1
|
Chaudhary P, Magotra A, Alex R, Bangar YC, Sindhu P, Rose MK, Garg AR. Dairy Cattle Reproduction, Production, and Disease Resistance in the Omics Era: Genome-Wide Selection Signatures Identify Candidate Genes in Sahiwal Cattle. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025; 29:191-205. [PMID: 40256796 DOI: 10.1089/omi.2024.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Climate emergency and ecological sustainability call for new ways of thinking livestock health, including the dairy cattle. This study unpacks the genetic diversity and selection sweeps of Sahiwal cattle in relation to adaptability, production, and disease resistance. Using nucleotide diversity (π) calculated from 10 kb windows across the genome with VCFtools, 716 regions of genetic diversity were identified across 29 chromosomes, and importantly, with chromosome 15 showing the highest density. A total of 92 quantitative trait loci (QTL) linked genes were analyzed, with chromosome 1 harboring the highest number. Trait association analysis using the Cattle QTL database showed that 14 genes were linked to production traits, 10 to reproduction traits, and 8 to disease susceptibility. Notable genes included CSMD2 and EFNA1, which influence milk production traits such as fat percentage and yield, and PCBP3 and SGCD, which affect reproductive traits. Additionally, the genes TBXAS1 and ASTN2 were associated with disease traits such as bovine respiratory disease and sole ulcers. Selection sweeps, identified using Tajima's D, revealed 728 sweeps across the genome, with chromosomes 6 and 8 showing the highest frequencies. These sweeps indicate regions under strong selective pressure, likely due to the breed's adaptation to arid environments and specific trait selection. The present study highlights how genetic diversity and selection sweeps contribute to Sahiwal cattle's adaptability, production efficiency, and disease resistance. The insights reported here provide a foundation for livestock health and targeted breeding strategies in the case of Sahiwal cattle under diverse ecological conditions such as tropical climate.
Collapse
Affiliation(s)
- Pradeep Chaudhary
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
- Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-Jammu), Jammu, India
| | - Rani Alex
- ICAR-National Dairy Research Institute, Karnal, India
| | - Yogesh C Bangar
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Pushpa Sindhu
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Manoj K Rose
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Asha R Garg
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| |
Collapse
|
2
|
Chen X, Liu H, Huang Y, Li L, Jiang X, Liu B, Li N, Zhu L, Liu C, Xiao J. FAM20B-Catalyzed Glycosylation Regulates the Chondrogenic and Osteogenic Differentiation of the Embryonic Condyle by Controlling IHH Diffusion and Release. Int J Mol Sci 2025; 26:4033. [PMID: 40362273 PMCID: PMC12071210 DOI: 10.3390/ijms26094033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Although the roles of proteoglycans (PGs) have been well documented in the development and homeostasis of the temporomandibular joint (TMJ), how the glycosaminoglycan (GAG) chains of PGs contribute to TMJ chondrogenesis and osteogenesis still requires explication. In this study, we found that FAM20B, a hexokinase essential for attaching GAG chains to the core proteins of PGs, was robustly activated in the condylar mesenchyme during TMJ development. The inactivation of Fam20b in craniofacial neural crest cells (CNCCs) dramatically reduced the synthesis and accumulation of GAG chains rather than core proteins in the condylar cartilage, which resulted in a hypoplastic condylar cartilage by severely promoting chondrocyte hypertrophy and perichondral ossification. In the condyles of Wnt1-Cre;Fam20bf/f mouse embryos, enlarged Ihh- and COL10-expressing domains indicated premature hypertrophy resulting from an attenuated IHH-PTHRP negative feedback in condylar chondrocytes, while increased osteogenic markers, canonical Wnt activity, and type-H angiogenesis verified the enhanced osteogenesis in the perichondrium. Further ex vivo investigations revealed that the loss of Fam20b decreased the domain area but increased the activity of HH signaling in the embryonic condylar mesenchyme. Moreover, the abrogation of GAG chains in heparan sulfate and chondroitin sulfate proteoglycans led to a rapid up- and then downregulation of HH signaling in condylar chondrocytes, implicating a "slow-release" manner of growth factors controlled by GAG chains. Overall, this study revealed a comprehensive role of the FAM20B-catalyzed GAG chain synthesis in the chondrogenic and osteogenic differentiation of the embryonic TMJ condyle.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
| | - Han Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Yuhong Huang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
| | - Leilei Li
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
| | - Xuxi Jiang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
| | - Bo Liu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China
| | - Nan Li
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Lei Zhu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Jing Xiao
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (X.C.); (H.L.)
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
3
|
Yamashita R, Tsutsui S, Mizumoto S, Watanabe T, Yamamoto N, Nakano K, Yamada S, Okamura T, Furuichi T. CANT1 Is Involved in Collagen Fibrogenesis in Tendons by Regulating the Synthesis of Dermatan/Chondroitin Sulfate Attached to the Decorin Core Protein. Int J Mol Sci 2025; 26:2463. [PMID: 40141107 PMCID: PMC11941851 DOI: 10.3390/ijms26062463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Tendons are connective tissues that join muscles and bones and are rich in glycosaminoglycans (GAGs). Decorin is a proteoglycan with one dermatan sulfate (DS) or chondroitin sulfate (CS) chain (a type of GAG) attached to its core protein and is involved in regulating the assembly of collagen fibrils in the tendon extracellular matrix (ECM). Calcium-activated nucleotidase 1 (CANT1), a nucleotidase that hydrolyzes uridine diphosphate into uridine monophosphate and phosphate, plays an important role in GAG synthesis in cartilage. In the present study, we performed detailed histological and biochemical analyses of the tendons from Cant1 knockout (Cant1-/-) mice. No abnormalities were observed in the tendons on postnatal day 1 (P1); however, remarkable hypoplasia was observed on P30 and P180. The collagen fibrils were more angular and larger in the Cant1-/- tendons than in the control (Ctrl) tendons. In the Cant1-/- tendons, the DS/CS content was significantly reduced, and the DC/CS chains attached to the decorin core protein became shorter than those in the Ctrl tendons. No abnormalities were observed in the proliferation and differentiation of tendon fibroblasts (tenocytes) in the Cant1-/- mice. These results strongly suggest that CANT1 dysfunction causes defective DS/CS synthesis, followed by impairment of decorin function, which regulates collagen fibrogenesis in the tendon ECM. Multiple joint dislocations are a clinical feature of Desbuquois dysplasia type 1 caused by human CANT1 mutations. The multiple joint dislocations associated with this genetic disorder may be attributed to tendon fragility resulting from CANT1 dysfunction.
Collapse
Affiliation(s)
- Rina Yamashita
- Laboratory of Laboratory Animal Science and Medicine, Graduate School of Veterinary Sciences, Iwate University, Morioka 020-8550, Japan;
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| | - Saki Tsutsui
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (S.M.)
| | - Takafumi Watanabe
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan;
| | - Noritaka Yamamoto
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku-ku 162-8655, Japan (T.O.)
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (S.M.)
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku-ku 162-8655, Japan (T.O.)
| | - Tatsuya Furuichi
- Laboratory of Laboratory Animal Science and Medicine, Graduate School of Veterinary Sciences, Iwate University, Morioka 020-8550, Japan;
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| |
Collapse
|
4
|
Santos JI, Gonçalves M, Almeida MB, Rocha H, Duarte AJ, Matos L, Moreira LV, Encarnação M, Gaspar P, Prata MJ, Coutinho MF, Alves S. mRNA Degradation as a Therapeutic Solution for Mucopolysaccharidosis Type IIIC: Use of Antisense Oligonucleotides to Promote Downregulation of Heparan Sulfate Synthesis. Int J Mol Sci 2025; 26:1273. [PMID: 39941041 PMCID: PMC11818647 DOI: 10.3390/ijms26031273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Mucopolysaccharidosis type IIIC is a neurodegenerative lysosomal storage disorder (LSD) characterized by the accumulation of undegraded heparan sulfate (HS) due to the lack of an enzyme responsible for its degradation: acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT). Classical treatments are ineffective. Here, we attempt a new approach in genetic medicine, genetic substrate reduction therapy (gSRT), to counteract this neurological disorder. Briefly, we used synthetic oligonucleotides, particularly gapmer antisense oligonucleotides (ASOs), to target the synthesis of the accumulated compounds at the molecular level, downregulating a specific gene involved in the first step of HS biosynthesis, XYLT1. Our goal was to reduce HS production and, consequently, its accumulation. Initially, five gapmer ASOs were designed and their potential to decrease XYLT1 mRNA levels were tested in patient-derived fibroblasts. Subsequent analyses focused on the two best performing molecules alone. The results showed a high inhibition of the XYLT1 gene mRNA (around 90%), a decrease in xylosyltransferase I (XT-I) protein levels and a reduction in HS storage 6 and 10 days after transfection (up to 21% and 32%, respectively). Overall, our results are highly promising and may represent the initial step towards the development of a potential therapeutic option not only for MPS IIIC, but virtually for every other MPS III form. Ultimately, the same principle may also apply to other neuropathic MPS.
Collapse
Affiliation(s)
- Juliana Inês Santos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (M.G.); (M.B.A.); (A.J.D.); (L.M.); (L.V.M.); (M.E.); (M.F.C.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
| | - Mariana Gonçalves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (M.G.); (M.B.A.); (A.J.D.); (L.M.); (L.V.M.); (M.E.); (M.F.C.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Matilde Barbosa Almeida
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (M.G.); (M.B.A.); (A.J.D.); (L.M.); (L.V.M.); (M.E.); (M.F.C.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Department of Medical Sciences, Campus Universitário de Santiago, Edifício da Saúde, Agra do Crasto, 3810-193 Aveiro, Portugal
| | - Hugo Rocha
- Newborn Screening, Metabolism and Genetics Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (H.R.); (P.G.)
| | - Ana Joana Duarte
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (M.G.); (M.B.A.); (A.J.D.); (L.M.); (L.V.M.); (M.E.); (M.F.C.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Liliana Matos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (M.G.); (M.B.A.); (A.J.D.); (L.M.); (L.V.M.); (M.E.); (M.F.C.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Luciana Vaz Moreira
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (M.G.); (M.B.A.); (A.J.D.); (L.M.); (L.V.M.); (M.E.); (M.F.C.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Marisa Encarnação
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (M.G.); (M.B.A.); (A.J.D.); (L.M.); (L.V.M.); (M.E.); (M.F.C.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Paulo Gaspar
- Newborn Screening, Metabolism and Genetics Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (H.R.); (P.G.)
| | - Maria João Prata
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
- Health Research and Innovation Institute, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (M.G.); (M.B.A.); (A.J.D.); (L.M.); (L.V.M.); (M.E.); (M.F.C.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (M.G.); (M.B.A.); (A.J.D.); (L.M.); (L.V.M.); (M.E.); (M.F.C.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
5
|
Temple SD, Browning SR. Multiple-testing corrections in selection scans using identity-by-descent segments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635528. [PMID: 39975073 PMCID: PMC11838353 DOI: 10.1101/2025.01.29.635528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Failing to correct for multiple testing in selection scans can lead to false discoveries of recent genetic adaptations. The scanning statistics in selection studies are often too complicated to theoretically derive a genome-wide significance level or empirically validate control of the family-wise error rate (FWER). By modeling the autocorrelation of identity-by-descent (IBD) rates, we propose a computationally efficient method to determine genome-wide significance levels in an IBD-based scan for recent positive selection. In whole genome simulations, we show that our method has approximate control of the FWER and can adapt to the spacing of tests along the genome. We also show that these scans can have more than fifty percent power to reject the null model in hard sweeps with a selection coefficient s > = 0.01 and a sweeping allele frequency between twenty-five and seventy-five percent. A few human genes and gene complexes have statistically significant excesses of IBD segments in thousands of samples of African, European, and South Asian ancestry groups from the Trans-Omics for Precision Medicine project and the United Kingdom Biobank. Among the significant loci, many signals of recent selection are shared across ancestry groups. One shared selection signal at a skeletal cell development gene is extremely strong in African ancestry samples.
Collapse
Affiliation(s)
- Seth D. Temple
- Department of Statistics, University of Washington, Seattle, Washington, USA
- Department of Statistics, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Institute for Data Science, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharon R. Browning
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Nandhini Devi G, Yadav N, Jayashankaran C, Margret JJ, Krishnamoorthy M, Lakshmi A S, Sundaram CM, Karthikeyan NP, Thelma BK, Srisailapathy CRS. Genetic analyses of a large consanguineous south Indian family reveal novel variants in NAGPA and four hitherto unreported genes in developmental stuttering. Ann Hum Genet 2025; 89:31-46. [PMID: 39382170 DOI: 10.1111/ahg.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Developmental stuttering, a multifactorial speech disorder with remarkable rate of spontaneous recovery pose challenges for gene discoveries. Exonic variants in GNPTAB, GNPTG, and NAGPA involved in lysosomal pathway and AP4E1, IFNAR1, and ARMC3-signaling genes reported till date explain only ∼2.1% - 3.7% of persistent stuttering cases. AIM We aimed to identify additional genetic determinants of stuttering in a multiplex family by exome sequencing (n = 27) and further validation on additional extended family members (n = 21). MATERIALS & METHODS We employed hypothesis-free and pathway-based analyses. RESULTS A novel heterozygous exonic variant NM_016256.4:c.322G > A in NAGPA with reduced penetrance and predicted pathogenicity segregated with the phenotype in a large subset of the family. Reanalysis to identify additional disease-causing variant(s) revealed exonic heterozygous variants each in RIMS2 and XYLT1 in severely affected members; and IGF2R variant in a small subset of the family. Furthermore, pathway-based analysis uncovered NM_022089.4:c.3529G > A in ATP13A2 (PARK9) in affected members; and variants in GNPTAB and GNPTG of minor significance in a few affected members. DISCUSSION Genotype-phenotype correlation efforts suggest that the combined effect of gene variants at multiple loci or variants in a single gene in different subsets of the pedigree (genetic heterogeneity) may be contributing to stuttering in this family. More importantly, variants identified in ATP13A2, a Parkinson's disease gene also implicated in lysosomal dysfunction, and RIMS2 suggests for the first time a likely role of dopamine signaling in stuttering. CONCLUSION Screening for these variants in independent stuttering cohorts would be astute.
Collapse
Affiliation(s)
- G Nandhini Devi
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Navneesh Yadav
- Department of Genetics, University of Delhi, South Campus, New Delhi, India
| | - Chandru Jayashankaran
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Jeffrey Justin Margret
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Mathuravalli Krishnamoorthy
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Sorna Lakshmi A
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | | | - N P Karthikeyan
- DOAST (Doctrine Oriented Art of Symbiotic Treatment) Speech & Hearing Care Center and Integrated Therapy Center for Autism, Chennai, Tamil Nadu, India
| | - B K Thelma
- Department of Genetics, University of Delhi, South Campus, New Delhi, India
| | - C R Srikumari Srisailapathy
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Wei J, Sun J, Pan Y, Cao M, Wang Y, Yuan T, Guo A, Han R, Ding X, Yang G, Yu T, Ding R. Revealing genes related teat number traits via genetic variation in Yorkshire pigs based on whole-genome sequencing. BMC Genomics 2024; 25:1217. [PMID: 39695943 DOI: 10.1186/s12864-024-11109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Teat number is one of the most important indicators to evaluate the lactation performance of sows, and increasing the teat number has become an important method to improve the economic efficiency of farms. Therefore, it is particularly important to deeply analyze the genetic mechanism of teat number traits in pigs. In this study, we detected Single Nucleotide Ploymorphism (SNP), Insertion-Deletion (InDel) and Structural variant (SV) by high-coverage whole-genome resequencing data, and selected teat number at birth and functional teat number as two types of teat number traits for genome-wide association study (GWAS) to reveal candidate genes associated with pig teat number traits. RESULTS In this study, we used whole genome resequencing data from 560 Yorkshire sows to detect SNPs, InDels and SVs, and performed GWAS for the traits of born teat number and functional teat number, and detected a total of 85 significant variants and screened 214 candidate genes, including HEG1, XYLT1, SULF1, MUC13, VRTN, RAP1A and NPVF. Among them, HEG1 and XYLT1 were the new candidate genes in this study. The co-screening and population validation of multiple traits suggested that HEG1 may have a critical effect on the born teat number. CONCLUSION Our study shows that more candidate genes associated with pig teat number traits can be identified by GWAS with different variant types. Through large population validation, we found that HEG1 may be a new key candidate gene affecting pig teat number traits. In conclusion, the results of this study provide new information for exploring the genetic mechanisms affecting pig teat number traits and genetic improvement of pigs.
Collapse
Affiliation(s)
- Jialin Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingchun Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Yi Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Minghao Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yulong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tiantian Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ao Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ruihua Han
- Tongchuan Animal Husbandry Technology Extension Station, Tongchuan, 727000, Shaanxi, China
| | - Xiangdong Ding
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Taiyong Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rongrong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
8
|
Ouidja MO, Biard DSF, Huynh MB, Laffray X, Gomez-Henao W, Chantepie S, Le Douaron G, Rebergue N, Maïza A, Merrick H, De Lichy A, Dady A, González-Velasco O, Rubio K, Barreto G, Baranger K, Cormier-Daire V, De Las Rivas J, Fernig DG, Papy-Garcia D. Genetic variability in proteoglycan biosynthetic genes reveals new facets of heparan sulfate diversity. Essays Biochem 2024; 68:555-578. [PMID: 39630030 PMCID: PMC11625870 DOI: 10.1042/ebc20240106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 12/11/2024]
Abstract
Heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans (PG) consist of a core protein to which the glycosaminoglycan (GAG) chains, HS or CS, are attached through a common linker tetrasaccharide. In the extracellular space, they are involved in the regulation of cell communication, assuring development and homeostasis. The HSPG biosynthetic pathway has documented 51 genes, with many diseases associated to defects in some of them. The phenotypic consequences of this genetic variation in humans, and of genetic ablation in mice, and their expression patterns, led to a phenotypically centered HSPG biosynthetic pathway model. In this model, HS sequences produced by ubiquitous NDST1, HS2ST and HS6ST enzymes are essential for normal development and homeostasis, whereas tissue restricted HS sequences produced by the non-ubiquitous NDST2-4, HS6ST2-3, and HS3ST1-6 enzymes are involved in adaptative behaviors, cognition, tissue responsiveness to stimuli, and vulnerability to disease. The model indicates that the flux through the HSPG/CSPG pathways and its diverse branches is regulated by substrate preferences and protein-protein-interactions. This results in a privileged biosynthesis of HSPG over that of CSPGs, explaining the phenotypes of linkeropathies, disease caused by defects in genes involved in the biosynthesis of the common tetrasaccharide linker. Documented feedback loops whereby cells regulate HS sulfation, and hence the interactions of HS with protein partners, may be similarly implemented, e.g., protein tyrosine sulfation and other posttranslational modifications in enzymes of the HSPG pathway. Together, ubiquitous HS, specialized HS, and their biosynthesis model can facilitate research for a better understanding of HSPG roles in physiology and pathology.
Collapse
Affiliation(s)
- Mohand Ouidir Ouidja
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Denis S F Biard
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
- CEA, Institut de Biologie François Jacob (IBFJ), SEPIA, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Minh Bao Huynh
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Xavier Laffray
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Wilton Gomez-Henao
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
- Departamento de Bioquímica, Laboratorio Internacional Gly-CRRET-UNAM, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Sandrine Chantepie
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Gael Le Douaron
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Nicolas Rebergue
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Auriane Maïza
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Heloise Merrick
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Aubert De Lichy
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Alwyn Dady
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Oscar González-Velasco
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), University of Salamanca (USAL), Salamanca, Spain
| | - Karla Rubio
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Université De Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; F-54000 Nancy, France
| | - Guillermo Barreto
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
- Université De Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; F-54000 Nancy, France
| | | | - Valerie Cormier-Daire
- Department of Genomic Medicine for Rare Diseases, French Reference Center for Constitutional Bone Diseases, Necker-Enfants Malades Hospital, Paris, France
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), University of Salamanca (USAL), Salamanca, Spain
| | - David G Fernig
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Dulce Papy-Garcia
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| |
Collapse
|
9
|
Chai S, Chong Y, Yin D, Qiu Q, Xu S, Yang G. Genomic insights into adaptation to bipedal saltation and desert-like habitats of jerboas. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2003-2015. [PMID: 38902451 DOI: 10.1007/s11427-023-2516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/20/2023] [Indexed: 06/22/2024]
Abstract
Jerboas is a lineage of small rodents displaying atypical mouse-like morphology with elongated strong hindlimbs and short forelimbs. They have evolved obligate bipedal saltation and acute senses, and been well-adapted to vast desert-like habitats. Using a newly sequenced chromosome-scale genome of the Mongolian five-toed jerboa (Orientallactaga sibirica), our comparative genomic analyses and in vitro functional assays showed that the genetic innovations in both protein-coding and non-coding regions played an important role in jerboa morphological and physiological adaptation. Jerboa-specific amino acid substitutions, and segment insertions/deletions (indels) in conserved non-coding elements (CNEs) were found in components of proteoglycan biosynthesis pathway (XYLT1 and CHSY1), which plays an important role in limb development. Meanwhile, we found specific evolutionary changes functionally associated with energy or water metabolism (e.g., specific amino acid substitutions in ND5 and indels in CNEs physically near ROR2) and senses (e.g., expansion of vomeronasal receptors and the FAM136A gene family) in jerboas. Further dual-luciferase reporter assay verified that some of the CNEs with jerboa-specific segment indels exerted a significantly different influence on luciferase activity, suggesting changes in their regulatory function in jerboas. Our results revealed the potential molecular mechanisms underlying jerboa adaptation since the divergence from the Eocene-Oligocene transition, and provided more resources and new insights to enhance our understanding of the molecular basis underlying the phenotypic diversity and the environmental adaptation of mammals.
Collapse
Affiliation(s)
- Simin Chai
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yujie Chong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Daiqing Yin
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
10
|
Koosha E, Brenna CTA, Ashique AM, Jain N, Ovens K, Koike T, Kitagawa H, Eames BF. Proteoglycan inhibition of canonical BMP-dependent cartilage maturation delays endochondral ossification. Development 2024; 151:dev201716. [PMID: 38117077 PMCID: PMC10820745 DOI: 10.1242/dev.201716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
During endochondral ossification, chondrocytes secrete a proteoglycan (PG)-rich extracellular matrix that can inhibit the process of cartilage maturation, including expression of Ihh and Col10a1. Because bone morphogenetic proteins (BMPs) can promote cartilage maturation, we hypothesized that cartilage PGs normally inhibit BMP signalling. Accordingly, BMP signalling was evaluated in chondrocytes of wild-type and PG mutant (fam20b-/-) zebrafish and inhibited with temporal control using the drug DMH1 or an inducible dominant-negative BMP receptor transgene (dnBMPR). Compared with wild type, phospho-Smad1/5/9, but not phospho-p38, was increased in fam20b-/- chondrocytes, but only after they secreted PGs. Phospho-Smad1/5/9 was decreased in DMH1-treated or dnBMPR-activated wild-type chondrocytes, and DMH1 also decreased phospho-p38 levels. ihha and col10a1a were decreased in DMH1-treated or dnBMPR-activated chondrocytes, and less perichondral bone formed. Finally, early ihha and col10a1a expression and early perichondral bone formation of fam20b mutants were rescued with DMH1 treatment or dnBMPR activation. Therefore, PG inhibition of canonical BMP-dependent cartilage maturation delays endochondral ossification, and these results offer hope for the development of growth factor therapies for skeletal defects of PG diseases.
Collapse
Affiliation(s)
- Elham Koosha
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Connor T. A. Brenna
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Amir M. Ashique
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Niteesh Jain
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Toshiyasu Koike
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-0003, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-0003, Japan
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
11
|
Wang H, Zhao X, Wen J, Wang C, Zhang X, Ren X, Zhang J, Li H, Muhatai G, Qu L. Comparative population genomics analysis uncovers genomic footprints and genes influencing body weight trait in Chinese indigenous chicken. Poult Sci 2023; 102:103031. [PMID: 37716235 PMCID: PMC10511812 DOI: 10.1016/j.psj.2023.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 09/18/2023] Open
Abstract
Body weight of chicken is a typical quantitative trait, which shows phenotypic variations due to selective breeding. Despite some QTL loci have been obtained, the body weight of native chicken breeds in different geographic regions varies greatly, its genetic basis remains unresolved questions. To address this issue, we analyzed 117 Chinese indigenous chickens from 10 breeds (Huiyang Bearded, Xinhua, Hotan Black, Baicheng You, Liyang, Yunyang Da, Jining Bairi, Lindian, Beijing You, Tibetan). We applied fixation index (FST) analysis to find selected genomic regions and genes associated with body weight traits. Our study suggests that NELL1, XYLT1, and NCAPG/LCORL genes are strongly selected in the body weight trait of Chinese indigenous chicken breeds. In addition, the IL1RAPL1 gene was strongly selected in large body weight chickens, while the PCDH17 and CADM2 genes were strongly selected in small body weight chickens. This result suggests that the patterns of genetic variation of native chicken and commercial chicken, and/or distinct local chicken breeds may follow different evolutionary mechanisms.
Collapse
Affiliation(s)
- Huie Wang
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Xiurong Zhao
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junhui Wen
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chengqian Wang
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Xinye Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xufang Ren
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinxin Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China
| | - Gemingguli Muhatai
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Lujiang Qu
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China; State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Xu D, Zhu W, Wu Y, Wei S, Shu G, Tian Y, Du X, Tang J, Feng Y, Wu G, Han X, Zhao X. Whole-genome sequencing revealed genetic diversity, structure and patterns of selection in Guizhou indigenous chickens. BMC Genomics 2023; 24:570. [PMID: 37749517 PMCID: PMC10521574 DOI: 10.1186/s12864-023-09621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND The eight phenotypically distinguishable indigenous chicken breeds in Guizhou province of China are great resources for high-quality development of the poultry industry in China. However, their full value and potential have yet to be understood in depth. To illustrate the genetic diversity, the relationship and population structure, and the genetic variation patterns shaped by selection in Guizhou indigenous chickens, we performed a genome-wide analysis of 240 chickens from 8 phenotypically and geographically representative Guizhou chicken breeds and 60 chickens from 2 commercial chicken breeds (one broiler and one layer), together with 10 red jungle fowls (RJF) genomes available from previous studies. RESULTS The results obtained in this present study showed that Guizhou chicken breed populations harbored higher genetic diversity as compared to commercial chicken breeds, however unequal polymorphisms were present within Guizhou indigenous chicken breeds. The results from the population structure analysis markedly reflected the breeding history and the geographical distribution of Guizhou indigenous chickens, whereas, some breeds with complex genetic structure were ungrouped into one cluster. In addition, we confirmed mutual introgression within Guizhou indigenous chicken breeds and from commercial chicken breeds. Furthermore, selective sweep analysis revealed candidate genes which were associated with specific and common phenotypic characteristics evolved rapidly after domestication of Guizhou local chicken breeds and economic traits such as egg production performance, growth performance, and body size. CONCLUSION Taken together, the results obtained from the comprehensive analysis of the genetic diversity, genetic relationships and population structures in this study showed that Guizhou indigenous chicken breeds harbor great potential for commercial utilization, however effective conservation measures are currently needed. Additionally, the present study drew a genome-wide selection signature draft for eight Guizhou indigenous chicken breeds and two commercial breeds, as well as established a resource that can be exploited in chicken breeding programs to manipulate the genes associated with desired phenotypes. Therefore, this study will provide an essential genetic basis for further research, conservation, and breeding of Guizhou indigenous chickens.
Collapse
Affiliation(s)
- Dan Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Wei Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Youhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Shuo Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Jigao Tang
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Yulong Feng
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Gemin Wu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Xue Han
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China.
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China.
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China.
| |
Collapse
|
13
|
Payseur BA, Anderson S, James RT, Parmenter MD, Gray MM, Vinyard CJ. Genetics of evolved load resistance in the skeletons of unusually large mice from Gough Island. Genetics 2023; 225:iyad137. [PMID: 37477896 PMCID: PMC10471205 DOI: 10.1093/genetics/iyad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
A primary function of the skeleton is to resist the loads imparted by body weight. Genetic analyses have identified genomic regions that contribute to differences in skeletal load resistance between laboratory strains of mice, but these studies are usually restricted to 1 or 2 bones and leave open the question of how load resistance evolves in natural populations. To address these challenges, we examined the genetics of bone structure using the largest wild house mice on record, which live on Gough Island (GI). We measured structural traits connected to load resistance in the femur, tibia, scapula, humerus, radius, ulna, and mandible of GI mice, a smaller-bodied reference strain from the mainland, and 760 of their F2s. GI mice have bone geometries indicative of greater load resistance abilities but show no increase in bone mineral density compared to the mainland strain. Across traits and bones, we identified a total of 153 quantitative trait loci (QTL) that span all but one of the autosomes. The breadth of QTL detection ranges from a single bone to all 7 bones. Additive effects of QTL are modest. QTL for bone structure show limited overlap with QTL for bone length and width and QTL for body weight mapped in the same cross, suggesting a distinct genetic architecture for load resistance. Our findings provide a rare genetic portrait of the evolution of load resistance in a natural population with extreme body size.
Collapse
Affiliation(s)
- Bret A Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sara Anderson
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Roy T James
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | | | - Melissa M Gray
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christopher J Vinyard
- Department of Biomedical Sciences, Ohio University - Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| |
Collapse
|
14
|
Taieb M, Ghannoum D, Barré L, Ouzzine M. Xylosyltransferase I mediates the synthesis of proteoglycans with long glycosaminoglycan chains and controls chondrocyte hypertrophy and collagen fibers organization of in the growth plate. Cell Death Dis 2023; 14:355. [PMID: 37296099 PMCID: PMC10256685 DOI: 10.1038/s41419-023-05875-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/06/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Genetic mutations in the Xylt1 gene are associated with Desbuquois dysplasia type II syndrome characterized by sever prenatal and postnatal short stature. However, the specific role of XylT-I in the growth plate is not completely understood. Here, we show that XylT-I is expressed and critical for the synthesis of proteoglycans in resting and proliferative but not in hypertrophic chondrocytes in the growth plate. We found that loss of XylT-I induces hypertrophic phenotype-like of chondrocytes associated with reduced interterritorial matrix. Mechanistically, deletion of XylT-I impairs the synthesis of long glycosaminoglycan chains leading to the formation of proteoglycans with shorter glycosaminoglycan chains. Histological and Second Harmonic Generation microscopy analysis revealed that deletion of XylT-I accelerated chondrocyte maturation and prevents chondrocytes columnar organization and arrangement in parallel of collagen fibers in the growth plate, suggesting that XylT-I controls chondrocyte maturation and matrix organization. Intriguingly, loss of XylT-I induced at embryonic stage E18.5 the migration of progenitor cells from the perichondrium next to the groove of Ranvier into the central part of epiphysis of E18.5 embryos. These cells characterized by higher expression of glycosaminoglycans exhibit circular organization then undergo hypertrophy and death creating a circular structure at the secondary ossification center location. Our study revealed an uncovered role of XylT-I in the synthesis of proteoglycans and provides evidence that the structure of glycosaminoglycan chains of proteoglycans controls chondrocyte maturation and matrix organization.
Collapse
Affiliation(s)
- Mahdia Taieb
- UMR 7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, BP 20199, 54505, Vandoeuvre-lès-Nancy, CEDEX, France
| | - Dima Ghannoum
- UMR 7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, BP 20199, 54505, Vandoeuvre-lès-Nancy, CEDEX, France
| | - Lydia Barré
- UMR 7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, BP 20199, 54505, Vandoeuvre-lès-Nancy, CEDEX, France
| | - Mohamed Ouzzine
- UMR 7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, BP 20199, 54505, Vandoeuvre-lès-Nancy, CEDEX, France.
| |
Collapse
|
15
|
Gollmann-Tepeköylü C, Graber M, Hirsch J, Mair S, Naschberger A, Pölzl L, Nägele F, Kirchmair E, Degenhart G, Demetz E, Hilbe R, Chen HY, Engert JC, Böhm A, Franz N, Lobenwein D, Lener D, Fuchs C, Weihs A, Töchterle S, Vogel GF, Schweiger V, Eder J, Pietschmann P, Seifert M, Kronenberg F, Coassin S, Blumer M, Hackl H, Meyer D, Feuchtner G, Kirchmair R, Troppmair J, Krane M, Weiss G, Tsimikas S, Thanassoulis G, Grimm M, Rupp B, Huber LA, Zhang SY, Casanova JL, Tancevski I, Holfeld J. Toll-Like Receptor 3 Mediates Aortic Stenosis Through a Conserved Mechanism of Calcification. Circulation 2023; 147:1518-1533. [PMID: 37013819 PMCID: PMC10192061 DOI: 10.1161/circulationaha.122.063481] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is characterized by a phenotypic switch of valvular interstitial cells to bone-forming cells. Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors at the interface between innate immunity and tissue repair. Type I interferons (IFNs) are not only crucial for an adequate antiviral response but also implicated in bone formation. We hypothesized that the accumulation of endogenous TLR3 ligands in the valvular leaflets may promote the generation of osteoblast-like cells through enhanced type I IFN signaling. METHODS Human valvular interstitial cells isolated from aortic valves were challenged with mechanical strain or synthetic TLR3 agonists and analyzed for bone formation, gene expression profiles, and IFN signaling pathways. Different inhibitors were used to delineate the engaged signaling pathways. Moreover, we screened a variety of potential lipids and proteoglycans known to accumulate in CAVD lesions as potential TLR3 ligands. Ligand-receptor interactions were characterized by in silico modeling and verified through immunoprecipitation experiments. Biglycan (Bgn), Tlr3, and IFN-α/β receptor alpha chain (Ifnar1)-deficient mice and a specific zebrafish model were used to study the implication of the biglycan (BGN)-TLR3-IFN axis in both CAVD and bone formation in vivo. Two large-scale cohorts (GERA [Genetic Epidemiology Research on Adult Health and Aging], n=55 192 with 3469 aortic stenosis cases; UK Biobank, n=257 231 with 2213 aortic stenosis cases) were examined for genetic variation at genes implicated in BGN-TLR3-IFN signaling associating with CAVD in humans. RESULTS Here, we identify TLR3 as a central molecular regulator of calcification in valvular interstitial cells and unravel BGN as a new endogenous agonist of TLR3. Posttranslational BGN maturation by xylosyltransferase 1 (XYLT1) is required for TLR3 activation. Moreover, BGN induces the transdifferentiation of valvular interstitial cells into bone-forming osteoblasts through the TLR3-dependent induction of type I IFNs. It is intriguing that Bgn-/-, Tlr3-/-, and Ifnar1-/- mice are protected against CAVD and display impaired bone formation. Meta-analysis of 2 large-scale cohorts with >300 000 individuals reveals that genetic variation at loci relevant to the XYLT1-BGN-TLR3-interferon-α/β receptor alpha chain (IFNAR) 1 pathway is associated with CAVD in humans. CONCLUSIONS This study identifies the BGN-TLR3-IFNAR1 axis as an evolutionarily conserved pathway governing calcification of the aortic valve and reveals a potential therapeutic target to prevent CAVD.
Collapse
Affiliation(s)
| | - Michael Graber
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Hirsch
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sophia Mair
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Naschberger
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Leo Pölzl
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Nägele
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke Kirchmair
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerald Degenhart
- Department of Radiology, Core Facility for Micro-CT, Medical University of Innsbruck, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Hao-Yu Chen
- Preventive and Genomic Cardiology, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - James C. Engert
- Preventive and Genomic Cardiology, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Anna Böhm
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadja Franz
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Lobenwein
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Lener
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Christiane Fuchs
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Anna Weihs
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Sonja Töchterle
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Georg F. Vogel
- Department of Pediatrics/Institute of Cell biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Victor Schweiger
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jonas Eder
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Pietschmann
- Division of Cellular and Molecular Pathophysiology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Markus Seifert
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Blumer
- Institute of Clinical and Functional Anatomy, Innsbruck Medical University, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Gudrun Feuchtner
- Department of Radiology, Core Facility for Micro-CT, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, University of Innsbruck, Innsbruck, Innsbruck, Austria
| | - Markus Krane
- Department of Cardiovascular Surgery, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Günther Weiss
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Sotirios Tsimikas
- Division of Cardiovascular Diseases, University of California, San Diego, La Jolla, USA
| | - George Thanassoulis
- Preventive and Genomic Cardiology, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Michael Grimm
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Bernhard Rupp
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas A. Huber
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
- Austrian Drug Screening Institute, ADSI, Innsbruck, Austria
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Ivan Tancevski
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Pathogenic Roles of Heparan Sulfate and Its Use as a Biomarker in Mucopolysaccharidoses. Int J Mol Sci 2022; 23:ijms231911724. [PMID: 36233030 PMCID: PMC9570396 DOI: 10.3390/ijms231911724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Heparan sulfate (HS) is an essential glycosaminoglycan (GAG) as a component of proteoglycans, which are present on the cell surface and in the extracellular matrix. HS-containing proteoglycans not only function as structural constituents of the basal lamina but also play versatile roles in various physiological processes, including cell signaling and organ development. Thus, inherited mutations of genes associated with the biosynthesis or degradation of HS can cause various diseases, particularly those involving the bones and central nervous system (CNS). Mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders involving GAG accumulation throughout the body caused by a deficiency of GAG-degrading enzymes. GAGs are stored differently in different types of MPSs. Particularly, HS deposition is observed in patients with MPS types I, II, III, and VII, all which involve progressive neuropathy with multiple CNS system symptoms. While therapies are available for certain symptoms in some types of MPSs, significant unmet medical needs remain, such as neurocognitive impairment. This review presents recent knowledge on the pathophysiological roles of HS focusing on the pathogenesis of MPSs. We also discuss the possible use and significance of HS as a biomarker for disease severity and therapeutic response in MPSs.
Collapse
|
17
|
Ibelli AMG, Peixoto JDO, Zanella R, Gouveia JJDS, Cantão ME, Coutinho LL, Marchesi JAP, Pizzol MSD, Marcelino DEP, Ledur MC. Downregulation of growth plate genes involved with the onset of femoral head separation in young broilers. Front Physiol 2022; 13:941134. [PMID: 36003650 PMCID: PMC9393217 DOI: 10.3389/fphys.2022.941134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Femoral head separation (FHS) is characterized by the detachment of growth plate (GP) and articular cartilage, occurring in tibia and femur. However, the molecular mechanisms involved with this condition are not completely understood. Therefore, genes and biological processes (BP) involved with FHS were identified in 21-day-old broilers through RNA sequencing of the femoral GP. 13,487 genes were expressed in the chicken femoral head transcriptome of normal and FHS-affected broilers. From those, 34 were differentially expressed (DE; FDR ≤0.05) between groups, where all of them were downregulated in FHS-affected broilers. The main BP were enriched in receptor signaling pathways, ossification, bone mineralization and formation, skeletal morphogenesis, and vascularization. RNA-Seq datasets comparison of normal and FHS-affected broilers with 21, 35 and 42 days of age has shown three shared DE genes (FBN2, C1QTNF8, and XYLT1) in GP among ages. Twelve genes were exclusively DE at 21 days, where 10 have already been characterized (SHISA3, FNDC1, ANGPTL7, LEPR, ENSGALG00000049529, OXTR, ENSGALG00000045154, COL16A1, RASD2, BOC, GDF10, and THSD7B). Twelve SNPs were associated with FHS (p < 0.0001). Out of those, 5 were novel and 7 were existing variants located in 7 genes (RARS, TFPI2, TTI1, MAP4K3, LINK54, and AREL1). We have shown that genes related to chondrogenesis and bone differentiation were downregulated in the GP of FHS-affected young broilers. Therefore, these findings evince that candidate genes pointed out in our study are probably related to the onset of FHS in broilers.
Collapse
Affiliation(s)
- Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Concórdia, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Brazil
| | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Concórdia, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Brazil
| | | | | | | | - Luiz Lehmann Coutinho
- Laboratório de Biotecnologia Animal, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de SP, Piracicaba, Brazil
| | | | | | | | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Concórdia, Brazil
- Programa de Pós-Graduação Em Zootecnia, Universidade do Estado de SC, UDESC-Oeste, Chapecó, Brazil
- *Correspondence: Mônica Corrêa Ledur,
| |
Collapse
|
18
|
Fischer B, Schmidt V, Ly TD, Kleine A, Knabbe C, Faust-Hinse I. First Characterization of Human Dermal Fibroblasts Showing a Decreased Xylosyltransferase-I Expression Induced by the CRISPR/Cas9 System. Int J Mol Sci 2022; 23:5045. [PMID: 35563435 PMCID: PMC9100032 DOI: 10.3390/ijms23095045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Xylosyltransferases-I and II (XT-I and XT-II) catalyze the initial and rate limiting step of the proteoglycan (PG) biosynthesis and therefore have an import impact on the homeostasis of the extracellular matrix (ECM). The reason for the occurrence of two XT-isoforms in all higher organisms remains unknown and targeted genome-editing strategies could shed light on this issue. METHODS XT-I deficient neonatal normal human dermal fibroblasts were generated by using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated proteins (Cas) 9 system. We analyzed if a reduced XT-I activity leads to abnormalities regarding ECM-composition, myofibroblast differentiation, cellular senescence and skeletal and cartilage tissue homeostasis. RESULTS We successfully introduced compound heterozygous deletions within exon 9 of the XYLT1 gene. Beside XYLT1, we detected altered gene-expression levels of further, inter alia ECM-related, genes. Our data further reveal a dramatically reduced XT-I protein activity. Abnormal myofibroblast-differentiation was demonstrated by elevated alpha-smooth muscle actin expression on both, mRNA- and protein level. In addition, wound-healing capability was slightly delayed. Furthermore, we observed an increased cellular-senescence of knockout cells and an altered expression of target genes knowing to be involved in skeletonization. CONCLUSION Our data show the tremendous relevance of the XT-I isoform concerning myofibroblast-differentiation and ECM-homeostasis as well as the pathophysiology of skeletal disorders.
Collapse
Affiliation(s)
- Bastian Fischer
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany; (V.S.); (T.-D.L.); (A.K.); (C.K.); (I.F.-H.)
| | | | | | | | | | | |
Collapse
|
19
|
Schwartz NB, Domowicz MS. Roles of Chondroitin Sulfate Proteoglycans as Regulators of Skeletal Development. Front Cell Dev Biol 2022; 10:745372. [PMID: 35465334 PMCID: PMC9026158 DOI: 10.3389/fcell.2022.745372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
The extracellular matrix (ECM) is critically important for most cellular processes including differentiation, morphogenesis, growth, survival and regeneration. The interplay between cells and the ECM often involves bidirectional signaling between ECM components and small molecules, i.e., growth factors, morphogens, hormones, etc., that regulate critical life processes. The ECM provides biochemical and contextual information by binding, storing, and releasing the bioactive signaling molecules, and/or mechanical information that signals from the cell membrane integrins through the cytoskeleton to the nucleus, thereby influencing cell phenotypes. Using these dynamic, reciprocal processes, cells can also remodel and reshape the ECM by degrading and re-assembling it, thereby sculpting their environments. In this review, we summarize the role of chondroitin sulfate proteoglycans as regulators of cell and tissue development using the skeletal growth plate model, with an emphasis on use of naturally occurring, or created mutants to decipher the role of proteoglycan components in signaling paradigms.
Collapse
Affiliation(s)
- Nancy B. Schwartz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
- *Correspondence: Nancy B. Schwartz,
| | - Miriam S. Domowicz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
20
|
Matrisome alterations in obesity – Adipose tissue transcriptome study on monozygotic weight-discordant twins. Matrix Biol 2022; 108:1-19. [DOI: 10.1016/j.matbio.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
|
21
|
Mizumoto S, Yamada S. An Overview of in vivo Functions of Chondroitin Sulfate and Dermatan Sulfate Revealed by Their Deficient Mice. Front Cell Dev Biol 2021; 9:764781. [PMID: 34901009 PMCID: PMC8652114 DOI: 10.3389/fcell.2021.764781] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Chondroitin sulfate (CS), dermatan sulfate (DS) and heparan sulfate (HS) are covalently attached to specific core proteins to form proteoglycans in their biosynthetic pathways. They are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases as well as sulfotransferases. Structural diversities of CS/DS and HS are essential for their various biological activities including cell signaling, cell proliferation, tissue morphogenesis, and interactions with a variety of growth factors as well as cytokines. Studies using mice deficient in enzymes responsible for the biosynthesis of the CS/DS and HS chains of proteoglycans have demonstrated their essential functions. Chondroitin synthase 1-deficient mice are viable, but exhibit chondrodysplasia, progression of the bifurcation of digits, delayed endochondral ossification, and reduced bone density. DS-epimerase 1-deficient mice show thicker collagen fibrils in the dermis and hypodermis, and spina bifida. These observations suggest that CS/DS are essential for skeletal development as well as the assembly of collagen fibrils in the skin, and that their respective knockout mice can be utilized as models for human genetic disorders with mutations in chondroitin synthase 1 and DS-epimerase 1. This review provides a comprehensive overview of mice deficient in CS/DS biosyntheses.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
22
|
Doddato G, Fabbiani A, Fallerini C, Bruttini M, Hadjistilianou T, Landi M, Coradeschi C, Grosso S, Tomasini B, Mencarelli MA, Renieri A, Ariani F. Spondyloocular Syndrome: A Novel XYLT2 Variant with Description of the Neonatal Phenotype. Front Genet 2021; 12:761264. [PMID: 34925453 PMCID: PMC8680350 DOI: 10.3389/fgene.2021.761264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Spondyloocular syndrome (SOS) is a skeletal disorder caused by pathogenic variants in XYLT2 gene encoding a xylotransferase involved in the biosynthesis of proteoglycans. This condition, with autosomal recessive inheritance, has a high phenotypic variability. It is characterized by bone abnormalities (osteoporosis, fractures), eye and cardiac defects, hearing impairment, and varying degrees of developmental delay. Until now only 20 mutated individuals have been reported worldwide. Here, we describe two siblings from consanguineous healthy parents in which a novel homozygous frameshift variant c.1586dup p(Thr530Hisfs*) in the XYLT2 gene was detected by exome sequencing (ES). The first patient (9 years) presented short stature with skeletal defects, long face, hearing loss and cataract. The second patient, evaluated at a few days of life, showed macrosomia, diffuse hypertrichosis on the back, overabundant skin in the retronucal area, flattened facial profile with drooping cheeks, elongated eyelid rims, wide and flattened nasal bridge and turned down corners of the mouth. During the prenatal period, high nuchal translucency and intestinal hyperechogenicity were observed at ultrasound. In conclusion, these two siblings with a novel pathogenic variant in XYLT2 further expand the clinical and mutational spectrum of SOS.
Collapse
Affiliation(s)
- Gabriella Doddato
- Medical Genetics, University of Siena, Siena, Italy,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandra Fabbiani
- Medical Genetics, University of Siena, Siena, Italy,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Chiara Fallerini
- Medical Genetics, University of Siena, Siena, Italy,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mirella Bruttini
- Medical Genetics, University of Siena, Siena, Italy,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Theodora Hadjistilianou
- Ophthalmological Science and Neuroscience, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Martino Landi
- Terapia Intensiva Neonatale, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Caterina Coradeschi
- Terapia Intensiva Neonatale, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Salvatore Grosso
- Pediatria, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Barbara Tomasini
- Terapia Intensiva Neonatale, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Francesca Ariani
- Medical Genetics, University of Siena, Siena, Italy,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy,*Correspondence: Francesca Ariani,
| |
Collapse
|
23
|
Changes in selection pressure can facilitate hybridization during biological invasion in a Cuban lizard. Proc Natl Acad Sci U S A 2021; 118:2108638118. [PMID: 34654747 DOI: 10.1073/pnas.2108638118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 11/18/2022] Open
Abstract
Hybridization is among the evolutionary mechanisms most frequently hypothesized to drive the success of invasive species, in part because hybrids are common in invasive populations. One explanation for this pattern is that biological invasions coincide with a change in selection pressures that limit hybridization in the native range. To investigate this possibility, we studied the introduction of the brown anole (Anolis sagrei) in the southeastern United States. We find that native populations are highly genetically structured. In contrast, all invasive populations show evidence of hybridization among native-range lineages. Temporal sampling in the invasive range spanning 15 y showed that invasive genetic structure has stabilized, indicating that large-scale contemporary gene flow is limited among invasive populations and that hybrid ancestry is maintained. Additionally, our results are consistent with hybrid persistence in invasive populations resulting from changes in natural selection that occurred during invasion. Specifically, we identify a large-effect X chromosome locus associated with variation in limb length, a well-known adaptive trait in anoles, and show that this locus is often under selection in the native range, but rarely so in the invasive range. Moreover, we find that the effect size of alleles at this locus on limb length is much reduced in hybrids among divergent lineages, consistent with epistatic interactions. Thus, in the native range, epistasis manifested in hybrids can strengthen extrinsic postmating isolation. Together, our findings show how a change in natural selection can contribute to an increase in hybridization in invasive populations.
Collapse
|
24
|
Comparative genomics provides insights into the aquatic adaptations of mammals. Proc Natl Acad Sci U S A 2021; 118:2106080118. [PMID: 34503999 PMCID: PMC8449357 DOI: 10.1073/pnas.2106080118] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/30/2022] Open
Abstract
Divergent lineages can respond to common environmental factors through convergent processes involving shared genomic components or pathways, but the molecular mechanisms are poorly understood. Here, we provide genomic resources and insights into the evolution of mammalian lineages adapting to aquatic life. Our data suggest convergent evolution, for example, in association with thermoregulation through genes associated with a surface heat barrier (NFIA) and internal heat exchange (SEMA3E). Combined with the support of previous reports showing that the UCP1 locus has been lost in many marine mammals independently, our results suggest that the thermostatic strategy of marine mammals shifted from enhancing heat production to limiting heat loss. The ancestors of marine mammals once roamed the land and independently committed to an aquatic lifestyle. These macroevolutionary transitions have intrigued scientists for centuries. Here, we generated high-quality genome assemblies of 17 marine mammals (11 cetaceans and six pinnipeds), including eight assemblies at the chromosome level. Incorporating previously published data, we reconstructed the marine mammal phylogeny and population histories and identified numerous idiosyncratic and convergent genomic variations that possibly contributed to the transition from land to water in marine mammal lineages. Genes associated with the formation of blubber (NFIA), vascular development (SEMA3E), and heat production by brown adipose tissue (UCP1) had unique changes that may contribute to marine mammal thermoregulation. We also observed many lineage-specific changes in the marine mammals, including genes associated with deep diving and navigation. Our study advances understanding of the timing, pattern, and molecular changes associated with the evolution of mammalian lineages adapting to aquatic life.
Collapse
|
25
|
Langhans MT, Gao J, Tang Y, Wang B, Alexander P, Tuan RS. Wdpcp regulates cellular proliferation and differentiation in the developing limb via hedgehog signaling. BMC DEVELOPMENTAL BIOLOGY 2021; 21:10. [PMID: 34225660 PMCID: PMC8258940 DOI: 10.1186/s12861-021-00241-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/07/2021] [Indexed: 12/27/2022]
Abstract
Background Mice with a loss of function mutation in Wdpcp were described previously to display severe birth defects in the developing heart, neural tube, and limb buds. Further characterization of the skeletal phenotype of Wdpcp null mice was limited by perinatal lethality. Results We utilized Prx1-Cre mice to generate limb bud mesenchyme specific deletion of Wdpcp. These mice recapitulated the appendicular skeletal phenotype of the Wdpcp null mice including polydactyl and limb bud signaling defects. Examination of late stages of limb development demonstrated decreased size of cartilage anlagen, delayed calcification, and abnormal growth plates. Utilizing in vitro assays, we demonstrated that loss of Wdpcp in skeletal progenitors lead to loss of hedgehog signaling responsiveness and associated proliferative response. In vitro chondrogenesis assays showed this loss of hedgehog and proliferative response was associated with decreased expression of early chondrogenic marker N-Cadherin. E14.5 forelimbs demonstrated delayed ossification and expression of osteoblast markers Runx2 and Sp7. P0 growth plates demonstrated loss of hedgehog signaling markers and expansion of the hypertrophic zones of the growth plate. In vitro osteogenesis assays demonstrated decreased osteogenic differentiation of Wdpcp null mesenchymal progenitors in response to hedgehog stimulation. Conclusions These findings demonstrate how Wdpcp and associated regulation of the hedgehog signaling pathway plays an important role at multiple stages of skeletal development. Wdpcp is necessary for positive regulation of hedgehog signaling and associated proliferation is key to the initiation of chondrogenesis. At later stages, Wdpcp facilitates the robust hedgehog response necessary for chondrocyte hypertrophy and osteogenic differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-021-00241-9.
Collapse
Affiliation(s)
- Mark T Langhans
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Jingtao Gao
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Peter Alexander
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Rocky S Tuan
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA. .,Present Address: Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
26
|
Dubail J, Cormier-Daire V. Chondrodysplasias With Multiple Dislocations Caused by Defects in Glycosaminoglycan Synthesis. Front Genet 2021; 12:642097. [PMID: 34220933 PMCID: PMC8242584 DOI: 10.3389/fgene.2021.642097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Chondrodysplasias with multiple dislocations form a group of severe disorders characterized by joint laxity and multiple dislocations, severe short stature of pre- and post-natal onset, hand anomalies, and/or vertebral anomalies. The majority of chondrodysplasias with multiple dislocations have been associated with mutations in genes encoding glycosyltransferases, sulfotransferases, and transporters implicated in the synthesis or sulfation of glycosaminoglycans, long and unbranched polysaccharides composed of repeated disaccharide bond to protein core of proteoglycan. Glycosaminoglycan biosynthesis is a tightly regulated process that occurs mainly in the Golgi and that requires the coordinated action of numerous enzymes and transporters as well as an adequate Golgi environment. Any disturbances of this chain of reactions will lead to the incapacity of a cell to construct correct glycanic chains. This review focuses on genetic and glycobiological studies of chondrodysplasias with multiple dislocations associated with glycosaminoglycan biosynthesis defects and related animal models. Strong comprehension of the molecular mechanisms leading to those disorders, mostly through extensive phenotypic analyses of in vitro and/or in vivo models, is essential for the development of novel biomarkers for clinical screenings and innovative therapeutics for these diseases.
Collapse
Affiliation(s)
- Johanne Dubail
- Université de Paris, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Valérie Cormier-Daire
- Université de Paris, INSERM UMR 1163, Institut Imagine, Paris, France.,Service de Génétique Clinique, Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
27
|
Wu CC, Shields JN, Akemann C, Meyer DN, Connell M, Baker BB, Pitts DK, Baker TR. The phenotypic and transcriptomic effects of developmental exposure to nanomolar levels of estrone and bisphenol A in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143736. [PMID: 33243503 PMCID: PMC7790172 DOI: 10.1016/j.scitotenv.2020.143736] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 04/14/2023]
Abstract
Estrone and BPA are two endocrine disrupting chemicals (EDCs) that are predicted to be less potent than estrogens such as 17β-estradiol and 17α-ethinylestradiol. Human exposure concentrations to estrone and BPA can be as low as nanomolar levels. However, very few toxicological studies have focused on the nanomolar-dose effects. Low level of EDCs can potentially cause non-monotonic responses. In addition, exposures at different developmental stages can lead to different health outcomes. To identify the nanomolar-dose effects of estrone and BPA, we used zebrafish modeling to study the phenotypic and transcriptomic responses after extended duration exposure from 0 to 5 days post-fertilization (dpf) and short-term exposure at days 4-5 post fertilization. We found that non-monotonic transcriptomic responses occurred after extended duration exposures at 1 nM of estrone or BPA. At this level, estrone also caused hypoactivity locomotive behavior in zebrafish. After both extended duration and short-term exposures, BPA led to more apparent phenotypic responses, i.e. skeletal abnormalities and locomotion changes, and more significant transcriptomic responses than estrone exposure. After short-term exposure, BPA at concentrations equal or above 100 nM affected locomotive behavior and changed the expression of both estrogenic and non-estrogenic genes that are linked to neurological diseases. These data provide gaps of mechanisms between neurological genes expression and associated phenotypic response due to estrone or BPA exposures. This study also provides insights for assessing the acceptable concentration of BPA and estrone in aquatic environments.
Collapse
Affiliation(s)
- Chia-Chen Wu
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Jeremiah N Shields
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Camille Akemann
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA
| | - Danielle N Meyer
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA
| | - Mackenzie Connell
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Bridget B Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - David K Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Tracie R Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA.
| |
Collapse
|
28
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
29
|
Bundgaard L, Stensballe A, Elbæk KJ, Berg LC. Mass spectrometric analysis of the in vitro secretome from equine bone marrow-derived mesenchymal stromal cells to assess the effect of chondrogenic differentiation on response to interleukin-1β treatment. Stem Cell Res Ther 2020; 11:187. [PMID: 32434555 PMCID: PMC7238576 DOI: 10.1186/s13287-020-01706-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/14/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background Similar to humans, the horse is a long-lived, athletic species. The use of mesenchymal stromal cells (MSCs) is a relatively new frontier, but has been used with promising results in treating joint diseases, e.g., osteoarthritis. It is believed that MSCs exert their main therapeutic effects through secreted trophic biomolecules. Therefore, it has been increasingly important to characterize the MSC secretome. It has been shown that the effect of the MSCs is strongly influenced by the environment in the host compartment, and it is a crucial issue when considering MSC therapy. The aim of this study was to investigate differences in the in vitro secreted protein profile between naïve and chondrogenic differentiating bone marrow-derived (BM)-MSCs when exposed to an inflammatory environment. Methods Equine BM-MSCs were divided into a naïve group and a chondrogenic group. Cells were treated with normal expansion media or chondrogenic media. Cells were treated with IL-1β for a period of 5 days (stimulation), followed by 5 days without IL-1β (recovery). Media were collected after 48 h and 10 days. The secretomes were digested and analyzed by nanoLC-MS/MS to unravel the orchestration of proteins. Results The inflammatory proteins IL6, CXCL1, CXCL6, CCL7, SEMA7A, SAA, and haptoglobin were identified in the secretome after 48 h from all cells stimulated with IL-1β. CXCL8, OSM, TGF-β1, the angiogenic proteins VCAM1, ICAM1, VEGFA, and VEGFC, the proteases MMP1 and MMP3, and the protease inhibitor TIMP3 were among the proteins only identified in the secretome after 48 h from cells cultured in normal expansion media. After 10-day incubation, the proteins CXCL1, CXCL6, and CCL7 were still identified in the secretome from BM-MSCs stimulated with IL-1β, but the essential inducer of inflammation, IL6, was only identified in the secretome from cells cultured in normal expansion media. Conclusion The findings in this study indicate that naïve BM-MSCs have a more extensive inflammatory response at 48 h to stimulation with IL-1β compared to BM-MSCs undergoing chondrogenic differentiation. This extensive inflammatory response decreased after 5 days without IL-1β (day 10), but a difference in composition of the secretome between naïve and chondrogenic BM-MSCs was still evident.
Collapse
Affiliation(s)
- Louise Bundgaard
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, 2630, Taastrup, Denmark.
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7E, 9220, Aalborg Ø, Denmark
| | - Kirstine Juul Elbæk
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7E, 9220, Aalborg Ø, Denmark
| | - Lise Charlotte Berg
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, 2630, Taastrup, Denmark
| |
Collapse
|
30
|
Pessentheiner AR, Ducasa GM, Gordts PLSM. Proteoglycans in Obesity-Associated Metabolic Dysfunction and Meta-Inflammation. Front Immunol 2020; 11:769. [PMID: 32508807 PMCID: PMC7248225 DOI: 10.3389/fimmu.2020.00769] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Proteoglycans are a specific subset of glycoproteins found at the cell surface and in the extracellular matrix, where they interact with a plethora of proteins involved in metabolic homeostasis and meta-inflammation. Over the last decade, new insights have emerged on the mechanism and biological significance of these interactions in the context of diet-induced disorders such as obesity and type-2 diabetes. Complications of energy metabolism drive most diet-induced metabolic disorders, which results in low-grade chronic inflammation, thereby affecting proper function of many vital organs involved in energy homeostasis, such as the brain, liver, kidney, heart and adipose tissue. Here, we discuss how heparan, chondroitin and keratan sulfate proteoglycans modulate obesity-induced metabolic dysfunction and low-grade inflammation that impact the initiation and progression of obesity-associated morbidities.
Collapse
Affiliation(s)
- Ariane R. Pessentheiner
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
| | - G. Michelle Ducasa
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
| | - Philip L. S. M. Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
31
|
Kodama K, Takahashi H, Oiji N, Nakano K, Okamura T, Niimi K, Takahashi E, Guo L, Ikegawa S, Furuichi T. CANT1 deficiency in a mouse model of Desbuquois dysplasia impairs glycosaminoglycan synthesis and chondrocyte differentiation in growth plate cartilage. FEBS Open Bio 2020; 10:1096-1103. [PMID: 32277574 PMCID: PMC7262921 DOI: 10.1002/2211-5463.12859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
Desbuquois dysplasia (DD) type 1 is a rare skeletal dysplasia characterized by a short stature, round face, progressive scoliosis, and joint laxity. The causative gene has been identified as calcium‐activated nucleotidase 1 (CANT1), which encodes a nucleotidase that preferentially hydrolyzes UDP to UMP and phosphate. In this study, we generated Cant1 KO mice using CRISPR/Cas9‐mediated genome editing. All F0 mice possessing frameshift deletions at both Cant1 alleles exhibited a dwarf phenotype. Germline transmission of the edited allele was confirmed in an F0 heterozygous mouse, and KO mice were generated by crossing of the heterozygous breeding pairs. Cant1 KO mice exhibited skeletal defects, including short stature, thoracic kyphosis, and delta phalanx, all of which are observed in DD type 1 patients. The glycosaminoglycan (GAG) content and extracellular matrix space were reduced in the growth plate cartilage of mutants, and proliferating chondrocytes lost their typical flat shape and became round. Chondrocyte differentiation, especially terminal differentiation to hypertrophic chondrocytes, was impaired in Cant1 KO mice. These findings indicate that CANT1 is involved in the synthesis of GAG and regulation of chondrocyte differentiation in the cartilage and contribute to a better understanding of the pathogenesis of DD type 1.
Collapse
Affiliation(s)
- Kazuki Kodama
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Hiroaki Takahashi
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Nobuyasu Oiji
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan.,Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan.,Section of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Kimie Niimi
- Support Unit for Animal Resources Development, Research Resources Division, RIKEN Center for Brain Science, Saitama, Japan
| | - Eiki Takahashi
- Support Unit for Animal Resources Development, Research Resources Division, RIKEN Center for Brain Science, Saitama, Japan
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Tatsuya Furuichi
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Japan.,Department of Basic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, Japan
| |
Collapse
|
32
|
Genetic mapping of distal femoral, stifle, and tibial radiographic morphology in dogs with cranial cruciate ligament disease. PLoS One 2019; 14:e0223094. [PMID: 31622367 PMCID: PMC6797204 DOI: 10.1371/journal.pone.0223094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 09/14/2019] [Indexed: 11/19/2022] Open
Abstract
Cranial cruciate ligament disease (CCLD) is a complex trait. Ten measurements were made on orthogonal distal pelvic limb radiographs of 161 pure and mixed breed dogs with, and 55 without, cranial cruciate partial or complete ligament rupture. Dogs with CCLD had significantly smaller infrapatellar fat pad width, higher average tibial plateau angle, and were heavier than control dogs. The first PC weightings captured the overall size of the dog’s stifle and PC2 weightings reflected an increasing tibial plateau angle coupled with a smaller fat pad width. Of these dogs, 175 were genotyped, and 144,509 polymorphisms were used in a genome-wide association study with both a mixed linear and a multi-locus model. For both models, significant (pgenome <3.46×10−7 for the mixed and< 6.9x10-8 for the multilocus model) associations were found for PC1, tibial diaphyseal length and width, fat pad base length, and femoral and tibial condyle width at LCORL, a known body size-regulating locus. Other body size loci with significant associations were growth hormone 1 (GH1), which was associated with the length of the fat pad base and the width of the tibial diaphysis, and a region on CFAX near IRS4 and ACSL4 in the multilocus model. The tibial plateau angle was associated significantly with a locus on CFA10 in the linear mixed model with nearest candidate genes BET1 and MYH9 and on CFA08 near candidate genes WDHD1 and GCH1. MYH9 has a major role in osteoclastogenesis. Our study indicated that tibial plateau slope is associated with CCLD and a compressed infrapatellar fat pad, a surrogate for stifle osteoarthritis. Because of the association between tibial plateau slope and CCLD, and pending independent validation, these candidate genes for tibial plateau slope may be tested in breeds susceptible to CCLD before they develop disease or are bred.
Collapse
|
33
|
Hao R, Zheng Z, Du X, Jiao Y, Deng Y. Cloning and characterization of O-xylosyltransferase gene fromPinctada fucata martensii. JOURNAL OF APPLIED ANIMAL RESEARCH 2019. [DOI: 10.1080/09712119.2019.1650051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ruijuan Hao
- Fisheries College, Guangdong Ocean University, Zhanjiang, People’s Republic of China
| | - Zhe Zheng
- Fisheries College, Guangdong Ocean University, Zhanjiang, People’s Republic of China
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, People’s Republic of China
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, People’s Republic of China
| | - Yu Jiao
- Fisheries College, Guangdong Ocean University, Zhanjiang, People’s Republic of China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, People’s Republic of China
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, People’s Republic of China
| |
Collapse
|
34
|
Paganini C, Costantini R, Superti-Furga A, Rossi A. Bone and connective tissue disorders caused by defects in glycosaminoglycan biosynthesis: a panoramic view. FEBS J 2019; 286:3008-3032. [PMID: 31286677 DOI: 10.1111/febs.14984] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/22/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Glycosaminoglycans (GAGs) are a heterogeneous family of linear polysaccharides that constitute the carbohydrate moiety covalently attached to the protein core of proteoglycans, macromolecules present on the cell surface and in the extracellular matrix. Several genetic disorders of bone and connective tissue are caused by mutations in genes encoding for glycosyltransferases, sulfotransferases and transporters that are responsible for the synthesis of sulfated GAGs. Phenotypically, these disorders all reflect alterations in crucial biological functions of GAGs in the development, growth and homoeostasis of cartilage and bone. To date, up to 27 different skeletal phenotypes have been linked to mutations in 23 genes encoding for proteins involved in GAG biosynthesis. This review focuses on recent genetic, molecular and biochemical studies of bone and connective tissue disorders caused by GAG synthesis defects. These insights and future research in the field will provide a deeper understanding of the molecular pathogenesis of these disorders and will pave the way for developing common therapeutic strategies that might be targeted to a range of individual phenotypes.
Collapse
Affiliation(s)
- Chiara Paganini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| | - Rossella Costantini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Antonio Rossi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| |
Collapse
|
35
|
Hwang HS, Lee MH, Kim HA. Fibronectin fragment inhibits xylosyltransferase-1 expression by regulating Sp1/Sp3- dependent transcription in articular chondrocytes. Osteoarthritis Cartilage 2019; 27:833-843. [PMID: 30685487 DOI: 10.1016/j.joca.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We investigated the effects of 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) on xylosyltransferase-1 (XT-1), an essential anabolic enzyme that catalyzes the initial and rate-determining step in glycosaminoglycan chain synthesis, in human primary chondrocytes. METHODS Proteoglycan and XT-1 expression in cartilage tissue was analyzed using safranin O staining and immunohistochemistry. The effects of 29-kDa FN-f on XT-1 expression and its relevant signaling pathway were analyzed by quantitative real-time-PCR, immunoblotting, chromatin immunoprecipitation, and immunoprecipitation assays. The receptors for 29-kDa FN-f were investigated using small interference RNA and blocking antibodies. RESULTS The expression of XT-1 was significantly lower in human osteoarthritis cartilage than in normal cartilage. Intra-articular injection of 29-kDa FN-f reduced proteoglycan levels and XT-1 expression in murine cartilage. In addition, in 29-kDa FN-f-treated cells, XT-1 expression was significantly suppressed at both the mRNA and protein levels, modulated by the transcription factors specificity protein 1 (Sp1), Sp3, and activator protein 1 (AP-1). The 29-kDa FN-f suppressed the binding of Sp1 to the promoter region of XT-1 and enhanced the binding of Sp3 and AP-1. Inhibition of mitogen-activated protein kinase and nuclear factor kappa B signaling pathways restored the 29-kDa FN-f-inhibited XT-1 expression, along with the altered expression of Sp1 and Sp3. Blockading toll-like receptor 2 (TLR-2) and integrin α5β1 via siRNA and blocking antibodies revealed that the effects of 29-kDa FN-f on XT-1 expression were mediated through the TLR-2 and integrin α5β1 signaling pathways. CONCLUSION These results demonstrate that 29-kDa FN-f negatively affects cartilage anabolism by regulating glycosaminoglycan formation through XT-1.
Collapse
MESH Headings
- Aged
- Animals
- Cartilage, Articular/drug effects
- Cartilage, Articular/enzymology
- Cartilage, Articular/pathology
- Cells, Cultured
- Chondrocytes/drug effects
- Chondrocytes/enzymology
- Down-Regulation/drug effects
- Enzyme Inhibitors/pharmacology
- Female
- Fibronectins/pharmacology
- Humans
- Male
- Mice, Inbred C57BL
- Middle Aged
- Osteoarthritis, Knee/enzymology
- Osteoarthritis, Knee/genetics
- Osteoarthritis, Knee/pathology
- Pentosyltransferases/antagonists & inhibitors
- Pentosyltransferases/biosynthesis
- Pentosyltransferases/genetics
- Pentosyltransferases/metabolism
- Peptide Fragments/pharmacology
- RNA, Messenger/genetics
- Signal Transduction/drug effects
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Sp3 Transcription Factor/genetics
- Sp3 Transcription Factor/metabolism
- Transcription Factor AP-1/genetics
- Transcription Factor AP-1/metabolism
- Transcription, Genetic
- UDP Xylose-Protein Xylosyltransferase
Collapse
Affiliation(s)
- H S Hwang
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Kyunggi, 431-070, South Korea; Institute for Skeletal Aging, Hallym University, Chunchon 200-702, South Korea.
| | - M H Lee
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Kyunggi, 431-070, South Korea; Institute for Skeletal Aging, Hallym University, Chunchon 200-702, South Korea.
| | - H A Kim
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Kyunggi, 431-070, South Korea; Institute for Skeletal Aging, Hallym University, Chunchon 200-702, South Korea.
| |
Collapse
|
36
|
Cheng X, Li PZ, Wang G, Yan Y, Li K, Brand-Saberi B, Yang X. Microbiota-derived lipopolysaccharide retards chondrocyte hypertrophy in the growth plate through elevating Sox9 expression. J Cell Physiol 2018; 234:2593-2605. [PMID: 30264889 DOI: 10.1002/jcp.27025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
Abstract
Accumulating data show that the cytotoxicity of bacterial lipopolysaccharides (LPS) from microbiota or infection is associated with many disorders observed in the clinics. However, it is still obscure whether or not embryonic osteogenesis is affected by the LPS exposure during gestation. Using the early chicken embryo model, we could demonstrate that LPS exposure inhibits chondrogenesis of the 8-day chicken embryos by Alcian Blue-staining and osteogenesis of 17-day by Alcian Blue and Alizarin Red staining. Further analysis of the growth plates showed that the length of the proliferating zone (PZ) increases whereas that of the hypertrophic zone (HZ) decreased following LPS exposure. However there is no significant change on cell proliferation in the growth plates. Immunofluorescent staining, western blot analysis, and quantitive polymerase chain reaction revealed that Sox9 and Col2a1 are highly expressed at the messenger RNA level and their protein products are also abundant. LPS exposure causes a downregulation of Runx2 and Col10a1 expression in 8-day hindlimbs, and a suppression of Runx2, Col10a1, and Vegfa expression in 17-day phalanges. Knocking down Sox9 in ATDC5 cells by small interfering RNA transfection lead to the expression reduction of Col2a1, Runx2, and Col10a1, implying the vital role of Sox9 in the process of LPS-induced delay in the transition from proliferating chondrocytes to hypertrophic chondrocytes in the growth plate. In the presence of LPS, the antioxidant defense regulator nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is highly expressed, and the activities of superoxide dismutase 1 (SOD1), SOD2, and glutaredoxin rise in 17-day phalanges and ADTC5 cells. Simultaneously, an increase of intracellular ROS is observed. When Nrf2 expression was knocked down in ATDC5 cells, the expressions of Sox9, Col2a1, Runx2, Col10a1, and Vegfa were also going down as well. Taken together, our current data suggest that LPS exposure during gestation could restrict the chondrocytes conversion from proliferating to hypertrophic in the growth plate, in which LPS-induced Sox9 plays a crucial role to trigger the cascade of downstream genes by excessive ROS production and Nrf2 elevation.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Histology and Embryology, International Joint Laboratory for Embryonic, Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Pei-Zhi Li
- Department of Histology and Embryology, International Joint Laboratory for Embryonic, Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Guang Wang
- Department of Histology and Embryology, International Joint Laboratory for Embryonic, Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Yu Yan
- Department of Histology and Embryology, International Joint Laboratory for Embryonic, Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Ke Li
- Department of Histology and Embryology, International Joint Laboratory for Embryonic, Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr-University Bochum, Bochum, Germany
| | - Xuesong Yang
- Department of Histology and Embryology, International Joint Laboratory for Embryonic, Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
37
|
Dubail J, Huber C, Chantepie S, Sonntag S, Tüysüz B, Mihci E, Gordon CT, Steichen-Gersdorf E, Amiel J, Nur B, Stolte-Dijkstra I, van Eerde AM, van Gassen KL, Breugem CC, Stegmann A, Lekszas C, Maroofian R, Karimiani EG, Bruneel A, Seta N, Munnich A, Papy-Garcia D, De La Dure-Molla M, Cormier-Daire V. SLC10A7 mutations cause a skeletal dysplasia with amelogenesis imperfecta mediated by GAG biosynthesis defects. Nat Commun 2018; 9:3087. [PMID: 30082715 PMCID: PMC6078967 DOI: 10.1038/s41467-018-05191-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/14/2018] [Indexed: 01/10/2023] Open
Abstract
Skeletal dysplasia with multiple dislocations are severe disorders characterized by dislocations of large joints and short stature. The majority of them have been linked to pathogenic variants in genes encoding glycosyltransferases, sulfotransferases or epimerases required for glycosaminoglycan synthesis. Using exome sequencing, we identify homozygous mutations in SLC10A7 in six individuals with skeletal dysplasia with multiple dislocations and amelogenesis imperfecta. SLC10A7 encodes a 10-transmembrane-domain transporter located at the plasma membrane. Functional studies in vitro demonstrate that SLC10A7 mutations reduce SLC10A7 protein expression. We generate a Slc10a7−/− mouse model, which displays shortened long bones, growth plate disorganization and tooth enamel anomalies, recapitulating the human phenotype. Furthermore, we identify decreased heparan sulfate levels in Slc10a7−/− mouse cartilage and patient fibroblasts. Finally, we find an abnormal N-glycoprotein electrophoretic profile in patient blood samples. Together, our findings support the involvement of SLC10A7 in glycosaminoglycan synthesis and specifically in skeletal development. The majority of skeletal dysplasia are caused by pathogenic variants in genes required for glycosaminoglycan (GAG) metabolism. Here, Dubail et al. identify genetic variants in the solute carrier family protein SLC10A7 in families with skeletal dysplasia and amelogenesis imperfecta that disrupt GAG synthesis.
Collapse
Affiliation(s)
- Johanne Dubail
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Céline Huber
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Sandrine Chantepie
- Cell Growth and Tissue Repair CRRET Laboratory, Université Paris-Est Créteil, EA 4397 CNRS 9215, Créteil, F-94010, France
| | | | - Beyhan Tüysüz
- Department of Pediatric Genetics, Cerrahpasa Medicine School, Istanbul University, 34290 Istanbul, Turkey
| | - Ercan Mihci
- Akdeniz University Paediatric Genetic Deaprtment, 07059 Antalya, Turkey
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Institut Imagine, 75015 Paris, France
| | | | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Institut Imagine, 75015 Paris, France
| | - Banu Nur
- Department of Pediatric Genetics, Cerrahpasa Medicine School, Istanbul University, 34290 Istanbul, Turkey
| | - Irene Stolte-Dijkstra
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 Groningen, The Netherlands
| | - Albertien M van Eerde
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3508 Utrecht, The Netherlands
| | - Koen L van Gassen
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3508 Utrecht, The Netherlands
| | - Corstiaan C Breugem
- Division of Paediatric Plastic Surgery, Wilhelmina Children´s Hopsital, 3584 Utrecht, The Netherlands
| | - Alexander Stegmann
- Department of Human Genetics, Radboud University Medical Center, 6525 Nijmegen, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center, 6202 Maastricht, The Netherlands
| | - Caroline Lekszas
- Institute of Human Genetics, Julius Maximilians University Würzburg, 97074 Würzburg, Germany
| | - Reza Maroofian
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, Cranmer Terrace, London SW17 ORE, UK
| | - Ehsan Ghayoor Karimiani
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, Cranmer Terrace, London SW17 ORE, UK.,Next Generation Genetic Clinic, 9175954353 Mashhad, Iran.,Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, 9198613636 Mashhad, Iran
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et cellulaire, Hôpital Bichat, 75018 Paris, France
| | - Nathalie Seta
- AP-HP, Biochimie Métabolique et cellulaire, Hôpital Bichat, 75018 Paris, France
| | - Arnold Munnich
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Dulce Papy-Garcia
- Cell Growth and Tissue Repair CRRET Laboratory, Université Paris-Est Créteil, EA 4397 CNRS 9215, Créteil, F-94010, France
| | - Muriel De La Dure-Molla
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France.,Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, INSERM UMRS 1138, University Paris-Descartes, University Pierre et Marie Curie-Paris, 75006 Paris, France
| | - Valérie Cormier-Daire
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France.
| |
Collapse
|
38
|
Abstract
Xylosyltransferase initiates glycosaminoglycan synthesis on the proteoglycan core protein. In this issue of Structure, Briggs and Hohenester (2018) determined the crystal structure of xylosyltransferase 1 and its structure in ternary complex with UDP-xylose donor and peptide acceptors, providing a mechanistic insight into the role of xylosyltransferase for glycosaminoglycan site selection.
Collapse
Affiliation(s)
- Yanlei Yu
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Chemical and Biological Engineering, Department of Biomedical Engineering, Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
39
|
Briggs DC, Hohenester E. Structural Basis for the Initiation of Glycosaminoglycan Biosynthesis by Human Xylosyltransferase 1. Structure 2018; 26:801-809.e3. [PMID: 29681470 PMCID: PMC5992326 DOI: 10.1016/j.str.2018.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 01/10/2023]
Abstract
Proteoglycans (PGs) are essential components of the animal extracellular matrix and are required for cell adhesion, migration, signaling, and immune function. PGs are composed of a core protein and long glycosaminoglycan (GAG) chains, which often specify PG function. GAG biosynthesis is initiated by peptide O-xylosyltransferases, which transfer xylose onto selected serine residues in the core proteins. We have determined crystal structures of human xylosyltransferase 1 (XT1) in complex with the sugar donor, UDP-xylose, and various acceptor peptides. The structures reveal unique active-site features that, in conjunction with functional experiments, explain the substrate specificity of XT1. A constriction within the peptide binding cleft requires the acceptor serine to be followed by glycine or alanine. The remainder of the cleft can accommodate a wide variety of sequences, but with a general preference for acidic residues. These findings provide a framework for understanding the selectivity of GAG attachment.
Collapse
Affiliation(s)
- David C Briggs
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | - Erhard Hohenester
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
40
|
Al-Jezawi NK, Ali BR, Al-Gazali L. Endoplasmic reticulum retention of xylosyltransferase 1 (XYLT1) mutants underlying Desbuquois dysplasia type II. Am J Med Genet A 2017; 173:1773-1781. [PMID: 28462984 DOI: 10.1002/ajmg.a.38244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/13/2017] [Indexed: 02/05/2023]
Abstract
Desbuquois syndrome is a heterogeneous rare type of skeletal dysplasia with a prevalence of less than 1 in 1,000,000 individuals. It is characterized by short-limbed dwarfism, dysmorphic facial features, and severe joint laxity. Two types have been recognized depending on the presence of distinctive carpal and phalangeal features. Mutations in the calcium activated nucleotidase 1 (CANT1) have been found to be responsible for type I and lately, for the Kim type of Desbuquois dysplasia. In addition, a number of Desbuquois dysplasia type II patients have been attributed to mutations in xylosyltransferase 1, encoded by the XYLT1 gene, an enzyme that catalyzes the transfer of UDP-xylose (a marker of cartilage destruction) to serine residues of an acceptor protein, essential for the biosynthesis of proteoglycans. We report here a patient with features consistent with Desbuquois dysplasia II including short long bones, flat face, mild monkey wrench appearance of the femoral heads. Whole exome sequencing revealed a novel homozygous duplication of a single nucleotide in XYLT1 gene (c.2169dupA). This variant is predicted to result in a frame-shift and stop codon p.(Val724Serfs*10) within the xylosyltransferase catalytic domain. Immunoflourescence staining of HeLa cells transfected with mutated XYLT1 plasmids constructs of the current as well as the previously reported missense mutations (c.1441C>T, p.(Arg481Trp) and c.1792C>T, p.(Arg598Cys)), revealed aberrant subcellular localization of the enzyme compared to wild-type, suggesting endoplasmic reticulum retention of these mutants as the likely mechanism of disease.
Collapse
Affiliation(s)
- Nesreen K Al-Jezawi
- Department of Pathology, College of Medicine and Heath Sciences, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Heath Sciences, Al-Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Health Sciences, Al-Ain, United Arab Emirates
| |
Collapse
|
41
|
Taylan F, Costantini A, Coles N, Pekkinen M, Héon E, Şıklar Z, Berberoğlu M, Kämpe A, Kıykım E, Grigelioniene G, Tüysüz B, Mäkitie O. Spondyloocular Syndrome: Novel Mutations in XYLT2 Gene and Expansion of the Phenotypic Spectrum. J Bone Miner Res 2016; 31:1577-85. [PMID: 26987875 DOI: 10.1002/jbmr.2834] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/06/2016] [Accepted: 03/10/2016] [Indexed: 01/08/2023]
Abstract
Spondyloocular syndrome is an autosomal-recessive disorder with spinal compression fractures, osteoporosis, and cataract. Mutations in XYLT2, encoding isoform of xylosyltransferase, were recently identified as the cause of the syndrome. We report on 4 patients, 2 unrelated patients and 2 siblings, with spondyloocular syndrome and novel mutations in XYLT2. Exome sequencing revealed a homozygous nonsense mutation, NM_022167.3(XYLT2): c.2188C>T, resulting in a premature stop codon (p.Arg730*) in a female patient. The patient presents visual impairment, generalized osteoporosis, short stature with short trunk, spinal compression fractures, and increased intervertebral disc space and hearing loss. We extended our XYLT2 analysis to a cohort of 22 patients with generalized osteoporosis, mostly from consanguineous families. In this cohort, we found by Sanger sequencing 2 siblings and 1 single patient who were homozygous for missense mutations in the XYLT2 gene (p.Arg563Gly and p.Leu605Pro). The patients had osteoporosis, compression fractures, cataracts, and hearing loss. Bisphosphonate treatment in 1 patient resulted in almost complete normalization of vertebral structures by adolescence, whereas treatment response in the others was variable. This report together with a previous study shows that mutations in the XYLT2 gene result in a variable phenotype dominated by spinal osteoporosis, cataract, and hearing loss. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alice Costantini
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Coles
- Department of Pediatric Endocrinology of Metabolism, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | - Elise Héon
- Department of Pediatric Endocrinology of Metabolism, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Zeynep Şıklar
- Department of Pediatric Endocrinology, School of Medicine, Ankara University, Ankara, Turkey
| | - Merih Berberoğlu
- Department of Pediatric Endocrinology, School of Medicine, Ankara University, Ankara, Turkey
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ertuğrul Kıykım
- Department of Pediatric Metabolism, Cerrahpasa Medicine School, Istanbul University, Istanbul, Turkey
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Cerrahpasa Medicine School, Istanbul University, Istanbul, Turkey
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
42
|
Jamsheer A, Olech EM, Kozłowski K, Niedziela M, Sowińska-Seidler A, Obara-Moszyńska M, Latos-Bieleńska A, Karczewski M, Zemojtel T. Exome sequencing reveals two novel compound heterozygous XYLT1 mutations in a Polish patient with Desbuquois dysplasia type 2 and growth hormone deficiency. J Hum Genet 2016; 61:577-83. [PMID: 27030147 DOI: 10.1038/jhg.2016.30] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/27/2016] [Accepted: 03/08/2016] [Indexed: 01/09/2023]
Abstract
Desbuquois dysplasia type 2 (DBQD2) is a rare recessively inherited skeletal genetic disorder characterized by severe prenatal and postnatal growth retardation, generalized joint laxity with dislocation of large joints and facial dysmorphism. The condition was recently described to result from autosomal recessive mutations in XYLT1, encoding the enzyme xylosyltransferase-1. In this paper, we report on a Polish patient with DBQD2 who presented with severe short stature of prenatal onset, joint laxity, psychomotor retardation and multiple radiological abnormalities including short metacarpals, advanced bone age and exaggerated trochanters. Endocrinological examinations revealed that sleep-induced growth hormone (GH) release and GH peak in clonidine- and glucagon-induced provocative tests as well as insulin-like growth factor 1 (IGF-1) and IGF-binding protein-3 levels were all markedly decreased, confirming deficiency of GH secretion. Bone age, unlikely to GH deficiency, was significantly advanced. To establish the diagnosis at a molecular level, we performed whole-exome sequencing and bioinformatic analysis in the index patient, which revealed compound heterozygous XYLT1 mutations: c.595C>T(p.Gln199*) and c.1651C>T(p.Arg551Cys), both of which are novel. Sanger sequencing showed that the former mutation was inherited from the healthy mother, whereas the latter one most probably occurred de novo. Our study describes the first case of DBQD2 resulting from compound heterozygous XYLT1 mutation, expands the mutational spectrum of the disease and provides evidence that the severe growth retardation and microsomia observed in DBQD2 patients may result not only from the skeletal dysplasia itself but also from GH and IGF-1 deficiency.
Collapse
Affiliation(s)
- Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- NZOZ Center for Medical Genetics GENESIS, Poznan, Poland
| | - Ewelina M Olech
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Kazimierz Kozłowski
- Department of Medical Imaging, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Marek Niedziela
- Department of Pediatric Endocrinology and Rheumatology, Poznan University of Medical Sciences, Poznan, Poland
- Karol Jonscher's Clinical Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Sowińska-Seidler
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Monika Obara-Moszyńska
- Department of Pediatric Endocrinology and Rheumatology, Poznan University of Medical Sciences, Poznan, Poland
- Karol Jonscher's Clinical Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Latos-Bieleńska
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- NZOZ Center for Medical Genetics GENESIS, Poznan, Poland
| | - Marek Karczewski
- Department of Transplantology, General, Vascular and Plastic Surgery Clinical Hospital of Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Zemojtel
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Labor Berlin-Charité Vivantes GmbH, Humangenetik, Berlin, Germany
| |
Collapse
|
43
|
Hackett MJ, George GN, Pickering IJ, Eames BF. Chemical Biology in the Embryo: In Situ Imaging of Sulfur Biochemistry in Normal and Proteoglycan-Deficient Cartilage Matrix. Biochemistry 2016; 55:2441-51. [PMID: 26985789 DOI: 10.1021/acs.biochem.5b01136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteoglycans (PGs) are heavily glycosylated proteins that play major structural and biological roles in many tissues. Proteoglycans are abundant in cartilage extracellular matrix; their loss is a main feature of the joint disease osteoarthritis. Proteoglycan function is regulated by sulfation-sulfate ester formation with specific sugar residues. Visualization of sulfation within cartilage matrix would yield vital insights into its biological roles. We present synchrotron-based X-ray fluorescence imaging of developing zebrafish cartilage, providing the first in situ maps of sulfate ester distribution. Levels of both sulfur and sulfate esters decrease as cartilage develops through late phase differentiation (maturation or hypertrophy), suggesting a functional link between cartilage matrix sulfur content and chondrocyte differentiation. Genetic experiments confirm that sulfate ester levels were due to cartilage proteoglycans and support the hypothesis that sulfate ester levels regulate chondrocyte differentiation. Surprisingly, in the PG synthesis mutant, the total level of sulfur was not significantly reduced, suggesting sulfur is distributed in an alternative chemical form during lowered cartilage proteoglycan production. Fourier transform infrared imaging indicated increased levels of protein in the mutant fish, suggesting that this alternative sulfur form might be ascribed to an increased level of protein synthesis in the mutant fish, as part of a compensatory mechanism.
Collapse
Affiliation(s)
- Mark J Hackett
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Graham N George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E2, Canada.,Department of Chemistry, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5C9, Canada.,Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Ingrid J Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E2, Canada.,Department of Chemistry, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5C9, Canada.,Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - B Frank Eames
- Department of Anatomy and Cell Biology, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
44
|
Brown DS, Eames BF. Emerging tools to study proteoglycan function during skeletal development. Methods Cell Biol 2016; 134:485-530. [PMID: 27312503 DOI: 10.1016/bs.mcb.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past 20years, appreciation for the varied roles of proteoglycans (PGs), which are specific types of sugar-coated proteins, has increased dramatically. PGs in the extracellular matrix were long known to impart structural functions to many tissues, especially articular cartilage, which cushions bones and allows mobility at skeletal joints. Indeed, osteoarthritis is a debilitating disease associated with loss of PGs in articular cartilage. Today, however, PGs have a demonstrated role in cell biological processes, such as growth factor signalling, prompting new perspectives on the etiology of PG-associated diseases. Here, we review diseases associated with defects in PG synthesis and sulfation, also highlighting current understanding of the underlying genetics, biochemistry, and cell biology. Since most research has analyzed a class of PGs called heparan sulfate PGs, more attention is paid here to studies of chondroitin sulfate PGs (CSPGs), which are abundant in cartilage. Interestingly, CSPG synthesis is tightly linked to the cell biological processes of secretion and lysosomal degradation, suggesting that these systems may be linked genetically. Animal models of loss of CSPG function have revealed CSPGs to impact skeletal development. Specifically, our work from a mutagenesis screen in zebrafish led to the hypothesis that cartilage PGs normally delay the timing of endochondral ossification. Finally, we outline emerging approaches in zebrafish that may revolutionize the study of cartilage PG function, including transgenic methods and novel imaging techniques. Our recent work with X-ray fluorescent imaging, for example, enables direct correlation of PG function with PG-dependent biological processes.
Collapse
Affiliation(s)
- D S Brown
- University of Saskatchewan, Saskatoon, SK, Canada
| | - B F Eames
- University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
45
|
Munns CF, Fahiminiya S, Poudel N, Munteanu MC, Majewski J, Sillence DO, Metcalf JP, Biggin A, Glorieux F, Fassier F, Rauch F, Hinsdale ME. Homozygosity for frameshift mutations in XYLT2 result in a spondylo-ocular syndrome with bone fragility, cataracts, and hearing defects. Am J Hum Genet 2015; 96:971-8. [PMID: 26027496 PMCID: PMC4457947 DOI: 10.1016/j.ajhg.2015.04.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/24/2015] [Indexed: 01/05/2023] Open
Abstract
Heparan and chondroitin/dermatan sulfated proteoglycans have a wide range of roles in cellular and tissue homeostasis including growth factor function, morphogen gradient formation, and co-receptor activity. Proteoglycan assembly initiates with a xylose monosaccharide covalently attached by either xylosyltransferase I or II. Three individuals from two families were found that exhibited similar phenotypes. The index case subjects were two brothers, individuals 1 and 2, who presented with osteoporosis, cataracts, sensorineural hearing loss, and mild learning defects. Whole exome sequence analyses showed that both individuals had a homozygous c.692dup mutation (GenBank: NM_022167.3) in the xylosyltransferase II locus (XYLT2) (MIM: 608125), causing reduced XYLT2 mRNA and low circulating xylosyltransferase (XylT) activity. In an unrelated boy (individual 3) from the second family, we noted low serum XylT activity. Sanger sequencing of XYLT2 in this individual revealed a c.520del mutation in exon 2 that resulted in a frameshift and premature stop codon (p.Ala174Profs(∗)35). Fibroblasts from individuals 1 and 2 showed a range of defects including reduced XylT activity, GAG incorporation of (35)SO4, and heparan sulfate proteoglycan assembly. These studies demonstrate that human XylT2 deficiency results in vertebral compression fractures, sensorineural hearing loss, eye defects, and heart defects, a phenotype that is similar to the autosomal-recessive disorder spondylo-ocular syndrome of unknown cause. This phenotype is different from what has been reported in individuals with other linker enzyme deficiencies. These studies illustrate that the cells of the lens, retina, heart muscle, inner ear, and bone are dependent on XylT2 for proteoglycan assembly in humans.
Collapse
Affiliation(s)
- Craig F Munns
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Somayyeh Fahiminiya
- Department of Human Genetics, Faculty of Medicine, McGill University and Genome Quebec Innovation Center, Montréal, QC H3A 1B1, Canada
| | - Nabin Poudel
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | - Jacek Majewski
- Department of Human Genetics, Faculty of Medicine, McGill University and Genome Quebec Innovation Center, Montréal, QC H3A 1B1, Canada
| | - David O Sillence
- Discipline of Genetic Medicine, The Children's Hospital at Westmead Clinical School, Sydney Medicine, Westmead, NSW 2145, Australia
| | - Jordan P Metcalf
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA
| | - Andrew Biggin
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
| | | | | | - Frank Rauch
- Shriners Hospital for Children, Montréal, QC H3G 1A6, Canada
| | - Myron E Hinsdale
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA.
| |
Collapse
|
46
|
Kuhn J, Götting C, Beahm BJ, Bertozzi CR, Faust I, Kuzaj P, Knabbe C, Hendig D. Xylosyltransferase II is the predominant isoenzyme which is responsible for the steady-state level of xylosyltransferase activity in human serum. Biochem Biophys Res Commun 2015; 459:469-74. [PMID: 25748573 PMCID: PMC6598695 DOI: 10.1016/j.bbrc.2015.02.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/22/2015] [Indexed: 01/13/2023]
Abstract
In mammals, two active xylosyltransferase isoenzymes (EC 2.4.2.16) exist. Both xylosyltransferases I and II (XT-I and XT-II) catalyze the transfer of xylose from UDP-xylose to select serine residues in the proteoglycan core protein. Altered XT activity in human serum was found to correlate directly with various diseases such as osteoarthritis, systemic sclerosis, liver fibrosis, and pseudoxanthoma elasticum. To interpret the significance of the enzyme activity alteration observed in disease states it is important to know which isoenzyme is responsible for the XT activity in serum. Until now it was impossible for a specific measurement of XT-I or XT-II activity, respectively, because of the absence of a suitable enzyme substrate. This issue has now been solved and the following experimental study demonstrates for the first time, via the enzyme activity that XT-II is the predominant isoenzyme responsible for XT activity in human serum. The proof was performed using natural UDP-xylose as the xylose donor, as well as the artificial compound UDP-4-azido-4-deoxyxylose, which is a selective xylose donor for XT-I.
Collapse
Affiliation(s)
- Joachim Kuhn
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany.
| | - Christian Götting
- MVZ Labor Limbach Nürnberg, Lina-Ammon-Strasse 28, 90471 Nürnberg, Germany
| | - Brendan J Beahm
- Department of Chemistry and Molecular and Cell Biology Howard Hughes Medical Institute University of California, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry and Molecular and Cell Biology Howard Hughes Medical Institute University of California, Berkeley, CA 94720, USA
| | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | - Patricia Kuzaj
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
47
|
Lock EF, Soldano KL, Garrett ME, Cope H, Markunas CA, Fuchs H, Grant G, Dunson DB, Gregory SG, Ashley-Koch AE. Joint eQTL assessment of whole blood and dura mater tissue from individuals with Chiari type I malformation. BMC Genomics 2015; 16:11. [PMID: 25609184 PMCID: PMC4342828 DOI: 10.1186/s12864-014-1211-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/30/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Expression quantitative trait loci (eQTL) play an important role in the regulation of gene expression. Gene expression levels and eQTLs are expected to vary from tissue to tissue, and therefore multi-tissue analyses are necessary to fully understand complex genetic conditions in humans. Dura mater tissue likely interacts with cranial bone growth and thus may play a role in the etiology of Chiari Type I Malformation (CMI) and related conditions, but it is often inaccessible and its gene expression has not been well studied. A genetic basis to CMI has been established; however, the specific genetic risk factors are not well characterized. RESULTS We present an assessment of eQTLs for whole blood and dura mater tissue from individuals with CMI. A joint-tissue analysis identified 239 eQTLs in either dura or blood, with 79% of these eQTLs shared by both tissues. Several identified eQTLs were novel and these implicate genes involved in bone development (IPO8, XYLT1, and PRKAR1A), and ribosomal pathways related to marrow and bone dysfunction, as potential candidates in the development of CMI. CONCLUSIONS Despite strong overall heterogeneity in expression levels between blood and dura, the majority of cis-eQTLs are shared by both tissues. The power to detect shared eQTLs was improved by using an integrative statistical approach. The identified tissue-specific and shared eQTLs provide new insight into the genetic basis for CMI and related conditions.
Collapse
Affiliation(s)
- Eric F Lock
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
- Department of Statistical Science, Duke University, Durham, NC, USA.
| | - Karen L Soldano
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
- Duke Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA.
| | - Melanie E Garrett
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
- Duke Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA.
| | - Heidi Cope
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
- Duke Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA.
| | | | - Herbert Fuchs
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| | - Gerald Grant
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC, USA.
- Department of Neurosurgery, Stanford University/Lucile Packard Children's Hospital, Stanford, CA, USA.
| | - David B Dunson
- Department of Statistical Science, Duke University, Durham, NC, USA.
| | - Simon G Gregory
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA.
| | - Allison E Ashley-Koch
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
- Duke Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
48
|
Mizumoto S, Yamada S, Sugahara K. Human genetic disorders and knockout mice deficient in glycosaminoglycan. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495764. [PMID: 25126564 PMCID: PMC4122003 DOI: 10.1155/2014/495764] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/08/2014] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kazuyuki Sugahara
- Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and Technology, Graduate School of Life Science, Hokkaido University, West-11, North-21, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
49
|
Bui C, Huber C, Tuysuz B, Alanay Y, Bole-Feysot C, Leroy JG, Mortier G, Nitschke P, Munnich A, Cormier-Daire V. XYLT1 mutations in Desbuquois dysplasia type 2. Am J Hum Genet 2014; 94:405-14. [PMID: 24581741 PMCID: PMC3951945 DOI: 10.1016/j.ajhg.2014.01.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/31/2014] [Indexed: 12/31/2022] Open
Abstract
Desbuquois dysplasia (DBQD) is a severe condition characterized by short stature, joint laxity, and advanced carpal ossification. Based on the presence of additional hand anomalies, we have previously distinguished DBQD type 1 and identified CANT1 (calcium activated nucleotidase 1) mutations as responsible for DBQD type 1. We report here the identification of five distinct homozygous xylosyltransferase 1 (XYLT1) mutations in seven DBQD type 2 subjects from six consanguineous families. Among the five mutations, four were expected to result in loss of function and a drastic reduction of XYLT1 cDNA level was demonstrated in two cultured individual fibroblasts. Because xylosyltransferase 1 (XT-I) catalyzes the very first step in proteoglycan (PG) biosynthesis, we further demonstrated in the two individual fibroblasts a significant reduction of cellular PG content. Our findings of XYLT1 mutations in DBQD type 2 further support a common physiological basis involving PG synthesis in the multiple dislocation group of disorders. This observation sheds light on the key role of the XT-I during the ossification process.
Collapse
Affiliation(s)
- Catherine Bui
- Department of Genetics, INSERM U781, Université Paris Descartes- Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades (AP-HP), Paris 75015, France
| | - Céline Huber
- Department of Genetics, INSERM U781, Université Paris Descartes- Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades (AP-HP), Paris 75015, France
| | - Beyhan Tuysuz
- Department of Pediatric Genetics, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34098, Turkey
| | - Yasemin Alanay
- Pediatric Genetics Unit, Department of Pediatrics, School of Medicine, Acibadem University, Istanbul 34457, Turkey
| | | | | | - Geert Mortier
- Department of Medical Genetics, Antwerp University Hospital and University of Antwerp, Edegem 2650, Belgium
| | - Patrick Nitschke
- Plateforme de Bioinformatique, Université Paris Descartes, Paris 75015, France
| | - Arnold Munnich
- Department of Genetics, INSERM U781, Université Paris Descartes- Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades (AP-HP), Paris 75015, France
| | - Valérie Cormier-Daire
- Department of Genetics, INSERM U781, Université Paris Descartes- Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades (AP-HP), Paris 75015, France.
| |
Collapse
|