1
|
Matsuda M, Sokol SY. Prickle2 regulates apical junction remodeling and tissue fluidity during vertebrate neurulation. J Cell Biol 2025; 224:e202407025. [PMID: 39951022 PMCID: PMC11827586 DOI: 10.1083/jcb.202407025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/29/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The process of folding the flat neuroectoderm into an elongated neural tube depends on tissue fluidity, a property that allows epithelial deformation while preserving tissue integrity. Neural tube folding also requires the planar cell polarity (PCP) pathway. Here, we report that Prickle2 (Pk2), a core PCP component, increases tissue fluidity by promoting the remodeling of apical junctions (AJs) in Xenopus embryos. This Pk2 activity is mediated by the unique evolutionarily conserved Ser/Thr-rich region (STR) in the carboxyterminal half of the protein. Mechanistically, the effects of Pk2 require Rac1 and are accompanied by increased dynamics of C-cadherin and tricellular junctions, the hotspots of AJ remodeling. Notably, Pk2 depletion leads to the accumulation of mediolaterally oriented cells in the neuroectoderm, whereas the overexpression of Pk2 or Pk1 containing the Pk2-derived STR promotes cell elongation along the anteroposterior axis. We propose that Pk2-dependent regulation of tissue fluidity contributes to anteroposterior tissue elongation in response to extrinsic cues.
Collapse
Affiliation(s)
- Miho Matsuda
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Qin H, Liang T, Zhang C, Wu J, Sheng X. The bidirectional relationship between cilia and PCP signaling pathway core protein Vangl2. Sci Prog 2025; 108:368504241311964. [PMID: 39819247 PMCID: PMC11748379 DOI: 10.1177/00368504241311964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Vangl2, a core component of the PCP signaling pathway, serves as a scaffold protein on the cell membrane, playing a crucial role in organizing protein complexes. Cilia, dynamic structures on the cell surface, carry out a wide range of functions. Research has highlighted a bidirectional regulatory interaction between Vangl2 and cilia, underscoring their interconnected roles in cellular processes. This relationship is demonstrated by the localization of Vangl2 at the base and proximal regions of cilia, where it plays essential roles in ciliary positioning, asymmetric distribution, and ciliogenesis. In contrast, the absence of cilia can disrupt Vangl2-mediated signal transduction processes. This review offers a narrative review of recent research on Vangl2's function in cilia and examines the regulatory effects of cilia on Vangl2-mediated signaling.
Collapse
Affiliation(s)
- Huanyong Qin
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ting Liang
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chuanfen Zhang
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Junlin Wu
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Sheng
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
3
|
Radaszkiewicz KA, Sulcova M, Kohoutkova E, Harnos J. The role of prickle proteins in vertebrate development and pathology. Mol Cell Biochem 2024; 479:1199-1221. [PMID: 37358815 PMCID: PMC11116189 DOI: 10.1007/s11010-023-04787-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
Prickle is an evolutionarily conserved family of proteins exclusively associated with planar cell polarity (PCP) signalling. This signalling pathway provides directional and positional cues to eukaryotic cells along the plane of an epithelial sheet, orthogonal to both apicobasal and left-right axes. Through studies in the fruit fly Drosophila, we have learned that PCP signalling is manifested by the spatial segregation of two protein complexes, namely Prickle/Vangl and Frizzled/Dishevelled. While Vangl, Frizzled, and Dishevelled proteins have been extensively studied, Prickle has been largely neglected. This is likely because its role in vertebrate development and pathologies is still being explored and is not yet fully understood. The current review aims to address this gap by summarizing our current knowledge on vertebrate Prickle proteins and to cover their broad versatility. Accumulating evidence suggests that Prickle is involved in many developmental events, contributes to homeostasis, and can cause diseases when its expression and signalling properties are deregulated. This review highlights the importance of Prickle in vertebrate development, discusses the implications of Prickle-dependent signalling in pathology, and points out the blind spots or potential links regarding Prickle, which could be studied further.
Collapse
Affiliation(s)
- K A Radaszkiewicz
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czechia
| | - M Sulcova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czechia
| | - E Kohoutkova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czechia
| | - J Harnos
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czechia.
| |
Collapse
|
4
|
Han X, Cao X, Cabrera RM, Ramirez PAP, Lin YL, Wlodarczyk BJ, Zhang C, Finnell RH, Lei Y. Folate regulation of planar cell polarity pathway and F-actin through folate receptor alpha. FASEB J 2024; 38:e23346. [PMID: 38095297 PMCID: PMC10754249 DOI: 10.1096/fj.202300202r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Folate deficiency contribute to neural tube defects (NTDs) which could be rescued by folate supplementation. However, the underlying mechanisms are still not fully understood. Besides, there is considerable controversy concerning the forms of folate used for supplementation. To address this controversy, we prepared culture medium with different forms of folate, folic acid (FA), and 5-methyltetrahydrofolate (5mTHF), at concentrations of 5 μM, 500 nM, 50 nM, and folate free, respectively. Mouse embryonic fibroblasts (MEFs) were treated with different folates continuously for three passages, and cell proliferation and F-actin were monitored. We determined that compared to 5mTHF, FA showed stronger effects on promoting cell proliferation and F-actin formation. We also found that FOLR1 protein level was positively regulated by folate concentration and the non-canonical Wnt/planar cell polarity (PCP) pathway signaling was significantly enriched among different folate conditions in RNA-sequencing analyses. We demonstrated for the first time that FOLR1 could promote the transcription of Vangl2, one of PCP core genes. The transcription of Vangl2 was down-regulated under folate-deficient condition, which resulted in a decrease in PCP activity and F-actin formation. In summary, we identified a distinct advantage of FA in cell proliferation and F-actin formation over 5mTHF, as well as demonstrating that FOLR1 could promote transcription of Vangl2 and provide a new mechanism by which folate deficiency can contribute to the etiology of NTDs.
Collapse
Affiliation(s)
- Xiao Han
- Department of Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuanye Cao
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert M. Cabrera
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paula Andrea Pimienta Ramirez
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ying Linda Lin
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bogdan J. Wlodarczyk
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cuilian Zhang
- Department of Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Richard H. Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Takahashi-Kanemitsu A, Lu M, Knight CT, Yamamoto T, Hayashi T, Mii Y, Ooki T, Kikuchi I, Kikuchi A, Barker N, Susaki EA, Taira M, Hatakeyama M. The Helicobacter pylori CagA oncoprotein disrupts Wnt/PCP signaling and promotes hyperproliferation of pyloric gland base cells. Sci Signal 2023; 16:eabp9020. [PMID: 37463245 DOI: 10.1126/scisignal.abp9020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/24/2023] [Indexed: 07/20/2023]
Abstract
Helicobacter pylori strains that deliver the oncoprotein CagA into gastric epithelial cells are the major etiologic agents of upper gastric diseases including gastric cancer. CagA promotes gastric carcinogenesis through interactions with multiple host proteins. Here, we show that CagA also disrupts Wnt-dependent planar cell polarity (Wnt/PCP), which orients cells within the plane of an epithelium and coordinates collective cell behaviors such as convergent extension to enable epithelial elongation during development. Ectopic expression of CagA in Xenopus laevis embryos impaired gastrulation, neural tube formation, and axis elongation, processes driven by convergent extension movements that depend on the Wnt/PCP pathway. Mice specifically expressing CagA in the stomach epithelium had longer pyloric glands and mislocalization of the tetraspanin proteins VANGL1 and VANGL2 (VANGL1/2), which are critical components of Wnt/PCP signaling. The increased pyloric gland length was due to hyperproliferation of cells at the gland base, where Lgr5+ stem and progenitor cells reside, and was associated with fewer differentiated enteroendocrine cells. In cultured human gastric epithelial cells, the N terminus of CagA interacted with the C-terminal cytoplasmic tails of VANGL1/2, which impaired Wnt/PCP signaling by inducing the mislocalization of VANGL1/2 from the plasma membrane to the cytoplasm. Thus, CagA may contribute to the development of gastric cancer by subverting a Wnt/PCP-dependent mechanism that restrains pyloric gland stem cell proliferation and promotes enteroendocrine differentiation.
Collapse
Affiliation(s)
- Atsushi Takahashi-Kanemitsu
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mengxue Lu
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Christopher Takaya Knight
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayoshi Yamamoto
- Department of Biological Sciences, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yusuke Mii
- National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Takuya Ooki
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Ippei Kikuchi
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan
| | - Nick Barker
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Division of Epithelial Stem Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa 924-1192, Japan
| | - Etsuo A Susaki
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Masanori Hatakeyama
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
- Research Center of Microbial Carcinogenesis, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan
| |
Collapse
|
6
|
The cellular dynamics of neural tube formation. Biochem Soc Trans 2023; 51:343-352. [PMID: 36794768 PMCID: PMC9987952 DOI: 10.1042/bst20220871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023]
Abstract
The vertebrate brain and spinal cord arise from a common precursor, the neural tube, which forms very early during embryonic development. To shape the forming neural tube, changes in cellular architecture must be tightly co-ordinated in space and time. Live imaging of different animal models has provided valuable insights into the cellular dynamics driving neural tube formation. The most well-characterised morphogenetic processes underlying this transformation are convergent extension and apical constriction, which elongate and bend the neural plate. Recent work has focused on understanding how these two processes are spatiotemporally integrated from the tissue- to the subcellular scale. Various mechanisms of neural tube closure have also been visualised, yielding a growing understanding of how cellular movements, junctional remodelling and interactions with the extracellular matrix promote fusion and zippering of the neural tube. Additionally, live imaging has also now revealed a mechanical role for apoptosis in neural plate bending, and how cell intercalation forms the lumen of the secondary neural tube. Here, we highlight the latest research on the cellular dynamics underlying neural tube formation and provide some perspectives for the future.
Collapse
|
7
|
Shi DL. Wnt/planar cell polarity signaling controls morphogenetic movements of gastrulation and neural tube closure. Cell Mol Life Sci 2022; 79:586. [PMID: 36369349 PMCID: PMC11803072 DOI: 10.1007/s00018-022-04620-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Gastrulation and neurulation are successive morphogenetic processes that play key roles in shaping the basic embryonic body plan. Importantly, they operate through common cellular and molecular mechanisms to set up the three spatially organized germ layers and to close the neural tube. During gastrulation and neurulation, convergent extension movements driven by cell intercalation and oriented cell division generate major forces to narrow the germ layers along the mediolateral axis and elongate the embryo in the anteroposterior direction. Apical constriction also makes an important contribution to promote the formation of the blastopore and the bending of the neural plate. Planar cell polarity proteins are major regulators of asymmetric cell behaviors and critically involved in a wide variety of developmental processes, from gastrulation and neurulation to organogenesis. Mutations of planar cell polarity genes can lead to general defects in the morphogenesis of different organs and the co-existence of distinct congenital diseases, such as spina bifida, hearing deficits, kidney diseases, and limb elongation defects. This review outlines our current understanding of non-canonical Wnt signaling, commonly known as Wnt/planar cell polarity signaling, in regulating morphogenetic movements of gastrulation and neural tube closure during development and disease. It also attempts to identify unanswered questions that deserve further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Institute of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, Paris, France.
| |
Collapse
|
8
|
Kunimoto K, Weiner AT, Axelrod JD, Vladar EK. Distinct overlapping functions for Prickle1 and Prickle2 in the polarization of the airway epithelium. Front Cell Dev Biol 2022; 10:976182. [PMID: 36176272 PMCID: PMC9513604 DOI: 10.3389/fcell.2022.976182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Planar cell polarity (PCP) signaling polarizes cells within the plane of an epithelium. In the airways, planar cell polarity signaling orients the directional beating of motile cilia required for effective mucociliary clearance. The planar cell polarity signaling mechanism is best understood from work in Drosophila, where it has been shown to both coordinate the axis of polarity between cells and to direct the morphological manifestations of polarization within cells. The ‘core’ planar cell polarity signaling mechanism comprises two protein complexes that segregate to opposite sides of each cell and interact with the opposite complex in neighboring cells. Proper subcellular localization of core planar cell polarity proteins correlates with, and is almost certainly responsible for, their ability to direct polarization. This mechanism is highly conserved from Drosophila to vertebrates, though for most of the core genes, mammals have multiple paralogs whereas Drosophila has only one. In the mouse airway epithelium, the core protein Prickle2 segregates asymmetrically, as is characteristic for core proteins, but is only present in multiciliated cells and is absent from other cell types. Furthermore, Prickle2 mutant mice show only modest ciliary polarity defects. These observations suggest that other Prickle paralogs might contribute to polarization. Here, we show that Prickle1 segregates asymmetrically in multiciliated and nonciliated airway epithelial cell types, that compared to Prickle2, Prickle1 has different spatial and temporal expression dynamics and a stronger ciliary polarity phenotype, and that Prickle1 and Prickle2 mutants genetically interact. We propose distinct and partially overlapping functions for the Prickle paralogs in polarization of the airway epithelium.
Collapse
Affiliation(s)
- Koshi Kunimoto
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Alexis T. Weiner
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Jeffrey D. Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Eszter K. Vladar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- *Correspondence: Eszter K. Vladar,
| |
Collapse
|
9
|
Morthorst SK, Nielsen C, Farinelli P, Anvarian Z, Rasmussen CBR, Serra-Marques A, Grigoriev I, Altelaar M, Fürstenberg N, Ludwig A, Akhmanova A, Christensen ST, Pedersen LB. Angiomotin isoform 2 promotes binding of PALS1 to KIF13B at primary cilia and regulates ciliary length and signaling. J Cell Sci 2022; 135:275635. [PMID: 35673984 DOI: 10.1242/jcs.259471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
The kinesin-3 motor KIF13B functions in endocytosis, vesicle transport and regulation of ciliary length and signaling. Direct binding of the membrane-associated guanylate kinase (MAGUK) DLG1 to the MAGUK-binding stalk domain of KIF13B relieves motor autoinhibition and promotes microtubule plus-end-directed cargo transport. Here, we characterize angiomotin (AMOT) isoform 2 (p80, referred to as Ap80) as a novel KIF13B interactor that promotes binding of another MAGUK, the polarity protein and Crumbs complex component PALS1, to KIF13B. Live-cell imaging analysis indicated that Ap80 is concentrated at and recruits PALS1 to the base of the primary cilium, but is not a cargo of KIF13B itself. Consistent with a ciliary function for Ap80, its depletion led to elongated primary cilia and reduced agonist-induced ciliary accumulation of SMO, a key component of the Hedgehog signaling pathway, whereas Ap80 overexpression caused ciliary shortening. Our results suggest that Ap80 activates KIF13B cargo binding at the base of the primary cilium to regulate ciliary length, composition and signaling.
Collapse
Affiliation(s)
- Stine Kjær Morthorst
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | - Camilla Nielsen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | - Pietro Farinelli
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | - Zeinab Anvarian
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | | | - Andrea Serra-Marques
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Ilya Grigoriev
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Nicoline Fürstenberg
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | - Alexander Ludwig
- School of Biological Sciences and NTU Institute of Structural Biology, Nanyang Technological University, Singapore City 637551, Singapore
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Søren Tvorup Christensen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | - Lotte Bang Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
10
|
Abstract
Planar cell polarity (PCP) refers to coordinated cell polarization in the plane of the tissue. Genetic studies in Drosophila identified several core PCP genes, whose products function together in a signaling pathway that regulates cell shape, epithelial tissue organization and remodeling during morphogenesis. PCP is detected by the asymmetric distribution of core PCP proteins at different borders of epithelial cells. Believed to be critical for signaling, this segregation is studied by a variety of techniques, such as direct immunostaining and imaging of fluorescent PCP protein fusions or fluorescence recovery after photobleaching (FRAP). All of the above techniques can be applied to the analysis of the Xenopus neural plate to study the dynamics of tissue polarization, making this system one of the best vertebrate PCP models. This chapter describes how to image PCP proteins in Xenopus neuroectoderm for both fixed and live samples. These robust cellular techniques will contribute to mechanistic studies of PCP in vertebrate embryos.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pamela Mancini
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
11
|
Torban E, Sokol SY. Planar cell polarity pathway in kidney development, function and disease. Nat Rev Nephrol 2021; 17:369-385. [PMID: 33547419 PMCID: PMC8967065 DOI: 10.1038/s41581-021-00395-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) refers to the coordinated orientation of cells in the tissue plane. Originally discovered and studied in Drosophila melanogaster, PCP is now widely recognized in vertebrates, where it is implicated in organogenesis. Specific sets of PCP genes have been identified. The proteins encoded by these genes become asymmetrically distributed to opposite sides of cells within a tissue plane and guide many processes that include changes in cell shape and polarity, collective cell movements or the uniform distribution of cell appendages. A unifying characteristic of these processes is that they often involve rearrangement of actomyosin. Mutations in PCP genes can cause malformations in organs of many animals, including humans. In the past decade, strong evidence has accumulated for a role of the PCP pathway in kidney development including outgrowth and branching morphogenesis of ureteric bud and podocyte development. Defective PCP signalling has been implicated in the pathogenesis of developmental kidney disorders of the congenital anomalies of the kidney and urinary tract spectrum. Understanding the origins, molecular constituents and cellular targets of PCP provides insights into the involvement of PCP molecules in normal kidney development and how dysfunction of PCP components may lead to kidney disease.
Collapse
Affiliation(s)
- Elena Torban
- McGill University and McGill University Health Center Research Institute, 1001 Boulevard Decarie, Block E, Montreal, Quebec, Canada, H4A3J1.,Corresponding authors: Elena Torban (); Sergei Sokol ()
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, USA,Corresponding authors: Elena Torban (); Sergei Sokol ()
| |
Collapse
|
12
|
Collins C, Ventrella R, Mitchell BJ. Building a ciliated epithelium: Transcriptional regulation and radial intercalation of multiciliated cells. Curr Top Dev Biol 2020; 145:3-39. [PMID: 34074533 DOI: 10.1016/bs.ctdb.2020.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The epidermis of the Xenopus embryo has emerged as a powerful tool for studying the development of a ciliated epithelium. Interspersed throughout the epithelium are multiciliated cells (MCCs) with 100+ motile cilia that beat in a coordinated manner to generate fluid flow over the surface of the cell. MCCs are essential for various developmental processes and, furthermore, ciliary dysfunction is associated with numerous pathologies. Therefore, understanding the cellular mechanisms involved in establishing a ciliated epithelium are of particular interest. MCCs originate in the inner epithelial layer of Xenopus skin, where Notch signaling plays a critical role in determining which progenitors will adopt a ciliated cell fate. Then, activation of various transcriptional regulators, such as GemC1 and MCIDAS, initiate the MCC transcriptional program, resulting in centriole amplification and the formation of motile cilia. Following specification and differentiation, MCCs undergo the process of radial intercalation, where cells apically migrate from the inner layer to the outer epithelial layer. This process involves the cooperation of various cytoskeletal networks, activation of various signaling molecules, and changes in cell-ECM and cell-cell adhesion. Coordination of these cellular processes is required for complete incorporation into the outer epithelial layer and generation of a functional ciliated epithelium. Here, we highlight recent advances made in understanding the transcriptional cascades required for MCC specification and differentiation and the coordination of cellular processes that facilitate radial intercalation. Proper regulation of these signaling pathways and processes are the foundation for developing a ciliated epithelium.
Collapse
Affiliation(s)
- Caitlin Collins
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Rosa Ventrella
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Brian J Mitchell
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
13
|
Ossipova O, Itoh K, Radu A, Ezan J, Sokol SY. Pinhead signaling regulates mesoderm heterogeneity via the FGF receptor-dependent pathway. Development 2020; 147:dev188094. [PMID: 32859582 PMCID: PMC7502591 DOI: 10.1242/dev.188094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022]
Abstract
Among the three embryonic germ layers, the mesoderm plays a central role in the establishment of the vertebrate body plan. The mesoderm is specified by secreted signaling proteins from the FGF, Nodal, BMP and Wnt families. No new classes of extracellular mesoderm-inducing factors have been identified in more than two decades. Here, we show that the pinhead (pnhd) gene encodes a secreted protein that is essential for the activation of a subset of mesodermal markers in the Xenopus embryo. RNA sequencing revealed that many transcriptional targets of Pnhd are shared with those of the FGF pathway. Pnhd activity was accompanied by Erk phosphorylation and required FGF and Nodal but not Wnt signaling. We propose that during gastrulation Pnhd acts in the marginal zone to contribute to mesoderm heterogeneity via an FGF receptor-dependent positive feedback mechanism.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keiji Itoh
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aurelian Radu
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jerome Ezan
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
14
|
Yu J, Liang X, Ji Y, Ai C, Liu J, Zhu L, Nie Z, Jin X, Wang C, Zhang J, Zhao F, Mei S, Zhao X, Zhou X, Zhang M, Wang M, Huang T, Jiang P, Guan MX. PRICKLE3 linked to ATPase biogenesis manifested Leber's hereditary optic neuropathy. J Clin Invest 2020; 130:4935-4946. [PMID: 32516135 PMCID: PMC7456240 DOI: 10.1172/jci134965] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease. X-linked nuclear modifiers were proposed to modify the phenotypic manifestation of LHON-associated mitochondrial DNA (mtDNA) mutations. By whole-exome sequencing, we identified the X-linked LHON modifier (c.157C>T, p.Arg53Trp) in PRICKLE3 encoding a mitochondrial protein linked to biogenesis of ATPase in 3 Chinese families. All affected individuals carried both ND4 11778G>A and p.Arg53Trp mutations, while subjects bearing only a single mutation exhibited normal vision. The cells carrying the p.Arg53Trp mutation exhibited defective assembly, stability, and function of ATP synthase, verified by PRICKLE3-knockdown cells. Coimmunoprecipitation indicated the direct interaction of PRICKLE3 with ATP synthase via ATP8. Strikingly, cells bearing both p.Arg53Trp and m.11778G>A mutations displayed greater mitochondrial dysfunction than those carrying only a single mutation. This finding indicated that the p.Arg53Trp mutation acted in synergy with the m.11778G>A mutation and deteriorated mitochondrial dysfunctions necessary for the expression of LHON. Furthermore, we demonstrated that Prickle3-deficient mice exhibited pronounced ATPase deficiencies. Prickle3-knockout mice recapitulated LHON phenotypes with retinal deficiencies, including degeneration of retinal ganglion cells and abnormal vasculature. Our findings provided new insights into the pathophysiology of LHON that were manifested by interaction between mtDNA mutations and X-linked nuclear modifiers.
Collapse
Affiliation(s)
- Jialing Yu
- Division of Medical Genetics and Genomics, Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou, China
| | - Xiaoyang Liang
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanchun Ji
- Division of Medical Genetics and Genomics, Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Ai
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Junxia Liu
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Zhu
- Division of Medical Genetics and Genomics, Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhipeng Nie
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofen Jin
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou, China
| | - Chenghui Wang
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Juanjuan Zhang
- Institute of Genetics and
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fuxin Zhao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shuang Mei
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxu Zhao
- Division of Medical Genetics and Genomics, Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Minglian Zhang
- Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, China
| | - Meng Wang
- Division of Medical Genetics and Genomics, Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Pingping Jiang
- Division of Medical Genetics and Genomics, Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou, China
- Joint Institute of Genetics and Genomic Medicine, Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Runnels LW, Komiya Y. TRPM6 and TRPM7: Novel players in cell intercalation during vertebrate embryonic development. Dev Dyn 2020; 249:912-923. [PMID: 32315468 DOI: 10.1002/dvdy.182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/16/2022] Open
Abstract
A common theme in organogenesis is how the final structure of organs emerge from epithelial tube structures, with the formation of the neural tube being one of the best examples. Two types of cell movements co-occur during neural tube closure involving the migration of cells toward the midline of the embryo (mediolateral intercalation or convergent extension) as well as the deep movement of cells from inside the embryo to the outside of the lateral side of the neural plate (radial intercalation). Failure of either type of cell movement will prevent neural tube closure, which can produce a range of neural tube defects (NTDs), a common congenital disease in humans. Numerous studies have identified signaling pathways that regulate mediolateral intercalation during neural tube closure. Less understood are the pathways that govern radial intercalation. Using the Xenopus laevis system, our group reported the identification of transient receptor potential (TRP) channels, TRPM6 and TRPM7, and the Mg2+ ion they conduct, as novel and key factors regulating both mediolateral and radial intercalation during neural tube closure. Here we broadly discuss tubulogenesis and cell intercalation from the perspective of neural tube closure and the respective roles of TRPM7 and TRPM6 in this critical embryonic process.
Collapse
Affiliation(s)
- Loren W Runnels
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Yuko Komiya
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
- Faculty of Industrial Science and Technology, Tokyo University of Science, Yamakoshi-gun, Hokkaido, Japan
| |
Collapse
|
16
|
Abstract
The cochlea, a coiled structure located in the ventral region of the inner ear, acts as the primary structure for the perception of sound. Along the length of the cochlear spiral is the organ of Corti, a highly derived and rigorously patterned sensory epithelium that acts to convert auditory stimuli into neural impulses. The development of the organ of Corti requires a series of inductive events that specify unique cellular characteristics and axial identities along its three major axes. Here, we review recent studies of the cellular and molecular processes regulating several aspects of cochlear development, such as axial patterning, cochlear outgrowth and cellular differentiation. We highlight how the precise coordination of multiple signaling pathways is required for the successful formation of a complete organ of Corti.
Collapse
Affiliation(s)
- Elizabeth Carroll Driver
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
The Role of Wnt Signalling in Chronic Kidney Disease (CKD). Genes (Basel) 2020; 11:genes11050496. [PMID: 32365994 PMCID: PMC7290783 DOI: 10.3390/genes11050496] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic kidney disease (CKD) encompasses a group of diverse diseases that are associated with accumulating kidney damage and a decline in glomerular filtration rate (GFR). These conditions can be of an acquired or genetic nature and, in many cases, interactions between genetics and the environment also play a role in disease manifestation and severity. In this review, we focus on genetically inherited chronic kidney diseases and dissect the links between canonical and non-canonical Wnt signalling, and this umbrella of conditions that result in kidney damage. Most of the current evidence on the role of Wnt signalling in CKD is gathered from studies in polycystic kidney disease (PKD) and nephronophthisis (NPHP) and reveals the involvement of β-catenin. Nevertheless, recent findings have also linked planar cell polarity (PCP) signalling to CKD, with further studies being required to fully understand the links and molecular mechanisms.
Collapse
|
18
|
Abstract
This review is a comprehensive analysis of the cell biology and biomechanics of Convergent Extension in Xenopus.
Collapse
Affiliation(s)
- Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA, United States.
| | - Ann Sutherland
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
19
|
Sutherland A, Keller R, Lesko A. Convergent extension in mammalian morphogenesis. Semin Cell Dev Biol 2019; 100:199-211. [PMID: 31734039 DOI: 10.1016/j.semcdb.2019.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Convergent extension is a fundamental morphogenetic process that underlies not only the generation of the elongated vertebrate body plan from the initially radially symmetrical embryo, but also the specific shape changes characteristic of many individual tissues. These tissue shape changes are the result of specific cell behaviors, coordinated in time and space, and affected by the physical properties of the tissue. While mediolateral cell intercalation is the classic cellular mechanism for producing tissue convergence and extension, other cell behaviors can also provide similar tissue-scale distortions or can modulate the effects of mediolateral cell intercalation to sculpt a specific shape. Regulation of regional tissue morphogenesis through planar polarization of the variety of underlying cell behaviors is well-recognized, but as yet is not well understood at the molecular level. Here, we review recent advances in understanding the cellular basis for convergence and extension and its regulation.
Collapse
Affiliation(s)
- Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| | - Raymond Keller
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| | - Alyssa Lesko
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
20
|
Mills J, Hanada T, Hase Y, Liscum L, Chishti AH. LDL receptor related protein 1 requires the I 3 domain of discs-large homolog 1/DLG1 for interaction with the kinesin motor protein KIF13B. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118552. [PMID: 31487503 DOI: 10.1016/j.bbamcr.2019.118552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/25/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023]
Abstract
KIF13B, a kinesin-3 family motor, was originally identified as GAKIN due to its biochemical interaction with human homolog of Drosophila discs-large tumor suppressor (hDLG1). Unlike its homolog KIF13A, KIF13B contains a carboxyl-terminal CAP-Gly domain. To investigate the function of the CAP-Gly domain, we developed a mouse model that expresses a truncated form of KIF13B protein lacking its CAP-Gly domain (KIF13BΔCG), whereas a second mouse model lacks the full-length KIF13A. Here we show that the KIF13BΔCG mice exhibit relatively higher serum cholesterol consistent with the reduced uptake of [3H]CO-LDL in KIF13BΔCG mouse embryo fibroblasts. The plasma level of factor VIII was not significantly elevated in the KIF13BΔCG mice, suggesting that the CAP-Gly domain region of KIF13B selectively regulates LRP1-mediated lipoprotein endocytosis. No elevation of either serum cholesterol or plasma factor VIII was observed in the full length KIF13A null mouse model. The deletion of the CAP-Gly domain region caused subcellular mislocalization of truncated KIF13B concomitant with the mislocalization of LRP1. Mechanistically, the cytoplasmic domain of LRP1 interacts specifically with the alternatively spliced I3 domain of DLG1, which complexes with KIF13B via their GUK-MBS domains, respectively. Importantly, double mutant mice generated by crossing KIF13A null and KIF13BΔCG mice suffer from perinatal lethality showing potential craniofacial defects. Together, this study provides first evidence that the carboxyl-terminal region of KIF13B containing the CAP-Gly domain is important for the LRP1-DLG1-KIF13B complex formation with implications in the regulation of metabolism, cell polarity, and development.
Collapse
Affiliation(s)
- Joslyn Mills
- Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Toshihiko Hanada
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Yoichi Hase
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Laura Liscum
- Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Athar H Chishti
- Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
21
|
Bharathan NK, Dickinson AJG. Desmoplakin is required for epidermal integrity and morphogenesis in the Xenopus laevis embryo. Dev Biol 2019; 450:115-131. [PMID: 30935896 PMCID: PMC6659752 DOI: 10.1016/j.ydbio.2019.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Desmoplakin (Dsp) is a unique and critical desmosomal protein, that is integral to epidermal development. However, it is unclear whether this protein is required specifically for epidermal morphogenesis. Using morpholinos or Crispr/Cas9 mutagenesis we decreased the function of Dsp in frog embryos to better understand its role during epidermal development. Dsp morphant and mutant embryos had developmental defects such as epidermal fragility that mimicked what has been reported in mammals. Most importantly, we also uncovered a novel function for Dsp in the morphogenesis of the epidermis in X. laevis. In particular, Dsp is required during the process of radial intercalation where basally located cells move into the outer epidermal layer. Once inserted these newly intercalated cells expand their apical surface and then they differentiate into specific epidermal cell types. Decreased levels of Dsp resulted in the failure of the radially intercalating cells to expand their apical surface, thereby reducing the number of differentiated multiciliated and secretory cells. Such defects correlate with changes in E-cadherin levels and actin and microtubule localization which could explain the defects in apical expansion. A mutated form of Dsp that maintains cell-cell adhesion but eliminates the connections to the cytoskeleton results in the same epidermal morphogenesis defect. These results suggest a specific role for Dsp in the apical expansion of cells during radial intercalation. We have developed a novel system, in the frog, to demonstrate for the first time that desmosomes not only protect against mechanical stress but are also critical for epidermal morphogenesis.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, 1101 East Marshall St., Richmond, VA 23219, United States; Department of Cell Biology, Emory University School of Medicine, 615 Michael Street Atlanta, GA 30322, United States
| | - Amanda J G Dickinson
- Department of Biology, Virginia Commonwealth University, 1000 West Cary St., Richmond, VA 23284, United States.
| |
Collapse
|
22
|
Dush MK, Nascone-Yoder NM. Vangl2 coordinates cell rearrangements during gut elongation. Dev Dyn 2019; 248:569-582. [PMID: 31081963 DOI: 10.1002/dvdy.61] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The embryonic gut tube undergoes extensive lengthening to generate the surface area required for nutrient absorption across the digestive epithelium. In Xenopus, narrowing and elongation of the tube is driven by radial rearrangements of its core of endoderm cells, a process that concomitantly opens the gut lumen and facilitates epithelial morphogenesis. How endoderm rearrangements are properly oriented and coordinated to achieve this complex morphogenetic outcome is unknown. RESULTS We find that, prior to gut elongation, the core Wnt/PCP component Vangl2 becomes enriched at both the anterior and apical aspects of individual endoderm cells. In Vangl2-depleted guts, the cells remain unpolarized, down-regulate cell-cell adhesion proteins, and, consequently, fail to rearrange, leading to a short gut with an occluded lumen and undifferentiated epithelium. In contrast, endoderm cells with ectopic Vangl2 protein acquire abnormal polarity and adhesive contacts. As a result, endoderm cells also fail to rearrange properly and undergo ectopic differentiation, resulting in guts with multiple torturous lumens, irregular epithelial architecture, and variable intestinal topologies. CONCLUSIONS Asymmetrical enrichment of Vangl2 in individual gut endoderm cells orients polarity and adhesion during radial rearrangements, coordinating digestive epithelial morphogenesis and lumen formation with gut tube elongation.
Collapse
Affiliation(s)
- Michael K Dush
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Nanette M Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
23
|
Bertke MM, Dubiak KM, Cronin L, Zeng E, Huber PW. A deficiency in SUMOylation activity disrupts multiple pathways leading to neural tube and heart defects in Xenopus embryos. BMC Genomics 2019; 20:386. [PMID: 31101013 PMCID: PMC6525467 DOI: 10.1186/s12864-019-5773-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 05/03/2019] [Indexed: 02/08/2023] Open
Abstract
Background Adenovirus protein, Gam1, triggers the proteolytic destruction of the E1 SUMO-activating enzyme. Microinjection of an empirically determined amount of Gam1 mRNA into one-cell Xenopus embryos can reduce SUMOylation activity to undetectable, but nonlethal, levels, enabling an examination of the role of this post-translational modification during early vertebrate development. Results We find that SUMOylation-deficient embryos consistently exhibit defects in neural tube and heart development. We have measured differences in gene expression between control and embryos injected with Gam1 mRNA at three developmental stages: early gastrula (immediately following the initiation of zygotic transcription), late gastrula (completion of the formation of the three primary germ layers), and early neurula (appearance of the neural plate). Although changes in gene expression are widespread and can be linked to many biological processes, three pathways, non-canonical Wnt/PCP, snail/twist, and Ets-1, are especially sensitive to the loss of SUMOylation activity and can largely account for the predominant phenotypes of Gam1 embryos. SUMOylation appears to generate different pools of a given transcription factor having different specificities with this post-translational modification involved in the regulation of more complex, as opposed to housekeeping, processes. Conclusions We have identified changes in gene expression that underlie the neural tube and heart phenotypes resulting from depressed SUMOylation activity. Notably, these developmental defects correspond to the two most frequently occurring congenital birth defects in humans, strongly suggesting that perturbation of SUMOylation, either globally or of a specific protein, may frequently be the origin of these pathologies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5773-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle M Bertke
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA.,Present Address: College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Kyle M Dubiak
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Laura Cronin
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Erliang Zeng
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, USA.,Present Address: Division of Biostatistics and Computational Biology, Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, 52242, USA.,Present Address: Department of Preventive & Community Dentistry, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA.,Present Address: Department of Biostatistics, University of Iowa, Iowa City, IA, 52242, USA.,Present Address: Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Paul W Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA. .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA. .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, 46556, USA.
| |
Collapse
|
24
|
Chuykin I, Ossipova O, Sokol SY. Par3 interacts with Prickle3 to generate apical PCP complexes in the vertebrate neural plate. eLife 2018; 7:37881. [PMID: 30256191 PMCID: PMC6175575 DOI: 10.7554/elife.37881] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
Vertebrate neural tube formation depends on the coordinated orientation of cells in the tissue known as planar cell polarity (PCP). In the Xenopus neural plate, PCP is marked by the enrichment of the conserved proteins Prickle3 and Vangl2 at anterior cell boundaries. Here we show that the apical determinant Par3 is also planar polarized in the neuroepithelium, suggesting a role for Par3 in PCP. Consistent with this hypothesis, interference with Par3 activity inhibited asymmetric distribution of PCP junctional complexes and caused neural tube defects. Importantly, Par3 physically associated with Prickle3 and promoted its apical localization, whereas overexpression of a Prickle3-binding Par3 fragment disrupted PCP in the neural plate. We also adapted proximity biotinylation assay for use in Xenopus embryos and show that Par3 functions by enhancing the formation of the anterior apical PCP complex. These findings describe a mechanistic link between the apical localization of PCP components and morphogenetic movements underlying neurulation.
Collapse
Affiliation(s)
- Ilya Chuykin
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Olga Ossipova
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
25
|
Morthorst SK, Christensen ST, Pedersen LB. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J 2018; 285:4535-4564. [PMID: 29894023 DOI: 10.1111/febs.14583] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
Primary cilia are antenna-like sensory organelles that regulate a substantial number of cellular signalling pathways in vertebrates, both during embryonic development as well as in adulthood, and mutations in genes coding for ciliary proteins are causative of an expanding group of pleiotropic diseases known as ciliopathies. Cilia consist of a microtubule-based axoneme core, which is subtended by a basal body and covered by a bilayer lipid membrane of unique protein and lipid composition. Cilia are dynamic organelles, and the ability of cells to regulate ciliary protein and lipid content in response to specific cellular and environmental cues is crucial for balancing ciliary signalling output. Here we discuss mechanisms involved in regulation of ciliary membrane protein trafficking and signalling, with main focus on kinesin-2 and kinesin-3 family members.
Collapse
|
26
|
Chu CW, Xiang B, Ossipova O, Ioannou A, Sokol SY. The Ajuba family protein Wtip regulates actomyosin contractility during vertebrate neural tube closure. J Cell Sci 2018; 131:jcs.213884. [PMID: 29661847 DOI: 10.1242/jcs.213884] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Ajuba family proteins are implicated in the assembly of cell junctions and have been reported to antagonize Hippo signaling in response to cytoskeletal tension. To assess the role of these proteins in actomyosin contractility, we examined the localization and function of Wtip, a member of the Ajuba family, in Xenopus early embryos. Targeted in vivo depletion of Wtip inhibited apical constriction in neuroepithelial cells and elicited neural tube defects. Fluorescent protein-tagged Wtip showed predominant punctate localization along the cell junctions in the epidermis and a linear junctional pattern in the neuroectoderm. In cells undergoing Shroom3-induced apical constriction, the punctate distribution was reorganized into a linear pattern. Conversely, the linear junctional pattern of Wtip in neuroectoderm changed to a more punctate distribution in cells with reduced myosin II activity. The C-terminal fragment of Wtip physically associated with Shroom3 and interfered with Shroom3 activity and neural fold formation. We therefore propose that Wtip is a tension-sensitive cytoskeletal adaptor that regulates apical constriction during vertebrate neurulation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Chih-Wen Chu
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Xiang
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Olga Ossipova
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andriani Ioannou
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
27
|
Ossipova O, Kerney R, Saint-Jeannet JP, Sokol SY. Regulation of neural crest development by the formin family protein Daam1. Genesis 2018; 56:e23108. [PMID: 29673042 DOI: 10.1002/dvg.23108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/16/2018] [Accepted: 03/26/2018] [Indexed: 01/12/2023]
Abstract
The neural crest (NC) multipotent progenitor cells form at the neural plate border and migrate to diverse locations in the embryo to differentiate into many cell types. NC is specified by several embryonic pathways, however the role of noncanonical Wnt signaling in this process remains poorly defined. Daam1 is a formin family protein that is present in embryonic ectoderm at the time of NC formation and can mediate noncanonical Wnt signaling. Our interference experiments indicated that Daam1 is required for NC gene activation. To further study the function of Daam1 in NC development we used a transgenic reporter Xenopus line, in which GFP transcription is driven by sox10 upstream regulatory sequences. The activation of the sox10:GFP reporter in a subset of NC cells was suppressed after Daam1 depletion and in embryos expressing N-Daam1, a dominant interfering construct. Moreover, N-Daam1 blocked reporter activation in neuralized ectodermal explants in response to Wnt11, but not Wnt8 or Wnt3a, confirming that the downstream pathways are different. In complementary experiments, a constitutively active Daam1 fragment expanded the NC territory, but this gain-of-function activity was eliminated in a construct with a point mutation in the FH2 domain that is critical for actin polymerization. These observations suggest a new role of Daam1 and actin remodeling in NC specification.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ryan Kerney
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania
| | - Jean-Pierre Saint-Jeannet
- Department of Basic Science and Craniofacial Biology,College of Dentistry, New York University, New York, New York
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
28
|
Galea GL, Nychyk O, Mole MA, Moulding D, Savery D, Nikolopoulou E, Henderson DJ, Greene NDE, Copp AJ. Vangl2 disruption alters the biomechanics of late spinal neurulation leading to spina bifida in mouse embryos. Dis Model Mech 2018; 11:dmm.032219. [PMID: 29590636 PMCID: PMC5897727 DOI: 10.1242/dmm.032219] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/28/2018] [Indexed: 12/13/2022] Open
Abstract
Human mutations in the planar cell polarity component VANGL2 are associated with the neural tube defect spina bifida. Homozygous Vangl2 mutation in mice prevents initiation of neural tube closure, precluding analysis of its subsequent roles in neurulation. Spinal neurulation involves rostral-to-caudal ‘zippering’ until completion of closure is imminent, when a caudal-to-rostral closure point, ‘Closure 5’, arises at the caudal-most extremity of the posterior neuropore (PNP). Here, we used Grhl3Cre to delete Vangl2 in the surface ectoderm (SE) throughout neurulation and in an increasing proportion of PNP neuroepithelial cells at late neurulation stages. This deletion impaired PNP closure after the ∼25-somite stage and resulted in caudal spina bifida in 67% of Grhl3Cre/+Vangl2Fl/Fl embryos. In the dorsal SE, Vangl2 deletion diminished rostrocaudal cell body orientation, but not directional polarisation of cell divisions. In the PNP, Vangl2 disruption diminished mediolateral polarisation of apical neuroepithelial F-actin profiles and resulted in eversion of the caudal PNP. This eversion prevented elevation of the caudal PNP neural folds, which in control embryos is associated with formation of Closure 5 around the 25-somite stage. Closure 5 formation in control embryos is associated with a reduction in mechanical stress withstood at the main zippering point, as inferred from the magnitude of neural fold separation following zippering point laser ablation. This stress accommodation did not happen in Vangl2-disrupted embryos. Thus, disruption of Vangl2-dependent planar-polarised processes in the PNP neuroepithelium and SE preclude zippering point biomechanical accommodation associated with Closure 5 formation at the completion of PNP closure. Summary: Disruption of Vangl2-dependent planar-polarised processes in the posterior neuropore (PNP) neuroepithelium and surface ectoderm preclude zippering point biomechanical accommodation associated with Closure 5 formation at the completion of PNP closure.
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Oleksandr Nychyk
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Matteo A Mole
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Dale Moulding
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Dawn Savery
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Evanthia Nikolopoulou
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Deborah J Henderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Nicholas D E Greene
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Andrew J Copp
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| |
Collapse
|
29
|
Shook DR, Kasprowicz EM, Davidson LA, Keller R. Large, long range tensile forces drive convergence during Xenopus blastopore closure and body axis elongation. eLife 2018; 7:e26944. [PMID: 29533180 PMCID: PMC5896886 DOI: 10.7554/elife.26944] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/12/2018] [Indexed: 02/03/2023] Open
Abstract
Indirect evidence suggests that blastopore closure during gastrulation of anamniotes, including amphibians such as Xenopus laevis, depends on circumblastoporal convergence forces generated by the marginal zone (MZ), but direct evidence is lacking. We show that explanted MZs generate tensile convergence forces up to 1.5 μN during gastrulation and over 4 μN thereafter. These forces are generated by convergent thickening (CT) until the midgastrula and increasingly by convergent extension (CE) thereafter. Explants from ventralized embryos, which lack tissues expressing CE but close their blastopores, produce up to 2 μN of tensile force, showing that CT alone generates forces sufficient to close the blastopore. Uniaxial tensile stress relaxation assays show stiffening of mesodermal and ectodermal tissues around the onset of neurulation, potentially enhancing long-range transmission of convergence forces. These results illuminate the mechanobiology of early vertebrate morphogenic mechanisms, aid interpretation of phenotypes, and give insight into the evolution of blastopore closure mechanisms.
Collapse
Affiliation(s)
- David R Shook
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
| | - Eric M Kasprowicz
- Department of Internal MedicineThomas Jefferson University HospitalPhiladelphiaUnited States
| | - Lance A Davidson
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghUnited States
- Department of BioengineeringUniversity of PittsburghPittsburghUnited States
| | - Raymond Keller
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
| |
Collapse
|
30
|
Tingler M, Kurz S, Maerker M, Ott T, Fuhl F, Schweickert A, LeBlanc-Straceski JM, Noselli S, Blum M. A Conserved Role of the Unconventional Myosin 1d in Laterality Determination. Curr Biol 2018; 28:810-816.e3. [PMID: 29478852 DOI: 10.1016/j.cub.2018.01.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/01/2018] [Accepted: 01/24/2018] [Indexed: 02/05/2023]
Abstract
Anatomical and functional asymmetries are widespread in the animal kingdom [1, 2]. In vertebrates, many visceral organs are asymmetrically placed [3]. In snails, shells and inner organs coil asymmetrically, and in Drosophila, genitalia and hindgut undergo a chiral rotation during development. The evolutionary origin of these asymmetries remains an open question [1]. Nodal signaling is widely used [4], and many, but not all, vertebrates use cilia for symmetry breaking [5]. In Drosophila, which lacks both cilia and Nodal, the unconventional myosin ID (myo1d) gene controls dextral rotation of chiral organs [6, 7]. Here, we studied the role of myo1d in left-right (LR) axis formation in Xenopus. Morpholino oligomer-mediated myo1d downregulation affected organ placement in >50% of morphant tadpoles. Induction of the left-asymmetric Nodal cascade was aberrant in >70% of cases. Expression of the flow-target gene dand5 was compromised, as was flow itself, due to shorter, fewer, and non-polarized cilia at the LR organizer. Additional phenotypes pinpointed Wnt/planar cell polarity signaling and suggested that myo1d, like in Drosophila [8], acted in the context of the planar cell polarity pathway. Indeed, convergent extension of gastrula explant cultures was inhibited in myo1d morphants, and the ATF2 reporter gene for non-canonical Wnt signaling was downregulated. Finally, genetic interference experiments demonstrated a functional interaction between the core planar cell polarity signaling gene vangl2 and myo1d in LR axis formation. Thus, our data identified myo1d as a common denominator of arthropod and chordate asymmetry, in agreement with a monophyletic origin of animal asymmetry.
Collapse
Affiliation(s)
- Melanie Tingler
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Sabrina Kurz
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Markus Maerker
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Tim Ott
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Franziska Fuhl
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Axel Schweickert
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany
| | | | - Stéphane Noselli
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose, Parc Valrose, 06108 Nice, France
| | - Martin Blum
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany.
| |
Collapse
|
31
|
Abstract
The planar cell polarity (PCP) pathway is best known for its role in polarizing epithelial cells within the plane of a tissue but it also plays a role in a range of cell migration events during development. The mechanism by which the PCP pathway polarizes stationary epithelial cells is well characterized, but how PCP signaling functions to regulate more dynamic cell behaviors during directed cell migration is much less understood. Here, we review recent discoveries regarding the localization of PCP proteins in migrating cells and their impact on the cell biology of collective and individual cell migratory behaviors.
Collapse
Affiliation(s)
- Crystal F Davey
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, B2-159, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, B2-159, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| |
Collapse
|
32
|
Driver EC, Northrop A, Kelley MW. Cell migration, intercalation and growth regulate mammalian cochlear extension. Development 2017; 144:3766-3776. [PMID: 28870992 DOI: 10.1242/dev.151761] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/24/2017] [Indexed: 01/01/2023]
Abstract
Developmental remodeling of the sensory epithelium of the cochlea is required for the formation of an elongated, tonotopically organized auditory organ, but the cellular processes that mediate these events are largely unknown. We used both morphological assessments of cellular rearrangements and time-lapse imaging to visualize cochlear remodeling in mouse. Analysis of cell redistribution showed that the cochlea extends through a combination of radial intercalation and cell growth. Live imaging demonstrated that concomitant cellular intercalation results in a brief period of epithelial convergence, although subsequent changes in cell size lead to medial-lateral spreading. Supporting cells, which retain contact with the basement membrane, exhibit biased protrusive activity and directed movement along the axis of extension. By contrast, hair cells lose contact with the basement membrane, but contribute to continued outgrowth through increased cell size. Regulation of cellular protrusions, movement and intercalation within the cochlea all require myosin II. These results establish, for the first time, many of the cellular processes that drive the distribution of sensory cells along the tonotopic axis of the cochlea.
Collapse
Affiliation(s)
- Elizabeth Carroll Driver
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Amy Northrop
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus. Dev Biol 2017; 430:188-201. [PMID: 28778799 DOI: 10.1016/j.ydbio.2017.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022]
Abstract
Development of the central nervous system requires orchestration of morphogenetic processes which drive elevation and apposition of the neural folds and their fusion into a neural tube. The newly formed tube gives rise to the brain in anterior regions and continues to develop into the spinal cord posteriorly. Conspicuous differences between the anterior and posterior neural tube become visible already during neural tube closure (NTC). Planar cell polarity (PCP)-mediated convergent extension (CE) movements are restricted to the posterior neural plate, i.e. hindbrain and spinal cord, where they propagate neural fold apposition. The lack of CE in the anterior neural plate correlates with a much slower mode of neural fold apposition anteriorly. The morphogenetic processes driving anterior NTC have not been addressed in detail. Here, we report a novel role for the breast cancer susceptibility gene and microtubule (MT) binding protein Hmmr (Hyaluronan-mediated motility receptor, RHAMM) in anterior neurulation and forebrain development in Xenopus laevis. Loss of hmmr function resulted in a lack of telencephalic hemisphere separation, arising from defective roof plate formation, which in turn was caused by impaired neural tissue narrowing. hmmr regulated polarization of neural cells, a function which was dependent on the MT binding domains. hmmr cooperated with the core PCP component vangl2 in regulating cell polarity and neural morphogenesis. Disrupted cell polarization and elongation in hmmr and vangl2 morphants prevented radial intercalation (RI), a cell behavior essential for neural morphogenesis. Our results pinpoint a novel role of hmmr in anterior neural development and support the notion that RI is a major driving force for anterior neurulation and forebrain morphogenesis.
Collapse
|
34
|
Sater AK, Moody SA. Using Xenopus to understand human disease and developmental disorders. Genesis 2017; 55. [PMID: 28095616 DOI: 10.1002/dvg.22997] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/14/2016] [Indexed: 02/03/2023]
Abstract
Model animals are crucial to biomedical research. Among the commonly used model animals, the amphibian, Xenopus, has had tremendous impact because of its unique experimental advantages, cost effectiveness, and close evolutionary relationship with mammals as a tetrapod. Over the past 50 years, the use of Xenopus has made possible many fundamental contributions to biomedicine, and it is a cornerstone of research in cell biology, developmental biology, evolutionary biology, immunology, molecular biology, neurobiology, and physiology. The prospects for Xenopus as an experimental system are excellent: Xenopus is uniquely well-suited for many contemporary approaches used to study fundamental biological and disease mechanisms. Moreover, recent advances in high throughput DNA sequencing, genome editing, proteomics, and pharmacological screening are easily applicable in Xenopus, enabling rapid functional genomics and human disease modeling at a systems level.
Collapse
Affiliation(s)
- Amy K Sater
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
35
|
Chu CW, Sokol SY. Wnt proteins can direct planar cell polarity in vertebrate ectoderm. eLife 2016; 5. [PMID: 27658614 PMCID: PMC5055393 DOI: 10.7554/elife.16463] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/21/2016] [Indexed: 01/10/2023] Open
Abstract
The coordinated orientation of cells across the tissue plane, known as planar cell polarity (PCP), is manifested by the segregation of core PCP proteins to different sides of the cell. Secreted Wnt ligands are involved in many PCP-dependent processes, yet whether they act as polarity cues has been controversial. We show that in Xenopus early ectoderm, the Prickle3/Vangl2 complex was polarized to anterior cell edges and this polarity was disrupted by several Wnt antagonists. In midgastrula embryos, Wnt5a, Wnt11, and Wnt11b, but not Wnt3a, acted across many cell diameters to orient Prickle3/Vangl2 complexes away from their sources regardless of their positions relative to the body axis. The planar polarity of endogenous Vangl2 in the neuroectoderm was similarly redirected by an ectopic Wnt source and disrupted after depletion of Wnt11b in the presumptive posterior region of the embryo. These observations provide evidence for the instructive role of Wnt ligands in vertebrate PCP. DOI:http://dx.doi.org/10.7554/eLife.16463.001
Collapse
Affiliation(s)
- Chih-Wen Chu
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
36
|
Chu CW, Ossipova O, Ioannou A, Sokol SY. Prickle3 synergizes with Wtip to regulate basal body organization and cilia growth. Sci Rep 2016; 6:24104. [PMID: 27062996 PMCID: PMC4827067 DOI: 10.1038/srep24104] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/21/2016] [Indexed: 12/21/2022] Open
Abstract
PCP proteins maintain planar polarity in many epithelial tissues and have been implicated in cilia development in vertebrate embryos. In this study we examine Prickle3 (Pk3), a vertebrate homologue of Drosophila Prickle, in Xenopus gastrocoel roof plate (GRP). GRP is a tissue equivalent to the mouse node, in which cilia-generated flow promotes left-right patterning. We show that Pk3 is enriched at the basal body of GRP cells but is recruited by Vangl2 to anterior cell borders. Interference with Pk3 function disrupted the anterior polarization of endogenous Vangl2 and the posterior localization of cilia in GRP cells, demonstrating its role in PCP. Strikingly, in cells with reduced Pk3 activity, cilia growth was inhibited and γ-tubulin and Nedd1 no longer associated with the basal body, suggesting that Pk3 has a novel function in basal body organization. Mechanistically, this function of Pk3 may involve Wilms tumor protein 1-interacting protein (Wtip), which physically associates with and cooperates with Pk3 to regulate ciliogenesis. We propose that, in addition to cell polarity, PCP components control basal body organization and function.
Collapse
Affiliation(s)
- Chih-Wen Chu
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andriani Ioannou
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
37
|
Panousopoulou E, Hobbs C, Mason I, Green JBA, Formstone CJ. Epiboly generates the epidermal basal monolayer and spreads the nascent mammalian skin to enclose the embryonic body. J Cell Sci 2016; 129:1915-27. [PMID: 26989131 PMCID: PMC4893800 DOI: 10.1242/jcs.180703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/14/2016] [Indexed: 01/09/2023] Open
Abstract
Epiboly is a morphogenetic process that is employed in the surface ectoderm of anamniotes during gastrulation to cover the entire embryo. We propose here that mammals also utilise this process to expand the epidermis and enclose the body cavity and spinal cord with a protective surface covering. Our data supports a model whereby epidermal spreading is driven by the primary establishment of the epidermal basal progenitor monolayer through radial cell intercalation of a multi-layered epithelium towards the basal lamina. By using a suspension organotypic culture strategy, we find that this process is fibronectin-dependent and autonomous to the skin. The radial cell rearrangements that drive epidermal spreading also require ROCK activity but are driven by cell protrusions and not myosin II contractility. Epidermal progenitor monolayer formation and epidermal spreading are delayed in Crash mice, which possess a dominant mutation in Celsr1, an orthologue of the core planar cell polarity (PCP) Drosophila protein Flamingo (also known as Stan). We observe a failure of ventral enclosure in Crash mutants suggesting that defective epidermal spreading might underlie some ventral wall birth defects. Summary: The nascent mammalian epidermis spreads to enclose the embryo trunk through a process akin to epiboly, which has important implications for human birth defects of the abdominal wall.
Collapse
Affiliation(s)
- Eleni Panousopoulou
- Department of Craniofacial Development and Stem Cell Biology, Guys Tower, Kings College London, London SE1 1UL, UK
| | - Carl Hobbs
- Wolfson-CARD, Kings College London, London SE1 1UL, UK
| | - Ivor Mason
- MRC Centre for Developmental Neurobiology, New Hunts House, Kings College London, London SE1 1UL, UK
| | - Jeremy B A Green
- Department of Craniofacial Development and Stem Cell Biology, Guys Tower, Kings College London, London SE1 1UL, UK
| | - Caroline J Formstone
- MRC Centre for Developmental Neurobiology, New Hunts House, Kings College London, London SE1 1UL, UK
| |
Collapse
|
38
|
Nigro EA, Castelli M, Boletta A. Role of the Polycystins in Cell Migration, Polarity, and Tissue Morphogenesis. Cells 2015; 4:687-705. [PMID: 26529018 PMCID: PMC4695853 DOI: 10.3390/cells4040687] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 12/22/2022] Open
Abstract
Cystic kidney diseases (CKD) is a class of disorders characterized by ciliary dysfunction and, therefore, belonging to the ciliopathies. The prototype CKD is autosomal dominant polycystic kidney disease (ADPKD), whose mutated genes encode for two membrane-bound proteins, polycystin-1 (PC-1) and polycystin-2 (PC-2), of unknown function. Recent studies on CKD-associated genes identified new mechanisms of morphogenesis that are central for establishment and maintenance of proper renal tubular diameter. During embryonic development in the mouse and lower vertebrates a convergent-extension (CE)-like mechanism based on planar cell polarity (PCP) and cellular intercalation is involved in “sculpting” the tubules into a narrow and elongated shape. Once the appropriate diameter is established, further elongation occurs through oriented cell division (OCD). The polycystins (PCs) regulate some of these essential processes. In this review we summarize recent work on the role of PCs in regulating cell migration, the cytoskeleton, and front-rear polarity. These important properties are essential for proper morphogenesis of the renal tubules and the lymphatic vessels. We highlight here several open questions and controversies. Finally, we try to outline some of the next steps required to study these processes and their relevance in physiological and pathological conditions.
Collapse
Affiliation(s)
- Elisa Agnese Nigro
- Division of Genetics and Cell Biology, Dibit, IRCCS-San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy.
| | - Maddalena Castelli
- Division of Genetics and Cell Biology, Dibit, IRCCS-San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy.
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, Dibit, IRCCS-San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
39
|
Sokol SY. Spatial and temporal aspects of Wnt signaling and planar cell polarity during vertebrate embryonic development. Semin Cell Dev Biol 2015; 42:78-85. [PMID: 25986055 PMCID: PMC4562884 DOI: 10.1016/j.semcdb.2015.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/08/2015] [Indexed: 11/19/2022]
Abstract
Wnt signaling pathways act at multiple locations and developmental stages to specify cell fate and polarity in vertebrate embryos. A long-standing question is how the same molecular machinery can be reused to produce different outcomes. The canonical Wnt/β-catenin branch modulates target gene transcription to specify cell fates along the dorsoventral and anteroposterior embryonic axes. By contrast, the Wnt/planar cell polarity (PCP) branch is responsible for cell polarization along main body axes, which coordinates morphogenetic cell behaviors during gastrulation and neurulation. Whereas both cell fate and cell polarity are modulated by spatially- and temporally-restricted Wnt activity, the downstream signaling mechanisms are very diverse. This review highlights recent progress in the understanding of Wnt-dependent molecular events leading to the establishment of PCP and linking it to early morphogenetic processes.
Collapse
Affiliation(s)
- Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|