1
|
Sun M, Gu Y, Wang J, Zhang Z, Ling Z, Shao F, Lin C, He H, Li R, Liu H, Xu J. Smad4 loss identifies aggressive subtype with immunotherapy and anti-HER-2 treatment resistance in gastric cancer. Br J Cancer 2025:10.1038/s41416-025-03002-8. [PMID: 40281303 DOI: 10.1038/s41416-025-03002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/15/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND SMAD4 mutation and homozygous deletion represent the most prevalent genomic events driving aggressive biological behavior in gastric cancer (GC). However, clinical outcome and therapeutic response in GC patients with Smad4-loss remains obscure. METHODS This study included 990 GC patients from four independent clinical centers including the Zhongshan Hospital (ZSHS) cohort, the Cancer Genomic Atlas (TCGA) cohort, the Samsung Medical Center (SMC) cohort and the Memorial Sloan Kettering Cancer Center (MSKCC) cohort. RESULTS In ZSHS cohort, 60/454 GC patients harbored Smad4-loss are characterized by lower pN stage, well histology differentiation, lower EBV infection, null p53 staining and lower tumor proliferation. Smad4-loss GC patients exhibit miserable overall survival across ZSHS cohort and TCGA cohort. Moreover, Smad4-loss GC patients yield no impact on adjuvant chemotherapy, poor outcome upon anti-PD-1 immunotherapy or anti-HER-2 therapy. Interestingly, Smad4-loss GC show more well and intermediate differentiation and lower Ki67 staining. Furthermore, Smad4-loss GC exhibit tumor immunosuppressive contexture characterized with enriched CXCL13+CD8+T cells, reduced IFN-γ+ cells and GZMB+ cells infiltration. CONCLUSIONS Smad4 loss yields poor clinical outcome, immunotherapy and anti-HER-2 treatment resistance and tumor immunosuppressive contexture in GC patients. Our findings provide clues for further detailed biological investigation and aggressive clinical management in Smad4-loss GC patients.
Collapse
Affiliation(s)
- Mengyao Sun
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yun Gu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Gastrointestinal Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieti Wang
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ziqiu Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhen Ling
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fei Shao
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Lin
- Department of Emergency Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongyong He
- Department of Emergency Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruochen Li
- Department of Emergency Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hao Liu
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Padilha SF, Martins R, Hul LM, Carreño LOD, Freitas MSD, Lopes JS, Ibelli AMG, Peixoto JDO, Zanella Morés MA, Cantão ME, Teixeira RDA, Dias LT, Ledur MC. Genome-wide association analysis reveals insights into the genetic architecture of mesenteric torsion in pigs. Sci Rep 2025; 15:13774. [PMID: 40258920 PMCID: PMC12012111 DOI: 10.1038/s41598-025-98029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/09/2025] [Indexed: 04/23/2025] Open
Abstract
Mesenteric torsion (MT) is a condition that affects several animal species and can lead to the animals' death. However, little is known about its etiology. Therefore, this study aimed to identify genomic regions and candidate genes associated with MT. Phenotypic and genotypic data from 405 pigs, including MT records and genealogy were used. In the model, contemporary group (sex, year, and week of weaning) was considered fixed effect, the linear effect of weaning weight as a covariate, while direct additive genetic effect was random. In the genome-wide association study, genomic windows explaining more than 0.3% of the genetic variance were considered significant. Fifty-two significant windows were identified, covering 299 genes located on 15 chromosomes. The HSD17B4, TNFAIP8, TENM4, CHD2, RGMA, OPRM1, PPARGC1A, CHIA, KCNJ2, KCNJ16, KCNJ15, ELN, SGO1, IL17A, IL17F, GATA4, OVOL2, GLI3, and RAP1A genes were considered candidates to MT since they are related to intestinal morphogenesis, feeding behavior, intestinal barrier, digestion, and intestinal motility. These processes could induce intestinal malformations, dysbiosis, excessive fermentation, delay intestinal transit, and obstruction. Our findings contribute to understanding the mechanisms involved in the occurrence of MT in pigs and may help to elucidate the etiology of intestinal torsion/volvulus in other mammals, including humans.
Collapse
Affiliation(s)
- Suelen Fernandes Padilha
- Programa de Pós-Graduação em Zootecnia, Universidade Federal do Paraná, Curitiba, PR, 80035-050, Brazil
| | - Rafaela Martins
- Programa de Pós-Graduação em Zootecnia, Universidade Federal do Paraná, Curitiba, PR, 80035-050, Brazil
| | - Ludmila Mudri Hul
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR, 85040-080, Brazil
- Faculdade de Ensino Superior do Centro do Paraná, Guarapuava, PR, 85200-000, Brazil
| | | | | | | | - Adriana Mércia Guaratini Ibelli
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR, 85040-080, Brazil
- Embrapa Suínos e Aves, Concórdia, 89715-899, SC, Brazil
- Embrapa Pecuária Sudeste, São Carlos, SP, 13560-970, Brazil
| | - Jane de Oliveira Peixoto
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR, 85040-080, Brazil
- Embrapa Suínos e Aves, Concórdia, 89715-899, SC, Brazil
| | | | | | | | - Laila Talarico Dias
- Programa de Pós-Graduação em Zootecnia, Universidade Federal do Paraná, Curitiba, PR, 80035-050, Brazil
| | | |
Collapse
|
3
|
Ghazimoradi MH, Babashah S. The transcriptional regulators GATA6 and TET1 regulate the TGF-β pathway in cancer-associated fibroblasts to promote breast cancer progression. Cell Death Discov 2025; 11:164. [PMID: 40216762 PMCID: PMC11992015 DOI: 10.1038/s41420-025-02438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are pivotal drivers of tumor progression, yet the molecular mechanisms underlying their activation remain incompletely understood. Here, we identified the TET1/SMAD4/GATA6 regulatory axis as a central mechanism governing CAF transformation and function in breast cancer. Through integrative in vitro and in vivo models, we demonstrated that TET1, an epigenetic modulator, demethylates the SMAD4 promoter, enhancing SMAD4 expression. SMAD4 transcriptionally upregulates GATA6, which amplifies TGF-β signaling by directly activating the TGF-β promoter, establishing a self-reinforcing feedforward loop critical for CAF identity and stromal-tumor crosstalk. GATA6 and TET1 were significantly upregulated in breast CAFs compared to normal fibroblasts (NFs) and TGF-β-induced CAFs. Loss- or gain-of-function experiments revealed that these regulators control CAF survival, marker expression, and secretion of pro-tumorigenic factors. Knockdown of GATA6 or TET1 reduced CAF-mediated migration and invasion of breast cancer cells in vitro, while their overexpression enhanced cancer cell aggressiveness. Mechanistically, TET1-mediated epigenetic remodeling and GATA6-driven transcriptional activation converge on the TGF-β/SMAD pathway, sustaining CAF activation. In vivo, tumors derived from GATA6- or TET1-depleted CAFs exhibited reduced growth, proliferation, and CAF engraftment, underscoring their role in tumor progression. These findings position GATA6 and TET1 as promising targets to disrupt CAF-driven tumorigenesis, offering novel strategies for breast cancer treatment. By unraveling the epigenetic-transcriptional interplay within the tumor microenvironment, this study advances our understanding of stromal reprogramming and its implications for precision oncology.
Collapse
Affiliation(s)
- Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Dong YJ, Zhang YP, Jiang XF, Xie ZY, Li B, Jiang NH, Chen SH, Lv GY. Beneficial effects of Dendrobium officinale National Herbal Drink on metabolic immune crosstalk via regulate SCFAs-Th17/Treg. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155816. [PMID: 38964158 DOI: 10.1016/j.phymed.2024.155816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Accepted: 06/08/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND The development of gut-liver axis metabolic immune crosstalk is intimately associated with intestinal barrier disorder, intestinal SCFAs-Th17/Treg immunological imbalance, and disorders of the gut microbiota. Prior research has discovered that Dendrobium officinale National Herbal Drink (NHD), a traditional Chinese medicine drink with enhanced immunity, may enhance the immunological response in animals with impaired immune systems brought on by cyclophosphamide by repairing intestinal barrier function and controlling turbulence in the gut microbiota. However, whether NHD can further improve the gut-liver axis metabolic immune crosstalk and its related mechanisms need to be systematically studied. OBJECTIVES The purpose of this study is to clarify the function and mechanism of NHD in enhancing the gut-liver axis metabolic immunological crosstalk brought on by excessive alcohol intake. METHODS In this work, we set up a mouse model to analyze the metabolic and immunological crosstalk involving the gut-liver axis across 7 weeks of continuous, excessive drinking. At the same time, high and low doses (20,10 ml/kg) of NHD were given by gavage. The effect of NHD on improving the metabolism of gut-liver axis was evaluated by blood lipid, liver lipid deposition, liver function and intestinal pathophysiology. By measuring serum immunological indices, intestinal barrier, and intestinal immune barrier, the impact of NHD on enhancing immune and intestinal barrier function was assessed. Furthermore, immunohistochemistry, immunofluorescence, 16S rRNA, Western blot, q-PCR and other methods were used to detect gut microbiota, SCFAs-GPR41/43 pathway, intestinal Th17/Treg immune cells and PPAR-α-NPC1L1/SREBP1 pathway to elucidate the mechanism by which NHD enhances the gut-liver axis' metabolic immune crosstalk. RESULTS Our study demonstrated that NHD has the potential to improve the pathophysiological damage caused by gut-liver axis in model mice. NHD also ameliorated the disorder of lipid metabolism. In addition, it regulated the levels of peripheral blood T cell immunity and serum immune factors. And NHD can restore intestinal mechanical and immune barrier damage. NHD has a favorable impact on the quantity of beneficial bacteria, including uncultured_bacterium_g__norank_f__muribaculacea and uncultured_bacterium_g__Turicibacter. Additionally, it raised the model mice's levels of SCFAs (n-butyric acid, isovaleric acid, etc.). This resulted in the promotion of intestinal GPR41/43-ERK1/2 expression and the reshaping of intestinal CD4+T cell Th17/Treg homeostasis. As a consequence, colon IL-22 and IL-10 levels increased, while colon IL-17A levels decreased. Lastly, NHD raised the amount of intestinal IAP/LPS, regulated the development of PPAR-α-NPC1L1/SREBP1 pathway in gut-liver axis, and improve lipid metabolism disorder. CONCLUSIONS Our study found that NHD can improve the gut-liver axis metabolic immune crosstalk in model mice caused by excessive drinking. The mechanism might be connected to how NHD controls gut microbiota disorders in model mice, the activation of intestinal SCFAs-GPR41/43 pathway, the remodeling of Th17/Treg immune homeostasis of intestinal CD4+T cells, the improvement of IAP/LPS abnormality, and further mediating the PPAR-α-NPC1L1/SREBP1 pathway of lipid metabolism in gut-liver axis.
Collapse
Affiliation(s)
- Ying-Jie Dong
- College of Pharmaceutical Science, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, No. 18, Chaowang Road, Gongshu District, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou 313200, China
| | - Yi-Piao Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, No. 18, Chaowang Road, Gongshu District, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou 313200, China
| | - Xiao-Feng Jiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, No. 18, Chaowang Road, Gongshu District, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou 313200, China
| | - Zhi-Yi Xie
- College of Pharmaceutical Science, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou 313200, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, No. 18, Chaowang Road, Gongshu District, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou 313200, China
| | - Ning-Hua Jiang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China.
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, No. 18, Chaowang Road, Gongshu District, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou 313200, China.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
5
|
Yang X, Ye T, Rong L, Peng H, Tong J, Xiao X, Wan X, Guo J. GATA4 Forms a Positive Feedback Loop with CDX2 to Transactivate MUC2 in Bile Acids-Induced Gastric Intestinal Metaplasia. Gut Liver 2024; 18:414-425. [PMID: 36860162 PMCID: PMC11096910 DOI: 10.5009/gnl220394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 03/03/2023] Open
Abstract
Background/Aims Gastric intestinal metaplasia (GIM), a common precancerous lesion of gastric cancer, can be caused by bile acid reflux. GATA binding protein 4 (GATA4) is an intestinal transcription factor involved in the progression of gastric cancer. However, the expression and regulation of GATA4 in GIM has not been clarified. Methods The expression of GATA4 in bile acid-induced cell models and human specimens was examined. The transcriptional regulation of GATA4 was investigated by chromatin immunoprecipitation and luciferase reporter gene analysis. An animal model of duodenogastric reflux was used to confirm the regulation of GATA4 and its target genes by bile acids. Results GATA4 expression was elevated in bile acid-induced GIM and human specimens. GATA4 bound to the promoter of mucin 2 (MUC2) and stimulate its transcription. GATA4 and MUC2 expression was positively correlated in GIM tissues. Nuclear transcription factor-κB activation was required for the upregulation of GATA4 and MUC2 in bile acid-induced GIM cell models. GATA4 and caudal-related homeobox 2 (CDX2) reciprocally transactivated each other to drive the transcription of MUC2. In chenodeoxycholic acid-treated mice, MUC2, CDX2, GATA4, p50, and p65 expression levels were increased in the gastric mucosa. Conclusions GATA4 is upregulated and can form a positive feedback loop with CDX2 to transactivate MUC2 in GIM. NF-κB signaling is involved in the upregulation of GATA4 by chenodeoxycholic acid.
Collapse
Affiliation(s)
- Xiaofang Yang
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Ting Ye
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Li Rong
- Department of Gastroenterology, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Peng
- Department of Gastroenterology, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Tong
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Xiao Xiao
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Xiaoqiang Wan
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
- Department of Gastroenterology, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Kumar N, Prakash PG, Wentland C, Kurian SM, Jethva G, Brinkmann V, Mollenkopf HJ, Krammer T, Toussaint C, Saliba AE, Biebl M, Jürgensen C, Wiedenmann B, Meyer TF, Gurumurthy RK, Chumduri C. Decoding spatiotemporal transcriptional dynamics and epithelial fibroblast crosstalk during gastroesophageal junction development through single cell analysis. Nat Commun 2024; 15:3064. [PMID: 38594232 PMCID: PMC11004180 DOI: 10.1038/s41467-024-47173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
The gastroesophageal squamocolumnar junction (GE-SCJ) is a critical tissue interface between the esophagus and stomach, with significant relevance in the pathophysiology of gastrointestinal diseases. Despite this, the molecular mechanisms underlying GE-SCJ development remain unclear. Using single-cell transcriptomics, organoids, and spatial analysis, we examine the cellular heterogeneity and spatiotemporal dynamics of GE-SCJ development from embryonic to adult mice. We identify distinct transcriptional states and signaling pathways in the epithelial and mesenchymal compartments of the esophagus and stomach during development. Fibroblast-epithelial interactions are mediated by various signaling pathways, including WNT, BMP, TGF-β, FGF, EGF, and PDGF. Our results suggest that fibroblasts predominantly send FGF and TGF-β signals to the epithelia, while epithelial cells mainly send PDGF and EGF signals to fibroblasts. We observe differences in the ligands and receptors involved in cell-cell communication between the esophagus and stomach. Our findings provide insights into the molecular mechanisms underlying GE-SCJ development and fibroblast-epithelial crosstalk involved, paving the way to elucidate mechanisms during adaptive metaplasia development and carcinogenesis.
Collapse
Affiliation(s)
- Naveen Kumar
- Laboratory of Infections, Carcinogenesis and Regeneration, Medical Biotechnology Section, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
- Department of Microbiology, University of Würzburg, Würzburg, Germany
| | | | | | | | - Gaurav Jethva
- Department of Microbiology, University of Würzburg, Würzburg, Germany
| | - Volker Brinkmann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hans-Joachim Mollenkopf
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Tobias Krammer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Christophe Toussaint
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), Würzburg, Germany
| | - Matthias Biebl
- Surgical Clinic Campus Charité Mitte, Charité University Medicine, Berlin, Germany
| | - Christian Jürgensen
- Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Rajendra Kumar Gurumurthy
- Department of Microbiology, University of Würzburg, Würzburg, Germany
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Cindrilla Chumduri
- Laboratory of Infections, Carcinogenesis and Regeneration, Medical Biotechnology Section, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
- Department of Microbiology, University of Würzburg, Würzburg, Germany.
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
- Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany.
| |
Collapse
|
7
|
Zhang Y, Xu Q, Wang Y, Zhang C, Xu S, Luo M, Yang S. Caragana sinica (Buc'hoz) Rehd. (jin ji er) polysaccharide regulates the immune function and intestinal microbiota of cyclophosphamide (CTX) induced immunosuppressed mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117551. [PMID: 38081398 DOI: 10.1016/j.jep.2023.117551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 01/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caragana sinica (Buc'hoz) Rehd. is a plant widely grown in Yunnan, China, for both medicinal and edible purposes. The "National Compilation of Chinese Herbal Medicine" describes its nature as "slightly temperate and sweet". Caragana sinica is usually medicated with whole herbs, the main function is to replenish the kidneys and stop bleeding. Caragana sinica was used in folk medicine in Chuxiong, Yunnan, to treat deficiency colds, fatigue, fever, cough, hypertension, and other diseases. AIM OF THE STUDY This article investigates the structural characteristics of Caragana sinica polysaccharide (CSP) and explores its immune-regulatory activity and molecular biological mechanisms in cyclophosphamide-induced immunosuppressed mice, as well as its effects on intestinal bacteria. METHODS With the water-extraction and alcohol-precipitation method, Caragana sinica polysaccharide were extracted, obtaining CSP by purification. A variety of methods and techniques have been used to analyze the chemical properties and structural characteristics of CSP. Immunosuppressive mice model was established through intraperitoneal injection of cyclophosphamide (CTX) to study the immune-regulatory effects and mechanisms of CSP. RESULTS The data indicated that CSP is a neutral heteropolysaccharide mainly composed of arabinose and galactose. This article uses immunosuppressive mice induced by cyclophosphamide (CTX) as the model. The results showed that CSP can promote the immune function of CTX treated immunosuppressed mice and regulate the diversity and composition of intestinal microbiota. CSP can increase macrophage phagocytosis, NK cell killing activity, and lymphocyte proliferation activity. It can also repair the index and morphological damage of the thymus and spleen. And by binding to the TLR4 receptor, MyD88 was activated and interacted with TRAF6 to promote the transfer of NF-κB into the nucleus. Thereby promoting cytokine release and increasing the production of IL-1β, IL-6, IL-10, TNF-α, IgA, and IgG in the serum. CSP also effectively alleviated the liver damage caused by CTX through antioxidant activity. Furthermore, CSP can dramatically affect the intestinal microbiota and the body's immunity by boosting the relative presence of Bacteroides and Verrucamicrobiota. CONCLUSIONS Research results indicated that CSP can regulate the immune function of mice, providing a basis for developing CSP as a potential immune modulator and functional food.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Qirui Xu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Yazi Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Chenchen Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Shan Xu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Manhong Luo
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Shuhan Yang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
8
|
Cheng M, Shi Y, Cheng Y, Hu H, Liu S, Xu Y, He L, Hu S, Lu Y, Chen F, Li J, Si H. Mulberry leaf polysaccharide improves cyclophosphamide-induced growth inhibition and intestinal damage in chicks by modulating intestinal flora, enhancing immune regulation and antioxidant capacity. Front Microbiol 2024; 15:1382639. [PMID: 38577686 PMCID: PMC10991686 DOI: 10.3389/fmicb.2024.1382639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Polysaccharides are generally considered to have immune enhancing functions, and mulberry leaf polysaccharide is the main active substance in mulberry leaves, while there are few studies on whether mulberry leaf polysaccharide (MLP) has an effect on immunosuppression and intestinal damage caused by cyclophosphamide (CTX), we investigated whether MLP has an ameliorative effect on intestinal damage caused by CTX. A total of 210 1-day-old Mahuang cocks were selected for this experiment. Were equally divided into six groups and used to evaluate the immune effect of MLP. Our results showed that MLP significantly enhanced the growth performance of chicks and significantly elevated the secretion of cytokines (IL-1β, IL-10, IL-6, TNF-α, and IFN-γ), immunoglobulins and antioxidant enzymes in the serum of immunosuppressed chicks. It attenuated jejunal damage and elevated the expression of jejunal tight junction proteins Claudin1, Zo-1 and MUC2, which protected intestinal health. MLP activated TLR4-MyD88-NF-κB pathway and enhanced the expression of TLR4, MyD88 and NF-κB, which served to protect the intestine. 16S rDNA gene high-throughput sequencing showed that MLP increased species richness, restored CTX-induced gut microbiome imbalance, and enhanced the abundance of probiotic bacteria in the gut. MLP improves cyclophosphamide-induced growth inhibition and intestinal damage in chicks by modulating intestinal flora and enhancing immune regulation and antioxidant capacity. In conclusion, this study provides a scientific basis for MLP as an immune enhancer to regulate chick intestinal flora and protect chick intestinal mucosal damage.
Collapse
Affiliation(s)
- Ming Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Yongbin Shi
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Yumeng Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Hongjie Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Song Liu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Yanping Xu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Lingzhi He
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Shanshan Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Yujie Lu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Fengmin Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Jiang Li
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| |
Collapse
|
9
|
Yasuhara J, Manivannan SN, Majumdar U, Gordon DM, Lawrence PJ, Aljuhani M, Myers K, Stiver C, Bigelow AM, Galantowicz M, Yamagishi H, McBride KL, White P, Garg V. Novel pathogenic GATA6 variant associated with congenital heart disease, diabetes mellitus and necrotizing enterocolitis. Pediatr Res 2024; 95:146-155. [PMID: 37700164 PMCID: PMC11800323 DOI: 10.1038/s41390-023-02811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Pathogenic GATA6 variants have been associated with congenital heart disease (CHD) and a spectrum of extracardiac abnormalities, including pancreatic agenesis, congenital diaphragmatic hernia, and developmental delay. However, the comprehensive genotype-phenotype correlation of pathogenic GATA6 variation in humans remains to be fully understood. METHODS Exome sequencing was performed in a family where four members had CHD. In vitro functional analysis of the GATA6 variant was performed using immunofluorescence, western blot, and dual-luciferase reporter assay. RESULTS A novel, heterozygous missense variant in GATA6 (c.1403 G > A; p.Cys468Tyr) segregated with affected members in a family with CHD, including three with persistent truncus arteriosus. In addition, one member had childhood onset diabetes mellitus (DM), and another had necrotizing enterocolitis (NEC) with intestinal perforation. The p.Cys468Tyr variant was located in the c-terminal zinc finger domain encoded by exon 4. The mutant protein demonstrated an abnormal nuclear localization pattern with protein aggregation and decreased transcriptional activity. CONCLUSIONS We report a novel, familial GATA6 likely pathogenic variant associated with CHD, DM, and NEC with intestinal perforation. These findings expand the phenotypic spectrum of pathologic GATA6 variation to include intestinal abnormalities. IMPACT Exome sequencing identified a novel heterozygous GATA6 variant (p.Cys468Tyr) that segregated in a family with CHD including persistent truncus arteriosus, atrial septal defects and bicuspid aortic valve. Additionally, affected members displayed extracardiac findings including childhood-onset diabetes mellitus, and uniquely, necrotizing enterocolitis with intestinal perforation in the first four days of life. In vitro functional assays demonstrated that GATA6 p.Cys468Tyr variant leads to cellular localization defects and decreased transactivation activity. This work supports the importance of GATA6 as a causative gene for CHD and expands the phenotypic spectrum of pathogenic GATA6 variation, highlighting neonatal intestinal perforation as a novel extracardiac phenotype.
Collapse
Affiliation(s)
- Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sathiya N Manivannan
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Uddalak Majumdar
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - David M Gordon
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Patrick J Lawrence
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mona Aljuhani
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Katherine Myers
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Corey Stiver
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Amee M Bigelow
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Mark Galantowicz
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Hiroyuki Yamagishi
- Division of Pediatric Cardiology, Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kim L McBride
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Peter White
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
Zheng Y, Ziman B, Ho AS, Sinha UK, Xu LY, Li EM, Koeffler HP, Berman BP, Lin DC. Comprehensive analyses of partially methylated domains and differentially methylated regions in esophageal cancer reveal both cell-type- and cancer-specific epigenetic regulation. Genome Biol 2023; 24:193. [PMID: 37620896 PMCID: PMC10463844 DOI: 10.1186/s13059-023-03035-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND As one of the most common malignancies, esophageal cancer has two subtypes, squamous cell carcinoma and adenocarcinoma, arising from distinct cells-of-origin. Distinguishing cell-type-specific molecular features from cancer-specific characteristics is challenging. RESULTS We analyze whole-genome bisulfite sequencing data on 45 esophageal tumor and nonmalignant samples from both subtypes. We develop a novel sequence-aware method to identify large partially methylated domains (PMDs), revealing profound heterogeneity at both methylation level and genomic distribution of PMDs across tumor samples. We identify subtype-specific PMDs that are associated with repressive transcription, chromatin B compartments and high somatic mutation rate. While genomic locations of these PMDs are pre-established in normal cells, the degree of loss is significantly higher in tumors. We find that cell-type-specific deposition of H3K36me2 may underlie genomic distribution of PMDs. At a smaller genomic scale, both cell-type- and cancer-specific differentially methylated regions (DMRs) are identified for each subtype. Using binding motif analysis within these DMRs, we show that a cell-type-specific transcription factor HNF4A maintains the binding sites that it generates in normal cells, while establishing new binding sites cooperatively with novel partners such as FOSL1 in esophageal adenocarcinoma. Finally, leveraging pan-tissue single-cell and pan-cancer epigenomic datasets, we demonstrate that a substantial fraction of cell-type-specific PMDs and DMRs identified here in esophageal cancer are actually markers that co-occur in other cancers originating from related cell types. CONCLUSIONS These findings advance our understanding of DNA methylation dynamics at various genomic scales in normal and malignant states, providing novel mechanistic insights into cell-type- and cancer-specific epigenetic regulations.
Collapse
Affiliation(s)
- Yueyuan Zheng
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Benjamin Ziman
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, USA
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, 2250 Alcazar Street - CSA 207D, Los Angeles, CA, 90033, USA
| | - Allen S Ho
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Uttam K Sinha
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Guangdong, China
| | - H Phillip Koeffler
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Benjamin P Berman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - De-Chen Lin
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, USA.
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, 2250 Alcazar Street - CSA 207D, Los Angeles, CA, 90033, USA.
| |
Collapse
|
11
|
Kolev HM, Kaestner KH. Mammalian Intestinal Development and Differentiation-The State of the Art. Cell Mol Gastroenterol Hepatol 2023; 16:809-821. [PMID: 37507088 PMCID: PMC10520362 DOI: 10.1016/j.jcmgh.2023.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
The development of the mammalian intestine, from its earliest origins as a morphologically uniform sheet of endoderm cells during gastrulation into the complex organ system that is essential for the life of the organism, is a truly fascinating process. During midgestation development, reciprocal interactions between endoderm-derived epithelium and mesoderm-derived mesenchyme enable villification, or the conversion of a radially symmetric pseudostratified epithelium into the functional subdivision of crypts and villi. Once a mature crypt-villus axis is established, proliferation and differentiation of new epithelial cells continue throughout life. Spatially localized signals including the wingless and Int-1, fibroblast growth factor, and Hippo systems, among others, ensure that new cells are being born continuously in the crypt. As cells exit the crypt compartment, a gradient of bone morphogenetic protein signaling limits proliferation to allow for the specification of multiple mature cell types. The first major differentiation decision is dependent on Notch signaling, which specifies epithelial cells into absorptive and secretory lineages. The secretory lineage is subdivided further into Paneth, goblet, tuft, and enteroendocrine cells via a complex network of transcription factors. Although some of the signaling molecules are produced by epithelial cells, critical components are derived from specialized crypt-adjacent mesenchymal cells termed telocytes, which are marked by Forkhead box l1, GLI Family Zinc Finger 1, and platelet-derived growth factor receptor α. The crucial nature of these processes is evidenced by the multitude of intestinal disorders such as colorectal cancer, short-bowel syndrome, and inflammatory bowel disease, which all reflect perturbations of the development and/or differentiation of the intestine.
Collapse
Affiliation(s)
- Hannah M Kolev
- Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Klaus H Kaestner
- Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
12
|
Oda M, Hatano Y, Sato T. Intestinal epithelial organoids: regeneration and maintenance of the intestinal epithelium. Curr Opin Genet Dev 2022; 76:101977. [PMID: 36058061 DOI: 10.1016/j.gde.2022.101977] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022]
Abstract
Vital functions of the intestines: digestion, absorption, and surface barrier are performed by the intestinal epithelium, which consists of various differentiated cells and intestinal stem cells. Recent technological advances in sequencing technology, including single-cell transcriptomics and epigenetic analysis, have facilitated the genetic characterization of diverse intestinal epithelial cell types and surrounding mesenchymal niche environments. Organoids have allowed biological analysis of the human intestinal epithelium in coordination with genome engineering, genetic lineage tracing, and transplantation into orthotopic tissue. Together, these technologies have prompted the development of organoid-based regenerative therapies for intestinal diseases, including short-bowel syndrome. This article provides an overview of the current understanding of intestinal epithelial self-renewal during homeostasis and regeneration and provides a perspective for future organoid medicine.
Collapse
Affiliation(s)
- Mayumi Oda
- Department of Organoid Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Yoshiko Hatano
- Department of Organoid Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
13
|
Felsenthal N, Vignjevic DM. Stand by me: Fibroblasts regulation of the intestinal epithelium during development and homeostasis. Curr Opin Cell Biol 2022; 78:102116. [PMID: 35914344 DOI: 10.1016/j.ceb.2022.102116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 01/31/2023]
Abstract
The epithelium of the small intestine is composed of a single layer of cells that line two functionally distinct compartments, the villi that project into the lumen of the gut and the crypts that descend into the underlying connective tissue. Stem cells are located in crypts, where they divide and give rise to transit-amplifying cells that differentiate into secretory and absorptive epithelial cells. Most differentiated cells travel upwards from the crypt towards the villus tip, where they shed into the lumen. While some of these cell behaviors are an intrinsic property of the epithelium, it is becoming evident that tight coordination between the epithelium and the underlying fibroblasts plays a critical role in tissue morphogenesis, stem-cell niche maintenance and regionalized gene expression along the crypt-villus axis. Here, we will review the current literature describing the interaction between epithelium and fibroblasts during crypt-villus axis development and intestinal epithelium renewal during homeostasis.
Collapse
Affiliation(s)
- Neta Felsenthal
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France.
| | | |
Collapse
|
14
|
Cai G, Yang Y, Gu P, Li K, Adelijiang W, Zhu T, Liu Z, Wang D. The secretion of sIgA and dendritic cells activation in the intestinal of cyclophosphamide-induced immunosuppressed mice are regulated by Alhagi honey polysaccharides. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154232. [PMID: 35675749 DOI: 10.1016/j.phymed.2022.154232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND It remains a huge challenge to recover the intestine immune function for the treatment of intestinal mucosal damage from chemotherapy with cyclophosphamide (CY). Alhagi honey polysaccharide (AH) has immunomodulation pharmacological activity, but the effect and mechanism on the intestinal immune system of CY-mice remain unclear. PURPOSE In this experiment, the immunomodulatory activity of AH on intestinal immune in CY-mice and its mechanism of regulating the intestinal immune system was investigated. STUDY DESIGN AND METHODS The experiment studied the immunomodulatory activity of AH on the intestinal immune system and its mechanism for the first time from in vitro and in vivo experiments. We investigated the immunomodulatory effects of AH on Caco-2 and dendritic cells (DCs) in vitro by using western blot (WB), flow cytometry, quantitative real-time PCR (qPCR), and ELISA methods. In vivo experiment, the immunosuppressive mouse model was established through being given intraperitoneal injection with CY (80 mg/kg) for 3 days. Then, mice oral administration of 800 mg/kg AH and 40 mg/kg levamisole hydrochloride for a week. Immunofluorescence, flow cytometry, ELISA, qPCR and WB were applied to examine the immunomodulatory activity of AH on the intestinal immune function of CY-mice, as well as the function of AH on the concentration of SCFAs in cecum by Gas chromatographic analysis. RESULTS In vitro experiments, AH could significantly stimulate the expression of pIgR protein in Caco-2. It could also induce the DCs maturation and release the cytokines to regulate the immune response. In vivo experiments, AH could remarkably stimulate the DCs maturation and secrete more CCL20 to recruit DCs, then induce the T (CD4+ and CD8+) and B cells proliferation and activation. Moreover, it could further induce T helper cells to differentiate and secrete cytokines to enhance the secretion of sIgA. Furthermore, it also directly activated DCs and released cytokines to increase the content of pIgR, J-chain, and IgA+ cells in intestine, thereby enhancing the secretion of sIgA to protect the intestine. In addition, AH could obviously strengthen the SCFAs production in cecum to regulate the intestinal immune dysfunction induced by CY. CONCLUSION In summary, oral administrated AH exhibits great benefits for treating CY-induced intestinal immunosuppression, and the mechanism of action mainly involves sIgA, DCs, SCFAs.
Collapse
Affiliation(s)
- Gaofeng Cai
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kui Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wusiman Adelijiang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830000, China
| | - Tianyu Zhu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
15
|
Karaaslanli A, Saha S, Aviyente S, Maiti T. scSGL: Kernelized Signed Graph Learning for Single-Cell Gene Regulatory Network Inference. Bioinformatics 2022; 38:3011-3019. [PMID: 35451460 DOI: 10.1093/bioinformatics/btac288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Elucidating the topology of gene regulatory networks (GRNs) from large single-cell RNA sequencing (scRNAseq) datasets, while effectively capturing its inherent cell-cycle heterogeneity and dropouts, is currently one of the most pressing problems in computational systems biology. Recently, graph learning (GL) approaches based on graph signal processing (GSP) have been developed to infer graph topology from signals defined on graphs. However, existing GL methods are not suitable for learning signed graphs, a characteristic feature of GRNs, which are capable of accounting for both activating and inhibitory relationships in the gene network. They are also incapable of handling high proportion of zero values present in the single cell datasets. RESULTS To this end, we propose a novel signed GL approach, scSGL, that learns GRNs based on the assumption of smoothness and non-smoothness of gene expressions over activating and inhibitory edges, respectively. scSGL is then extended with kernels to account for non-linearity of co-expression and for effective handling of highly occurring zero values. The proposed approach is formulated as a non-convex optimization problem and solved using an efficient ADMM framework. Performance assessment using simulated datasets demonstrates the superior performance of kernelized scSGL over existing state of the art methods in GRN recovery. The performance of scSGL is further investigated using human and mouse embryonic datasets. AVAILABILITY AND IMPLEMENTATION The scSGL code and analysis scripts are available on https://github.com/Single-Cell-Graph-Learning/scSGL. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Abdullah Karaaslanli
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, US
| | - Satabdi Saha
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, 48824, US
| | - Selin Aviyente
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, US
| | - Tapabrata Maiti
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, 48824, US
| |
Collapse
|
16
|
Moussalem D, Augé B, Di Stefano L, Osman D, Gobert V, Haenlin M. Two Isoforms of serpent Containing Either One or Two GATA Zinc Fingers Provide Functional Diversity During Drosophila Development. Front Cell Dev Biol 2022; 9:795680. [PMID: 35178397 PMCID: PMC8844375 DOI: 10.3389/fcell.2021.795680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
GATA transcription factors play crucial roles in various developmental processes in organisms ranging from flies to humans. In mammals, GATA factors are characterized by the presence of two highly conserved domains, the N-terminal (N-ZnF) and the C-terminal (C-ZnF) zinc fingers. The Drosophila GATA factor Serpent (Srp) is produced in different isoforms that contains either both N-ZnF and C-ZnF (SrpNC) or only the C-ZnF (SrpC). Here, we investigated the functional roles ensured by each of these isoforms during Drosophila development. Using the CRISPR/Cas9 technique, we generated new mutant fly lines deleted for one (ΔsrpNC) or the other (ΔsrpC) encoded isoform, and a third one with a single point mutation in the N-ZnF that alters its interaction with its cofactor, the Drosophila FOG homolog U-shaped (Ush). Analysis of these mutants revealed that the Srp zinc fingers are differentially required for Srp to fulfill its functions. While SrpC is essential for embryo to adult viability, SrpNC, which is the closest conserved isoform to that of vertebrates, is not. However, to ensure its specific functions in larval hematopoiesis and fertility, Srp requires the presence of both N- and C-ZnF (SrpNC) and interaction with its cofactor Ush. Our results also reveal that in vivo the presence of N-ZnF restricts rather than extends the ability of GATA factors to regulate the repertoire of C-ZnF bound target genes.
Collapse
Affiliation(s)
- Douaa Moussalem
- Molecular, Cellular and Developmental Biology Department (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Benoit Augé
- Molecular, Cellular and Developmental Biology Department (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Luisa Di Stefano
- Molecular, Cellular and Developmental Biology Department (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Dani Osman
- Faculty of Sciences III, Lebanese University, Tripoli, Lebanon.,Azm Center for Research in Biotechnology and Its Applications, LBA3B, EDST, Lebanese University, Tripoli, Lebanon
| | - Vanessa Gobert
- Molecular, Cellular and Developmental Biology Department (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Marc Haenlin
- Molecular, Cellular and Developmental Biology Department (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
17
|
Zeve D, Stas E, de Sousa Casal J, Mannam P, Qi W, Yin X, Dubois S, Shah MS, Syverson EP, Hafner S, Karp JM, Carlone DL, Ordovas-Montanes J, Breault DT. Robust differentiation of human enteroendocrine cells from intestinal stem cells. Nat Commun 2022; 13:261. [PMID: 35017529 PMCID: PMC8752608 DOI: 10.1038/s41467-021-27901-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/16/2021] [Indexed: 02/02/2023] Open
Abstract
Enteroendocrine (EE) cells are the most abundant hormone-producing cells in humans and are critical regulators of energy homeostasis and gastrointestinal function. Challenges in converting human intestinal stem cells (ISCs) into functional EE cells, ex vivo, have limited progress in elucidating their role in disease pathogenesis and in harnessing their therapeutic potential. To address this, we employed small molecule targeting of the endocannabinoid receptor signaling pathway, JNK, and FOXO1, known to mediate endodermal development and/or hormone production, together with directed differentiation of human ISCs from the duodenum and rectum. We observed marked induction of EE cell differentiation and gut-derived expression and secretion of SST, 5HT, GIP, CCK, GLP-1 and PYY upon treatment with various combinations of three small molecules: rimonabant, SP600125 and AS1842856. Robust differentiation strategies capable of driving human EE cell differentiation is a critical step towards understanding these essential cells and the development of cell-based therapeutics.
Collapse
Affiliation(s)
- Daniel Zeve
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
| | - Eric Stas
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Joshua de Sousa Casal
- grid.2515.30000 0004 0378 8438Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XProgram in Immunology, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Prabhath Mannam
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Wanshu Qi
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Xiaolei Yin
- grid.116068.80000 0001 2341 2786David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.38142.3c000000041936754XCenter for Nanomedicine and Division of Engineering in Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115 USA ,grid.24516.340000000123704535Present Address: Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Sarah Dubois
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.416498.60000 0001 0021 3995School of Arts and Sciences, MCPHS University, Boston, MA 02115 USA
| | - Manasvi S. Shah
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
| | - Erin P. Syverson
- grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Sophie Hafner
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Jeffrey M. Karp
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XCenter for Nanomedicine and Division of Engineering in Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| | - Diana L. Carlone
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| | - Jose Ordovas-Montanes
- grid.2515.30000 0004 0378 8438Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XProgram in Immunology, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| | - David T. Breault
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| |
Collapse
|
18
|
Vonderohe C, Guthrie G, Stoll B, Chacko S, Dawson H, Burrin DG. Tissue-specific mechanisms of bile acid homeostasis and activation of FXR-FGF19 signaling in preterm and term neonatal pigs. Am J Physiol Gastrointest Liver Physiol 2022; 322:G117-G133. [PMID: 34851728 PMCID: PMC8742725 DOI: 10.1152/ajpgi.00274.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The tissue-specific molecular mechanisms involved in perinatal liver and intestinal farnesoid X receptor (FXR)-fibroblast growth factor 19 (FGF19) signaling are poorly defined. Our aim was to establish how gestational age and feeding status affect bile acid synthesis pathway, bile acid pool size, ileal response to bile acid stimulation, genes involved in bile acid-FXR-FGF19 signaling and plasma FGF19 in neonatal pigs. Term (n = 23) and preterm (n = 33) pigs were born via cesarean section at 100% and 90% gestation, respectively. Plasma FGF19, hepatic bile acid and oxysterol profiles, and FXR target gene expression were assessed in pigs at birth and after a bolus feed on day 3 of life. Pig ileal tissue explants were used to measure signaling response to bile acids. Preterm pigs had smaller, more hydrophobic bile acid pools, lower plasma FGF19, and blunted FXR-mediated ileal response to bile acid stimulation than term pigs. GATA binding protein 4 (GATA-4) expression was higher in jejunum than ileum and was higher in preterm than term pig ileum. Hepatic oxysterol analysis suggested dominance of the alternative pathway of bile acid synthesis in neonates, regardless of gestational age and persists in preterm pigs after feeding on day 3. These results highlight the tissue-specific molecular basis for the immature enterohepatic bile acid signaling via FXR-FGF19 in preterm pigs and may have implications for disturbances of bile acid homeostasis and metabolism in preterm infants.NEW & NOTEWORTHY Our results show that the lower hepatic bile acid synthesis and ileum FXR-FGF19 pathway responsiveness to bile acids contribute to low-circulating FGF19 in preterm compared with term neonatal pigs. The molecular mechanism explaining immature or low-ileum FXR-FGF19 signaling may be linked to developmental patterning effects of GATA-4.
Collapse
Affiliation(s)
- Caitlin Vonderohe
- 1United States Department of Agriculture, Agricultural Research Service, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas,2Pediatric Gastroenterology & Nutrition, Baylor College of Medicine, Houston, Texas
| | - Greg Guthrie
- 1United States Department of Agriculture, Agricultural Research Service, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas,2Pediatric Gastroenterology & Nutrition, Baylor College of Medicine, Houston, Texas
| | - Barbara Stoll
- 1United States Department of Agriculture, Agricultural Research Service, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas,2Pediatric Gastroenterology & Nutrition, Baylor College of Medicine, Houston, Texas
| | - Shaji Chacko
- 1United States Department of Agriculture, Agricultural Research Service, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas,2Pediatric Gastroenterology & Nutrition, Baylor College of Medicine, Houston, Texas
| | - Harry Dawson
- 3United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics & Immunology Laboratory, Beltsville, Maryland
| | - Douglas G. Burrin
- 1United States Department of Agriculture, Agricultural Research Service, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas,2Pediatric Gastroenterology & Nutrition, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
19
|
Chen X, Sun W, Xu B, Wu E, Cui Y, Hao K, Zhang G, Zhou C, Xu Y, Li J, Si H. Polysaccharides From the Roots of Millettia Speciosa Champ Modulate Gut Health and Ameliorate Cyclophosphamide-Induced Intestinal Injury and Immunosuppression. Front Immunol 2021; 12:766296. [PMID: 34745141 PMCID: PMC8567740 DOI: 10.3389/fimmu.2021.766296] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Cyclophosphamide (CTX), a common anticancer drug, can cause a variety of side effects such as immunosuppression and intestinal mucosal injury. Polysaccharides are the major bioactive components of the roots of Millettia Speciosa Champ and have gained attention for their immunomodulatory activity. This study was designed to evaluate the immunomodulatory effect of Millettia Speciosa Champ polysaccharide (MSCP) on CTX-induced mice and the possible mechanism. The results showed that MSCP attenuated the CTX-induced decrease in body weight and immune organ indices in mice and promoted the secretion of immune-related cytokines (IL-2, IL-4, IL-10, TNF-α, and IgG). Meanwhile, MSCP restored intestinal morphology, increased the ratio of villus height/crypt depth (V/C), and improved the number of goblet cells and mucins expression. At the mRNA level, MSCP activated the TLRs/MyD88/NF-κB p65 pathway and enhanced the expression of genes related to intestinal mucosal integrity (Occludin1, Claudin1, and MUC-2). In addition, MSCP as a prebiotic improved microbial community diversity, regulated the relative abundance of dominant microbiota from the phylum level to the genus level, restored CTX-induced gut microbial dysbiosis, and promoted short-chain fatty acid production in mice. Based on the present findings, MSCP may modulate the immune response depending on enhancing intestinal health, suggesting that MSCP holds promise as a promising immunostimulant in functional foods and drugs.
Collapse
Affiliation(s)
- Xiaogang Chen
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Wenjing Sun
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Baichang Xu
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Enyun Wu
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Yao Cui
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Kaiyuan Hao
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Geyin Zhang
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Congcong Zhou
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Yanping Xu
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Jiang Li
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Hongbin Si
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| |
Collapse
|
20
|
Marracino L, Fortini F, Bouhamida E, Camponogara F, Severi P, Mazzoni E, Patergnani S, D’Aniello E, Campana R, Pinton P, Martini F, Tognon M, Campo G, Ferrari R, Vieceli Dalla Sega F, Rizzo P. Adding a "Notch" to Cardiovascular Disease Therapeutics: A MicroRNA-Based Approach. Front Cell Dev Biol 2021; 9:695114. [PMID: 34527667 PMCID: PMC8435685 DOI: 10.3389/fcell.2021.695114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of the Notch pathway is implicated in the pathophysiology of cardiovascular diseases (CVDs), but, as of today, therapies based on the re-establishing the physiological levels of Notch in the heart and vessels are not available. A possible reason is the context-dependent role of Notch in the cardiovascular system, which would require a finely tuned, cell-specific approach. MicroRNAs (miRNAs) are short functional endogenous, non-coding RNA sequences able to regulate gene expression at post-transcriptional levels influencing most, if not all, biological processes. Dysregulation of miRNAs expression is implicated in the molecular mechanisms underlying many CVDs. Notch is regulated and regulates a large number of miRNAs expressed in the cardiovascular system and, thus, targeting these miRNAs could represent an avenue to be explored to target Notch for CVDs. In this Review, we provide an overview of both established and potential, based on evidence in other pathologies, crosstalks between miRNAs and Notch in cellular processes underlying atherosclerosis, myocardial ischemia, heart failure, calcification of aortic valve, and arrhythmias. We also discuss the potential advantages, as well as the challenges, of using miRNAs for a Notch-based approach for the diagnosis and treatment of the most common CVDs.
Collapse
Affiliation(s)
- Luisa Marracino
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | - Esmaa Bouhamida
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Camponogara
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Severi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Emanuele D’Aniello
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Roberta Campana
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Roberto Ferrari
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| | | | - Paola Rizzo
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| |
Collapse
|
21
|
DeLaForest A, Kohlnhofer BM, Franklin OD, Stavniichuk R, Thompson CA, Pulakanti K, Rao S, Battle MA. GATA4 Controls Epithelial Morphogenesis in the Developing Stomach to Promote Establishment of Glandular Columnar Epithelium. Cell Mol Gastroenterol Hepatol 2021; 12:1391-1413. [PMID: 34111600 PMCID: PMC8479485 DOI: 10.1016/j.jcmgh.2021.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS The transcription factor GATA4 is broadly expressed in nascent foregut endoderm. As development progresses, GATA4 is lost in the domain giving rise to the stratified squamous epithelium of the esophagus and forestomach (FS), while it is maintained in the domain giving rise to the simple columnar epithelium of the hindstomach (HS). Differential GATA4 expression within these domains coincides with the onset of distinct tissue morphogenetic events, suggesting a role for GATA4 in diversifying foregut endoderm into discrete esophageal/FS and HS epithelial tissues. The goal of this study was to determine how GATA4 regulates differential morphogenesis of the mouse gastric epithelium. METHODS We used a Gata4 conditional knockout mouse line to eliminate GATA4 in the developing HS and a Gata4 conditional knock-in mouse line to express GATA4 in the developing FS. RESULTS We found that GATA4-deficient HS epithelium adopted a FS-like fate, and conversely, that GATA4-expressing FS epithelium adopted a HS-like fate. Underlying structural changes in these epithelia were broad changes in gene expression networks attributable to GATA4 directly activating or repressing expression of HS or FS defining transcripts. Our study implicates GATA4 as having a primary role in suppressing an esophageal/FS transcription factor network during HS development to promote columnar epithelium. Moreover, GATA4-dependent phenotypes in developmental mutants reflected changes in gene expression associated with Barrett's esophagus. CONCLUSIONS This study demonstrates that GATA4 is necessary and sufficient to activate the development of simple columnar epithelium, rather than stratified squamous epithelium, in the embryonic stomach. Moreover, similarities between mutants and Barrett's esophagus suggest that developmental biology can provide insight into human disease mechanisms.
Collapse
Affiliation(s)
- Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bridget M Kohlnhofer
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Olivia D Franklin
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Roman Stavniichuk
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cayla A Thompson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kirthi Pulakanti
- Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin; Division of Hematology/Oncology/Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, Wisconsin
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
22
|
Lyu W, Yang H, Li N, Lu L, Yang C, Jin P, Xiao Y. Molecular characterization, developmental expression, and modulation of occludin by early intervention with Clostridium butyricum in Muscovy ducks. Poult Sci 2021; 100:101271. [PMID: 34214748 PMCID: PMC8258698 DOI: 10.1016/j.psj.2021.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
Occludin is an important component of tight junction proteins and has been extensively studied in animals such as mice, chickens, geese, and pigs. As one of the most important waterfowl species in China, Muscovy duck (Cairina moschata) is an important economic animal for meat. However, research on the occludin gene in Muscovy duck is lacking. In the present study, Muscovy duck occludin cDNA was cloned for the first time. The length of the cDNA was 1,699 bp, and it showed a high sequence similarity with the Anser cygnoides domesticus and Gallus gallus occludin genes. The occludin gene was differentially expressed in the tissues of healthy ducks. The highest and lowest expressions of occludin were observed in the crop and the spleen, respectively. After the oral administration of Clostridium butyricum (CB), the occludin expression in the ileum of 7-day-old Muscovy ducks was significantly upregulated and subsequently showed a decreasing trend in 14-day-old Muscovy ducks. Under the early intervention of CB, no significant difference was observed in the occludin expression of cecum between the control and CB group. Collectively, these results suggest that CB plays an important role in regulating the expression of the occludin gene in Muscovy ducks, and adding CB in feed may maintain the intestinal barrier of ducks by regulating the expression of occludin.
Collapse
Affiliation(s)
- Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Na Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Animal Sciences & Technology, Zhejiang A & F University, Hangzhou 311300, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Caimei Yang
- College of Animal Sciences & Technology, Zhejiang A & F University, Hangzhou 311300, China
| | - Peihua Jin
- College of Animal Sciences & Technology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
23
|
Garcia-Sanchez JA, Ewbank JJ, Visvikis O. Ubiquitin-related processes and innate immunity in C. elegans. Cell Mol Life Sci 2021; 78:4305-4333. [PMID: 33630111 PMCID: PMC11072174 DOI: 10.1007/s00018-021-03787-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Innate immunity is an evolutionary ancient defence strategy that serves to eliminate infectious agents while maintaining host health. It involves a complex network of sensors, signaling proteins and immune effectors that detect the danger, then relay and execute the immune programme. Post-translational modifications relying on conserved ubiquitin and ubiquitin-like proteins are an integral part of the system. Studies using invertebrate models of infection, such as the nematode Caenorhabditis elegans, have greatly contributed to our understanding of how ubiquitin-related processes act in immune sensing, regulate immune signaling pathways, and participate to host defence responses. This review highlights the interest of working with a genetically tractable model organism and illustrates how C. elegans has been used to identify ubiquitin-dependent immune mechanisms, discover novel ubiquitin-based resistance strategies that mediate pathogen clearance, and unravel the role of ubiquitin-related processes in tolerance, preserving host fitness during pathogen attack. Special emphasis is placed on processes that are conserved in mammals.
Collapse
Affiliation(s)
- Juan A Garcia-Sanchez
- INSERM, C3M, Côte D'Azur University, Nice, France
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France
| | - Jonathan J Ewbank
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France.
| | | |
Collapse
|
24
|
Dittrich GM, Froese N, Wang X, Kroeger H, Wang H, Szaroszyk M, Malek-Mohammadi M, Cordero J, Keles M, Korf-Klingebiel M, Wollert KC, Geffers R, Mayr M, Conway SJ, Dobreva G, Bauersachs J, Heineke J. Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis. Basic Res Cardiol 2021; 116:26. [PMID: 33876316 PMCID: PMC8055639 DOI: 10.1007/s00395-021-00862-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Heart failure due to high blood pressure or ischemic injury remains a major problem for millions of patients worldwide. Despite enormous advances in deciphering the molecular mechanisms underlying heart failure progression, the cell-type specific adaptations and especially intercellular signaling remain poorly understood. Cardiac fibroblasts express high levels of cardiogenic transcription factors such as GATA-4 and GATA-6, but their role in fibroblasts during stress is not known. Here, we show that fibroblast GATA-4 and GATA-6 promote adaptive remodeling in pressure overload induced cardiac hypertrophy. Using a mouse model with specific single or double deletion of Gata4 and Gata6 in stress activated fibroblasts, we found a reduced myocardial capillarization in mice with Gata4/6 double deletion following pressure overload, while single deletion of Gata4 or Gata6 had no effect. Importantly, we confirmed the reduced angiogenic response using an in vitro co-culture system with Gata4/6 deleted cardiac fibroblasts and endothelial cells. A comprehensive RNA-sequencing analysis revealed an upregulation of anti-angiogenic genes upon Gata4/6 deletion in fibroblasts, and siRNA mediated downregulation of these genes restored endothelial cell growth. In conclusion, we identified a novel role for the cardiogenic transcription factors GATA-4 and GATA-6 in heart fibroblasts, where both proteins act in concert to promote myocardial capillarization and heart function by directing intercellular crosstalk.
Collapse
Affiliation(s)
- Gesine M Dittrich
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, 68167, Mannheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Germany
| | - Natali Froese
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Xue Wang
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
- Shanghai Tianyou Hospital Affiliated To Tongji University, Shanghai, 200333, China
| | - Hannah Kroeger
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Honghui Wang
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Malgorzata Szaroszyk
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Mona Malek-Mohammadi
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, 68167, Mannheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Germany
| | - Julio Cordero
- Department of Anatomy and Developmental Biology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, 68167, Mannheim, Germany
| | - Merve Keles
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, 68167, Mannheim, Germany
| | | | - Kai C Wollert
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Center for Infection Research, 38124, Braunschweig, Germany
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gergana Dobreva
- Department of Anatomy and Developmental Biology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, 68167, Mannheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Joerg Heineke
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany.
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, 68167, Mannheim, Germany.
- German Center for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Germany.
- Cardiovascular Physiology, European Center for Angioscience (ECAS), Medizinische Fakultät Mannheim, Universität Heidelberg, Ludolf-Krehl-Str. 7-11, 68167, Mannheim, Germany.
| |
Collapse
|
25
|
Stavniichuk R, DeLaForest A, Thompson CA, Miller J, Souza RF, Battle MA. GATA4 blocks squamous epithelial cell gene expression in human esophageal squamous cells. Sci Rep 2021; 11:3206. [PMID: 33547361 PMCID: PMC7864948 DOI: 10.1038/s41598-021-82557-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
GATA4 promotes columnar epithelial cell fate during gastric development. When ectopically expressed in the developing mouse forestomach, the tissue emerges as columnar-like rather than stratified squamous with gene expression changes that parallel those observed in the pre-malignant squamous to columnar metaplasia known as Barrett's esophagus (BE). GATA4 mRNA up-regulation and gene amplification occur in BE and its associated cancer, esophageal adenocarcinoma (EAC), and GATA4 gene amplification correlates with poor patient outcomes. Here, we explored the effect of ectopic expression of GATA4 in mature human esophageal squamous epithelial cells. We found that GATA4 expression in esophageal squamous epithelial cells compromised squamous cell marker gene expression and up-regulated expression of the canonical columnar cell cytokeratin KRT8. We observed GATA4 occupancy in the p63, KRT5, and KRT15 promoters, suggesting that GATA4 directly represses expression of squamous epithelial cell marker genes. Finally, we verified GATA4 protein expression in BE and EAC and found that exposure of esophageal squamous epithelial cells to acid and bile, known BE risk factors, induced GATA4 mRNA expression. We conclude that GATA4 suppresses expression of genes marking the stratified squamous epithelial cell lineage and that this repressive action by GATA4 may have implications in BE and EAC.
Collapse
Affiliation(s)
- Roman Stavniichuk
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cayla A Thompson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James Miller
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rhonda F Souza
- Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
26
|
Sankoda N, Tanabe W, Tanaka A, Shibata H, Woltjen K, Chiba T, Haga H, Sakai Y, Mandai M, Yamamoto T, Yamada Y, Uemoto S, Kawaguchi Y. Epithelial expression of Gata4 and Sox2 regulates specification of the squamous-columnar junction via MAPK/ERK signaling in mice. Nat Commun 2021; 12:560. [PMID: 33495473 PMCID: PMC7835245 DOI: 10.1038/s41467-021-20906-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
The squamous-columnar junction (SCJ) is a boundary consisting of precisely positioned transitional epithelium between the squamous and columnar epithelium. Transitional epithelium is a hotspot for precancerous lesions, and is therefore clinically important; however, the origins and physiological properties of transitional epithelium have not been fully elucidated. Here, by using mouse genetics, lineage tracing, and organoid culture, we examine the development of the SCJ in the mouse stomach, and thus define the unique features of transitional epithelium. We find that two transcription factors, encoded by Sox2 and Gata4, specify primitive transitional epithelium into squamous and columnar epithelium. The proximal-distal segregation of Sox2 and Gata4 expression establishes the boundary of the unspecified transitional epithelium between committed squamous and columnar epithelium. Mechanistically, Gata4-mediated expression of the morphogen Fgf10 in the distal stomach and Sox2-mediated Fgfr2 expression in the proximal stomach induce the intermediate regional activation of MAPK/ERK, which prevents the differentiation of transitional epithelial cells within the SCJ boundary. Our results have implications for tissue regeneration and tumorigenesis, which are related to the SCJ.
Collapse
Affiliation(s)
- Nao Sankoda
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Wataru Tanabe
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Department of Gastroenterology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Akito Tanaka
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Hirofumi Shibata
- Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, 606-8501, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo, 100-0004, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, 606-8507, Japan
| | - Yasuhiro Yamada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
- AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo, 100-0004, Japan
| | - Shinji Uemoto
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Yoshiya Kawaguchi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
27
|
Transcriptional programmes underlying cellular identity and microbial responsiveness in the intestinal epithelium. Nat Rev Gastroenterol Hepatol 2021; 18:7-23. [PMID: 33024279 PMCID: PMC7997278 DOI: 10.1038/s41575-020-00357-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2020] [Indexed: 12/19/2022]
Abstract
The intestinal epithelium serves the unique and critical function of harvesting dietary nutrients, while simultaneously acting as a cellular barrier separating tissues from the luminal environment and gut microbial ecosystem. Two salient features of the intestinal epithelium enable it to perform these complex functions. First, cells within the intestinal epithelium achieve a wide range of specialized identities, including different cell types and distinct anterior-posterior patterning along the intestine. Second, intestinal epithelial cells are sensitive and responsive to the dynamic milieu of dietary nutrients, xenobiotics and microorganisms encountered in the intestinal luminal environment. These diverse identities and responsiveness of intestinal epithelial cells are achieved in part through the differential transcription of genes encoded in their shared genome. Here, we review insights from mice and other vertebrate models into the transcriptional regulatory mechanisms underlying intestinal epithelial identity and microbial responsiveness, including DNA methylation, chromatin accessibility, histone modifications and transcription factors. These studies are revealing that most transcription factors involved in intestinal epithelial identity also respond to changes in the microbiota, raising both opportunities and challenges to discern the underlying integrative transcriptional regulatory networks.
Collapse
|
28
|
Baulies A, Angelis N, Li VSW. Hallmarks of intestinal stem cells. Development 2020; 147:147/15/dev182675. [PMID: 32747330 DOI: 10.1242/dev.182675] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intestinal stem cells (ISCs) are highly proliferative cells that fuel the continuous renewal of the intestinal epithelium. Understanding their regulatory mechanisms during tissue homeostasis is key to delineating their roles in development and regeneration, as well as diseases such as bowel cancer and inflammatory bowel disease. Previous studies of ISCs focused mainly on the position of these cells along the intestinal crypt and their capacity for multipotency. However, evidence increasingly suggests that ISCs also exist in distinct cellular states, which can be an acquired rather than a hardwired intrinsic property. In this Review, we summarise the recent findings into how ISC identity can be defined by proliferation state, signalling crosstalk, epigenetics and metabolism, and propose an update on the hallmarks of ISCs. We further discuss how these properties contribute to intestinal development and the dynamics of injury-induced regeneration.
Collapse
Affiliation(s)
- Anna Baulies
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nikolaos Angelis
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
29
|
Badgery H, Chong L, Iich E, Huang Q, Georgy SR, Wang DH, Read M. Recent insights into the biology of Barrett's esophagus. Ann N Y Acad Sci 2020; 1481:198-209. [PMID: 32681541 DOI: 10.1111/nyas.14432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
Barrett's esophagus (BE) is the only known precursor to esophageal adenocarcinoma (EAC), an aggressive cancer with a poor prognosis. Our understanding of the pathogenesis and Barrett's metaplasia is incomplete, and this has limited the development of new therapeutic targets and agents, risk stratification ability, and management strategies. This review outlines current insights into the biology of BE and addresses controversies surrounding cell of origin, cellular reprogramming theories, updates on esophageal epithelial barrier function, and the significance of goblet cell metaplasia and its association with malignant change. Further research into the basic biology of BE is vital as it will underpin novel therapies and improve our ability to predict malignant progression and help identify the minority of patients who will develop EAC.
Collapse
Affiliation(s)
- Henry Badgery
- Department of Upper Gastrointestinal Surgery, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Lynn Chong
- Department of Upper Gastrointestinal Surgery, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Elhadi Iich
- Cancer Biology and Surgical Oncology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Qin Huang
- Department of Pathology and Laboratory Medicine, Veterans Affairs Boston Healthcare System and Harvard Medical School, West Roxbury, Massachusetts
| | - Smitha Rose Georgy
- Department of Anatomic Pathology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - David H Wang
- Department of Hematology and Oncology, UT Southwestern Medical Centre and VA North Texas Health Care System, Dallas, Texas
| | - Matthew Read
- Department of Upper Gastrointestinal Surgery, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Surgery, The University of Melbourne, St Vincent's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Ying M, Zheng B, Yu Q, Hou K, Wang H, Zhao M, Chen Y, Xie J, Nie S, Xie M. Ganoderma atrum polysaccharide ameliorates intestinal mucosal dysfunction associated with autophagy in immunosuppressed mice. Food Chem Toxicol 2020; 138:111244. [PMID: 32151603 DOI: 10.1016/j.fct.2020.111244] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
The aim of this study was to investigate the protective effect and underlying mechanisms of Ganoderma atrum polysaccharide (PSG-1) on cyclophosphamide (Cy)-induced intestinal mucosal dysfunction in mice. Results showed that PSG-1 promoted the formation of IgA-secreting cells, modulated sIgA, IgE, IgG, IgM secretion, and improved TLR-2, TLR-4, TLR-6 mRNA levels while these factors were suppressed after Cy treatment. CD4+ and CD8+ T cell numbers were also elevated by PSG-1. Cytokines including IFN-γ, TNF-α, IL-2, IL-12p70, IL-4, IL-1β, IL-17, IL-21, IL-23, TGF-β3 and transcription factors including T-bet, GATA-3, RORγt, Foxp3 increased after PSG-1 administration. Besides, PSG-1 reversed goblet cell numbers, and upregulated tight junction proteins like ZO-1, occludin and claudin-1 in immunosuppressed mice. Apart from these, the autophagy-related proteins LC3, Beclin-1, Atg5 and Atg7 were enhanced by PSG-1. These findings demonstrated that PSG-1 could ameliorate Cy-induced impairment of intestinal immunity and mucosal integrity, which maybe associated with autophagy in mice.
Collapse
Affiliation(s)
- Mengxi Ying
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Bing Zheng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| | - Kunyou Hou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Mingming Zhao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| |
Collapse
|
31
|
DeLaForest A, Quryshi AF, Frolkis TS, Franklin OD, Battle MA. GATA4 Is Required for Budding Morphogenesis of Posterior Foregut Endoderm in a Model of Human Stomach Development. Front Med (Lausanne) 2020; 7:44. [PMID: 32140468 PMCID: PMC7042400 DOI: 10.3389/fmed.2020.00044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/29/2020] [Indexed: 01/16/2023] Open
Abstract
Three-dimensional gastrointestinal organoid culture systems provide innovative and tractable models to investigate fundamental developmental biology questions using human cells. The goal of this study was to explore the role of the zinc-finger containing transcription factor GATA4 in gastric development using an organoid-based model of human stomach development. Given GATA4′s vital role in the developing mouse gastrointestinal tract, we hypothesized that GATA4 plays an essential role in human stomach development. We generated a human induced pluripotent stem cell (hiPSC) line stably expressing an shRNA targeted against GATA4 (G4KD-hiPSCs) and used an established protocol for the directed differentiation of hiPSCs into stomach organoids. This in vitro model system, informed by studies in multiple non-human model systems, recapitulates the fundamental processes of stomach development, including foregut endoderm patterning, specification, and subsequent tissue morphogenesis and growth, to produce three-dimensional fundic or antral organoids containing functional gastric epithelial cell types. We confirmed that GATA4 depletion did not disrupt hiPSC differentiation to definitive endoderm (DE). However, when G4KD-hiPSC-derived DE cells were directed to differentiate toward budding SOX2+, HNF1B+ posterior foregut spheroids, we observed a striking decrease in the emergence of cell aggregates, with little to no spheroid formation and budding by GATA4-depleted hiPSCs. In contrast, control hiPSC-derived DE cells, expressing GATA4, formed aggregates and budded into spheroids as expected. These data support an essential role for GATA4 during the earliest stages of human stomach development.
Collapse
Affiliation(s)
- Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Afiya F Quryshi
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Talia S Frolkis
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Olivia D Franklin
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
32
|
Ying M, Yu Q, Zheng B, Wang H, Wang J, Chen S, Gu Y, Nie S, Xie M. Cultured Cordyceps sinensis polysaccharides attenuate cyclophosphamide-induced intestinal barrier injury in mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103523] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
33
|
Greicius G, Virshup DM. Stromal control of intestinal development and the stem cell niche. Differentiation 2019; 108:8-16. [DOI: 10.1016/j.diff.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
34
|
Nakauka-Ddamba A, Lengner CJ. Gut with the Program: Direct Reprogramming toward Intestinal Epithelium Realized. Cell Stem Cell 2019; 21:417-418. [PMID: 28985520 DOI: 10.1016/j.stem.2017.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Intestinal organoids offer great promise for modeling intestinal diseases; however, harvesting intestinal tissue is invasive and directed hPSC differentiation protocols are laborious and costly. In this issue of Cell Stem Cell, Miura and Suzuki (2017) describe the direct conversion of somatic cells from both mice and humans into robust intestinal epithelial tissue.
Collapse
Affiliation(s)
- Angela Nakauka-Ddamba
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Goupille O, Kadri Z, Langelé A, Luccantoni S, Badoual C, Leboulch P, Chrétien S. The integrity of the FOG-2 LXCXE pRb-binding motif is required for small intestine homeostasis. Exp Physiol 2019; 104:1074-1089. [PMID: 31012180 DOI: 10.1113/ep087369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/16/2019] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do Fog2Rb- / Rb- mice present a defect of small intestine homeostasis? What is the main finding and its importance? The importance of interactions between FOG-2 and pRb in adipose tissue physiology has previously been demonstrated. Here it is shown that this interaction is also intrinsic to small intestine homeostasis and exerts extrinsic control over mouse metabolism. Thus, this association is involved in maintaining small intestine morphology, and regulating crypt proliferation and lineage differentiation. It therefore affects mouse growth and adaptation to a high-fat diet. ABSTRACT GATA transcription factors and their FOG cofactors play a key role in tissue-specific development and differentiation, from worms to humans. We have shown that GATA-1 and FOG-2 contain an LXCXE pRb-binding motif. Interactions between retinoblastoma protein (pRb) and GATA-1 are crucial for erythroid proliferation and differentiation, whereas the LXCXE pRb-binding site of FOG-2 is involved in adipogenesis. Fog2-knock-in mice have defective pRb binding and are resistant to obesity, due to efficient white-into-brown fat conversion. Our aim was to investigate the pathophysiological impact of FOG-2-pRb interaction on the small intestine and mouse growth. Histological analysis of the small intestine revealed architectural changes in Fog2Rb- / Rb- mice, including villus shortening, with crypt expansion and a change in muscularis propria thickness. These differences were more marked in the proximo-distal part of the small intestine and were associated with an increase in crypt cell proliferation and disruption of the goblet and Paneth cell lineage. The small intestine of the mutants was unable to adapt to a high-fat diet, and had significantly lower plasma lipid levels on such a diet. Fog2Rb- / Rb- mice displayed higher levels of glucose-dependent insulinotropic peptide release, and lower levels of insulin-like growth factor I release on a regular diet. Their intestinal lipid absorption was impaired, resulting in restricted weight gain. In addition to the intrinsic effects of the mutation on adipose tissue, we show here an extrinsic relationship between the intestine and the effect of FOG-2 mutation on mouse metabolism. In conclusion, the interaction of FOG-2 with pRb coordinates the crypt-villus axis and controls small intestine homeostasis.
Collapse
Affiliation(s)
- Olivier Goupille
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France
| | - Zahra Kadri
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France
| | - Amandine Langelé
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France
| | - Sophie Luccantoni
- Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, Institute of Biology François Jacob, CEA - Université Paris Sud 11 - INSERM U1184, Fontenay-aux-Roses, France
| | - Cécile Badoual
- Department of Pathology, G. Pompidou European Hospital APHP - Université Paris, Descartes, Paris, France
| | - Philippe Leboulch
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France.,Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Stany Chrétien
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France.,INSERM, Paris, France
| |
Collapse
|
36
|
Rogerson C, Britton E, Withey S, Hanley N, Ang YS, Sharrocks AD. Identification of a primitive intestinal transcription factor network shared between esophageal adenocarcinoma and its precancerous precursor state. Genome Res 2019; 29:723-736. [PMID: 30962179 PMCID: PMC6499311 DOI: 10.1101/gr.243345.118] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
Esophageal adenocarcinoma (EAC) is one of the most frequent causes of cancer death, and yet compared to other common cancers, we know relatively little about the molecular composition of this tumor type. To further our understanding of this cancer, we have used open chromatin profiling to decipher the transcriptional regulatory networks that are operational in EAC. We have uncovered a transcription factor network that is usually found in primitive intestinal cells during embryonic development, centered on HNF4A and GATA6. These transcription factors work together to control the EAC transcriptome. We show that this network is activated in Barrett's esophagus, the putative precursor state to EAC, thereby providing novel molecular evidence in support of stepwise malignant transition. Furthermore, we show that HNF4A alone is sufficient to drive chromatin opening and activation of a Barrett's-like chromatin signature when expressed in normal human epithelial cells. Collectively, these data provide a new way to categorize EAC at a genome scale and implicate HNF4A activation as a potential pivotal event in its malignant transition from healthy cells.
Collapse
Affiliation(s)
- Connor Rogerson
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Edward Britton
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Sarah Withey
- School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Neil Hanley
- School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom.,Endocrinology Department, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WU, United Kingdom
| | - Yeng S Ang
- School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom.,GI Science Centre, Salford Royal NHS FT, University of Manchester, Salford M6 8HD, United Kingdom
| | - Andrew D Sharrocks
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
37
|
Negoro R, Takayama K, Kawai K, Harada K, Sakurai F, Hirata K, Mizuguchi H. Efficient Generation of Small Intestinal Epithelial-like Cells from Human iPSCs for Drug Absorption and Metabolism Studies. Stem Cell Reports 2018; 11:1539-1550. [PMID: 30472010 PMCID: PMC6294172 DOI: 10.1016/j.stemcr.2018.10.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023] Open
Abstract
The small intestine plays an important role in the absorption and metabolism of oral drugs. In the current evaluation system, it is difficult to predict the precise absorption and metabolism of oral drugs. In this study, we generated small intestinal epithelial-like cells from human induced pluripotent stem cells (hiPS-SIECs), which could be applied to drug absorption and metabolism studies. The small intestinal epithelial-like cells were efficiently generated from human induced pluripotent stem cell by treatment with WNT3A, R-spondin 3, Noggin, EGF, IGF-1, SB202190, and dexamethasone. The gene expression levels of small intestinal epithelial cell (SIEC) markers were similar between the hiPS-SIECs and human adult small intestine. Importantly, the gene expression levels of colonic epithelial cell markers in the hiPS-SIECs were much lower than those in human adult colon. The hiPS-SIECs generated by our protocol exerted various SIEC functions. In conclusion, the hiPS-SIECs can be utilized for evaluation of drug absorption and metabolism.
Collapse
Affiliation(s)
- Ryosuke Negoro
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.
| | - Kanae Kawai
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kazuo Harada
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kazumasa Hirata
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
38
|
Tremblay M, Sanchez-Ferras O, Bouchard M. GATA transcription factors in development and disease. Development 2018; 145:145/20/dev164384. [DOI: 10.1242/dev.164384] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
The GATA family of transcription factors is of crucial importance during embryonic development, playing complex and widespread roles in cell fate decisions and tissue morphogenesis. GATA proteins are essential for the development of tissues derived from all three germ layers, including the skin, brain, gonads, liver, hematopoietic, cardiovascular and urogenital systems. The crucial activity of GATA factors is underscored by the fact that inactivating mutations in most GATA members lead to embryonic lethality in mouse models and are often associated with developmental diseases in humans. In this Primer, we discuss the unique and redundant functions of GATA proteins in tissue morphogenesis, with an emphasis on their regulation of lineage specification and early organogenesis.
Collapse
Affiliation(s)
- Mathieu Tremblay
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Oraly Sanchez-Ferras
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| |
Collapse
|
39
|
Srivillibhuthur M, Warder BN, Toke NH, Shah PP, Feng Q, Gao N, Bonder EM, Verzi MP. TFAM is required for maturation of the fetal and adult intestinal epithelium. Dev Biol 2018; 439:92-101. [PMID: 29684311 PMCID: PMC5978755 DOI: 10.1016/j.ydbio.2018.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022]
Abstract
During development, the embryo transitions from a metabolism favoring glycolysis to a metabolism favoring mitochondrial respiration. How metabolic shifts regulate developmental processes, or how developmental processes regulate metabolic shifts, remains unclear. To test the requirement of mitochondrial function in developing endoderm-derived tissues, we genetically inactivated the mitochondrial transcription factor, Tfam, using the Shh-Cre driver. Tfam mutants did not survive postnatally, exhibiting defects in lung development. In the developing intestine, TFAM-loss was tolerated until late fetal development, during which the process of villus elongation was compromised. While progenitor cell populations appeared unperturbed, markers of enterocyte maturation were diminished and villi were blunted. Loss of TFAM was also tested in the adult intestinal epithelium, where enterocyte maturation was similarly dependent upon the mitochondrial transcription factor. While progenitor cells in the transit amplifying zone of the adult intestine remained proliferative, intestinal stem cell renewal was dependent upon TFAM, as indicated by molecular profiling and intestinal organoid formation assays. Taken together, these studies point to critical roles for the mitochondrial regulator TFAM for multiple aspects of intestinal development and maturation, and highlight the importance of mitochondrial regulators in tissue development and homeostasis.
Collapse
Affiliation(s)
- Manasa Srivillibhuthur
- Rutgers University, Department of Genetics, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA; Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Bailey N Warder
- Rutgers University, Department of Genetics, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Natalie H Toke
- Rutgers University, Department of Genetics, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Pooja P Shah
- Rutgers University, Department of Genetics, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Qiang Feng
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Michael P Verzi
- Rutgers University, Department of Genetics, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA; Rutgers Cancer Institute of New Jersey (CINJ), 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| |
Collapse
|
40
|
Soini T, Pihlajoki M, Andersson N, Lohi J, Huppert KA, Rudnick DA, Huppert SS, Wilson DB, Pakarinen MP, Heikinheimo M. Transcription factor GATA6: a novel marker and putative inducer of ductal metaplasia in biliary atresia. Am J Physiol Gastrointest Liver Physiol 2018; 314:G547-G558. [PMID: 29388792 PMCID: PMC6008062 DOI: 10.1152/ajpgi.00362.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biliary atresia (BA), a neonatal liver disease, is characterized by obstruction of extrahepatic bile ducts with subsequent cholestasis, inflammation, and progressive liver fibrosis. To gain insights into the pathophysiology of BA, we focused attention on GATA6, a transcription factor implicated in biliary development. Early in fetal development GATA6 expression is evident in cholangiocytes and hepatocytes, but by late gestation it is extinguished in hepatocytes. Utilizing a unique set of BA liver samples collected before and after successful portoenterostomy (PE), we found that GATA6 expression is markedly upregulated in hepatocytes of patients with BA compared with healthy and cholestatic disease controls. This upregulation is recapitulated in two murine models simulating bile duct obstruction and intrahepatic bile ductule expansion. GATA6 expression in BA livers correlates with two established negative prognostic indicators (age at PE, degree of intrahepatic bile ductule expansion) and decreases after normalization of serum bilirubin by PE. GATA6 expression in BA livers correlates with expression of known regulators of cholangiocyte differentiation ( JAGGED1, HNF1β, and HNF6). These same genes are upregulated after enforced expression of GATA6 in human hepatocyte cell models. In conclusion, GATA6 is a novel marker and a putative driver of hepatocyte-cholangiocyte metaplasia in BA, and its expression in hepatocytes is downregulated after successful PE. NEW & NOTEWORTHY A pathological hallmark in the liver of patients with biliary atresia is ductular reaction, an expansion of new bile ductules that are thought to arise from conversion of mature hepatocytes. Here, we show that transcription factor GATA6 is a marker and potential driver of hepatocyte ductal metaplasia in biliary atresia. Hepatocyte GATA6 expression is elevated in biliary atresia, correlates with bile duct expansion, and decreases after successful portoenterostomy.
Collapse
Affiliation(s)
- Tea Soini
- 1Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjut Pihlajoki
- 1Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,2Department of Pediatrics, Saint Louis Children’s Hospital, Washington University School of Medicine, Saint Louis, Missouri
| | - Noora Andersson
- 1Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jouko Lohi
- 3Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kari A. Huppert
- 4Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David A. Rudnick
- 2Department of Pediatrics, Saint Louis Children’s Hospital, Washington University School of Medicine, Saint Louis, Missouri,5Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Stacey S. Huppert
- 4Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, Ohio,5Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David B. Wilson
- 2Department of Pediatrics, Saint Louis Children’s Hospital, Washington University School of Medicine, Saint Louis, Missouri,6Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri
| | - Mikko P. Pakarinen
- 1Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,7Pediatric Surgery and Pediatric Liver and Gut Research Group, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Markku Heikinheimo
- 1Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,2Department of Pediatrics, Saint Louis Children’s Hospital, Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
41
|
Thompson CA, DeLaForest A, Battle MA. Patterning the gastrointestinal epithelium to confer regional-specific functions. Dev Biol 2018; 435:97-108. [PMID: 29339095 PMCID: PMC6615902 DOI: 10.1016/j.ydbio.2018.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/01/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) tract, in simplest terms, can be described as an epithelial-lined muscular tube extending along the cephalocaudal axis from the oral cavity to the anus. Although the general architecture of the GI tract organs is conserved from end to end, the presence of different epithelial tissue structures and unique epithelial cell types within each organ enables each to perform the distinct digestive functions required for efficient nutrient assimilation. Spatiotemporal regulation of signaling pathways and downstream transcription factors controls GI epithelial morphogenesis during development to confer essential regional-specific epithelial structures and functions. Here, we discuss the fundamental functions of each GI tract organ and summarize the diversity of epithelial structures present along the cephalocaudal axis of the GI tract. Next, we discuss findings, primarily from genetic mouse models, that have defined the roles of key transcription factors during epithelial morphogenesis, including p63, SOX2, SOX15, GATA4, GATA6, HNF4A, and HNF4G. Additionally, we examine how the Hedgehog, WNT, and BMP signaling pathways contribute to defining unique epithelial features along the cephalocaudal axis of the GI tract. Lastly, we examine the molecular mechanisms controlling regionalized cytodifferentiation of organ-specific epithelial cell types within the GI tract, concentrating on the stomach and small intestine. The delineation of GI epithelial patterning mechanisms in mice has provided fundamental knowledge to guide the development and refinement of three-dimensional GI organotypic culture models such as those derived from directed differentiation of human pluripotent stem cells and those derived directly from human tissue samples. Continued examination of these pathways will undoubtedly provide vital insights into the mechanisms of GI development and disease and may afford new avenues for innovative tissue engineering and personalized medicine approaches to treating GI diseases.
Collapse
Affiliation(s)
- Cayla A Thompson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
42
|
Bigas A, Porcheri C. Notch and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:235-263. [DOI: 10.1007/978-3-319-89512-3_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Miura S, Suzuki A. Generation of Mouse and Human Organoid-Forming Intestinal Progenitor Cells by Direct Lineage Reprogramming. Cell Stem Cell 2017; 21:456-471.e5. [PMID: 28943029 DOI: 10.1016/j.stem.2017.08.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 07/02/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
Abstract
Intestinal organoids hold great promise as a valuable tool for studying and treating intestinal diseases. The currently available sources of human intestinal organoids, tissue fragments or pluripotent stem cells, involve invasive procedures or complex differentiation protocols, respectively. Here, we show that a set of four transcription factors, Hnf4α, Foxa3, Gata6, and Cdx2, can directly reprogram mouse fibroblasts to acquire the identity of fetal intestine-derived progenitor cells (FIPCs). These induced FIPCs (iFIPCs) form spherical organoids that develop into adult-type budding organoids containing cells with intestinal stem cell properties. The resulting stem cells produce all intestinal epithelial cell lineages and undergo self-renewing cell divisions. After transplantation, the induced spherical and budding organoids can reconstitute colonic and intestinal epithelia, respectively. The same combination of four defined transcription factors can also induce human iFIPCs. This alternative approach for producing intestinal organoids may well facilitate application for disease analysis and therapy development.
Collapse
Affiliation(s)
- Shizuka Miura
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
44
|
Han Q, Xu X, Li J, Wang J, Bai L, Wang A, Wang W, Zhang B. GATA4 is highly expressed in childhood acute lymphoblastic leukemia, promotes cell proliferation and inhibits apoptosis by activating BCL2 and MDM2. Mol Med Rep 2017; 16:6290-6298. [PMID: 28849107 DOI: 10.3892/mmr.2017.7369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 06/16/2017] [Indexed: 11/05/2022] Open
Abstract
Members of the GATA‑binding factor protein family, including GATA1, GATA2 and GATA3, serve an inhibiting role in leukemia. The present study demonstrated that GATA4 was upregulated in children with acute lymphoblastic leukemia (ALL). Results from a number of functional experiments, including cell proliferation analysis, cell cycle analysis, cell apoptosis assay and Transwell migration and invasion analyses, have suggested that high expression of GATA4 may facilitate proliferation and metastasis, and suppress apoptosis in ALL cells. Chromatin immunoprecipitation assay and luciferase reporter assay revealed that GATA4 was a transcription factor that activated mouse double minute 2 homolog (MDM2) and B cell lymphoma 2 (BCL2) expression in ALL cells. BCL2 is a key anti‑apoptosis protein that was demonstrated to suppress cell apoptosis. In addition, GATA4 was revealed to regulate p53 through the transcriptional activation of MDM2, subsequently influencing cell cycle and apoptosis. Results from the present study suggested that GATA4 may be a key marker in ALL diagnosis and a potential target of molecular therapy.
Collapse
Affiliation(s)
- Qiuguo Han
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Xin Xu
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Jing Li
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Jinggang Wang
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Li Bai
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Aihong Wang
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Wei Wang
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Bo Zhang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
45
|
Peck BCE, Shanahan MT, Singh AP, Sethupathy P. Gut Microbial Influences on the Mammalian Intestinal Stem Cell Niche. Stem Cells Int 2017; 2017:5604727. [PMID: 28904533 PMCID: PMC5585682 DOI: 10.1155/2017/5604727] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023] Open
Abstract
The mammalian intestinal epithelial stem cell (IESC) niche is comprised of diverse epithelial, immune, and stromal cells, which together respond to environmental changes within the lumen and exert coordinated regulation of IESC behavior. There is growing appreciation for the role of the gut microbiota in modulating intestinal proliferation and differentiation, as well as other aspects of intestinal physiology. In this review, we evaluate the diverse roles of known niche cells in responding to gut microbiota and supporting IESCs. Furthermore, we discuss the potential mechanisms by which microbiota may exert their influence on niche cells and possibly on IESCs directly. Finally, we present an overview of the benefits and limitations of available tools to study niche-microbe interactions and provide our recommendations regarding their use and standardization. The study of host-microbe interactions in the gut is a rapidly growing field, and the IESC niche is at the forefront of host-microbe activity to control nutrient absorption, endocrine signaling, energy homeostasis, immune response, and systemic health.
Collapse
Affiliation(s)
- Bailey C. E. Peck
- Department of Surgery, School of Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| | - Michael T. Shanahan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Ajeet P. Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
46
|
Fisher JB, Pulakanti K, Rao S, Duncan SA. GATA6 is essential for endoderm formation from human pluripotent stem cells. Biol Open 2017; 6:1084-1095. [PMID: 28606935 PMCID: PMC5550920 DOI: 10.1242/bio.026120] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protocols have been established that direct differentiation of human pluripotent stem cells into a variety of cell types, including the endoderm and its derivatives. This model of differentiation has been useful for investigating the molecular mechanisms that guide human developmental processes. Using a directed differentiation protocol combined with shRNA depletion we sought to understand the role of GATA6 in regulating the earliest switch from pluripotency to definitive endoderm. We reveal that GATA6 depletion during endoderm formation results in apoptosis of nascent endoderm cells, concomitant with a loss of endoderm gene expression. We show by chromatin immunoprecipitation followed by DNA sequencing that GATA6 directly binds to several genes encoding transcription factors that are necessary for endoderm differentiation. Our data support the view that GATA6 is a central regulator of the formation of human definitive endoderm from pluripotent stem cells by directly controlling endoderm gene expression. Summary: Using the differentiation of huESCs as a model for endoderm formation, we reveal that the transcription factor GATA6 regulates the onset of endoderm gene expression and is required for its viability.
Collapse
Affiliation(s)
- J B Fisher
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - K Pulakanti
- Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - S Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Blood Center of Wisconsin, Milwaukee, WI 53226, USA.,Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplant, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - S A Duncan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA .,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
47
|
Múnera JO, Sundaram N, Rankin SA, Hill D, Watson C, Mahe M, Vallance JE, Shroyer NF, Sinagoga KL, Zarzoso-Lacoste A, Hudson JR, Howell JC, Chatuvedi P, Spence JR, Shannon JM, Zorn AM, Helmrath MA, Wells JM. Differentiation of Human Pluripotent Stem Cells into Colonic Organoids via Transient Activation of BMP Signaling. Cell Stem Cell 2017; 21:51-64.e6. [PMID: 28648364 PMCID: PMC5531599 DOI: 10.1016/j.stem.2017.05.020] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 02/28/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023]
Abstract
Gastric and small intestinal organoids differentiated from human pluripotent stem cells (hPSCs) have revolutionized the study of gastrointestinal development and disease. Distal gut tissues such as cecum and colon, however, have proved considerably more challenging to derive in vitro. Here we report the differentiation of human colonic organoids (HCOs) from hPSCs. We found that BMP signaling is required to establish a posterior SATB2+ domain in developing and postnatal intestinal epithelium. Brief activation of BMP signaling is sufficient to activate a posterior HOX code and direct hPSC-derived gut tube cultures into HCOs. In vitro, HCOs express colonic markers and contained colon-specific cell populations. Following transplantation into mice, HCOs undergo morphogenesis and maturation to form tissue that exhibits molecular, cellular, and morphologic properties of human colon. Together these data show BMP-dependent patterning of human hindgut into HCOs, which will be valuable for studying diseases including colitis and colon cancer.
Collapse
Affiliation(s)
- Jorge O Múnera
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Nambirajan Sundaram
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Scott A Rankin
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - David Hill
- University of Michigan, Ann Arbor, MI 48109, USA
| | - Carey Watson
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Maxime Mahe
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Jefferson E Vallance
- Division of Gastroenterology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Noah F Shroyer
- Division of Gastroenterology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Katie L Sinagoga
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Adrian Zarzoso-Lacoste
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Jonathan R Hudson
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Jonathan C Howell
- Division of Endocrinology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Praneet Chatuvedi
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | - John M Shannon
- Division of Pulmonary Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Michael A Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Division of Endocrinology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
| |
Collapse
|
48
|
Thompson CA, Wojta K, Pulakanti K, Rao S, Dawson P, Battle MA. GATA4 Is Sufficient to Establish Jejunal Versus Ileal Identity in the Small Intestine. Cell Mol Gastroenterol Hepatol 2017; 3:422-446. [PMID: 28462382 PMCID: PMC5404030 DOI: 10.1016/j.jcmgh.2016.12.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 12/29/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Patterning of the small intestinal epithelium along its cephalocaudal axis establishes three functionally distinct regions: duodenum, jejunum, and ileum. Efficient nutrient assimilation and growth depend on the proper spatial patterning of specialized digestive and absorptive functions performed by duodenal, jejunal, and ileal enterocytes. When enterocyte function is disrupted by disease or injury, intestinal failure can occur. One approach to alleviate intestinal failure would be to restore lost enterocyte functions. The molecular mechanisms determining regionally defined enterocyte functions, however, are poorly delineated. We previously showed that GATA binding protein 4 (GATA4) is essential to define jejunal enterocytes. The goal of this study was to test the hypothesis that GATA4 is sufficient to confer jejunal identity within the intestinal epithelium. METHODS To test this hypothesis, we generated a novel Gata4 conditional knock-in mouse line and expressed GATA4 in the ileum, where it is absent. RESULTS We found that GATA4-expressing ileum lost ileal identity. The global gene expression profile of GATA4-expressing ileal epithelium aligned more closely with jejunum and duodenum rather than ileum. Focusing on jejunal vs ileal identity, we defined sets of jejunal and ileal genes likely to be regulated directly by GATA4 to suppress ileal identity and promote jejunal identity. Furthermore, our study implicates GATA4 as a transcriptional repressor of fibroblast growth factor 15 (Fgf15), which encodes an enterokine that has been implicated in an increasing number of human diseases. CONCLUSIONS Overall, this study refines our understanding of an important GATA4-dependent molecular mechanism to pattern the intestinal epithelium along its cephalocaudal axis by elaborating on GATA4's function as a crucial dominant molecular determinant of jejunal enterocyte identity. Microarray data from this study have been deposited into NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) and are accessible through GEO series accession number GSE75870.
Collapse
Key Words
- Cyp7a1, cytochrome P450 family 7 subfamily A member 1
- E, embryonic day
- EMSA, electrophoretic mobility shift assay
- Enterohepatic Signaling
- FXR
- FXR, farnesoid X receptor
- Fabp6, fatty acid binding protein 6
- Fgf, fibroblast growth factor
- Fgf15
- Jejunal Identity
- OSTα/β, organic solute transporter α/β
- PCR, polymerase chain reaction
- SBS, short-bowel syndrome
- Slc, solute carrier
- TSS, transcription start site
- Transcriptional Regulation
- bio-ChIP-seq, biotin-mediated chromatin immunoprecipitation with high-throughput sequencing
- bp, base pair
- cDNA, complementary DNA
- cKI, conditional knock-in
- cKO, conditional knockout
- dATP, deoxyadenosine triphosphate
- lnl, loxP-flanked PGK-Neo-3xSV40 polyadenylation sequence
- mRNA, messenger RNA
- pA, polyadenylation
- qRT, quantitative reverse-transcription
- xiFABP, Xenopus I-FABP
Collapse
Affiliation(s)
- Cayla A. Thompson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kevin Wojta
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kirthi Pulakanti
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
- Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplant, Medical College of Wisconsin, Milwaukee, Wisconsin
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Paul Dawson
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Michele A. Battle
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
49
|
Genome Editing in hPSCs Reveals GATA6 Haploinsufficiency and a Genetic Interaction with GATA4 in Human Pancreatic Development. Cell Stem Cell 2017; 20:675-688.e6. [PMID: 28196600 DOI: 10.1016/j.stem.2017.01.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/08/2016] [Accepted: 01/03/2017] [Indexed: 01/19/2023]
Abstract
Human disease phenotypes associated with haploinsufficient gene requirements are often not recapitulated well in animal models. Here, we have investigated the association between human GATA6 haploinsufficiency and a wide range of clinical phenotypes that include neonatal and adult-onset diabetes using CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9-mediated genome editing coupled with human pluripotent stem cell (hPSC) directed differentiation. We found that loss of one GATA6 allele specifically affects the differentiation of human pancreatic progenitors from the early PDX1+ stage to the more mature PDX1+NKX6.1+ stage, leading to impaired formation of glucose-responsive β-like cells. In addition to this GATA6 haploinsufficiency, we also identified dosage-sensitive requirements for GATA6 and GATA4 in the formation of both definitive endoderm and pancreatic progenitor cells. Our work expands the application of hPSCs from studying the impact of individual gene loci to investigation of multigenic human traits, and it establishes an approach for identifying genetic modifiers of human disease.
Collapse
|
50
|
Chin AM, Hill DR, Aurora M, Spence JR. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin Cell Dev Biol 2017; 66:81-93. [PMID: 28161556 DOI: 10.1016/j.semcdb.2017.01.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
The intestine is a vital organ responsible for nutrient absorption, bile and waste excretion, and a major site of host immunity. In order to keep up with daily demands, the intestine has evolved a mechanism to expand the absorptive surface area by undergoing a morphogenetic process to generate finger-like units called villi. These villi house specialized cell types critical for both absorbing nutrients from food, and for protecting the host from commensal and pathogenic microbes present in the adult gut. In this review, we will discuss mechanisms that coordinate intestinal development, growth, and maturation of the small intestine, starting from the formation of the early gut tube, through villus morphogenesis and into early postnatal life when the intestine must adapt to the acquisition of nutrients through food intake, and to interactions with microbes.
Collapse
Affiliation(s)
- Alana M Chin
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - David R Hill
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Megan Aurora
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, United States; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|