development into short-germ versus long-germ development, a re-thinking of questions of segment identity determination and the role of Hox genes in tagma differentiation.
Collapse
Affiliation(s)
- Ariel D. Chipman
- Department of Ecology, Evolution & Behavior, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Wang JJ, Bai Y, Dong Y. A Rearrangement of the Mitochondrial Genes of Centipedes (Arthropoda, Myriapoda) with a Phylogenetic Analysis. Genes (Basel) 2022; 13:1787. [PMID: 36292672 PMCID: PMC9601646 DOI: 10.3390/genes13101787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 09/12/2024] Open
Abstract
Due to the limitations of taxon sampling and differences in results from the available data, the phylogenetic relationships of the Myriapoda remain contentious. Therefore, we try to reconstruct and analyze the phylogenetic relationships within the Myriapoda by examining mitochondrial genomes (the mitogenome). In this study, typical circular mitogenomes of Mecistocephalus marmoratus and Scolopendra subspinipes were sequenced by Sanger sequencing; they were 15,279 bp and 14,637 bp in length, respectively, and a control region and 37 typical mitochondrial genes were annotated in the sequences. The results showed that all 13 PCGs started with ATN codons and ended with TAR codons or a single T; what is interesting is that the gene orders of M. marmoratus have been extensively rearranged compared with most Myriapoda. Thus, we propose a simple duplication/loss model to explain the extensively rearranged genes of M. marmoratus, hoping to provide insights into mitogenome rearrangement events in Myriapoda. In addition, our mitogenomic phylogenetic analyses showed that the main myriapod groups are monophyletic and supported the combination of the Pauropoda and Diplopoda to form the Dignatha. Within the Chilopoda, we suggest that Scutigeromorpha is a sister group to the Lithobiomorpha, Geophilomorpha, and Scolopendromorpha. We also identified a close relationship between the Lithobiomorpha and Geophilomorpha. The results also indicate that the mitogenome can be used as an effective mechanism to understand the phylogenetic relationships within Myriapoda.
Collapse
Affiliation(s)
| | | | - Yan Dong
- College of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China
| |
Collapse
|
3
|
Moysiuk J, Caron JB. A three-eyed radiodont with fossilized neuroanatomy informs the origin of the arthropod head and segmentation. Curr Biol 2022; 32:3302-3316.e2. [PMID: 35809569 DOI: 10.1016/j.cub.2022.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/19/2022] [Accepted: 06/09/2022] [Indexed: 01/04/2023]
Abstract
In addition to being among the most iconic and bizarre-looking Cambrian animals, radiodonts are a group that offers key insight into the acquisition of the arthropod body plan by virtue of their phylogenetic divergence prior to all living members of the phylum. Nonetheless, radiodont fossils are rare and often fragmentary, and contentions over their interpretation have hindered resolution of important evolutionary conundrums. Here, we describe 268 specimens of Stanleycaris hirpex from the Cambrian Burgess Shale, including many exceptionally preserved whole-body specimens, informing the most complete reconstruction of a radiodont to date. The trunk region of Stanleycaris has up to 17 segments plus two pairs of filiform caudal blades. The recognition of dorsal sclerotic segmentation of the trunk cuticle and putative unganglionated nerve cords provides new insight into the relative timing of acquisition of segmental traits, the epitome of the arthropod body plan. In addition to the pair of stalked lateral eyes, the short head unexpectedly bears a large median eye situated behind a preocular sclerite on an anteriorly projecting head lobe. Upon re-evaluation, similar median eyes can be identified in other Cambrian panarthropods demonstrating a deep evolutionary continuity. The exquisitely preserved brain of Stanleycaris is consistent with the hypothesized deutocerebral innervation of the frontal appendages, reconciling neuroanatomical evidence with external morphology in support of an ancestrally bipartite head and brain for arthropods. We propose that the integration of this bipartite head prior to the acquisition of most segmental characters exclusively in the arthropod trunk may help explain its developmental differentiation.
Collapse
Affiliation(s)
- Joseph Moysiuk
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada; Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, ON M5S 2C6, Canada.
| | - Jean-Bernard Caron
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada; Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, ON M5S 2C6, Canada; Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, ON M5S 3B1, Canada.
| |
Collapse
|
4
|
Gainett G, Crawford AR, Klementz BC, So C, Baker CM, Setton EVW, Sharma PP. Eggs to long-legs: embryonic staging of the harvestman Phalangium opilio (Opiliones), an emerging model arachnid. Front Zool 2022; 19:11. [PMID: 35246168 PMCID: PMC8896363 DOI: 10.1186/s12983-022-00454-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The comparative embryology of Chelicerata has greatly advanced in recent years with the integration of classical studies and genetics, prominently spearheaded by developmental genetic works in spiders. Nonetheless, the understanding of the evolution of development and polarization of embryological characters in Chelicerata is presently limited, as few non-spider species have been well studied. A promising focal species for chelicerate evo-devo is the daddy-long-legs (harvestman) Phalangium opilio, a member of the order Opiliones. Phalangium opilio, breeds prolifically and is easily accessible in many parts of the world, as well as tractable in a laboratory setting. Resources for this species include developmental transcriptomes, a draft genome, and protocols for RNA interference, but a modern staging system is critically missing for this emerging model system. RESULTS We present a staging system of P. opilio embryogenesis that spans the most important morphogenetic events with respect to segment formation, appendage elongation and head development. Using time-lapse imaging, confocal microscopy, colorimetric in situ hybridization, and immunohistochemistry, we tracked the development of synchronous clutches from egg laying to adulthood. We describe key events in segmentation, myogenesis, neurogenesis, and germ cell formation. CONCLUSION Considering the phylogenetic position of Opiliones and the unduplicated condition of its genome (in contrast to groups like spiders and scorpions), this species is poised to serve as a linchpin for comparative studies in arthropod development and genome evolution. The staging system presented herein provides a valuable reference for P. opilio that we anticipate being useful to the arthropod evo-devo community, with the goal of revitalizing research in the comparative development of non-spider arachnids.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA.
| | - Audrey R Crawford
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Benjamin C Klementz
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Calvin So
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Caitlin M Baker
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
5
|
Diaz-Cuadros M, Pourquié O, El-Sherif E. Patterning with clocks and genetic cascades: Segmentation and regionalization of vertebrate versus insect body plans. PLoS Genet 2021; 17:e1009812. [PMID: 34648490 PMCID: PMC8516289 DOI: 10.1371/journal.pgen.1009812] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oscillatory and sequential processes have been implicated in the spatial patterning of many embryonic tissues. For example, molecular clocks delimit segmental boundaries in vertebrates and insects and mediate lateral root formation in plants, whereas sequential gene activities are involved in the specification of regional identities of insect neuroblasts, vertebrate neural tube, vertebrate limb, and insect and vertebrate body axes. These processes take place in various tissues and organisms, and, hence, raise the question of what common themes and strategies they share. In this article, we review 2 processes that rely on the spatial regulation of periodic and sequential gene activities: segmentation and regionalization of the anterior-posterior (AP) axis of animal body plans. We study these processes in species that belong to 2 different phyla: vertebrates and insects. By contrasting 2 different processes (segmentation and regionalization) in species that belong to 2 distantly related phyla (arthropods and vertebrates), we elucidate the deep logic of patterning by oscillatory and sequential gene activities. Furthermore, in some of these organisms (e.g., the fruit fly Drosophila), a mode of AP patterning has evolved that seems not to overtly rely on oscillations or sequential gene activities, providing an opportunity to study the evolution of pattern formation mechanisms.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ezzat El-Sherif
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Spatiotemporal variation in cell proliferation patterns during arthropod axial elongation. Sci Rep 2021; 11:327. [PMID: 33431947 PMCID: PMC7801698 DOI: 10.1038/s41598-020-79373-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/04/2020] [Indexed: 01/29/2023] Open
Abstract
An elongated and segmented body plan is a common morphological characteristic of all arthropods and is probably responsible for their high adaptation ability to diverse environments. Most arthropods form their bodies by progressively adding segments, resembling vertebrate somitogenesis. This sequential segmentation relies on a molecular clock that operates in the posterior region of the elongating embryo that combines dynamically with cellular behaviors and tissue rearrangements, allowing the extension of the developing body along its main embryonic axis. Even though the molecular mechanisms involved in elongation and segment formation have been found to be conserved in a considerable degree, cellular processes such as cell division are quite variable between different arthropods. In this study, we show that cell proliferation in the beetle Tribolium castaneum has a nonuniform spatiotemporal patterning during axial elongation. We found that dividing cells are preferentially oriented along the anterior-posterior axis, more abundant and posteriorly localized during thoracic segments formation and that this cell proliferation peak was triggered at the onset of axis elongation. This raise in cell divisions, in turn, was correlated with an increase in the elongation rate, but not with changes in cell density. When DNA synthesis was inhibited over this period, both the area and length of thoracic segments were significantly reduced but not of the first abdominal segment. We discuss the variable participation that different cell division patterns and cell movements may have on arthropod posterior growth and their evolutionary contribution.
Collapse
|
7
|
Stojanović DZ, Vujić VD, Lučić LR, Tomić VT, Makarov SE, Mitić BM. Life after the mother's hug: Late post-embryonic development of Cryptops parisi (Chilopoda: Scolopendromorpha: Cryptopidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 57:100948. [PMID: 32416473 DOI: 10.1016/j.asd.2020.100948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Here we describe in detail the late post-embryonic development of the common European scolopendromorph centipede Cryptops parisi. Canonical variate analyses of two groups of external morphological characters, viz., cephalic capsule characters (head length, length of the anterior and posterior paramedian cephalic sutures) and coxopleuron surface characters (number of pores in the coxal pore-field, number of setae on the posterior coxopleuron edge, their number on the coxal pore-field, and their number posterior to the coxal pore-field) were conducted on a large sample of specimens collected from two localities in Serbia. Ten free-living stages are recognized: three pre-adult stages (adolescens I, II, and III) and seven adult stages (one maturus junior stage, four maturus, and two maturus senior stages). The fourth late post-embryonic stage is the first mature stage in both sexes. Sexual dimorphism in the aforementioned characters was not observed. Morphological variation of coxopleuron characters was more informative for the discrimination of developmental stages in Cryptops than the morphological variation of cephalic capsule characters.
Collapse
Affiliation(s)
- Dalibor Z Stojanović
- University of Belgrade - Faculty of Biology, Institute of Zoology, Studentski Trg 16, 11000 Belgrade, Serbia.
| | - Vukica D Vujić
- University of Belgrade - Faculty of Biology, Institute of Zoology, Studentski Trg 16, 11000 Belgrade, Serbia.
| | - Luka R Lučić
- University of Belgrade - Faculty of Biology, Institute of Zoology, Studentski Trg 16, 11000 Belgrade, Serbia.
| | - Vladimir T Tomić
- University of Belgrade - Faculty of Biology, Institute of Zoology, Studentski Trg 16, 11000 Belgrade, Serbia.
| | - Slobodan E Makarov
- University of Belgrade - Faculty of Biology, Institute of Zoology, Studentski Trg 16, 11000 Belgrade, Serbia.
| | - Bojan M Mitić
- University of Belgrade - Faculty of Biology, Institute of Zoology, Studentski Trg 16, 11000 Belgrade, Serbia.
| |
Collapse
|
8
|
Cabanillas D. Primera cita de <em>Strigamia maritima</em> (Leach, 1817) (Chilopoda, Geophilomorpha, Linotaeniidae) en España. GRAELLSIA 2020. [DOI: 10.3989/graellsia.2020.v76.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
En este informe se describe la primera cita de Strigamia maritima (Leach, 1817) en la península ibérica, encontrándose la especie en la ría del Eo localizada en el noroeste de Asturias (norte de España). Se comentan características morfológicas y ecológicas de S. maritima y se proporcionan claves de identificación ilustradas de las especies de Strigamia Gray, 1843 presentes en la península ibérica.
Collapse
|
9
|
Abstract
ABSTRACT
There is now compelling evidence that many arthropods pattern their segments using a clock-and-wavefront mechanism, analogous to that operating during vertebrate somitogenesis. In this Review, we discuss how the arthropod segmentation clock generates a repeating sequence of pair-rule gene expression, and how this is converted into a segment-polarity pattern by ‘timing factor’ wavefronts associated with axial extension. We argue that the gene regulatory network that patterns segments may be relatively conserved, although the timing of segmentation varies widely, and double-segment periodicity appears to have evolved at least twice. Finally, we describe how the repeated evolution of a simultaneous (Drosophila-like) mode of segmentation within holometabolan insects can be explained by heterochronic shifts in timing factor expression plus extensive pre-patterning of the pair-rule genes.
Collapse
Affiliation(s)
- Erik Clark
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Andrew D. Peel
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| |
Collapse
|
10
|
Paese CLB, Schoenauer A, Leite DJ, Russell S, McGregor AP. A SoxB gene acts as an anterior gap gene and regulates posterior segment addition in a spider. eLife 2018; 7:e37567. [PMID: 30126532 PMCID: PMC6167052 DOI: 10.7554/elife.37567] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023] Open
Abstract
Sox genes encode a set of highly conserved transcription factors that regulate many developmental processes. In insects, the SoxB gene Dichaete is the only Sox gene known to be involved in segmentation. To determine if similar mechanisms are used in other arthropods, we investigated the role of Sox genes during segmentation in the spider Parasteatoda tepidariorum. While Dichaete does not appear to be involved in spider segmentation, we found that the closely related Sox21b-1 gene acts as a gap gene during formation of anterior segments and is also part of the segmentation clock for development of the segment addition zone and sequential addition of opisthosomal segments. Thus, we have found that two different mechanisms of segmentation in a non-mandibulate arthropod are regulated by a SoxB gene. Our work provides new insights into the function of an important and conserved gene family, and the evolution of the regulation of segmentation in arthropods.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| | - Anna Schoenauer
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| | - Daniel J Leite
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| | - Steven Russell
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Alistair P McGregor
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| |
Collapse
|
11
|
Auman T, Chipman AD. The Evolution of Gene Regulatory Networks that Define Arthropod Body Plans. Integr Comp Biol 2018; 57:523-532. [PMID: 28957519 DOI: 10.1093/icb/icx035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Our understanding of the genetics of arthropod body plan development originally stems from work on Drosophila melanogaster from the late 1970s and onward. In Drosophila, there is a relatively detailed model for the network of gene interactions that proceeds in a sequential-hierarchical fashion to define the main features of the body plan. Over the years, we have a growing understanding of the networks involved in defining the body plan in an increasing number of arthropod species. It is now becoming possible to tease out the conserved aspects of these networks and to try to reconstruct their evolution. In this contribution, we focus on several key nodes of these networks, starting from early patterning in which the main axes are determined and the broad morphological domains of the embryo are defined, and on to later stage wherein the growth zone network is active in sequential addition of posterior segments. The pattern of conservation of networks is very patchy, with some key aspects being highly conserved in all arthropods and others being very labile. Many aspects of early axis patterning are highly conserved, as are some aspects of sequential segment generation. In contrast, regional patterning varies among different taxa, and some networks, such as the terminal patterning network, are only found in a limited range of taxa. The growth zone segmentation network is ancient and is probably plesiomorphic to all arthropods. In some insects, it has undergone significant modification to give rise to a more hardwired network that generates individual segments separately. In other insects and in most arthropods, the sequential segmentation network has undergone a significant amount of systems drift, wherein many of the genes have changed. However, it maintains a conserved underlying logic and function.
Collapse
Affiliation(s)
- Tzach Auman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Ariel D Chipman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| |
Collapse
|
12
|
Kenning M, Müller CH, Sombke A. The ultimate legs of Chilopoda (Myriapoda): a review on their morphological disparity and functional variability. PeerJ 2017; 5:e4023. [PMID: 29158971 PMCID: PMC5691793 DOI: 10.7717/peerj.4023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/22/2017] [Indexed: 01/16/2023] Open
Abstract
The arthropodium is the key innovation of arthropods. Its various modifications are the outcome of multiple evolutionary transformations, and the foundation of nearly endless functional possibilities. In contrast to hexapods, crustaceans, and even chelicerates, the spectrum of evolutionary transformations of myriapod arthropodia is insufficiently documented and rarely scrutinized. Among Myriapoda, Chilopoda (centipedes) are characterized by their venomous forcipules-evolutionarily transformed walking legs of the first trunk segment. In addition, the posterior end of the centipedes' body, in particular the ultimate legs, exhibits a remarkable morphological heterogeneity. Not participating in locomotion, they hold a vast functional diversity. In many centipede species, elongation and annulation in combination with an augmentation of sensory structures indicates a functional shift towards a sensory appendage. In other species, thickening, widening and reinforcement with a multitude of cuticular protuberances and glandular systems suggests a role in both attack and defense. Moreover, sexual dimorphic characteristics indicate that centipede ultimate legs play a pivotal role in intraspecific communication, mate finding and courtship behavior. We address ambiguous identifications and designations of podomeres in order to point out controversial aspects of homology and homonymy. We provide a broad summary of descriptions, illustrations, ideas and observations published in past 160 years, and propose that studying centipede ultimate legs is not only essential in itself for filling gaps of knowledge in descriptive morphology, but also provides an opportunity to explore diverse pathways of leg transformations within Myriapoda.
Collapse
Affiliation(s)
- Matthes Kenning
- Zoological Institute and Museum, Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Carsten H.G. Müller
- Zoological Institute and Museum, General and Systematic Zoology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Andy Sombke
- Zoological Institute and Museum, Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| |
Collapse
|
13
|
Hunnekuhl VS, Akam M. Formation and subdivision of the head field in the centipede Strigamia maritima, as revealed by the expression of head gap gene orthologues and hedgehog dynamics. EvoDevo 2017; 8:18. [PMID: 29075435 PMCID: PMC5654096 DOI: 10.1186/s13227-017-0082-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/11/2017] [Indexed: 11/22/2022] Open
Abstract
Background There have been few studies of head patterning in non-insect arthropods, and even in the insects, much is not yet understood. In the fly Drosophila three head gap genes, orthodenticle (otd), buttonhead (btd) and empty spiracles (ems) are essential for patterning the head. However, they do not act through the same pair-rule genes that pattern the trunk from the mandibular segment backwards. Instead they act through the downstream factors collier (col) and cap‘n’collar (cnc), and presumably other unknown factors. In the beetle Tribolium, these same gap and downstream genes are also expressed during early head development, but in more restricted domains, and some of them have been shown to be of minor functional importance. In the spider Parasteatoda tepidariorum, hedgehog (hh) and otd have been shown to play an important role in head segmentation. Results We have investigated the expression dynamics of otx (otd), SP5/btd, ems, and the downstream factors col, cnc and hh during early head development of the centipede Strigamia maritima. Our results reveal the process of head condensation and show that the anteroposterior sequence of specific gene expression is conserved with that in insects. SP5/btd and otx genes are expressed prior to and during head field formation, whereas ems is not expressed until after the initial formation of the head field, in an emerging gap between SP5/btd and otx expression. Furthermore, we observe an early domain of Strigamia hh expression in the head field that splits to produce segmental stripes in the ocular, antennal and intercalary segments. Conclusions The dynamics of early gene expression in the centipede show considerable similarity with that in the beetle, both showing more localised expression of head gap genes than occurs in the fly. This suggests that the broad overlapping domains of head gap genes observed in Drosophila are derived in this lineage. We also suggest that the splitting of the early hh segmental stripes may reflect an ancestral and conserved process in arthropod head patterning. A remarkably similar stripe splitting process has been described in a spider, and in the Drosophila head hh expression starts from a broad domain that transforms into three stripes. Electronic supplementary material The online version of this article (doi:10.1186/s13227-017-0082-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vera S Hunnekuhl
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB23EJ UK.,Department of Evolutionary Developmental Genetics, Georg-August-Universität Göttingen, Caspari Haus, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Michael Akam
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB23EJ UK
| |
Collapse
|
14
|
Savriama Y, Gerber S, Baiocco M, Debat V, Fusco G. Development and evolution of segmentation assessed by geometric morphometrics: The centipede Strigamia maritima as a case study. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:419-428. [PMID: 28302585 DOI: 10.1016/j.asd.2017.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/22/2017] [Accepted: 03/11/2017] [Indexed: 05/14/2023]
Abstract
Using the centipede model species Strigamia maritima as a subject of study, we illustrate the potential of geometric morphometrics for investigating the development and evolution of segmentation, with a specific focus on post-embryonic segmental patterning. We show how these techniques can contribute detailed descriptive data for comparative purposes, but also precious information on some features of the developmental system that are considered relevant for the evolvability of a segmented body architecture, such as developmental stability and canalization. Morphometric analyses allow to separately investigate several sources of phenotypic variation along a segmented body axis, like constitutive and random segment heteronomy, both within and among individuals. Specifically, in S. maritima, the segmental pattern of ventral sclerite shapes mirrors that of their bilateral fluctuating asymmetry and among-individual variation in associating the most anterior and most posterior segments in diverging from the central ones. Also, among segments, there seems to be a correlation between fluctuating asymmetry and shape variation among individuals, suggesting that canalization and developmental stability are somehow associated. Overall, these associations might stem from a joint influence of the segmental position on the two processes of developmental buffering.
Collapse
Affiliation(s)
- Yoland Savriama
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Sylvain Gerber
- Institut de Systématique, Évolution, Biodiversité ISYEB - UMR 7205 - MNHN CNRS UPMC EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Matteo Baiocco
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131 Padova, Italy
| | - Vincent Debat
- Institut de Systématique, Évolution, Biodiversité ISYEB - UMR 7205 - MNHN CNRS UPMC EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Giuseppe Fusco
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131 Padova, Italy.
| |
Collapse
|
15
|
Minelli A. Introduction: The evolution of segmentation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:323-327. [PMID: 28235577 DOI: 10.1016/j.asd.2017.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Affiliation(s)
- Alessandro Minelli
- Department of Biology, University of Padova, Via Ugo Bassi, 58 B, I 35131 Padova, Italy.
| |
Collapse
|
16
|
Hunding A, Baumgartner S. Ancient role of ten-m/ odz in segmentation and the transition from sequential to syncytial segmentation. Hereditas 2017; 154:8. [PMID: 28461810 PMCID: PMC5408475 DOI: 10.1186/s41065-017-0029-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023] Open
Abstract
Background Until recently, mechanisms of segmentation established for Drosophila served as a paradigm for arthropod segmentation. However, with the discovery of gene expression waves in vertebrate segmentation, another paradigm based on oscillations linked to axial growth was established. The Notch pathway and hairy delay oscillator are basic components of this mechanism, as is the wnt pathway. With the establishment of oscillations during segmentation of the beetle Tribolium, a common segmentation mechanism may have been present in the last common ancestor of vertebrates and arthropods. However, the Notch pathway is not involved in segmentation of the initial Drosophila embryo. In arthropods, the engrailed, wingless pair has a much more conserved function in segmentation than most of the hierarchy established for Drosophila. Results Here, we work backwards from this conserved pair by discussing possible mechanisms which could have taken over the role of the Notch pathway. We propose a pivotal role for the large transmembrane protein Ten-m/Odz. Ten-m/Odz may have had an ancient role in cell-cell communication, parallel to the Notch and wnt pathways. The Ten-m protein binds to the membrane with properties which resemble other membrane-based biochemical oscillators. Conclusion We propose that such a simple transition could have formed the initial scaffold, on top of which the hierarchy, observed in the syncytium of dipterans, could have evolved.
Collapse
Affiliation(s)
- Axel Hunding
- Biophysical Chemistry, Department of Chemistry S01, H. C. 0rsted Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Stefan Baumgartner
- Department of Experimental Medical Sciences, Lund University, BMC D10, 22184 Lund, Sweden
| |
Collapse
|
17
|
Auman T, Vreede BMI, Weiss A, Hester SD, Williams TA, Nagy LM, Chipman AD. Dynamics of growth zone patterning in the milkweed bug Oncopeltus fasciatus. Development 2017; 144:1896-1905. [PMID: 28432218 PMCID: PMC5450833 DOI: 10.1242/dev.142091] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 04/10/2017] [Indexed: 01/19/2023]
Abstract
We describe the dynamic process of abdominal segment generation in the milkweed bug Oncopeltus fasciatus. We present detailed morphological measurements of the growing germband throughout segmentation. Our data are complemented by cell division profiles and expression patterns of key genes, including invected and even-skipped as markers for different stages of segment formation. We describe morphological and mechanistic changes in the growth zone and in nascent segments during the generation of individual segments and throughout segmentation, and examine the relative contribution of newly formed versus existing tissue to segment formation. Although abdominal segment addition is primarily generated through the rearrangement of a pool of undifferentiated cells, there is nonetheless proliferation in the posterior. By correlating proliferation with gene expression in the growth zone, we propose a model for growth zone dynamics during segmentation in which the growth zone is functionally subdivided into two distinct regions: a posterior region devoted to a slow rate of growth among undifferentiated cells, and an anterior region in which segmental differentiation is initiated and proliferation inhibited. Summary: A detailed analysis of posterior segment addition in an insect reveals that the growth zone is divided into two functional domains responsible for growth and differentiation.
Collapse
Affiliation(s)
- Tzach Auman
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| | - Barbara M I Vreede
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| | - Aryeh Weiss
- Faculty of Engineering and The Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat Gan 52900, Israel.,Bio-Imaging Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| | - Susan D Hester
- Molecular and Cellular Biology Department, University of Arizona, Tucson, AZ 85721, USA
| | | | - Lisa M Nagy
- Molecular and Cellular Biology Department, University of Arizona, Tucson, AZ 85721, USA
| | - Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| |
Collapse
|
18
|
Pechmann M. Formation of the germ-disc in spider embryos by a condensation-like mechanism. Front Zool 2016; 13:35. [PMID: 27525029 PMCID: PMC4982120 DOI: 10.1186/s12983-016-0166-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/18/2016] [Indexed: 01/08/2023] Open
Abstract
Background Determination of the embryonic body axes is a crucial developmental process in all animals. The establishment of the embryonic axes of spiders has been best studied in the common-house-spider Parasteatoda tepidariorum. Here, anteroposterior (AP) polarity arises during germ disc formation; the centre of the germ-disc marks the future posterior pole, and the rim of the disc the future anterior pole of the spider embryo. The centre of the germ disc is also needed for the formation of the cumulus, a group of migratory cells needed to establish dorsoventral (DV) polarity. Thus, both body axes depend on proper germ disc formation and patterning. However, these processes have not been fully analysed at the cellular and molecular level. Results Here I present new techniques to stain the cell membranes/outlines in live and fixed spider embryos. I show that the germ-disc is formed from a regular and contiguous blastoderm and that co-ordinated cell shape changes, rather than migration of single cells, are required to drive germ-disc formation in P. tepidariorum embryos. Furthermore, I show that the rate of cell divisions within the embryonic and extra-embryonic region is not involved in the rapid establishment of the germ-disc. Finally, I show that the process of germ-disc formation is dependent on the initiation of zygotic transcription. Conclusions The presented data provide new insights in to the formation of the germ-disc in spider embryos. The establishment of the germ-disc in Parasteatoda embryos is a highly dynamic process that involves wide scale cell-shape changes. While most of the blastodermal cells become cuboidal to form the dense germ-disc, the remaining blastodermal cells stay squamous and develop into huge extra-embryonic, yolk rich cells. In addition, this study shows that the onset of zygotic transcription is needed to establish the germ-disc itself, and that the mid-blastula transition of Parasteatoda tepidariorum embryos is prior to any overt axis establishment. Electronic supplementary material The online version of this article (doi:10.1186/s12983-016-0166-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias Pechmann
- University of Cologne, Cologne Biocenter, Zülpicher Str. 47B, 50674 Cologne, Germany
| |
Collapse
|
19
|
Toll Genes Have an Ancestral Role in Axis Elongation. Curr Biol 2016; 26:1609-1615. [DOI: 10.1016/j.cub.2016.04.055] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/06/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022]
|
20
|
XX/XY System of Sex Determination in the Geophilomorph Centipede Strigamia maritima. PLoS One 2016; 11:e0150292. [PMID: 26919730 PMCID: PMC4769173 DOI: 10.1371/journal.pone.0150292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/11/2016] [Indexed: 11/19/2022] Open
Abstract
We show that the geophilomorph centipede Strigamia maritima possesses an XX/XY system of sex chromosomes, with males being the heterogametic sex. This is, to our knowledge, the first report of sex chromosomes in any geophilomorph centipede. Using the recently assembled Strigamia genome sequence, we identified a set of scaffolds differentially represented in male and female DNA sequence. Using quantitative real-time PCR, we confirmed that three candidate X chromosome-derived scaffolds are present at approximately twice the copy number in females as in males. Furthermore, we confirmed that six candidate Y chromosome-derived scaffolds contain male-specific sequences. Finally, using this molecular information, we designed an X chromosome-specific DNA probe and performed fluorescent in situ hybridization against mitotic and meiotic chromosome spreads to identify the Strigamia XY sex-chromosome pair cytologically. We found that the X and Y chromosomes are recognizably different in size during the early pachytene stage of meiosis, and exhibit incomplete and delayed pairing.
Collapse
|
21
|
Chipman AD. An embryological perspective on the early arthropod fossil record. BMC Evol Biol 2015; 15:285. [PMID: 26678148 PMCID: PMC4683962 DOI: 10.1186/s12862-015-0566-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our understanding of the early evolution of the arthropod body plan has recently improved significantly through advances in phylogeny and developmental biology and through new interpretations of the fossil record. However, there has been limited effort to synthesize data from these different sources. Bringing an embryological perspective into the fossil record is a useful way to integrate knowledge from different disciplines into a single coherent view of arthropod evolution. RESULTS I have used current knowledge on the development of extant arthropods, together with published descriptions of fossils, to reconstruct the germband stages of a series of key taxa leading from the arthropod lower stem group to crown group taxa. These reconstruction highlight the main evolutionary transitions that have occurred during early arthropod evolution, provide new insights into the types of mechanisms that could have been active and suggest new questions and research directions. CONCLUSIONS The reconstructions suggest several novel homology hypotheses - e.g. the lower stem group head shield and head capsules in the crown group are all hypothesized to derive from the embryonic head lobes. The homology of anterior segments in different groups is resolved consistently. The transition between "lower-stem" and "upper-stem" arthropods is highlighted as a major transition with a concentration of novelties and innovations, suggesting a gap in the fossil record. A close relationship between chelicerates and megacheirans is supported by the embryonic reconstructions, and I suggest that the depth of the mandibulate-chelicerate split should be reexamined.
Collapse
Affiliation(s)
- Ariel D Chipman
- The Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel. .,The Department of Paleobiology, The Smithsonian Museum of Natural History, Washington, DC, USA.
| |
Collapse
|
22
|
Stojanović DZ, Lučić LR, Danilović Luković JB, Mirčić DL, Živić NV, Makarov SE, Mitic BM. Life under the mother’s hug: Harmonization of the developmental schedules of epimorphs based on early development of the scolopendromorph centipede Cryptops parisi Brolemann, 1920 (Chilopoda: Scolopendromorpha: Cryptopidae). Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415060089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Fusco G, Leśniewska M, Congiu L, Bertorelle G. Population genetic structure of a centipede species with high levels of developmental instability. PLoS One 2015; 10:e0126245. [PMID: 26029915 PMCID: PMC4452494 DOI: 10.1371/journal.pone.0126245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/30/2015] [Indexed: 11/26/2022] Open
Abstract
European populations of the geophilomorph centipede Haplophilus subterraneus show a high proportion of individuals with morphological anomalies, suggesting high levels of developmental instability. The broad geographic distribution of this phenomenon seems to exclude local environmental causes, but the source of instability is still to be identified. The goal of the present study was to collect quantitative data on the occurrence of phenodeviants in different populations, along with data on the patterns of genetic variation within and between populations, in order to investigate possible association between developmental instability and genetic features. In a sample of 11 populations of H. subterraneus, distributed in western and central Europe, we looked for phenodeviants, in particular with respect to trunk morphology, and studied genetic variation through the genotyping of microsatellite loci. Overall, no support was found to the idea that developmental instability in H. subterraneus is related to a specific patterns of genetic variation, including inbreeding estimates. We identified a major genetic partition that subdivides French populations from the others, and a low divergence among northwestern areas, which are possibly related to the post-glacial recolonization from southern refugia and/or to recent anthropogenic soil displacements. A weak correlation between individual number of leg bearing segments and the occurrence of trunk anomalies seems to support a trade-off between these two developmental traits. These results, complemented by preliminary data on developmental stability in two related species, suggest that the phenomenon has not a simple taxonomic distribution, while it exhibits an apparent localization in central and eastern Europe.
Collapse
Affiliation(s)
- Giuseppe Fusco
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Giorgio Bertorelle
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
24
|
Hayden L, Schlosser G, Arthur W. Functional analysis of centipede development supports roles for Wnt genes in posterior development and segment generation. Evol Dev 2015; 17:49-62. [PMID: 25627713 DOI: 10.1111/ede.12112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genes of the Wnt family play important and highly conserved roles in posterior growth and development in a wide range of animal taxa. Wnt genes also operate in arthropod segmentation, and there has been much recent debate regarding the relationship between arthropod and vertebrate segmentation mechanisms. Due to its phylogenetic position, body form, and possession of many (11) Wnt genes, the centipede Strigamia maritima is a useful system with which to examine these issues. This study takes a functional approach based on treatment with lithium chloride, which causes ubiquitous activation of canonical Wnt signalling. This is the first functional developmental study performed in any of the 15,000 species of the arthropod subphylum Myriapoda. The expression of all 11 Wnt genes in Strigamia was analyzed in relation to posterior development. Three of these genes, Wnt11, Wnt5, and WntA, were strongly expressed in the posterior region and, thus, may play important roles in posterior developmental processes. In support of this hypothesis, LiCl treatment of S. maritima embryos was observed to produce posterior developmental defects and perturbations in AbdB and Delta expression. The effects of LiCl differ depending on the developmental stage treated, with more severe effects elicited by treatment during germband formation than by treatment at later stages. These results support a role for Wnt signalling in conferring posterior identity in Strigamia. In addition, data from this study are consistent with the hypothesis of segmentation based on a "clock and wavefront" mechanism operating in this species.
Collapse
Affiliation(s)
- Luke Hayden
- Evolutionary Developmental Biology Laboratory, Zoology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | | | |
Collapse
|
25
|
Changing cell behaviours during beetle embryogenesis correlates with slowing of segmentation. Nat Commun 2015; 6:6635. [PMID: 25858515 DOI: 10.1038/ncomms7635] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/10/2015] [Indexed: 02/06/2023] Open
Abstract
Segmented animals are found in major clades as phylogenetically distant as vertebrates and arthropods. Typically, segments form sequentially in what has been thought to be a regular process, relying on a segmentation clock to pattern budding segments and posterior mitosis to generate axial elongation. Here we show that segmentation in Tribolium has phases of variable periodicity during which segments are added at different rates. Furthermore, elongation during a period of rapid posterior segment addition is driven by high rates of cell rearrangement, demonstrated by differential fates of marked anterior and posterior blastoderm cells. A computational model of this period successfully reproduces elongation through cell rearrangement in the absence of cell division. Unlike current models of steady-state sequential segmentation and elongation from a proliferative growth zone, our results indicate that cell behaviours are dynamic and variable, corresponding to differences in segmentation rate and giving rise to morphologically distinct regions of the embryo.
Collapse
|
26
|
Robertson HE, Lapraz F, Rhodes AC, Telford MJ. The complete mitochondrial genome of the geophilomorph centipede Strigamia maritima. PLoS One 2015; 10:e0121369. [PMID: 25794168 PMCID: PMC4368715 DOI: 10.1371/journal.pone.0121369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/31/2015] [Indexed: 12/05/2022] Open
Abstract
Strigamia maritima (Myriapoda; Chilopoda) is a species from the soil-living order of geophilomorph centipedes. The Geophilomorpha is the most speciose order of centipedes with over a 1000 species described. They are notable for their large number of appendage bearing segments and are being used as a laboratory model to study the embryological process of segmentation within the myriapods. Using a scaffold derived from the recently published genome of Strigamia maritima that contained multiple mitochondrial protein-coding genes, here we report the complete mitochondrial genome of Strigamia, the first from any geophilomorph centipede. The mitochondrial genome of S. maritima is a circular molecule of 14,938 base pairs, within which we could identify the typical mitochondrial genome complement of 13 protein-coding genes and 2 ribosomal RNA genes. Sequences resembling 16 of the 22 transfer RNA genes typical of metazoan mitochondrial genomes could be identified, many of which have clear deviations from the standard ‘cloverleaf’ secondary structures of tRNA. Phylogenetic trees derived from the concatenated alignment of protein-coding genes of S. maritima and >50 other metazoans were unable to resolve the Myriapoda as monophyletic, but did support a monophyletic group of chilopods: Strigamia was resolved as the sister group of the scolopendromorph Scolopocryptos sp. and these two (Geophilomorpha and Scolopendromorpha), along with the Lithobiomorpha, formed a monophyletic group the Pleurostigmomorpha. Gene order within the S. maritima mitochondrial genome is unique compared to any other arthropod or metazoan mitochondrial genome to which it has been compared. The highly unusual organisation of the mitochondrial genome of Strigamia maritima is in striking contrast with the conservatively evolving nuclear genome: sampling of more members of this order of centipedes will be required to see whether this unusual organization is typical of the Geophilomorpha or results from a more recent reorganisation in the lineage leading to Strigamia.
Collapse
Affiliation(s)
- Helen E. Robertson
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, United Kingdom
| | - François Lapraz
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, United Kingdom
| | - Adelaide C. Rhodes
- Center for Genome Research and Biocomputing, 2750 SW Campus Way, Oregon State University, Corvallis, Oregon, United States of America
| | - Maximilian J. Telford
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Abstract
Centipedes are a very old lineage of terrestrial animals. The first completely sequenced myriapod genome reveals that the blind centipede Strigamia maritima has no gene for light-sensory proteins, lacks the canonical circadian clock and possesses unusual features related to chemosensory perception.
Collapse
|
28
|
Hunnekuhl VS, Akam M. An anterior medial cell population with an apical-organ-like transcriptional profile that pioneers the central nervous system in the centipede Strigamia maritima. Dev Biol 2014; 396:136-49. [PMID: 25263198 DOI: 10.1016/j.ydbio.2014.09.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/19/2014] [Accepted: 09/18/2014] [Indexed: 12/24/2022]
Abstract
The apical plate of primary marine larvae is characterized by a common set of transcription factors comprising six3, rx, hbn, nk2.1 and FoxQ2. It harbours the apical organ, a neural and ciliary structure with neurosecretory properties. Recent studies in lophotrochozoans have found that apical organ cells form the anterior tip of the developing central nervous system. We identify an anterior medial tissue in the embryonic centipede head that shares the transcriptional profile of the apical plate of marine larvae, including nested domains of FoxQ2 and six3 expression. This domain gives rise to an anterior medial population of neural precursors distinct from those arising within the segmental neuroectoderm. These medial cells do not express achaete scute homologue in proneural clusters, but express collier, a marker for post mitotic cells committed to a neural fate, while they are still situated in the surface ectodermal layer. They then sink under the surface to form a compact cell cluster. Once internalized these cells extend axons that pioneer the primary axonal scaffold of the central nervous system. The same cells express phc2, a neural specific prohormone convertase, which suggests that they form an early active neurosecretory centre. Some also express markers of hypothalamic neurons, including otp, vtn and vax1. These medial neurosecretory cells of the centipede are distinct from those of the pars intercerebralis, the anterior neurosecretory part of the insect brain. The pars intercerebralis derives from vsx positive placodal-like invagination sites. In the centipede, vsx expressing invaginating ectoderm is situated bilaterally adjacent to the medial pioneer cell population. Hence the pars intercerebralis is present in both insect and centipede brains, whereas no prominent anterior medial cluster of pioneer neurons is present in insects. These observations suggest that the arthropod brain retained ancestrally an anterior medial population of neurosecretory cells homologous to those of the apical plate in other invertebrate phyla, but that this cell population has been lost or greatly reduced in insects.
Collapse
Affiliation(s)
- Vera S Hunnekuhl
- Laboratory for Development and Evolution, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK.
| | - Michael Akam
- Laboratory for Development and Evolution, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
29
|
Chipman AD, Ferrier DEK, Brena C, Qu J, Hughes DST, Schröder R, Torres-Oliva M, Znassi N, Jiang H, Almeida FC, Alonso CR, Apostolou Z, Aqrawi P, Arthur W, Barna JCJ, Blankenburg KP, Brites D, Capella-Gutiérrez S, Coyle M, Dearden PK, Du Pasquier L, Duncan EJ, Ebert D, Eibner C, Erikson G, Evans PD, Extavour CG, Francisco L, Gabaldón T, Gillis WJ, Goodwin-Horn EA, Green JE, Griffiths-Jones S, Grimmelikhuijzen CJP, Gubbala S, Guigó R, Han Y, Hauser F, Havlak P, Hayden L, Helbing S, Holder M, Hui JHL, Hunn JP, Hunnekuhl VS, Jackson L, Javaid M, Jhangiani SN, Jiggins FM, Jones TE, Kaiser TS, Kalra D, Kenny NJ, Korchina V, Kovar CL, Kraus FB, Lapraz F, Lee SL, Lv J, Mandapat C, Manning G, Mariotti M, Mata R, Mathew T, Neumann T, Newsham I, Ngo DN, Ninova M, Okwuonu G, Ongeri F, Palmer WJ, Patil S, Patraquim P, Pham C, Pu LL, Putman NH, Rabouille C, Ramos OM, Rhodes AC, Robertson HE, Robertson HM, Ronshaugen M, Rozas J, Saada N, Sánchez-Gracia A, Scherer SE, Schurko AM, Siggens KW, Simmons D, Stief A, Stolle E, Telford MJ, Tessmar-Raible K, Thornton R, van der Zee M, von Haeseler A, Williams JM, Willis JH, Wu Y, Zou X, et alChipman AD, Ferrier DEK, Brena C, Qu J, Hughes DST, Schröder R, Torres-Oliva M, Znassi N, Jiang H, Almeida FC, Alonso CR, Apostolou Z, Aqrawi P, Arthur W, Barna JCJ, Blankenburg KP, Brites D, Capella-Gutiérrez S, Coyle M, Dearden PK, Du Pasquier L, Duncan EJ, Ebert D, Eibner C, Erikson G, Evans PD, Extavour CG, Francisco L, Gabaldón T, Gillis WJ, Goodwin-Horn EA, Green JE, Griffiths-Jones S, Grimmelikhuijzen CJP, Gubbala S, Guigó R, Han Y, Hauser F, Havlak P, Hayden L, Helbing S, Holder M, Hui JHL, Hunn JP, Hunnekuhl VS, Jackson L, Javaid M, Jhangiani SN, Jiggins FM, Jones TE, Kaiser TS, Kalra D, Kenny NJ, Korchina V, Kovar CL, Kraus FB, Lapraz F, Lee SL, Lv J, Mandapat C, Manning G, Mariotti M, Mata R, Mathew T, Neumann T, Newsham I, Ngo DN, Ninova M, Okwuonu G, Ongeri F, Palmer WJ, Patil S, Patraquim P, Pham C, Pu LL, Putman NH, Rabouille C, Ramos OM, Rhodes AC, Robertson HE, Robertson HM, Ronshaugen M, Rozas J, Saada N, Sánchez-Gracia A, Scherer SE, Schurko AM, Siggens KW, Simmons D, Stief A, Stolle E, Telford MJ, Tessmar-Raible K, Thornton R, van der Zee M, von Haeseler A, Williams JM, Willis JH, Wu Y, Zou X, Lawson D, Muzny DM, Worley KC, Gibbs RA, Akam M, Richards S. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biol 2014; 12:e1002005. [PMID: 25423365 PMCID: PMC4244043 DOI: 10.1371/journal.pbio.1002005] [Show More Authors] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022] Open
Abstract
Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history. Arthropods are the most abundant animals on earth. Among them, insects clearly dominate on land, whereas crustaceans hold the title for the most diverse invertebrates in the oceans. Much is known about the biology of these groups, not least because of genomic studies of the fruit fly Drosophila, the water flea Daphnia, and other species used in research. Here we report the first genome sequence from a species belonging to a lineage that has previously received very little attention—the myriapods. Myriapods were among the first arthropods to invade the land over 400 million years ago, and survive today as the herbivorous millipedes and venomous centipedes, one of which—Strigamia maritima—we have sequenced here. We find that the genome of this centipede retains more characteristics of the presumed arthropod ancestor than other sequenced insect genomes. The genome provides access to many aspects of myriapod biology that have not been studied before, suggesting, for example, that they have diversified receptors for smell that are quite different from those used by insects. In addition, it shows specific consequences of the largely subterranean life of this particular species, which seems to have lost the genes for all known light-sensing molecules, even though it still avoids light.
Collapse
Affiliation(s)
- Ariel D. Chipman
- The Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - David E. K. Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Carlo Brena
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniel S. T. Hughes
- EMBL - European Bioinformatics Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Reinhard Schröder
- Institut für Biowissenschaften, Universität Rostock, Abt. Genetik, Rostock, Germany
| | | | - Nadia Znassi
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Huaiyang Jiang
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francisca C. Almeida
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Tucumán, Facultad de Ciencias Naturales e Instituto Miguel Lillo, San Miguel de Tucumán, Argentina
| | - Claudio R. Alonso
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Zivkos Apostolou
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology - Hellas, Heraklion, Crete, Greece
| | - Peshtewani Aqrawi
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wallace Arthur
- Department of Zoology, National University of Ireland, Galway, Ireland
| | | | - Kerstin P. Blankenburg
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniela Brites
- Evolutionsbiologie, Zoologisches Institut, Universität Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Marcus Coyle
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Peter K. Dearden
- Gravida and Genetics Otago, Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Louis Du Pasquier
- Evolutionsbiologie, Zoologisches Institut, Universität Basel, Basel, Switzerland
| | - Elizabeth J. Duncan
- Gravida and Genetics Otago, Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Dieter Ebert
- Evolutionsbiologie, Zoologisches Institut, Universität Basel, Basel, Switzerland
| | - Cornelius Eibner
- Department of Zoology, National University of Ireland, Galway, Ireland
| | - Galina Erikson
- Razavi Newman Center for Bioinformatics, Salk Institute, La Jolla, California, United States of America
- Scripps Translational Science Institute, La Jolla, California, United States of America
| | | | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Liezl Francisco
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Toni Gabaldón
- Centre for Genomic Regulation, Barcelona, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - William J. Gillis
- Department of Biochemistry and Cell Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
| | | | - Jack E. Green
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Sam Griffiths-Jones
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Sai Gubbala
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Roderic Guigó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation, Barcelona, Spain
| | - Yi Han
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, University of Copenhagen, Copenhagen, Denmark
| | - Paul Havlak
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - Luke Hayden
- Department of Zoology, National University of Ireland, Galway, Ireland
| | - Sophie Helbing
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Michael Holder
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jerome H. L. Hui
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Julia P. Hunn
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Vera S. Hunnekuhl
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - LaRonda Jackson
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mehwish Javaid
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shalini N. Jhangiani
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Tamsin E. Jones
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Tobias S. Kaiser
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Divya Kalra
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nathan J. Kenny
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Viktoriya Korchina
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christie L. Kovar
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - F. Bernhard Kraus
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
- Department of Laboratory Medicine, University Hospital Halle (Saale), Halle (Saale), Germany
| | - François Lapraz
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Sandra L. Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Lv
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - Christigale Mandapat
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gerard Manning
- Razavi Newman Center for Bioinformatics, Salk Institute, La Jolla, California, United States of America
| | - Marco Mariotti
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation, Barcelona, Spain
| | - Robert Mata
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tittu Mathew
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tobias Neumann
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Irene Newsham
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dinh N. Ngo
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Ninova
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Geoffrey Okwuonu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fiona Ongeri
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - William J. Palmer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Shobha Patil
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Pedro Patraquim
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Christopher Pham
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ling-Ling Pu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nicholas H. Putman
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - Catherine Rabouille
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Olivia Mendivil Ramos
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Adelaide C. Rhodes
- Harte Research Institute, Texas A&M University Corpus Christi, Corpus Christi, Texas, United States of America
| | - Helen E. Robertson
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Hugh M. Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Matthew Ronshaugen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Nehad Saada
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alejandro Sánchez-Gracia
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Steven E. Scherer
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew M. Schurko
- Department of Biology, Hendrix College, Conway, Arkansas, United States of America
| | - Kenneth W. Siggens
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - DeNard Simmons
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anna Stief
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Institute for Biochemistry and Biology, University Potsdam, Potsdam-Golm, Germany
| | - Eckart Stolle
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Maximilian J. Telford
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life”, Vienna, Austria
| | - Rebecca Thornton
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - James M. Williams
- Department of Biology, Hendrix College, Conway, Arkansas, United States of America
| | - Judith H. Willis
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Yuanqing Wu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiaoyan Zou
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniel Lawson
- EMBL - European Bioinformatics Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Donna M. Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kim C. Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
30
|
Green JE, Akam M. Germ cells of the centipede Strigamia maritima are specified early in embryonic development. Dev Biol 2014; 392:419-30. [PMID: 24930702 PMCID: PMC4111900 DOI: 10.1016/j.ydbio.2014.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 11/17/2022]
Abstract
We provide the first systematic description of germ cell development with molecular markers in a myriapod, the centipede Strigamia maritima. By examining the expression of Strigamia vasa and nanos orthologues, we find that the primordial germ cells are specified from at least the blastoderm stage. This is a much earlier embryonic stage than previously described for centipedes, or any other member of the Myriapoda. Using these genes as markers, and taking advantage of the developmental synchrony of Strigamia embryos within single clutches, we are able to track the development of the germ cells throughout embryogenesis. We find that the germ cells accumulate at the blastopore; that the cells do not internalize through the hindgut, but rather through the closing blastopore; and that the cells undergo a long-range migration to the embryonic gonad. This is the first evidence for primordial germ cells displaying these behaviours in any myriapod. The myriapods are a phylogenetically important group in the arthropod radiation for which relatively little developmental data is currently available. Our study provides valuable comparative data that complements the growing number of studies in insects, crustaceans and chelicerates, and is important for the correct reconstruction of ancestral states and a fuller understanding of how germ cell development has evolved in different arthropod lineages.
Collapse
Affiliation(s)
- Jack E Green
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Michael Akam
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
31
|
Brena C. The embryoid development of Strigamia maritimaand its bearing on post-embryonic segmentation of geophilomorph centipedes. Front Zool 2014. [DOI: 10.1186/s12983-014-0058-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
32
|
Hayden L, Arthur W. The centipedeStrigamia maritimapossesses a large complement of Wnt genes with diverse expression patterns. Evol Dev 2014; 16:127-38. [DOI: 10.1111/ede.12073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Luke Hayden
- Evolutionary Developmental Biology Laboratory, Zoology, School of Natural Sciences; National University of Ireland; Galway Ireland
| | - Wallace Arthur
- Evolutionary Developmental Biology Laboratory, Zoology, School of Natural Sciences; National University of Ireland; Galway Ireland
| |
Collapse
|
33
|
Maruzzo D, Bonato L. Morphology and diversity of the forcipules in Strigamia centipedes (Chilopoda, Geophilomorpha). ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:17-25. [PMID: 24067538 DOI: 10.1016/j.asd.2013.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 06/02/2023]
Abstract
The morphology of the venomous limbs (forcipules) of 13 species of Strigamia and of six other geophilomorphs was studied with light microscopy, scanning electron microscopy, and, for a subsample, with confocal laser scanning microscopy. In all Strigamia species a well-distinct denticle is present invariantly on the inner side of the terminal article (tarsungulum), in sub-basal position, just proximal to a faint transverse sulcus and a cuticular introflexion that corresponds to the insertion point of a tendon. Strigamia species differ mainly in size and shape of the denticle and thickness of the distal part of the tarsungulum, suggesting some functional diversity in piercing and handling prey. Anatomical evidence supports the hypothesis that the tarsungulum corresponds to two ancestral articles and a denticle at the basis of the tarsungulum originated multiple times within geophilomorphs, however in different positions corresponding to either the ancestral sub-terminal article (in Strigamia, other Geophiloidea and some Schendylidae) or the ancestral terminal article (in the himantariid Thracophilus).
Collapse
Affiliation(s)
- Diego Maruzzo
- Department of Biology, University of Padova, via U. Bassi 58/B, I-35131 Padova, Italy
| | - Lucio Bonato
- Department of Biology, University of Padova, via U. Bassi 58/B, I-35131 Padova, Italy.
| |
Collapse
|
34
|
Brena C, Akam M. An analysis of segmentation dynamics throughout embryogenesis in the centipede Strigamia maritima. BMC Biol 2013; 11:112. [PMID: 24289308 PMCID: PMC3879059 DOI: 10.1186/1741-7007-11-112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/22/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Most segmented animals add segments sequentially as the animal grows. In vertebrates, segment patterning depends on oscillations of gene expression coordinated as travelling waves in the posterior, unsegmented mesoderm. Recently, waves of segmentation gene expression have been clearly documented in insects. However, it remains unclear whether cyclic gene activity is widespread across arthropods, and possibly ancestral among segmented animals. Previous studies have suggested that a segmentation oscillator may exist in Strigamia, an arthropod only distantly related to insects, but further evidence is needed to document this. RESULTS Using the genes even skipped and Delta as representative of genes involved in segment patterning in insects and in vertebrates, respectively, we have carried out a detailed analysis of the spatio-temporal dynamics of gene expression throughout the process of segment patterning in Strigamia. We show that a segmentation clock is involved in segment formation: most segments are generated by cycles of dynamic gene activity that generate a pattern of double segment periodicity, which is only later resolved to the definitive single segment pattern. However, not all segments are generated by this process. The most posterior segments are added individually from a localized sub-terminal area of the embryo, without prior pair-rule patterning. CONCLUSIONS Our data suggest that dynamic patterning of gene expression may be widespread among the arthropods, but that a single network of segmentation genes can generate either oscillatory behavior at pair-rule periodicity or direct single segment patterning, at different stages of embryogenesis.
Collapse
Affiliation(s)
- Carlo Brena
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|
35
|
Brenneis G, Stollewerk A, Scholtz G. Embryonic neurogenesis in Pseudopallene sp. (Arthropoda, Pycnogonida) includes two subsequent phases with similarities to different arthropod groups. EvoDevo 2013; 4:32. [PMID: 24289241 PMCID: PMC3879066 DOI: 10.1186/2041-9139-4-32] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/08/2013] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Studies on early neurogenesis have had considerable impact on the discussion of the phylogenetic relationships of arthropods, having revealed striking similarities and differences between the major lineages. In Hexapoda and crustaceans, neurogenesis involves the neuroblast, a type of neural stem cell. In each hemi-segment, a set of neuroblasts produces neural cells by repeated asymmetrical and interiorly directed divisions. In Euchelicerata and Myriapoda, neurogenesis lacks neural stem cells, featuring instead direct immigration of neural cell groups from fixed sites in the neuroectoderm. Accordingly, neural stem cells were hitherto assumed to be an evolutionary novelty of the Tetraconata (Hexapoda + crustaceans). To further test this hypothesis, we investigated neurogenesis in Pycnogonida, or sea spiders, a group of marine arthropods with close affinities to euchelicerates. RESULTS We studied neurogenesis during embryonic development of Pseudopallene sp. (Callipallenidae), using fluorescent histochemical staining and immunolabelling. Embryonic neurogenesis has two phases. The first phase shows notable similarities to euchelicerates and myriapods. These include i) the lack of morphologically different cell types in the neuroectoderm; ii) the formation of transiently identifiable, stereotypically arranged cell internalization sites; iii) immigration of predominantly post-mitotic ganglion cells; and iv) restriction of tangentially oriented cell proliferation to the apical cell layer. However, in the second phase, the formation of a central invagination in each hemi-neuromere is accompanied by the differentiation of apical neural stem cells. The latter grow in size, show high mitotic activity and an asymmetrical division mode. A marked increase of ganglion cell numbers follows their differentiation. Directly basal to the neural stem cells, an additional type of intermediate neural precursor is found. CONCLUSIONS Embryonic neurogenesis of Pseudopallene sp. combines features of central nervous system development that have been hitherto described separately in different arthropod taxa. The two-phase character of pycnogonid neurogenesis calls for a thorough reinvestigation of other non-model arthropods over the entire course of neurogenesis. With the currently available data, a common origin of pycnogonid neural stem cells and tetraconate neuroblasts remains unresolved. To acknowledge this, we present two possible scenarios on the evolution of arthropod neurogenesis, whereby Myriapoda play a key role in the resolution of this issue.
Collapse
Affiliation(s)
- Georg Brenneis
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, Berlin 10115, Germany
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, Berlin 10115, Germany
| |
Collapse
|
36
|
Green J, Akam M. Evolution of the pair rule gene network: Insights from a centipede. Dev Biol 2013; 382:235-45. [PMID: 23810931 PMCID: PMC3807789 DOI: 10.1016/j.ydbio.2013.06.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/05/2013] [Accepted: 06/12/2013] [Indexed: 11/29/2022]
Abstract
Comparative studies have examined the expression and function of homologues of the Drosophila melanogaster pair rule and segment polarity genes in a range of arthropods. The segment polarity gene homologues have a conserved role in the specification of the parasegment boundary, but the degree of conservation of the upstream patterning genes has proved more variable. Using genomic resources we identify a complete set of pair rule gene homologues from the centipede Strigamia maritima, and document a detailed time series of expression during trunk segmentation. We find supportive evidence for a conserved hierarchical organisation of the pair rule genes, with a division into early- and late-activated genes which parallels the functional division into primary and secondary pair rule genes described in insects. We confirm that the relative expression of sloppy-paired and paired with respect to wingless and engrailed at the parasegment boundary is conserved between myriapods and insects; suggesting that functional interactions between these genes might be an ancient feature of arthropod segment patterning. However, we find that the relative expression of a number of the primary pair rule genes is divergent between myriapods and insects. This corroborates suggestions that the evolution of upper tiers in the segmentation gene network is more flexible. Finally, we find that the expression of the Strigamia pair rule genes in periodic patterns is restricted to the ectoderm. This suggests that any direct role of these genes in segmentation is restricted to this germ layer, and that mesoderm segmentation is either dependent on the ectoderm, or occurs through an independent mechanism.
Collapse
Affiliation(s)
- Jack Green
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB23EJ, UK.
| | | |
Collapse
|
37
|
Hayden L, Arthur W. Expression patterns of Wnt genes in the venom claws of centipedes. Evol Dev 2013; 15:365-72. [PMID: 24074281 DOI: 10.1111/ede.12044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The venom claws of centipedes, also known as forcipules, represent an evolutionary novelty that must have arisen in the centipede stem species, as they are not found in any other myriapods. The developmental-genetic changes that are involved in the origin of novelties are of considerable interest. It has previously been shown that centipede forcipules have a unique Hox code. However, this is a combinatorial code: no single Hox gene has a forcipule-specific expression. Here, we focus on Wnt genes. Two genes of this family show forcipule-specific expression in the "model centipede" Strigamia maritima: Wnt7 and Wnt11. For Wnt7, this forcipular expression zone seems to be a new one, which has arisen in evolution subsequently to other expression zones of the same gene. However, for Wnt11, the forcipule-specific expression probably arose by reduction of a more general pattern that originally included most or all of the limbs of an ancestral myriapod. Thus the developmental-genetic basis of the evolutionary change that turned the first pair of walking legs into venom claws is complex, involving different types of change in expression pattern. This sort of complexity is likely to be the case regarding evolutionary changes in morphology in general. Whether the origins of those features that can be considered as novelties are different in terms of their developmental-genetic basis from more routine evolutionary changes remains an open question.
Collapse
Affiliation(s)
- Luke Hayden
- Evolutionary Developmental Biology Laboratory, Zoology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
38
|
Simaiakis SM, Djursvoll P, Bergersen R. Influence of Climate on Segment Number inGeophilus flavus, a Centipede Species Inhabiting Sognefjord in Western Norway. ANN ZOOL FENN 2013. [DOI: 10.5735/085.050.0507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Brena C, Green J, Akam M. Early embryonic determination of the sexual dimorphism in segment number in geophilomorph centipedes. EvoDevo 2013; 4:22. [PMID: 23919293 PMCID: PMC3750810 DOI: 10.1186/2041-9139-4-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/02/2013] [Indexed: 11/21/2022] Open
Abstract
Background Most geophilomorph centipedes show intraspecific variability in the number of leg-bearing segments. This intraspecific variability generally has a component that is related to sex, with females having on average more segments than males. Neither the developmental basis nor the adaptive role of this dimorphism is known. Results To determine when this sexual dimorphism in segment number is established, we have followed the development of Strigamia maritima embryos from the onset of segmentation to the first post-embryonic stage where we could determine the sex morphologically. We find that males and females differ in segment number by Stage 6.1, a point during embryogenesis when segment addition pauses while the embryo undergoes large-scale movements. We have confirmed this pattern by establishing a molecular method to determine the sex of single embryos, utilising duplex PCR amplification for Y chromosomal and autosomal sequences. This confirms that male embryos have a modal number of 43 segments visible at Stage 6, while females have 45. In our Strigamia population, adult males have a modal number of 47 leg-bearing segments, and females have 49. This implies that the sexual dimorphism in segment number is determined before the addition of the last leg-bearing segments and the terminal genital segments. Conclusions Sexual dimorphism in segment number is not associated with terminal segment differentiation, but must instead be related to some earlier process during segment patterning. The dimorphism may be associated with a difference in the rate and/or duration of segment addition during the main phase of rapid segment addition that precedes embryonic Stage 6. This suggests that the adaptive role, if any, of the dimorphism is likely to be related to segment number per se, and not to sexual differentiation of the terminal region.
Collapse
Affiliation(s)
- Carlo Brena
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | | | |
Collapse
|
40
|
Jacobs CGC, Rezende GL, Lamers GEM, van der Zee M. The extraembryonic serosa protects the insect egg against desiccation. Proc Biol Sci 2013; 280:20131082. [PMID: 23782888 DOI: 10.1098/rspb.2013.1082] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insects have been extraordinarily successful in occupying terrestrial habitats, in contrast to their mostly aquatic sister group, the crustaceans. This success is typically attributed to adult traits such as flight, whereas little attention has been paid to adaptation of the egg. An evolutionary novelty of insect eggs is the serosa, an extraembryonic membrane that enfolds the embryo and secretes a cuticle. To experimentally test the protective function of the serosa, we exploit an exceptional possibility to eliminate this membrane by zerknüllt1 RNAi in the beetle Tribolium castaneum. We analyse hatching rates of eggs under a range of humidities and find dramatically decreasing hatching rates with decreasing humidities for serosa-less eggs, but not for control eggs. Furthermore, we show serosal expression of Tc-chitin-synthase1 and demonstrate that its knock-down leads to absence of the serosal cuticle and a reduction in hatching rates at low humidities. These developmental genetic techniques in combination with ecological testing provide experimental evidence for a crucial role of the serosa in desiccation resistance. We propose that the origin of this extraembryonic membrane facilitated the spectacular radiation of insects on land, as did the origin of the amniote egg in the terrestrial invasion of vertebrates.
Collapse
Affiliation(s)
- Chris G C Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | | | | | | |
Collapse
|
41
|
Dugon MM, Hayden L, Black A, Arthur W. Development of the venom ducts in the centipede Scolopendra: an example of recapitulation. Evol Dev 2013; 14:515-21. [PMID: 23134209 DOI: 10.1111/ede.12004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In contrast to previous claims that (a) there is a law of recapitulation and, conversely, (b) recapitulation never happens, the evolutionary repatterning of development can take many forms, of which recapitulation is one. Here, we add another example to the list of case studies of recapitulation. This example involves the development of the venom claws (forcipules) in the centipede Scolopendra subspinipes mutilans, and in particular the development of the duct through which venom flows from the gland that produces it (proximal) to the opening called the meatus (distal) through which it is injected into prey. Most of the information we present is from early postembryonic stages--these have been neglected in previous work on centipede development. We show that the venom ducts arise from sutures that are invaginations of the cuticle. In S. s. mutilans, the invagination in each forcipule forms into a tubular structure that detaches itself from the exoskeleton and moves toward the center of the forcipule. This is in contrast to extant Scutigera, and also, probably, Scolopendra's extinct Scutigera-like ancestors, where the duct remains attached to the cuticle of throughout development. Thus, S. s. mutilans exhibits a recapitulatory repatterning of development.
Collapse
Affiliation(s)
- Michel M Dugon
- Department of Zoology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland.
| | | | | | | |
Collapse
|
42
|
Ortega-Hernández J, Brena C. Ancestral patterning of tergite formation in a centipede suggests derived mode of trunk segmentation in trilobites. PLoS One 2012; 7:e52623. [PMID: 23285116 PMCID: PMC3532300 DOI: 10.1371/journal.pone.0052623] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/19/2012] [Indexed: 12/05/2022] Open
Abstract
Trilobites have a rich and abundant fossil record, but little is known about the intrinsic mechanisms that orchestrate their body organization. To date, there is disagreement regarding the correspondence, or lack thereof, of the segmental units that constitute the trilobite trunk and their associated exoskeletal elements. The phylogenetic position of trilobites within total-group Euarthropoda, however, allows inferences about the underlying organization in these extinct taxa to be made, as some of the fundamental genetic processes for constructing the trunk segments are remarkably conserved among living arthropods. One example is the expression of the segment polarity gene engrailed, which at embryonic and early postembryonic stages is expressed in extant panarthropods (i.e. tardigrades, onychophorans, euarthropods) as transverse stripes that define the posteriormost region of each trunk segment. Due to its conservative morphology and allegedly primitive trunk tagmosis, we have utilized the centipede Strigamia maritima to study the correspondence between the expression of engrailed during late embryonic to postembryonic stages, and the development of the dorsal exoskeletal plates (i.e. tergites). The results corroborate the close correlation between the formation of the tergite borders and the dorsal expression of engrailed, and suggest that this association represents a symplesiomorphy within Euarthropoda. This correspondence between the genetic and phenetic levels enables making accurate inferences about the dorsoventral expression domains of engrailed in the trunk of exceptionally preserved trilobites and their close relatives, and is suggestive of the widespread occurrence of a distinct type of genetic segmental mismatch in these extinct arthropods. The metameric organization of the digestive tract in trilobites provides further support to this new interpretation. The wider evolutionary implications of these findings suggest the presence of a derived morphogenetic patterning mechanism responsible for the reiterated occurrence of different types of trunk dorsoventral segmental mismatch in several phylogenetically distant, extinct and extant, arthropod groups.
Collapse
|
43
|
Eibner C, Arthur W. Variation in body segment number within and between populations of the centipedeStrigamia maritima(Chilopoda: Geophilomorpha). Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.01951.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cornelius Eibner
- Natural Sciences - Zoology; Ryan Institute; National University of Ireland Galway; University Road Galway Ireland
| | - Wallace Arthur
- Natural Sciences - Zoology; Ryan Institute; National University of Ireland Galway; University Road Galway Ireland
| |
Collapse
|
44
|
Hilbrant M, Damen WGM, McGregor AP. Evolutionary crossroads in developmental biology: the spider Parasteatoda tepidariorum. Development 2012; 139:2655-62. [DOI: 10.1242/dev.078204] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spiders belong to the chelicerates, which is an arthropod group that branches basally from myriapods, crustaceans and insects. Spiders are thus useful models with which to investigate whether aspects of development are ancestral or derived with respect to the arthropod common ancestor. Moreover, they serve as an important reference point for comparison with the development of other metazoans. Therefore, studies of spider development have made a major contribution to advancing our understanding of the evolution of development. Much of this knowledge has come from studies of the common house spider, Parasteatoda tepidariorum. Here, we describe how the growing number of experimental tools and resources available to study Parasteatoda development have provided novel insights into the evolution of developmental regulation and have furthered our understanding of metazoan body plan evolution.
Collapse
Affiliation(s)
- Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Wim G. M. Damen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Alistair P. McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| |
Collapse
|
45
|
HAYDEN LUKE, PARKES GEORGE, ARTHUR WALLACE. Segment number, body length, and latitude in geophilomorph centipedes: a ‘converse-Bergmann’ pattern. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.01914.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|