1
|
Emig AA, Hansen M, Grimm S, Coarfa C, Lord ND, Williams MK. Temporal dynamics of BMP/Nodal ratio drive tissue-specific gastrulation morphogenesis. Development 2025; 152:dev202931. [PMID: 39651654 PMCID: PMC12070064 DOI: 10.1242/dev.202931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/29/2024] [Indexed: 12/11/2024]
Abstract
Anteroposterior elongation of the vertebrate body plan is driven by convergence and extension (C&E) gastrulation movements in both the mesoderm and neuroectoderm, but how or whether molecular regulation of C&E differs between tissues remains an open question. Using a zebrafish explant model of anteroposterior axis extension, we show that C&E of the neuroectoderm and mesoderm can be uncoupled ex vivo, and that morphogenesis of individual tissues results from distinct morphogen signaling dynamics. Using precise temporal manipulation of BMP and Nodal signaling, we identify a critical developmental window during which high or low BMP/Nodal ratios induce neuroectoderm- or mesoderm-driven C&E, respectively. Increased BMP activity similarly enhances C&E specifically in the ectoderm of intact zebrafish gastrulae, highlighting the in vivo relevance of our findings. Together, these results demonstrate that temporal dynamics of BMP and Nodal morphogen signaling activate distinct morphogenetic programs governing C&E gastrulation movements within individual tissues.
Collapse
Affiliation(s)
- Alyssa A. Emig
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Megan Hansen
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sandra Grimm
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathan D. Lord
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Margot Kossmann Williams
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Shaikh R, Larson NJ, Kam J, Hanjaya-Putra D, Zartman J, Umulis DM, Li L, Reeves GT. Optimal performance objectives in the highly conserved bone morphogenetic protein signaling pathway. NPJ Syst Biol Appl 2024; 10:103. [PMID: 39277657 PMCID: PMC11401948 DOI: 10.1038/s41540-024-00430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Throughout development, complex networks of cell signaling pathways drive cellular decision-making across different tissues and contexts. The transforming growth factor β (TGF-β) pathways, including the BMP/Smad pathway, play crucial roles in determining cellular responses. However, as the Smad pathway is used reiteratively throughout the life cycle of all animals, its systems-level behavior varies from one context to another, despite the pathway connectivity remaining nearly constant. For instance, some cellular systems require a rapid response, while others require high noise filtering. In this paper, we examine how the BMP-Smad pathway balances trade-offs among three such systems-level behaviors, or "Performance Objectives (POs)": response speed, noise amplification, and the sensitivity of pathway output to receptor input. Using a Smad pathway model fit to human cell data, we show that varying non-conserved parameters (NCPs) such as protein concentrations, the Smad pathway can be tuned to emphasize any of the three POs and that the concentration of nuclear phosphatase has the greatest effect on tuning the POs. However, due to competition among the POs, the pathway cannot simultaneously optimize all three, but at best must balance trade-offs among the POs. We applied the multi-objective optimization concept of the Pareto Front, a widely used concept in economics to identify optimal trade-offs among various requirements. We show that the BMP pathway efficiently balances competing POs across species and is largely Pareto optimal. Our findings reveal that varying the concentration of NCPs allows the Smad signaling pathway to generate a diverse range of POs. This insight identifies how signaling pathways can be optimally tuned for each context.
Collapse
Affiliation(s)
- Razeen Shaikh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, TX, USA
| | - Nissa J Larson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jayden Kam
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, TX, USA
| | - Donny Hanjaya-Putra
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
| | - Jeremiah Zartman
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - David M Umulis
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Linlin Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Gregory T Reeves
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, TX, USA.
- Faculty of Genetics and Genomics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
3
|
Mörsdorf D, Knabl P, Genikhovich G. Highly conserved and extremely evolvable: BMP signalling in secondary axis patterning of Cnidaria and Bilateria. Dev Genes Evol 2024; 234:1-19. [PMID: 38472535 PMCID: PMC11226491 DOI: 10.1007/s00427-024-00714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Bilateria encompass the vast majority of the animal phyla. As the name states, they are bilaterally symmetric, that is with a morphologically clear main body axis connecting their anterior and posterior ends, a second axis running between their dorsal and ventral surfaces, and with a left side being roughly a mirror image of their right side. Bone morphogenetic protein (BMP) signalling has widely conserved functions in the formation and patterning of the second, dorso-ventral (DV) body axis, albeit to different extents in different bilaterian species. Whilst initial findings in the fruit fly Drosophila and the frog Xenopus highlighted similarities amongst these evolutionarily very distant species, more recent analyses featuring other models revealed considerable diversity in the mechanisms underlying dorsoventral patterning. In fact, as phylogenetic sampling becomes broader, we find that this axis patterning system is so evolvable that even its core components can be deployed differently or lost in different model organisms. In this review, we will try to highlight the diversity of ways by which BMP signalling controls bilaterality in different animals, some of which do not belong to Bilateria. Future research combining functional analyses and modelling is bound to give us some understanding as to where the limits to the extent of the evolvability of BMP-dependent axial patterning may lie.
Collapse
Affiliation(s)
- David Mörsdorf
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria
| | - Paul Knabl
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Vienna, Austria
| | - Grigory Genikhovich
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
4
|
Schauer A, Pranjic-Ferscha K, Hauschild R, Heisenberg CP. Robust axis elongation by Nodal-dependent restriction of BMP signaling. Development 2024; 151:dev202316. [PMID: 38372390 PMCID: PMC10911127 DOI: 10.1242/dev.202316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/04/2024] [Indexed: 02/20/2024]
Abstract
Embryogenesis results from the coordinated activities of different signaling pathways controlling cell fate specification and morphogenesis. In vertebrate gastrulation, both Nodal and BMP signaling play key roles in germ layer specification and morphogenesis, yet their interplay to coordinate embryo patterning with morphogenesis is still insufficiently understood. Here, we took a reductionist approach using zebrafish embryonic explants to study the coordination of Nodal and BMP signaling for embryo patterning and morphogenesis. We show that Nodal signaling triggers explant elongation by inducing mesendodermal progenitors but also suppressing BMP signaling activity at the site of mesendoderm induction. Consistent with this, ectopic BMP signaling in the mesendoderm blocks cell alignment and oriented mesendoderm intercalations, key processes during explant elongation. Translating these ex vivo observations to the intact embryo showed that, similar to explants, Nodal signaling suppresses the effect of BMP signaling on cell intercalations in the dorsal domain, thus allowing robust embryonic axis elongation. These findings suggest a dual function of Nodal signaling in embryonic axis elongation by both inducing mesendoderm and suppressing BMP effects in the dorsal portion of the mesendoderm.
Collapse
Affiliation(s)
- Alexandra Schauer
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | | | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | | |
Collapse
|
5
|
Shaikh R, Larson NJ, Hanjaya-Putra D, Zartman J, Umulis DM, Li L, Reeves GT. Optimal Performance Objectives in the Highly Conserved Bone Morphogenetic Protein Signaling Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578451. [PMID: 38370840 PMCID: PMC10871226 DOI: 10.1101/2024.02.01.578451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Throughout development, complex networks of cell signaling pathways drive cellular decision-making across different tissues and contexts. The transforming growth factor β (TGF-β) pathways, including the BMP/Smad pathway, play crucial roles in these cellular responses. However, as the Smad pathway is used reiteratively throughout the life cycle of all animals, its systems-level behavior varies from one context to another, despite the pathway connectivity remaining nearly constant. For instance, some cellular systems require a rapid response, while others require high noise filtering. In this paper, we examine how the BMP- Smad pathway balances trade-offs among three such systems-level behaviors, or "Performance Objectives (POs)": response speed, noise amplification, and the sensitivity of pathway output to receptor input. Using a Smad pathway model fit to human cell data, we show that varying non-conserved parameters (NCPs) such as protein concentrations, the Smad pathway can be tuned to emphasize any of the three POs and that the concentration of nuclear phosphatase has the greatest effect on tuning the POs. However, due to competition among the POs, the pathway cannot simultaneously optimize all three, but at best must balance trade-offs among the POs. We applied the multi-objective optimization concept of the Pareto Front, a widely used concept in economics to identify optimal trade-offs among various requirements. We show that the BMP pathway efficiently balances competing POs across species and is largely Pareto optimal. Our findings reveal that varying the concentration of NCPs allows the Smad signaling pathway to generate a diverse range of POs. This insight identifies how signaling pathways can be optimally tuned for each context.
Collapse
|
6
|
Wilcockson SG, Guglielmi L, Araguas Rodriguez P, Amoyel M, Hill CS. An improved Erk biosensor detects oscillatory Erk dynamics driven by mitotic erasure during early development. Dev Cell 2023; 58:2802-2818.e5. [PMID: 37714159 PMCID: PMC7615346 DOI: 10.1016/j.devcel.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023]
Abstract
Extracellular signal-regulated kinase (Erk) signaling dynamics elicit distinct cellular responses in a variety of contexts. The early zebrafish embryo is an ideal model to explore the role of Erk signaling dynamics in vivo, as a gradient of activated diphosphorylated Erk (P-Erk) is induced by fibroblast growth factor (Fgf) signaling at the blastula margin. Here, we describe an improved Erk-specific biosensor, which we term modified Erk kinase translocation reporter (modErk-KTR). We demonstrate the utility of this biosensor in vitro and in developing zebrafish and Drosophila embryos. Moreover, we show that Fgf/Erk signaling is dynamic and coupled to tissue growth during both early zebrafish and Drosophila development. Erk activity is rapidly extinguished just prior to mitosis, which we refer to as mitotic erasure, inducing periods of inactivity, thus providing a source of heterogeneity in an asynchronously dividing tissue. Our modified reporter and transgenic lines represent an important resource for interrogating the role of Erk signaling dynamics in vivo.
Collapse
Affiliation(s)
- Scott G Wilcockson
- Developmental Signalling Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Pablo Araguas Rodriguez
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
7
|
Richardson L, Wilcockson SG, Guglielmi L, Hill CS. Context-dependent TGFβ family signalling in cell fate regulation. Nat Rev Mol Cell Biol 2023; 24:876-894. [PMID: 37596501 DOI: 10.1038/s41580-023-00638-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/20/2023]
Abstract
The transforming growth factor-β (TGFβ) family are a large group of evolutionarily conserved cytokines whose signalling modulates cell fate decision-making across varying cellular contexts at different stages of life. Here we discuss new findings in early embryos that reveal how, in contrast to our original understanding of morphogen interpretation, robust cell fate specification can originate from a noisy combination of signalling inputs and a broad range of signalling levels. We compare this evidence with novel findings on the roles of TGFβ family signalling in tissue maintenance and homeostasis during juvenile and adult life, spanning the skeletal, haemopoietic and immune systems. From these comparisons, it emerges that in contrast to robust developing systems, relatively small perturbations in TGFβ family signalling have detrimental effects at later stages in life, leading to aberrant cell fate specification and disease, for example in cancer or congenital disorders. Finally, we highlight novel strategies to target and amend dysfunction in signalling and discuss how gleaning knowledge from different fields of biology can help in the development of therapeutics for aberrant TGFβ family signalling in disease.
Collapse
Affiliation(s)
- Louise Richardson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Scott G Wilcockson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
8
|
Zhu R, Santat LA, Markson JS, Nandagopal N, Gregrowicz J, Elowitz MB. Reconstitution of morphogen shuttling circuits. SCIENCE ADVANCES 2023; 9:eadf9336. [PMID: 37436981 PMCID: PMC10337948 DOI: 10.1126/sciadv.adf9336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Developing tissues form spatial patterns by establishing concentration gradients of diffusible signaling proteins called morphogens. The bone morphogenetic protein (BMP) morphogen pathway uses a family of extracellular modulators to reshape signaling gradients by actively "shuttling" ligands to different locations. It has remained unclear what circuits are sufficient to enable shuttling, what other patterns they can generate, and whether shuttling is evolutionarily conserved. Here, using a synthetic, bottom-up approach, we compared the spatiotemporal dynamics of different extracellular circuits. Three proteins-Chordin, Twsg, and the BMP-1 protease-successfully displaced gradients by shuttling ligands away from the site of production. A mathematical model explained the different spatial dynamics of this and other circuits. Last, combining mammalian and Drosophila components in the same system suggests that shuttling is a conserved capability. Together, these results reveal principles through which extracellular circuits control the spatiotemporal dynamics of morphogen signaling.
Collapse
Affiliation(s)
- Ronghui Zhu
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Leah A. Santat
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Joseph S. Markson
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Jan Gregrowicz
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michael B. Elowitz
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
9
|
Tesoriero C, Greco F, Cannone E, Ghirotto F, Facchinello N, Schiavone M, Vettori A. Modeling Human Muscular Dystrophies in Zebrafish: Mutant Lines, Transgenic Fluorescent Biosensors, and Phenotyping Assays. Int J Mol Sci 2023; 24:8314. [PMID: 37176020 PMCID: PMC10179009 DOI: 10.3390/ijms24098314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of myopathies characterized by progressive muscle weakness leading to death from heart or respiratory failure. MDs are caused by mutations in genes involved in both the development and organization of muscle fibers. Several animal models harboring mutations in MD-associated genes have been developed so far. Together with rodents, the zebrafish is one of the most popular animal models used to reproduce MDs because of the high level of sequence homology with the human genome and its genetic manipulability. This review describes the most important zebrafish mutant models of MD and the most advanced tools used to generate and characterize all these valuable transgenic lines. Zebrafish models of MDs have been generated by introducing mutations to muscle-specific genes with different genetic techniques, such as (i) N-ethyl-N-nitrosourea (ENU) treatment, (ii) the injection of specific morpholino, (iii) tol2-based transgenesis, (iv) TALEN, (v) and CRISPR/Cas9 technology. All these models are extensively used either to study muscle development and function or understand the pathogenetic mechanisms of MDs. Several tools have also been developed to characterize these zebrafish models by checking (i) motor behavior, (ii) muscle fiber structure, (iii) oxidative stress, and (iv) mitochondrial function and dynamics. Further, living biosensor models, based on the expression of fluorescent reporter proteins under the control of muscle-specific promoters or responsive elements, have been revealed to be powerful tools to follow molecular dynamics at the level of a single muscle fiber. Thus, zebrafish models of MDs can also be a powerful tool to search for new drugs or gene therapies able to block or slow down disease progression.
Collapse
Affiliation(s)
- Chiara Tesoriero
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Francesca Greco
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Elena Cannone
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Francesco Ghirotto
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Nicola Facchinello
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padua, Italy
| | - Marco Schiavone
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Andrea Vettori
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| |
Collapse
|
10
|
Mansuri A, Kansara K, Raiyani D, Mazmudar D, Kumar A. New insight into long-term effects of phthalates microplastics in developing zebrafish: Evidence from genomic alteration and organ development. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104087. [PMID: 36841272 DOI: 10.1016/j.etap.2023.104087] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The plasticizer leaches from the microplastics are one of the significant concerns related to plastic pollution. These plasticizers are known to be endocrine disrupters; however, little is known about their long-term effect on the development of aquatic vertebrates. Hence, the present study has been conducted to provide a holistic understanding of the effect of the three most common plasticizers, dibutyl phthalate (DBP), diethyl phthalate (DEP), and di-ethylhexyl phthalate (DEHP) leaching out from the microplastics in zebrafish development. Zebrafish larvae were exposed to different phthalates at different concentrations. The phthalates have shown significantly higher mortality and morphological changes in the larva upon exposure compared to the control. A significant change in the genes related to cardiovascular development (krit1, fbn2b), dorsoventral axis development (chrd, smad5), tail formation (pkd2, wnt3a, wnt8a), and floorplate development (foxa2) were also observed under the effects of the phthalates in comparison to control.
Collapse
Affiliation(s)
- Abdulkhalik Mansuri
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Krupa Kansara
- Biological and Engineering Discipline, Indian Institute of Technology - Gandhinagar (IITGN), Palaj 382355, Gujarat, India.
| | - Dixit Raiyani
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Dhairya Mazmudar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
11
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
12
|
Abstract
Metazoan embryos develop from a single cell into three-dimensional structured organisms while groups of genetically identical cells attain specialized identities. Cells of the developing embryo both create and accurately interpret morphogen gradients to determine their positions and make specific decisions in response. Here, we first cover intellectual roots of morphogen and positional information concepts. Focusing on animal embryos, we then provide a review of current understanding on how morphogen gradients are established and how their spans are controlled. Lastly, we cover how gradients evolve in time and space during development, and how they encode information to control patterning. In sum, we provide a list of patterning principles for morphogen gradients and review recent advances in quantitative methodologies elucidating information provided by morphogens.
Collapse
Affiliation(s)
- M. Fethullah Simsek
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ertuğrul M. Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
13
|
Hill CS. Establishment and interpretation of NODAL and BMP signaling gradients in early vertebrate development. Curr Top Dev Biol 2022; 149:311-340. [PMID: 35606059 DOI: 10.1016/bs.ctdb.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transforming growth factor β (TGF-β) family ligands play crucial roles in orchestrating early embryonic development. Most significantly, two family members, NODAL and BMP form signaling gradients and indeed in fish, frogs and sea urchins these two opposing gradients are sufficient to organize a complete embryonic axis. This review focuses on how these gradients are established and interpreted during early vertebrate development. The review highlights key principles that are emerging, in particular the importance of signaling duration as well as ligand concentration in both gradient generation and their interpretation. Feedforward and feedback loops involving other signaling pathways are also essential for providing spatial and temporal information downstream of the NODAL and BMP signaling pathways. Finally, new data suggest the existence of buffering mechanisms, whereby early signaling defects can be readily corrected downstream later in development, suggesting that signaling gradients do not have to be as precise as previously thought.
Collapse
Affiliation(s)
- Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
14
|
Sales A, Khodr V, Machillot P, Chaar L, Fourel L, Guevara-Garcia A, Migliorini E, Albigès-Rizo C, Picart C. Differential bioactivity of four BMP-family members as function of biomaterial stiffness. Biomaterials 2022; 281:121363. [PMID: 35063741 PMCID: PMC7613911 DOI: 10.1016/j.biomaterials.2022.121363] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
While a soft film itself is not able to induce cell spreading, BMP-2 presented via such soft film (so called "matrix-bound BMP-2") was previously shown to trigger cell spreading, migration and downstream BMP-2 signaling. Here, we used thin films of controlled stiffness presenting matrix-bound BMPs to study the effect of four BMP members (BMP-2, 4, 7, 9) on cell adhesion and differentiation of skeletal progenitors. We performed automated high-content screening of cellular responses, including cell number, cell spreading area, SMAD phosphorylation and alkaline phosphatase activity. We revealed that the cell response to bBMPs is BMP-type specific, and involved certain BMP receptors and beta chain integrins. In addition, this response is stiffness-dependent for several receptors. The basolateral presentation of the BMPs allowed us to discriminate the specificity of cellular response, especiallyd the role of type I and II BMP receptors and of β integrins in a BMP-type and stiffness-dependent manner. Notably, BMP-2 and BMP-4 were found to have distinct roles, while ALK5, previously known as a TGF-β receptor was revealed to be involved in the BMP-pathway.
Collapse
Affiliation(s)
- Adrià Sales
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France.
| | - Valia Khodr
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France
| | - Paul Machillot
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France
| | - Line Chaar
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Laure Fourel
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France; Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Amaris Guevara-Garcia
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France; Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Elisa Migliorini
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France
| | - Corinne Albigès-Rizo
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Catherine Picart
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
15
|
Guglielmi L, Heliot C, Kumar S, Alexandrov Y, Gori I, Papaleonidopoulou F, Barrington C, East P, Economou AD, French PMW, McGinty J, Hill CS. Smad4 controls signaling robustness and morphogenesis by differentially contributing to the Nodal and BMP pathways. Nat Commun 2021; 12:6374. [PMID: 34737283 PMCID: PMC8569018 DOI: 10.1038/s41467-021-26486-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptional effector SMAD4 is a core component of the TGF-β family signaling pathways. However, its role in vertebrate embryo development remains unresolved. To address this, we deleted Smad4 in zebrafish and investigated the consequences of this on signaling by the TGF-β family morphogens, BMPs and Nodal. We demonstrate that in the absence of Smad4, dorsal/ventral embryo patterning is disrupted due to the loss of BMP signaling. However, unexpectedly, Nodal signaling is maintained, but lacks robustness. This Smad4-independent Nodal signaling is sufficient for mesoderm specification, but not for optimal endoderm specification. Furthermore, using Optical Projection Tomography in combination with 3D embryo morphometry, we have generated a BMP morphospace and demonstrate that Smad4 mutants are morphologically indistinguishable from embryos in which BMP signaling has been genetically/pharmacologically perturbed. Smad4 is thus differentially required for signaling by different TGF-β family ligands, which has implications for diseases where Smad4 is mutated or deleted.
Collapse
Affiliation(s)
- Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Claire Heliot
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sunil Kumar
- Advanced Light Microscopy, The Francis Crick Institute, London, NW1 1AT, UK
| | - Yuriy Alexandrov
- Advanced Light Microscopy, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ilaria Gori
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Christopher Barrington
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Philip East
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Andrew D Economou
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Paul M W French
- Department of Physics, Imperial College London, SW7 2AZ, London, UK
| | - James McGinty
- Department of Physics, Imperial College London, SW7 2AZ, London, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
16
|
Choe CP, Choi SY, Kee Y, Kim MJ, Kim SH, Lee Y, Park HC, Ro H. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim Res 2021; 37:26. [PMID: 34496973 PMCID: PMC8424172 DOI: 10.1186/s42826-021-00103-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Hyung Kim
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, 15355, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
17
|
Integration of Nodal and BMP Signaling by Mutual Signaling Effector Antagonism. Cell Rep 2021; 31:107487. [PMID: 32268105 PMCID: PMC7166084 DOI: 10.1016/j.celrep.2020.03.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/26/2019] [Accepted: 03/16/2020] [Indexed: 01/08/2023] Open
Abstract
Opposing sources of bone morphogenetic protein (BMP) and Nodal signaling molecules are sufficient to induce the formation of a full axis in zebrafish embryos. To address how these signals orchestrate patterning, we transplant sources of fluorescently tagged Nodal and BMP into zebrafish embryos, robustly inducing the formation of secondary axes. Nodal and BMP signal non-cell-autonomously and form similar protein gradients in this context, but the signaling range of Nodal (pSmad2) is shorter than the BMP range (pSmad5). This yields a localized region of pSmad2 activity around the Nodal source, overlapping with a broad domain of pSmad5 activity across the embryo. Cell fates induced in various regions stereotypically correlate with pSmad2-to-pSmad5 ratios and can even be induced BMP- and Nodal-independently with different ratios of constitutively active Smad2 and Smad5. Strikingly, we find that Smad2 and Smad5 antagonize each other for specific cell fates, providing a mechanism for how cells integrate and discriminate between overlapping signals during development. Nodal induces pSmad at a shorter range than BMP due to slower activation kinetics Different ratios of active Smad2 and Smad5 can induce different embryonic structures Smad2 and Smad5 inhibit each other or act synergistically to induce specific cell fates
Collapse
|
18
|
Madamanchi A, Mullins MC, Umulis DM. Diversity and robustness of bone morphogenetic protein pattern formation. Development 2021; 148:dev192344. [PMID: 33795238 PMCID: PMC8034876 DOI: 10.1242/dev.192344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pattern formation by bone morphogenetic proteins (BMPs) demonstrates remarkable plasticity and utility in several contexts, such as early embryonic development, tissue patterning and the maintenance of stem cell niches. BMPs pattern tissues over many temporal and spatial scales: BMP gradients as short as 1-2 cell diameters maintain the stem cell niche of the Drosophila germarium over a 24-h cycle, and BMP gradients of several hundred microns establish dorsal-ventral tissue specification in Drosophila, zebrafish and Xenopus embryos in timescales between 30 min and several hours. The mechanisms that shape BMP signaling gradients are also incredibly diverse. Although ligand diffusion plays a dominant role in forming the gradient, a cast of diffusible and non-diffusible regulators modulate gradient formation and confer robustness, including scale invariance and adaptability to perturbations in gene expression and growth. In this Review, we document the diverse ways that BMP gradients are formed and refined, and we identify the core principles that they share to achieve reliable performance.
Collapse
Affiliation(s)
- Aasakiran Madamanchi
- Agricultural and Biological Engineering. Purdue University, West Lafayette, IN 47907, USA
- Polytechnic Institute, Purdue University, West Lafayette, IN 47907, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David M Umulis
- Agricultural and Biological Engineering. Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Rogers KW, ElGamacy M, Jordan BM, Müller P. Optogenetic investigation of BMP target gene expression diversity. eLife 2020; 9:58641. [PMID: 33174840 PMCID: PMC7728441 DOI: 10.7554/elife.58641] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Signaling molecules activate distinct patterns of gene expression to coordinate embryogenesis, but how spatiotemporal expression diversity is generated is an open question. In zebrafish, a BMP signaling gradient patterns the dorsal-ventral axis. We systematically identified target genes responding to BMP and found that they have diverse spatiotemporal expression patterns. Transcriptional responses to optogenetically delivered high- and low-amplitude BMP signaling pulses indicate that spatiotemporal expression is not fully defined by different BMP signaling activation thresholds. Additionally, we observed negligible correlations between spatiotemporal expression and transcription kinetics for the majority of analyzed genes in response to BMP signaling pulses. In contrast, spatial differences between BMP target genes largely collapsed when FGF and Nodal signaling were inhibited. Our results suggest that, similar to other patterning systems, combinatorial signaling is likely to be a major driver of spatial diversity in BMP-dependent gene expression in zebrafish.
Collapse
Affiliation(s)
- Katherine W Rogers
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Mohammad ElGamacy
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.,Modeling Tumorigenesis Group, Translational Oncology Division, Eberhard Karls University Tübingen, Tübingen, Germany.,Heliopolis Biotechnology Ltd, London, United Kingdom
| | - Benjamin M Jordan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Patrick Müller
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.,Modeling Tumorigenesis Group, Translational Oncology Division, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Fuentes R, Tajer B, Kobayashi M, Pelliccia JL, Langdon Y, Abrams EW, Mullins MC. The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish. Curr Top Dev Biol 2020; 140:341-389. [PMID: 32591080 DOI: 10.1016/bs.ctdb.2020.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Axis specification of the zebrafish embryo begins during oogenesis and relies on proper formation of well-defined cytoplasmic domains within the oocyte. Upon fertilization, maternally-regulated cytoplasmic flow and repositioning of dorsal determinants establish the coordinate system that will build the structure and developmental body plan of the embryo. Failure of specific genes that regulate the embryonic coordinate system leads to catastrophic loss of body structures. Here, we review the genetic principles of axis formation and discuss how maternal factors orchestrate axis patterning during zebrafish early embryogenesis. We focus on the molecular identity and functional contribution of genes controlling critical aspects of oogenesis, egg activation, blastula, and gastrula stages. We examine how polarized cytoplasmic domains form in the oocyte, which set off downstream events such as animal-vegetal polarity and germ line development. After gametes interact and form the zygote, cytoplasmic segregation drives the animal-directed reorganization of maternal determinants through calcium- and cell cycle-dependent signals. We also summarize how maternal genes control dorsoventral, anterior-posterior, mesendodermal, and left-right cell fate specification and how signaling pathways pattern these axes and tissues during early development to instruct the three-dimensional body plan. Advances in reverse genetics and phenotyping approaches in the zebrafish model are revealing positional patterning signatures at the single-cell level, thus enhancing our understanding of genotype-phenotype interactions in axis formation. Our emphasis is on the genetic interrogation of novel and specific maternal regulatory mechanisms of axis specification in the zebrafish.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jose L Pelliccia
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Elliott W Abrams
- Department of Biology, Purchase College, State University of New York, Harrison, NY, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
21
|
Asp M, Bergenstråhle J, Lundeberg J. Spatially Resolved Transcriptomes-Next Generation Tools for Tissue Exploration. Bioessays 2020; 42:e1900221. [PMID: 32363691 DOI: 10.1002/bies.201900221] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/28/2020] [Indexed: 02/04/2023]
Abstract
Recent advances in spatially resolved transcriptomics have greatly expanded the knowledge of complex multicellular biological systems. The field has quickly expanded in recent years, and several new technologies have been developed that all aim to combine gene expression data with spatial information. The vast array of methodologies displays fundamental differences in their approach to obtain this information, and thus, demonstrate method-specific advantages and shortcomings. While the field is moving forward at a rapid pace, there are still multiple challenges presented to be addressed, including sensitivity, labor extensiveness, tissue-type dependence, and limited capacity to obtain detailed single-cell information. No single method can currently address all these key parameters. In this review, available spatial transcriptomics methods are described and their applications as well as their strengths and weaknesses are discussed. Future developments are explored and where the field is heading to is deliberated upon.
Collapse
Affiliation(s)
- Michaela Asp
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, Science for Life Laboratory, Solna, 17165, Sweden
| | - Joseph Bergenstråhle
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, Science for Life Laboratory, Solna, 17165, Sweden
| | - Joakim Lundeberg
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, Science for Life Laboratory, Solna, 17165, Sweden
| |
Collapse
|
22
|
Cang Z, Nie Q. Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nat Commun 2020; 11:2084. [PMID: 32350282 PMCID: PMC7190659 DOI: 10.1038/s41467-020-15968-5] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/27/2020] [Indexed: 01/20/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) provides details for individual cells; however, crucial spatial information is often lost. We present SpaOTsc, a method relying on structured optimal transport to recover spatial properties of scRNA-seq data by utilizing spatial measurements of a relatively small number of genes. A spatial metric for individual cells in scRNA-seq data is first established based on a map connecting it with the spatial measurements. The cell-cell communications are then obtained by "optimally transporting" signal senders to target signal receivers in space. Using partial information decomposition, we next compute the intercellular gene-gene information flow to estimate the spatial regulations between genes across cells. Four datasets are employed for cross-validation of spatial gene expression prediction and comparison to known cell-cell communications. SpaOTsc has broader applications, both in integrating non-spatial single-cell measurements with spatial data, and directly in spatial single-cell transcriptomics data to reconstruct spatial cellular dynamics in tissues.
Collapse
Affiliation(s)
- Zixuan Cang
- Department of Mathematics, University of California, Irvine, Irvine, CA, 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, 92697, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA.
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
23
|
Zhang G, Ferg M, Lübke L, Takamiya M, Beil T, Gourain V, Diotel N, Strähle U, Rastegar S. Bone morphogenetic protein signaling regulates Id1-mediated neural stem cell quiescence in the adult zebrafish brain via a phylogenetically conserved enhancer module. Stem Cells 2020; 38:875-889. [PMID: 32246536 DOI: 10.1002/stem.3182] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
In the telencephalon of adult zebrafish, the inhibitor of DNA binding 1 (id1) gene is expressed in radial glial cells (RGCs), behaving as neural stem cells (NSCs), during constitutive and regenerative neurogenesis. Id1 controls the balance between resting and proliferating states of RGCs by promoting quiescence. Here, we identified a phylogenetically conserved cis-regulatory module (CRM) mediating the specific expression of id1 in RGCs. Systematic deletion mapping and mutation of conserved transcription factor binding sites in stable transgenic zebrafish lines reveal that this CRM operates via conserved smad1/5 and 4 binding motifs under both homeostatic and regenerative conditions. Transcriptome analysis of injured and uninjured telencephala as well as pharmacological inhibition experiments identify a crucial role of bone morphogenetic protein (BMP) signaling for the function of the CRM. Our data highlight that BMP signals control id1 expression and thus NSC proliferation during constitutive and induced neurogenesis.
Collapse
Affiliation(s)
- Gaoqun Zhang
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Marco Ferg
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Luisa Lübke
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Tanja Beil
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Victor Gourain
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Uwe Strähle
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
24
|
Rogers KW, Müller P. Optogenetic approaches to investigate spatiotemporal signaling during development. Curr Top Dev Biol 2019; 137:37-77. [PMID: 32143750 DOI: 10.1016/bs.ctdb.2019.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Embryogenesis is coordinated by signaling pathways that pattern the developing organism. Many aspects of this process are not fully understood, including how signaling molecules spread through embryonic tissues, how signaling amplitude and dynamics are decoded, and how multiple signaling pathways cooperate to pattern the body plan. Optogenetic approaches can be used to address these questions by providing precise experimental control over a variety of biological processes. Here, we review how these strategies have provided new insights into developmental signaling and discuss how they could contribute to future investigations.
Collapse
Affiliation(s)
- Katherine W Rogers
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Patrick Müller
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany; Modeling Tumorigenesis Group, Translational Oncology Division, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
25
|
Economou AD, Hill CS. Temporal dynamics in the formation and interpretation of Nodal and BMP morphogen gradients. Curr Top Dev Biol 2019; 137:363-389. [PMID: 32143749 DOI: 10.1016/bs.ctdb.2019.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
One of the most powerful ideas in developmental biology has been that of the morphogen gradient. In the classical view, a signaling molecule is produced at a local source from where it diffuses, resulting in graded levels across the tissue. This gradient provides positional information, with thresholds in the level of the morphogen determining the position of different cell fates. While experimental studies have uncovered numerous potential morphogens in biological systems, it is becoming increasingly apparent that one important feature, not captured in the simple model, is the role of time in both the formation and interpretation of morphogen gradients. We will focus on two members of the transforming growth factor-β family that are known to play a vital role as morphogens in early vertebrate development: the Nodals and the bone morphogenetic proteins (BMPs). Primarily drawing on the early zebrafish embryo, we will show how recent studies have demonstrated the importance of feedback and other interactions that evolve through time, in shaping morphogen gradients. We will further show how rather than simply reading out levels of a morphogen, the duration of ligand exposure can be a crucial determinant of how cells interpret morphogens, in particular through the unfolding of downstream transcriptional events and in their interactions with other pathways.
Collapse
Affiliation(s)
- Andrew D Economou
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
26
|
Ye D, Wang X, Wei C, He M, Wang H, Wang Y, Zhu Z, Sun Y. Marcksb plays a key role in the secretory pathway of zebrafish Bmp2b. PLoS Genet 2019; 15:e1008306. [PMID: 31545789 PMCID: PMC6776368 DOI: 10.1371/journal.pgen.1008306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 10/03/2019] [Accepted: 07/11/2019] [Indexed: 12/24/2022] Open
Abstract
During vertebrate early embryogenesis, the ventral development is directed by the ventral-to-dorsal activity gradient of the bone morphogenetic protein (BMP) signaling. As secreted ligands, the extracellular traffic of BMP has been extensively studied. However, it remains poorly understood that how BMP ligands are secreted from BMP-producing cells. In this work, we show the dominant role of Marcksb controlling the secretory process of Bmp2b via interaction with Hsp70 in vivo. We firstly carefully characterized the role of Marcksb in promoting BMP signaling during dorsoventral axis formation through knockdown approach. We then showed that Marcksb cell autonomously regulates the trafficking of Bmp2b from producing cell to the extracellular space and both the total and the extracellular Bmp2b was decreased in Marcksb-deficient embryos. However, neither the zygotic mutant of marcksb (Zmarcksb) nor the maternal zygotic mutant of marcksb (MZmarcksb) showed any defects of dorsalization. In contrast, the MZmarcksb embryos even showed increased BMP signaling activity as measured by expression of BMP targets, phosphorylated Smad1/5/9 levels and imaging of Bmp2b, suggesting that a phenomenon of “genetic over-compensation” arose. Finally, we revealed that the over-compensation effects of BMP signaling in MZmarcksb was achieved through a sequential up-regulation of MARCKS-family members Marcksa, Marcksl1a and Marcksl1b, and MARCKS-interacting protein Hsp70.3. We concluded that the Marcksb modulates BMP signaling through regulating the secretory pathway of Bmp2b. Bone morphogenetic proteins (BMPs) are extracellular proteins which belong to the transforming growth factor-β (TGF-β) superfamily. BMP signaling is essential for embryonic development, organogenesis, and tissue regeneration and homeostasis, and tightly linked to various diseases and tumorigenesis. However, as secreted proteins, how BMPs are transported and secreted from BMP-producing cells remains poorly understood. In this study, we showed that Marcksb interacts with a molecular chaperon–Hsp70.3 to mediate the secretory pathway of BMP ligands during early development of zebrafish. Moreover, we discovered a novel phenomenon of “genetic over-compensation” in the genetic knock-out mutants of marcksb. To our knowledge, this is the first report that reveals the molecules and their related trafficking system mediating the secretion of BMPs. Considering the wide distribution of BMP and MARCKS within the human body, our work may shed light on the studies of BMPs secretion in organogenesis and adult tissue homeostasis. The finding of MARCKS in controlling BMP secretion may provide potential therapeutic targets for modulating the activity of BMP signaling and thus will be of interest to clinical research.
Collapse
Affiliation(s)
- Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Xiaosi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Changyong Wei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yanwu Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
27
|
Abstract
Soon after fertilization the zebrafish embryo generates the pool of cells that will give rise to the germline and the three somatic germ layers of the embryo (ectoderm, mesoderm and endoderm). As the basic body plan of the vertebrate embryo emerges, evolutionarily conserved developmental signaling pathways, including Bmp, Nodal, Wnt, and Fgf, direct the nearly totipotent cells of the early embryo to adopt gene expression profiles and patterns of cell behavior specific to their eventual fates. Several decades of molecular genetics research in zebrafish has yielded significant insight into the maternal and zygotic contributions and mechanisms that pattern this vertebrate embryo. This new understanding is the product of advances in genetic manipulations and imaging technologies that have allowed the field to probe the cellular, molecular and biophysical aspects underlying early patterning. The current state of the field indicates that patterning is governed by the integration of key signaling pathways and physical interactions between cells, rather than a patterning system in which distinct pathways are deployed to specify a particular cell fate. This chapter focuses on recent advances in our understanding of the genetic and molecular control of the events that impart cell identity and initiate the patterning of tissues that are prerequisites for or concurrent with movements of gastrulation.
Collapse
Affiliation(s)
- Florence L Marlow
- Icahn School of Medicine Mount Sinai Department of Cell, Developmental and Regenerative Biology, New York, NY, United States.
| |
Collapse
|
28
|
Brandt ZJ, North PN, Link BA. Somatic Mutations of lats2 Cause Peripheral Nerve Sheath Tumors in Zebrafish. Cells 2019; 8:E972. [PMID: 31450674 PMCID: PMC6770745 DOI: 10.3390/cells8090972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
The cellular signaling pathways underlying peripheral nerve sheath tumor (PNST) formation are poorly understood. Hippo signaling has been recently implicated in the biology of various cancers, and is thought to function downstream of mutations in the known PNST driver, NF2. Utilizing CRISPR-Cas9 gene editing, we targeted the canonical Hippo signaling kinase Lats2. We show that, while germline deletion leads to early lethality, targeted somatic mutations of zebrafish lats2 leads to peripheral nerve sheath tumor formation. These peripheral nerve sheath tumors exhibit high levels of Hippo effectors Yap and Taz, suggesting that dysregulation of these transcriptional co-factors drives PNST formation in this model. These data indicate that somatic lats2 deletion in zebrafish can serve as a powerful experimental platform to probe the mechanisms of PNST formation and progression.
Collapse
Affiliation(s)
- Zachary J Brandt
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Paula N North
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
29
|
Xiao Y, Chen J, Wan Y, Gao Q, Jing N, Zheng Y, Zhu X. Regulation of zebrafish dorsoventral patterning by phase separation of RNA-binding protein Rbm14. Cell Discov 2019; 5:37. [PMID: 31636951 PMCID: PMC6796953 DOI: 10.1038/s41421-019-0106-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023] Open
Abstract
RNA-binding proteins with intrinsically disordered regions (IDRs) such as Rbm14 can phase separate in vitro. To what extent the phase separation contributes to their physiological functions is however unclear. Here we show that zebrafish Rbm14 regulates embryonic dorsoventral patterning through phase separation. Zebrafish rbm14 morphants displayed dorsalized phenotypes associated with attenuated BMP signaling. Consistently, depletion of mammalian Rbm14 downregulated BMP regulators and effectors Nanog, Smad4/5, and Id1/2, whereas overexpression of the BMP-related proteins in the morphants significantly restored the developmental defects. Importantly, the IDR of zebrafish Rbm14 demixed into liquid droplets in vitro despite poor sequence conservation with its mammalian counterpart. While its phase separation mutants or IDR failed to rescue the morphants, its chimeric proteins containing an IDR from divergent phase separation proteins were effective. Rbm14 complexed with proteins involved in RNA metabolism and phase separated into cellular ribonucleoprotein compartments. Consistently, RNA deep sequencing analysis on the morphant embryos revealed increased alternative splicing events as well as large-scale transcriptomic downregulations. Our results suggest that Rbm14 functions in ribonucleoprotein compartments through phase separation to modulate multiple aspects of RNA metabolism. Furthermore, IDRs conserve in phase separation ability but not primary sequence and can be functionally interchangeable.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China
| | - Jiehui Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China
| | - Yihan Wan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, MD 21218 USA
| | - Qi Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, MD 21218 USA
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China
| |
Collapse
|
30
|
Miller DSJ, Schmierer B, Hill CS. TGF-β family ligands exhibit distinct signalling dynamics that are driven by receptor localisation. J Cell Sci 2019; 132:jcs234039. [PMID: 31217285 PMCID: PMC6679586 DOI: 10.1242/jcs.234039] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 12/29/2022] Open
Abstract
Growth factor-induced signal transduction pathways are tightly regulated at multiple points intracellularly, but how cells monitor levels of extracellular ligand and translate this information into appropriate downstream responses remains unclear. Understanding signalling dynamics is thus a key challenge in determining how cells respond to external cues. Here, we demonstrate that different TGF-β family ligands, namely activin A and BMP4, signal with distinct dynamics, which differ profoundly from those of TGF-β itself. The signalling dynamics are driven by differences in the localisation and internalisation of receptors for each ligand, which in turn determine the capability of cells to monitor levels of extracellular ligand. By using mathematical modelling, we demonstrate that the distinct receptor behaviours and signalling dynamics observed may be primarily driven by differences in ligand-receptor affinity. Furthermore, our results provide a clear rationale for the different mechanisms of pathway regulation found in vivo for each of these growth factors.
Collapse
Affiliation(s)
- Daniel S J Miller
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Bernhard Schmierer
- Karolinska Institutet, Department of Medical Biochemistry and Biophysics and SciLifeLab Biomedicum 9B, Solnavägen 9, SE-171 65 Solna, Stockholm, Sweden
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
31
|
Kawarasaki S, Kuwata H, Sawazaki H, Sakamoto T, Nitta T, Kim CS, Jheng HF, Takahashi H, Nomura W, Ara T, Takahashi N, Tomita K, Yu R, Kawada T, Goto T. A new mouse model for noninvasive fluorescence-based monitoring of mitochondrial UCP1 expression. FEBS Lett 2019; 593:1201-1212. [PMID: 31074834 DOI: 10.1002/1873-3468.13430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/09/2019] [Accepted: 05/05/2019] [Indexed: 01/08/2023]
Abstract
Mitochondrial uncoupling protein 1 (UCP1) is well known for its thermogenic function in brown adipose tissue (BAT). Since UCP1 expends energy on thermogenesis, UCP1 activation has been considered an approach to ameliorate obesity. As a tool for uncovering yet unknown mechanisms of UCP1 activation, we generated a transgenic mouse model in which UCP1 expression levels are reflected in fluorescence derived from monomeric red fluorescent protein 1 (mRFP1). In these UCP1-mRFP1 BAC transgenic mice, fluorescence intensity mimics the change in UCP1 expression levels evoked through physiological or pharmacological stimulation. This transgenic mouse model will be useful in the search for bioactive compounds with the ability to induce UCP1 and for revealing undiscovered mechanisms of BAT activation.
Collapse
Affiliation(s)
- Satoko Kawarasaki
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Hidetoshi Kuwata
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Honami Sawazaki
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Tomoya Sakamoto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Takahiro Nitta
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Chuu-Sook Kim
- Department of Food Science and Nutrition, University of Ulsan, South Korea
| | - Huei-Fen Jheng
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Wataru Nomura
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Japan
| | - Takeshi Ara
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Nobuyuki Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Japan
| | - Koichi Tomita
- Department of Anatomy and Developmental Neurobiology, Graduate school of Biomedical Sciences, Tokushima University, Japan
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, South Korea
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Japan
| |
Collapse
|
32
|
Mörsdorf D, Müller P. Tuning Protein Diffusivity with Membrane Tethers. Biochemistry 2019; 58:177-181. [PMID: 30562001 PMCID: PMC6344912 DOI: 10.1021/acs.biochem.8b01150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/09/2018] [Indexed: 12/18/2022]
Abstract
Diffusion is essential for biochemical processes because it dominates molecular movement on small scales. Enzymatic reactions, for example, require fast exchange of substrate and product molecules in the local environment of the enzyme to ensure efficient turnover. On larger spatial scales, diffusion of secreted signaling proteins is thought to limit the spatial extent of tissue differentiation during embryonic development. While it is possible to measure diffusion in vivo, specifically interfering with diffusion processes and testing diffusion models directly remains challenging. The development of genetically encoded nanobodies that bind specific proteins has provided the opportunity to alter protein localization and reduce protein mobility. Here, we extend the nanobody toolbox with a membrane-tethered low-affinity diffusion regulator that can be used to tune the effective diffusivity of extracellular molecules over an order of magnitude in living embryos. This opens new avenues for future applications to functionally interfere with diffusion-dependent processes.
Collapse
Affiliation(s)
- David Mörsdorf
- Friedrich Miescher Laboratory of the
Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Patrick Müller
- Friedrich Miescher Laboratory of the
Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| |
Collapse
|
33
|
Félix LM, Luzio A, Themudo M, Antunes L, Matos M, Coimbra AM, Valentim AM. MS-222 short exposure induces developmental and behavioural alterations in zebrafish embryos. Reprod Toxicol 2018; 81:122-131. [DOI: 10.1016/j.reprotox.2018.07.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 01/19/2023]
|
34
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
35
|
Nodal and BMP dispersal during early zebrafish development. Dev Biol 2018; 447:14-23. [PMID: 29653088 DOI: 10.1016/j.ydbio.2018.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/30/2022]
Abstract
The secreted TGF-β superfamily signals Nodal and BMP coordinate the patterning of vertebrate embryos. Nodal specifies endoderm and mesoderm during germ layer formation, and BMP specifies ventral fates and patterns the dorsal/ventral axis. Five major models have been proposed to explain how the correct distributions of Nodal and BMP are achieved within tissues to orchestrate embryogenesis: source/sink, transcriptional determination, relay, self-regulation, and shuttling. Here, we discuss recent experiments probing these signal dispersal models, focusing on early zebrafish development.
Collapse
|
36
|
Pomreinke AP, Soh GH, Rogers KW, Bergmann JK, Bläßle AJ, Müller P. Dynamics of BMP signaling and distribution during zebrafish dorsal-ventral patterning. eLife 2017; 6:25861. [PMID: 28857744 PMCID: PMC5658070 DOI: 10.7554/elife.25861] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/30/2017] [Indexed: 11/21/2022] Open
Abstract
During vertebrate embryogenesis, dorsal-ventral patterning is controlled by the BMP/Chordin activator/inhibitor system. BMP induces ventral fates, whereas Chordin inhibits BMP signaling on the dorsal side. Several theories can explain how the distributions of BMP and Chordin are regulated to achieve patterning, but the assumptions regarding activator/inhibitor diffusion and stability differ between models. Notably, ‘shuttling’ models in which the BMP distribution is modulated by a Chordin-mediated increase in BMP diffusivity have gained recent prominence. Here, we directly test five major models by measuring the biophysical properties of fluorescently tagged BMP2b and Chordin in zebrafish embryos. We found that BMP2b and Chordin diffuse and rapidly form extracellular protein gradients, Chordin does not modulate the diffusivity or distribution of BMP2b, and Chordin is not required to establish peak levels of BMP signaling. Our findings challenge current self-regulating reaction-diffusion and shuttling models and provide support for a graded source-sink mechanism underlying zebrafish dorsal-ventral patterning. Animals start life as clumps of cells that ultimately give rise to complex structures and organs. Over a century of research has revealed a small number of proteins that are crucial for complex structures to form from these clumps, including one protein called BMP. Different levels of BMP instruct cells to give rise to different tissues. In zebrafish, BMP is more abundant on one side of the embryo than the other. This gradient in BMP levels causes different tissues to form at distinct positions and helps coordinate embryo development. Several theories have been proposed to explain how the BMP gradient is established. They all suggest that a second protein – Chordin – plays an important role in influencing how cells sense the BMP gradient by blocking BMP’s activity. However, the exact role of Chordin in the formation of the BMP gradient is disputed. To address this, Pomreinke, Soh, Rogers et al. directly tested five theories of how BMP and Chordin molecules spread through embryos. The experiments used microscopy to track the movements of fluorescent versions of both molecules in zebrafish embryos. The measurements contradict one theory stating that BMP does not move, and another in which Chordin increases the mobility of BMP. Pomreinke, Soh, Rogers et al. also found that embryos that lack Chordin have increased BMP signaling levels only on the side where Chordin is normally made but not on the opposite side where BMP is made, ruling out several of the theories. The findings are most consistent with the idea that the BMP gradient forms mainly as a result of higher production of BMP on one side of the embryo combined with movement of BMP away from where it is made. Chordin produced at the opposite end of the embryo helps to ensure that only the correct cells receive instructions from BMP. In the future, two approaches could further clarify how the BMP gradient is formed. First, better techniques to directly observe the BMP gradient in normally developing embryos would be useful. Second, new theories that take into account additional players other than BMP and Chordin might help explain some features of development that current theories cannot address. Uncovering the mechanisms that control the formation of BMP gradients will improve our understanding of how clumps of cells can develop into animals.
Collapse
Affiliation(s)
- Autumn P Pomreinke
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Gary H Soh
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Katherine W Rogers
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Jennifer K Bergmann
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Alexander J Bläßle
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Patrick Müller
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| |
Collapse
|
37
|
Zinski J, Bu Y, Wang X, Dou W, Umulis D, Mullins MC. Systems biology derived source-sink mechanism of BMP gradient formation. eLife 2017; 6:22199. [PMID: 28826472 PMCID: PMC5590806 DOI: 10.7554/elife.22199] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development. Before an animal is born, a protein called BMP plays a key role in establishing the difference between the front and the back of the animal. Cells nearer the front of the embryo contain higher amounts of the BMP protein, whilst cells nearer the back have progressively lower levels of BMP. This gradient of BMP ‘concentration’ affects the identity of the cells, with the level of BMP in each cell dictating what parts of the body are made where. The prevailing view among scientists is that the BMP gradient is created by an opposing gradient of another protein called Chordin, which is found at high levels at the back of the embryo and lower levels near the front. Chordin inhibits BMP and the interaction between the two proteins establishes the gradients that create order across the embryo. Zinski et al. used computer models to investigate how the BMP gradient is created. Several possibilities were considered, including the effect of Chordin. Comparing the models to precise experimental measurements of BMP activity in zebrafish embryos suggested that a different mechanism known as a source-sink model, rather than the opposing Chordin gradient, may be responsible for the pattern of BMP found in the embryo. In this model, the BMP is produced at the front of the embryo and moves towards the back end by diffusion. At the back of the embryo, BMP is mopped up by Chordin, resulting in a constant gradient of BMP along the embryo. Many other processes that control how animals grow and develop rely on the formation of similar protein gradients, so these findings may also apply to other aspects of animal development. Understanding how animals grow and develop may help researchers to develop strategies to regrow tissues and organs in human patients.
Collapse
Affiliation(s)
- Joseph Zinski
- Department of Cell and DevelopmentalBiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - Ye Bu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
| | - Xu Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
| | - Wei Dou
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
| | - David Umulis
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, United States
| | - Mary C Mullins
- Department of Cell and DevelopmentalBiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| |
Collapse
|
38
|
BMP and retinoic acid regulate anterior-posterior patterning of the non-axial mesoderm across the dorsal-ventral axis. Nat Commun 2016; 7:12197. [PMID: 27406002 PMCID: PMC4947171 DOI: 10.1038/ncomms12197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 06/09/2016] [Indexed: 11/23/2022] Open
Abstract
Despite the fundamental importance of patterning along the dorsal–ventral (DV) and anterior–posterior (AP) axes during embryogenesis, uncertainty exists in the orientation of these axes for the mesoderm. Here we examine the origin and formation of the zebrafish kidney, a ventrolateral mesoderm derivative, and show that AP patterning of the non-axial mesoderm occurs across the classic gastrula stage DV axis while DV patterning aligns along the animal–vegetal pole. We find that BMP signalling acts early to establish broad anterior and posterior territories in the non-axial mesoderm while retinoic acid (RA) functions later, but also across the classic DV axis. Our data support a model in which RA on the dorsal side of the embryo induces anterior kidney fates while posterior kidney progenitors are protected ventrally by the RA-catabolizing enzyme Cyp26a1. This work clarifies our understanding of vertebrate axis orientation and establishes a new paradigm for how the kidney and other mesodermal derivatives arise during embryogenesis. It is unclear how the dorsal-ventral (DV) and anterior-posterior (AP) axes established in the gastrula affect tissues. Here, the authors show that in zebrafish kidney development, with regard to non-axial mesoderm, the classic DV axis corresponds to the AP axis, and is regulated by BMP and retinoic acid.
Collapse
|
39
|
Abstract
Morphogens were originally defined as secreted signaling molecules that diffuse from local sources to form concentration gradients, which specify multiple cell fates. More recently morphogen gradients have been shown to incorporate a range of mechanisms including short-range signal activation, transcriptional/translational feedback, and temporal windows of target gene induction. Many critical cell-cell signals implicated in both embryonic development and disease, such as Wnt, fibroblast growth factor (Fgf), hedgehog (Hh), transforming growth factor beta (TGFb), and retinoic acid (RA), are thought to act as morphogens, but key information on signal propagation and ligand distribution has been lacking for most. The zebrafish provides unique advantages for genetics and imaging to address gradients during early embryonic stages when morphogens help establish major body axes. This has been particularly informative for RA, where RA response elements (RAREs) driving fluorescent reporters as well as Fluorescence Resonance Energy Transfer (FRET) reporters of receptor binding have provided evidence for gradients, as well as regulatory mechanisms that attenuate noise and enhance gradient robustness in vivo. Here we summarize available tools in zebrafish and discuss their utility for studying dynamic regulation of RA morphogen gradients, through combined experimental and computational approaches.
Collapse
Affiliation(s)
| | - J Sosnik
- University of California, Irvine, CA, United States
| | - Q Nie
- University of California, Irvine, CA, United States
| |
Collapse
|
40
|
Baxendale S, Whitfield TT. Methods to study the development, anatomy, and function of the zebrafish inner ear across the life course. Methods Cell Biol 2016; 134:165-209. [PMID: 27312494 DOI: 10.1016/bs.mcb.2016.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The inner ear is a remarkably intricate structure able to detect sound, motion, and gravity. During development of the zebrafish embryo, the ear undergoes dynamic morphogenesis from a simple epithelial vesicle into a complex labyrinth, consisting of three semicircular canals and three otolithic sensory organs, each with an array of differentiated cell types. This microcosm of biology has led to advances in understanding molecular and cellular changes in epithelial patterning and morphogenesis, through to mechanisms of mechanosensory transduction and the origins of reflexive behavior. In this chapter, we describe different methods to study the zebrafish ear, including high-speed imaging of otic cilia, confocal microscopy, and light-sheet fluorescent microscopy. Many dyes, antibodies, and transgenic lines for labeling the ear are available, and we provide a comprehensive review of these resources. The developing ear is amenable to genetic, chemical, and physical manipulations, including injection and transplantation. Chemical modulation of developmental signaling pathways has paved the way for zebrafish to be widely used in drug discovery. We describe two chemical screens with relevance to the ear: a fluorescent-based screen for compounds that protect against ototoxicity, and an in situ-based screen for modulators of a signaling pathway involved in semicircular canal development. We also describe methods for dissection and imaging of the adult otic epithelia. We review both manual and automated methods to test the function of the inner ear and lateral line, defects in which can lead to altered locomotor behavior. Finally, we review a collection of zebrafish models that are generating new insights into human deafness and vestibular disorders.
Collapse
Affiliation(s)
- S Baxendale
- University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
41
|
Chang YC, Pai CY, Chen YC, Ting HC, Martinez P, Telford MJ, Yu JK, Su YH. Regulatory circuit rewiring and functional divergence of the duplicate admp genes in dorsoventral axial patterning. Dev Biol 2016; 410:108-18. [DOI: 10.1016/j.ydbio.2015.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022]
|
42
|
Abstract
The concept of positional information proposes that cells acquire positional values as in a coordinate system, which they interpret by developing in particular ways to give rise to spatial patterns. Some of the best evidence for positional information comes from regeneration experiments, and the patterning of the leg and antenna in Drosophila, and the vertebrate limb. Central problems are how positional information is set up, how it is recorded, and then how it is interpreted by the cells. A number of models have been proposed for the setting up of positional gradients, and most are based on diffusion of a morphogen and its interactions with extracellular molecules; however, diffusion may not be reliable mechanism. There are also mechanisms based on timing. There is no good evidence for the quantitative aspects of any of the proposed gradients and details how they are set up. The way in which a signaling gradient regulates differential gene expression in a concentration-dependent manner also raises several technical and quite difficult issues. A key feature of positional information being the basis for pattern formation is that there is no prepattern in the embryo.
Collapse
|
43
|
Schille C, Heller J, Schambony A. Differential requirement of bone morphogenetic protein receptors Ia (ALK3) and Ib (ALK6) in early embryonic patterning and neural crest development. BMC DEVELOPMENTAL BIOLOGY 2016; 16:1. [PMID: 26780949 PMCID: PMC4717534 DOI: 10.1186/s12861-016-0101-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/05/2016] [Indexed: 01/01/2023]
Abstract
Background Bone morphogenetic proteins regulate multiple processes in embryonic development, including early dorso-ventral patterning and neural crest development. BMPs activate heteromeric receptor complexes consisting of type I and type II receptor-serine/threonine kinases. BMP receptors Ia and Ib, also known as ALK3 and ALK6 respectively, are the most common type I receptors that likely mediate most BMP signaling events. Since early expression patterns and functions in Xenopus laevis development have not been described, we have addressed these questions in the present study. Results Here we have analyzed the temporal and spatial expression patterns of ALK3 and ALK6; we have also carried out loss-of-function studies to define the function of these receptors in early Xenopus development. We detected both redundant and non-redundant roles of ALK3 and ALK6 in dorso-ventral patterning. From late gastrula stages onwards, their expression patterns diverged, which correlated with a specific, non-redundant requirement of ALK6 in post-gastrula neural crest cells. ALK6 was essential for induction of neural crest cell fate and further development of the neural crest and its derivatives. Conclusions ALK3 and ALK6 both contribute to the gene regulatory network that regulates dorso-ventral patterning; they play partially overlapping and partially non-redundant roles in this process. ALK3 and ALK6 are independently required for the spatially restricted activation of BMP signaling and msx2 upregulation at the neural plate border, whereas in post-gastrula development ALK6 exerts a highly specific, conserved function in neural crest development. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0101-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolin Schille
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058, Erlangen, Germany.
| | - Jens Heller
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058, Erlangen, Germany.
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058, Erlangen, Germany.
| |
Collapse
|
44
|
Hiepen C, Yadin D, Rikeit P, Dörpholz G, Knaus P. Actions from head to toe: An update on Bone/Body Morphogenetic Proteins in health and disease. Cytokine Growth Factor Rev 2016; 27:1-11. [PMID: 26803465 DOI: 10.1016/j.cytogfr.2015.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pleiotropic actions of Bone Morphogenetic Proteins in many different tissues has led us to the conclusion that they may be viewed as Body Morphogenetic Proteins (BMPs). This is supported by a broad range of distinct BMP-related diseases. Here, we summarize highlights from the 10th international BMP conference, which took place from September 16th to 20th 2014 in Berlin. Attendees updated us on recently identified common and context-specific mechanisms of BMP signaling and function. This included for example new insights into BMP pro-domains, BMP receptors, role of BMPs in muscle and novel consequences of ACVRI mutations. Currently, new BMPs are entering clinical trials with the BMP pathway considered as a 'druggable' target. We conclude that various recent and ongoing approaches could indeed help patients in the near future.
Collapse
Affiliation(s)
- Christian Hiepen
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - David Yadin
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Paul Rikeit
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Gina Dörpholz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Petra Knaus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, Berlin, 14195, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
45
|
Migliorini E, Valat A, Picart C, Cavalcanti-Adam EA. Tuning cellular responses to BMP-2 with material surfaces. Cytokine Growth Factor Rev 2015; 27:43-54. [PMID: 26704296 DOI: 10.1016/j.cytogfr.2015.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/13/2015] [Indexed: 02/08/2023]
Abstract
Bone morphogenetic protein 2 (BMP-2) has been known for decades as a strong osteoinductive factor and for clinical applications is combined solely with collagen as carrier material. The growing concerns regarding side effects and the importance of BMP-2 in several developmental and physiological processes have raised the need to improve the design of materials by controlling BMP-2 presentation. Inspired by the natural cell environment, new material surfaces have been engineered and tailored to provide both physical and chemical cues that regulate BMP-2 activity. Here we describe surfaces designed to present BMP-2 to cells in a spatially and temporally controlled manner. This is achieved by trapping BMP-2 using physicochemical interactions, either covalently grafted or combined with other extracellular matrix components. In the near future, we anticipate that material science and biology will integrate and further develop tools for in vitro studies and potentially bring some of them toward in vivo applications.
Collapse
Affiliation(s)
- Elisa Migliorini
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, INF 253, D-69120 Heidelberg, Germany, Tel: +49-6221-54 5064
| | - Anne Valat
- CNRS-UMR 5628, LMGP, 3 parvis L.Néel, F-38 016 Grenoble, France
- University Grenoble Alpes, Grenoble Institute of Technology, LMGP, 3 parvis Louis Néel, F-28016 Grenoble, France
- INSERM U823, ERL CNRS5284, Université de Grenoble Alpes, Institut Albert Bonniot, Site Santé, BP170, 38042 Grenoble cedex 9, France, Tel: +33-04-56529311
| | - Catherine Picart
- CNRS-UMR 5628, LMGP, 3 parvis L.Néel, F-38 016 Grenoble, France
- University Grenoble Alpes, Grenoble Institute of Technology, LMGP, 3 parvis Louis Néel, F-28016 Grenoble, France
| | - Elisabetta Ada Cavalcanti-Adam
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, INF 253, D-69120 Heidelberg, Germany, Tel: +49-6221-54 5064
| |
Collapse
|
46
|
Lin KY, Kao SH, Lai CM, Chen CT, Wu CY, Hsu HJ, Wang WD. Tumor Suppressor Lzap Suppresses Wnt/β-Catenin Signaling to Promote Zebrafish Embryonic Ventral Cell Fates via the Suppression of Inhibitory Phosphorylation of Glycogen Synthase Kinase 3. J Biol Chem 2015; 290:29808-19. [PMID: 26475862 DOI: 10.1074/jbc.m115.669309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 11/06/2022] Open
Abstract
Wnt/β-catenin signaling controls various cell fates in metazoan development, and its dysregulation is often associated with cancer formation. However, regulations of this signaling pathway are not completely understood. Here, we report that Lzap, a tumor suppressor, controls nuclear translocation of β-catenin. In zebrafish embryos disruption of lzap increases the expression of chordin (chd), which encodes a bone morphogenetic protein (BMP) antagonist that is localized in prospective dorsal cells and promotes dorsal fates. Consistently, lzap-deficient embryos with attenuated BMP signaling are dorsalized, which can be rescued by overexpression of zebrafish lzap or bmp2b or human LZAP. The expansion of chd expression in embryos lacking lzap is due to the accumulation of nuclear β-catenin in ventral cells, in which β-catenin is usually degraded. Furthermore, the activity of GSK3, a master regulator of β-catenin degradation, is suppressed in lzap-deficient embryos via inhibitory phosphorylation. Finally, we also report that a similar regulatory axis is also likely to be present in a human tongue carcinoma cell line, SAS. Our results reveal that Lzap is a novel regulator of GSK3 for the maintenance of ventral cell properties and may prevent carcinogenesis via the regulation of β-catenin degradation.
Collapse
Affiliation(s)
- Kun-Yang Lin
- From the Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan, Department of BioAgricultural Science, National Chiayi University, Chiayi 60004, Taiwan, and
| | - Shih-Han Kao
- From the Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Chun-Ming Lai
- From the Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan, Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei 11529, Taiwan
| | - Ciao-Ting Chen
- Department of BioAgricultural Science, National Chiayi University, Chiayi 60004, Taiwan, and
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung City 80424, Taiwan
| | - Hwei-Jan Hsu
- From the Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan,
| | - Wen-Der Wang
- Department of BioAgricultural Science, National Chiayi University, Chiayi 60004, Taiwan, and
| |
Collapse
|
47
|
Tuazon FB, Mullins MC. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin Cell Dev Biol 2015; 42:118-33. [PMID: 26123688 PMCID: PMC4562868 DOI: 10.1016/j.semcdb.2015.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate body plan is established through the precise spatiotemporal coordination of morphogen signaling pathways that pattern the anteroposterior (AP) and dorsoventral (DV) axes. Patterning along the AP axis is directed by posteriorizing signals Wnt, fibroblast growth factor (FGF), Nodal, and retinoic acid (RA), while patterning along the DV axis is directed by bone morphogenetic proteins (BMP) ventralizing signals. This review addresses the current understanding of how Wnt, FGF, RA and BMP pattern distinct AP and DV cell fates during early development and how their signaling mechanisms are coordinated to concomitantly pattern AP and DV tissues.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States.
| |
Collapse
|
48
|
Crosetto N, Bienko M, van Oudenaarden A. Spatially resolved transcriptomics and beyond. Nat Rev Genet 2014; 16:57-66. [DOI: 10.1038/nrg3832] [Citation(s) in RCA: 323] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Organizer-derived Bmp2 is required for the formation of a correct Bmp activity gradient during embryonic development. Nat Commun 2014; 5:3766. [PMID: 24777107 PMCID: PMC4071459 DOI: 10.1038/ncomms4766] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 03/31/2014] [Indexed: 01/21/2023] Open
Abstract
Bone morphogenetic proteins (Bmps) control dorsoventral patterning of vertebrate embryos through the establishment of a ventrodorsal gradient of the activated downstream cytoplasmic effectors Smad1/5/8. Some Bmp ligands are expressed in the ventral and lateral regions and in the organizer during gastrulation of the embryo, but it remains unclear how organizer-derived Bmps contribute to total Bmp ligand levels and to the establishment of the correct phospho-Smad1/5/8 gradient along the ventrodorsal axis. Here we demonstrate that interference with organizer-specific Bmp2b signalling in zebrafish embryos alters the phospho-Smad1/5/8 gradient throughout the ventrodorsal axis, elevates the levels of the Bmp antagonist Chordin and dorsalizes the embryos. Moreover, we show that organizer-derived Bmp2b represses chordin transcription in the organizer and contributes to the control of the Chordin gradient. Combining these experimental results with simulations of Bmp’s reaction-diffusion dynamics, our data indicate that organizer-produced Bmp2b is required for the establishment and maintenance of a Bmp activity gradient and for appropriate embryonic dorsoventral patterning during gastrulation. The morphogen, Bmp, regulates differentiation of cell fates along the ventral to dorsal axis during vertebrate embryonic development. Here, Xue et al. show that Bmp2b produced by the organizer during early gastrulation in zebrafish embryos has a role in the establishment of an appropriate Bmp morphogen activity gradient and the correct dorsoventral patterning of the embryos.
Collapse
|
50
|
Almodóvar J, Guillot R, Monge C, Vollaire J, Selimović S, Coll JL, Khademhosseini A, Picart C. Spatial patterning of BMP-2 and BMP-7 on biopolymeric films and the guidance of muscle cell fate. Biomaterials 2014; 35:3975-85. [PMID: 24485790 DOI: 10.1016/j.biomaterials.2014.01.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
In the cellular microenvironment, growth factor gradients are crucial in dictating cell fate. Towards developing materials that capture the native microenvironment we engineered biomimetic films that present gradients of matrix-bound bone morphogenetic proteins (BMP-2 and BMP-7). To this end layer-by-layer films composed of poly(L-lysine) and hyaluronan were combined in a simple microfluidic device enabling spatially controlled growth factor diffusion along the film. Linear long-range gradients of both BMPs induced the trans-differentiation of C2C12 myoblasts towards the osteogenic lineage in a dose dependent manner with a different signature for each BMP. The osteogenic marker alkaline phosphatase (ALP) increased in a linear manner for BMP-7 and non-linearly for BMP-2. Moreover, an increased expression of the myogenic marker troponin T was observed with decreasing matrix-bound BMP concentration, providing a substrate that it is both osteo- and myo-inductive. Lastly, dual parallel matrix-bound gradients of BMP-2 and -7 revealed a complete saturation of the ALP signal. This suggested an additive or synergistic effect of the two BMPs. This simple technology allows for determining quickly and efficiently the optimal concentration of matrix-bound growth factors, as well as for investigating the presentation of multiple growth factors in their solid-phase and in a spatially controlled manner.
Collapse
Affiliation(s)
- Jorge Almodóvar
- CNRS UMR 5628 (LMGP), MINATEC, 3 parvis Louis Néel, 38016 Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, 38016 Grenoble, France
| | - Raphaël Guillot
- CNRS UMR 5628 (LMGP), MINATEC, 3 parvis Louis Néel, 38016 Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, 38016 Grenoble, France
| | - Claire Monge
- CNRS UMR 5628 (LMGP), MINATEC, 3 parvis Louis Néel, 38016 Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, 38016 Grenoble, France
| | | | - Seila Selimović
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Catherine Picart
- CNRS UMR 5628 (LMGP), MINATEC, 3 parvis Louis Néel, 38016 Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, 38016 Grenoble, France.
| |
Collapse
|