1
|
Debnath M, Malhotra M, Kulkarni A. Protein corona formation on supramolecular polymer nanoparticles causes differential endosomal sorting resulting in an attenuated NLRP3 inflammasome activation. Biomater Sci 2025; 13:3030-3047. [PMID: 40244934 DOI: 10.1039/d5bm00244c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Upon introduction into biological environments, nanoparticles undergo the spontaneous formation of a dynamic protein corona, which continually evolves and significantly modifies their physicochemical properties and interactions with biological systems. This evolving protein corona can critically impact the nanoparticles' endocytic pathways and targeting efficiency, potentially altering their functional characteristics and obscuring their intended therapeutic effects. Despite considerable focus on the characterization of corona proteins and their impact on nanoparticle uptake, the intracellular processes and their effects on immunogenicity are not yet thoroughly understood. Supramolecular polymer nanoparticles (SNPs) with a highly hydrophobic core are recognized for triggering NLRP3 inflammasome activation, a key component of the innate immune system. Here, it is reported that the protein corona formation on SNPs exerts an inhibitory effect on the activation pathway of NLRP3 inflammasome. The protein corona impairs the intrinsic capacity of SNPs to induce lysosomal membrane rupture, thereby diminishing the cellular stress signals necessary for the formation of the NLRP3 inflammasome complex. Furthermore, the cells transport SNPs with an attached protein corona to recycling endosomes, where they are sorted and prepared for exocytosis. Conversely, nascent SNPs are primarily confined to late endosomes and lysosomes, leading to lysosomal rupture and inflammasome activation. This differential routing reflects the significant impact of the protein corona on the cellular handling and subsequent biological activity of nanoparticles. In summary, this study elucidates the fundamental role of the protein corona in shaping the intracellular disposition of nanoparticles, with implications for modulating their interactions with the immune system.
Collapse
Affiliation(s)
- Maharshi Debnath
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Mehak Malhotra
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
2
|
Pause FC, Baufeld A, Urli S, Crociati M, Stradaioli G, Vanselow J, Kalbe C. Exploring the influence of polystyrene-nanoplastics on two distinct in vitro systems in farm animals: A pilot study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179378. [PMID: 40209587 DOI: 10.1016/j.scitotenv.2025.179378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 02/17/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
The harmful effects of micro- and nanoplastics (MNPs) on the aquatic ecosystem are already well established, and several studies have demonstrated that MNPs can contaminate the soil. However, the impact of MNPs on farm animals, whose products are intended for human consumption, as well as the accumulation and translocation of these particles in their bodies, is less investigated and not well understood. To address this issue, we evaluated the cellular uptake and the effects of three different concentrations (5, 25, and 75 μg/mL) of 100 nm polystyrene nanoplastics (PS-NPs) on ovarian bovine granulosa cells (GCs) and porcine myoblasts derived from skeletal muscle satellite cells as in vitro primary cell culture models. The uptake of PS-NPs was shown for all the concentrations tested, both for GCs and for myoblasts. The results for GCs reported a significant decrease in cell viability (P < 0.05) for all concentrations of nanoplastics tested compared to the control. However, steroid hormone production and the mRNA expression of GC physiology marker genes were not affected. The results for myoblasts showed a significant decrease in the mean confluence (P < 0.05) after exposure to a concentration of 75 μg/mL of nanoplastics compared to the control. This may be indicative of an initial inhibition of muscle fibre formation. However, cell viability, proliferative capacity, and the mRNA expression of myogenesis-associated genes were not affected. As there is currently no standard method for assessing the quantity of particles that overcome the anatomical barriers and accumulate in various parts of the body, recognizing the implications of exposure to MNPs in farm animals can help us to better comprehend the potential risks to human health. This knowledge is critical for developing informed treatment and avoidance strategies, ensuring the safety of both the food we consume and the environment in which it is produced.
Collapse
Affiliation(s)
- Francesca Corte Pause
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle, Scienze 206, 33100 Udine, Italy.
| | - Anja Baufeld
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Susy Urli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle, Scienze 206, 33100 Udine, Italy.
| | - Martina Crociati
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; Centre for Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy.
| | - Giuseppe Stradaioli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle, Scienze 206, 33100 Udine, Italy.
| | - Jens Vanselow
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Claudia Kalbe
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
3
|
Łazarski G, Rajtar N, Romek M, Jamróz D, Rawski M, Kepczynski M. Interaction of Polystyrene Nanoplastic with Lipid Membranes. J Phys Chem B 2025; 129:4110-4122. [PMID: 40205692 PMCID: PMC12035802 DOI: 10.1021/acs.jpcb.5c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025]
Abstract
As demonstrated in in vitro studies, polystyrene nanoplastics (PSNPs) are effectively internalized by various cells. All known mechanisms of PSNP internalization involve the initial step of their interaction with the cell membrane, highlighting the importance of understanding such interactions at the molecular level. Here we consider the effects of PSNPs obtained from disposable food packaging on zwitterionic lipid membranes, used as a model system for protein-free cell membranes. We combined microscopic imaging and unbiased atomistic molecular dynamics (MD) to investigate the behavior of PSNPs on the surface and inside the lipid membrane. Our results show that PSNPs are hydrated and have a high negative surface charge when dispersed in an aqueous media. The penetration of PS nanoparticles into the lipid bilayer requires the removal of water molecules at the nanoparticle-membrane interface, which is an effective barrier to the entry of PSNPs into its hydrophobic region. Overcoming this energy barrier by slightly inserting the PS nanoparticle into the polar region of the membrane leads to its rapid penetration into the center of the bilayer and coating its surface with lipid molecules. PS nanoplastics do not disaggregate after penetrating the lipid membrane, which affects the molecular structure of the bilayer. In addition, our MD simulations demonstrated that small-molecule additives (e.g., unreacted monomers) present in nanoplastics can be released into lipid membranes if they are located close to the nanoparticle surface. The outcomes of this study are important for understanding the passive uptake of nanoplastics by cells.
Collapse
Affiliation(s)
- Grzegorz Łazarski
- Jagiellonian
University, Faculty of Chemistry, Gronostajowa 2, Kraków 30-387, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Prof. S.
Łojasiewicza 11, Krakow 30-348, Poland
| | - Natan Rajtar
- Jagiellonian
University, Faculty of Chemistry, Gronostajowa 2, Kraków 30-387, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Prof. S.
Łojasiewicza 11, Krakow 30-348, Poland
| | - Marek Romek
- Department
of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, 9 Gronostajowa Street, Kraków 30-387, Poland
| | - Dorota Jamróz
- Jagiellonian
University, Faculty of Chemistry, Gronostajowa 2, Kraków 30-387, Poland
| | - Michał Rawski
- National
Synchrotron Radiation Centre SOLARIS, Jagiellonian
University, 98 Czerwone
Maki Street, Kraków 30-392, Poland
| | - Mariusz Kepczynski
- Jagiellonian
University, Faculty of Chemistry, Gronostajowa 2, Kraków 30-387, Poland
| |
Collapse
|
4
|
Liu YY, Liu J, Guo Y, Zhang Q, Cao A, Wang H. Interactions between polystyrene nanoparticles and human intestinal epithelial Caco-2 cells. NANOIMPACT 2025; 38:100559. [PMID: 40220994 DOI: 10.1016/j.impact.2025.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/18/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Nanoplastics enter the human body mainly by ingestion through the gastrointestinal tract and thus the uptake and release of nanoplastics in intestinal cells have been studied. However, the fate of nanoplastics in intestinal cells remains poorly understood, particularly how they are exocytosed. Herein, we investigated the uptake, distribution, and exocytosis of nanoplastics in Caco-2 cells using 70 nm red fluorescent polystyrene (R70PS) as a nanoplastic model. The results show that R70PS readily enters Caco-2 cells and the content per cell peaks at around 24 h, but the total intracellular content in all cells increases continuously over 72 h. In addition, the uptake mechanisms change over incubation time, i.e. R70PS entered Caco-2 cells via both the energy-independent pathway and the energy-dependent caveolae-mediated endocytosis and macropinocytosis at 4 h incubation, but almost all R70PS entered cells in an energy-dependent manner via caveolae-mediated endocytosis, macropinocytosis, and clathrin-mediated endocytosis at 12 h incubation. Most of the intracellular R70PS accumulated in lysosomes, but R70PS also entered the mitochondria and its level increased over time. Approximately 45 % of the intracellular R70PS could be cleared from the cells within 12 h, mainly via the lysosomal pathway. Exocytosis was also associated with autophagy and was facilitated by the increase in the number of mitochondria and lysosomes, but inhibited by serum in the medium. Our findings deepen the understanding of the interaction between nanoplastics and intestinal cells, which is helpful for the risk assessment of nanoplastics.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Jie Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuan Guo
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Qiangqiang Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
5
|
Ruggieri F, Battistini B, Sorbo A, Senofonte M, Leso V, Iavicoli I, Bocca B. From food-to-human microplastics and nanoplastics exposure and health effects: A review on food, animal and human monitoring data. Food Chem Toxicol 2025; 196:115209. [PMID: 39710246 DOI: 10.1016/j.fct.2024.115209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
This review figures out the overall status on the presence of microplastics (MPs) and nanoplastics (NPs) in food and their bioaccumulation in animal and human tissues, providing critical insights into possible human health impacts. Data are discussed on both in-vivo and ex-vivo animal and human studies, and the role of physicochemical properties in determining the biological fate and toxicological effects of MPs and NPs. Particular attention is given to dietary exposure assessments, specifically evaluating daily intake through the consumption of contaminated food items. The current limitations in the body of knowledge and some considerations for future assessments are also reported. Overall, there is a pressing need to establish more robust biomarker research and develop standardized methodologies, for a better understanding of MPs and NPs fate and associated effects in more realistic scenarios for their safe consumption. The review underscores the importance of integrating the human biomonitoring into monitoring programs and interdisciplinary research to ultimately inform on MPs and NPs real burden in the human body.
Collapse
Affiliation(s)
- Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Angela Sorbo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marta Senofonte
- Department Chemical Engineering Materials Environment, Sapienza University, Rome, Italy
| | - Veruscka Leso
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
6
|
Xu Y, Liu L, Ma Y, Wang C, Duan F, Feng J, Yin H, Sun L, Cao Z, Jung J, Li P, Li ZH. Biotransport and toxic effects of micro- and nanoplastics in fish model and their potential risk to humans: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107215. [PMID: 39706134 DOI: 10.1016/j.aquatox.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
The growing body of scientific evidence suggests that micro- and nanoplastics (MPs/NPs) pose a significant threat to aquatic ecosystems and human health. These particles can enter organisms through ingestion, inhalation, dermal contact, and trophic transfer. Exposure can directly affect multiple organs and systems (respiratory, digestive, neurological, reproductive, urinary, cardiovascular) and activate extensive intracellular signaling, inducing cytotoxicity involving mechanisms such as membrane disruption, extracellular polymer degradation, reactive oxygen species (ROS) production, DNA damage, cellular pore blockage, lysosomal instability, and mitochondrial depolarization. This review focuses on current research examining the in vivo and in vitro toxic effects of MPs/NPs on aquatic organisms, particularly fish, in relation to particulate toxicity aspects (such as particle transport mechanisms and structural modifications). Meanwhile, from the perspectives of the food chain and environmental factors, it emphasizes the comprehensive threats of MPs/NPs to human health in terms of both direct and indirect toxicity. Additionally, future research needs and strategies are discussed to aid in mitigating the potential risks of particulate plastics as carriers of toxic trace elements to human health.
Collapse
Affiliation(s)
- Yanan Xu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Cunlong Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Fengshang Duan
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Le Sun
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
7
|
Li Y, Sha X, Wang Y, Zhao Y, Zhang J, Wang P, Chen X, Xing B, Wang L. In situ imaging of microplastics in living organisms based on mass spectrometry technology. ECO-ENVIRONMENT & HEALTH 2024; 3:412-417. [PMID: 39524474 PMCID: PMC11541458 DOI: 10.1016/j.eehl.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 11/16/2024]
Abstract
Plastic pollution is widely present in terrestrial and aquatic ecosystems, and microplastics (MPs) can be detected in organisms. In situ detection methods for MPs in organisms have attracted widespread attention. Traditional imaging characterization methods of MPs, including stereo microscopes and fluorescence microscopy, are typically used to image artificially added microsphere standards under laboratory conditions. However, they cannot specifically identify MPs in biological samples. Thus, there is a need for a detection technique that can provide spatial distribution information of MPs in biological samples as well as measure their quality and quantity. In this perspective, to obtain high-resolution images with chemical composition analysis, we compared ion sources for ionizing plastic macromolecules and mass analyzers for analyzing macromolecules. Matrix-assisted laser desorption/ionization (MALDI) is suitable for imaging characterization, while time-of-flight (TOF) and Orbitrap mass spectrometry are suitable for polymer mass spectrometry analysis. Furthermore, we propose a technique that combines MALDI with TOF or Orbitrap, which holds promise for the in situ imaging of MPs in biological samples.
Collapse
Affiliation(s)
- Ye Li
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaoyu Sha
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yanfang Zhao
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Junjie Zhang
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Ping Wang
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
- School of Business, Qingdao University, Qingdao 266100, China
| | - Xiangfeng Chen
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Hasan SS, Salam A, Moniruzzaman M, Bari MA, Aich N, Jahan F, Rahman M, Islam Z, Kabir MH, Shaikh MAA, Raqib R, Parvez SM. Understanding the Occurrence and Fate of Atmospheric Microplastics and Their Potential Risks to Human Health: Protocol for a Cross-Sectional Analysis. JMIR Res Protoc 2024; 13:e60289. [PMID: 39612491 PMCID: PMC11645502 DOI: 10.2196/60289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Plastic pollution has reached an alarming magnitude, defining the contemporary era as the "Plastic Age." Uncontrolled plastic production and inadequate recycling processes have led to widespread contamination of the environment with micro and nanoplastics. OBJECTIVE The study aims to assess the environmental and human health consequences of exposure to microplastic particles (MPs) and their additives among plastic recycling workers in Dhaka. Specifically, it focuses on mapping the management pathways of plastic waste from collection to disposal, analyzing the types of MPs in the environment, and assessing the potential health impacts on plastic recycling workers. METHODS A cross-sectional exploratory study design was used, consisting of exposed and nonexposed groups in plastic recycling sites in Dhaka, Bangladesh. The study will establish possible associations between different health consequences and microplastic particle exposure with a systematic approach involving plastic recycling hot spot detection, management pathway mapping, and detecting the presence of environmental MP. MPs and heavy metals will be detected from environmental samples using fluorescence microscopy, Fourier-transform infrared spectroscopy, and inductively coupled plasma mass spectrometry. Human exposure will be assessed by detecting the metabolites of bisphenol and phthalates from urine samples using liquid chromatography-tandem mass spectrometry and thoroughly evaluating endocrine, reproductive, respiratory, and renal functions. The sample size was derived from the mean concentrations of urinary bisphenol and phthalates metabolites, requiring the participation of 168 respondents. A 1:1 exposure to nonexposed stratification would be sufficient to meet our study objectives, considering the conventional level of power and confidence interval. This study protocol (PR#22111) has received approval from the Research Review Committee and Ethical Review Committee of the icddr,b. RESULTS The project was funded in August 2022. We started collecting environmental samples in January 2023 and completed participant enrollment, exposure survey, and biological sample collection by December 2023. We enrolled 84 adult plastic recycling workers with at least 5 years of exposure history and 84 nonexposed participants who were not involved with plastic recycling activities. Data analysis is currently underway, and the first results are expected to be submitted for publication in November 2024. CONCLUSIONS The findings would provide valuable insights into the adverse impacts of microplastic pollution on both the environment and human health, aiding in better understanding the extent of the issue. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/60289.
Collapse
Affiliation(s)
- Shaikh Sharif Hasan
- Health System and Population Studies Division, Environmental Health and WASH, icddr,b, Dhaka, Bangladesh
| | - Abdus Salam
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | | | - Md Aynul Bari
- Department of Environmental & Sustainable Engineering, University at Albany, State University of New York, Albany, NY, United States
| | - Nirupam Aich
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Farjana Jahan
- Health System and Population Studies Division, Environmental Health and WASH, icddr,b, Dhaka, Bangladesh
| | - Mahbubur Rahman
- Health System and Population Studies Division, Environmental Health and WASH, icddr,b, Dhaka, Bangladesh
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Zubayer Islam
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Md Humayun Kabir
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md Aftab Ali Shaikh
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Rubhana Raqib
- Nutrition Research Division, icddr,b, Dhaka, Bangladesh
| | - Sarker Masud Parvez
- Health System and Population Studies Division, Environmental Health and WASH, icddr,b, Dhaka, Bangladesh
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
9
|
Adamiak K, Sidoryk-Węgrzynowicz M, Dąbrowska-Bouta B, Sulkowski G, Strużyńska L. Plastic nanoparticles interfere with extracellular vesicle pathway in primary astrocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117180. [PMID: 39437516 DOI: 10.1016/j.ecoenv.2024.117180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The extensive production and use of plastics in recent decades has led to environmental pollution. It has been discovered that plastic microparticles (MPs) and nanoparticles (NPs), formed under the influence of physical forces, can pose a significant health risk. Increasing evidence indicates that NPs can have various toxic effects, including oxidative stress and cell death. However, the mechanisms underlying their toxicity are still under investigation. In this study, we examined whether polystyrene nanoparticles (PS-NPs) are internalized in primary astrocytes. We tracked their intracellular fate and search for potential interference with the intercellular communication pathway mediated by extracellular vesicles (EVs). Primary astrocyte cultures were exposed to fluorescent PS-NPs at concentrations of 0.5, 1, 25 and 50 µg/mL for 24, 48 and 72 hours. Based on electron microscopic analysis and confocal imaging, we determined that PS-NPs are internalized in astrocytes and accumulate in the cytoplasm in a concentration-dependent manner, localizing to endosomal-lysosomal system. Astrocytes exposed to PS-NPs form EVs containing encapsulated PS-NPs, which are released into the culture medium after 72 h of exposure and can be transferred via this route to other cells. As shown by proteomic analysis, PS-NPs affects the composition of the protein cargo of released EVs by decreasing the representation of proteins such as CD47, CSTB and CNDP2. Intercellular transport of PS-NPs in primary astrocytes is mediated by EVs system. EV-mediated release of PS-NPs may alleviate their toxicity in a single astrocyte but may also contribute to the spread of their toxic effect to neighbouring astrocytes. Exposure to PS-NPs interferes with the mechanism of protein sorting, thereby potentially influencing the EV-mediated cell-cell communication pathway.
Collapse
Affiliation(s)
- Kamil Adamiak
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego str., Warsaw 02-106, Poland
| | - Marta Sidoryk-Węgrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego str., Warsaw 02-106, Poland
| | - Beata Dąbrowska-Bouta
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego str., Warsaw 02-106, Poland
| | - Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego str., Warsaw 02-106, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego str., Warsaw 02-106, Poland.
| |
Collapse
|
10
|
Kumar M, Chaudhary V, Chaudhary V, Srivastav AL, Madhav S. Impacts of microplastics on ecosystem services and their microbial degradation: a systematic review of the recent state of the art and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63524-63575. [PMID: 39508948 DOI: 10.1007/s11356-024-35472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Microplastics are tiny plastic particles with a usual diameter ranging from ~ 1 μ to 5 µm. Recently, microplastic pollution has raised the attention of the worldwide environmental and human concerns. In human beings, digestive system illness, respiratory system disorders, sleep disturbances, obesity, diabetes, and even cancer have been reported after microplastic exposure either through food, air, or skin. Similarly, microplastics are also having negative impacts on the plant health, soil microorganisms, aquatic lives, and other animals. Policies and initiatives have already been in the pipeline to address this problem to deal with microplastic pollution. However, many obstacles are also being observed such as lack of knowledge, lack of research, and also absence of regulatory frameworks. This article has covered the distribution of microplastics in water, soil, food and air. Application of multimodel strategies including fewer plastic item consumption, developing low-cost novel technologies using microorganisms, biofilm, and genetic modified microorganisms has been used to reduce microplastics from the environment. Researchers, academician, policy-makers, and environmentalists should work jointly to cope up with microplastic contamination and their effect on the ecosystem as a whole which can be reduced in the coming years and also to make earth clean.
Collapse
Affiliation(s)
- Mukesh Kumar
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College Meerut, Meerut, Uttar Pradesh, India
| | - Vidisha Chaudhary
- Institute of Business Studies, CCS University, Meerut, India, Uttar Pradesh
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, India.
- Center of Excellence for Sustainability, Chitkara University, Solan, Himachal Pradesh, India.
| | - Sughosh Madhav
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
11
|
Goswami S, Adhikary S, Bhattacharya S, Agarwal R, Ganguly A, Nanda S, Rajak P. The alarming link between environmental microplastics and health hazards with special emphasis on cancer. Life Sci 2024; 355:122937. [PMID: 39103046 DOI: 10.1016/j.lfs.2024.122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Microplastic contamination is a burgeoning environmental issue that poses serious threats to animal and human health. Microplastics enter the human body through nasal, dermal, and oral routes to contaminate multiple organs. Studies have advocated the existence of microplastics in human breast milk, sputum, faeces, and blood. Microplastics can find their ways to the sub-cellular moiety via active and passive approaches. At cellular level, microplastics follow clathrin and caveolae-dependent pathways to invade the sub-cellular environment. These environmental contaminants modulate the epigenetic control of gene expression, status of inflammatory mediators, redox homeostasis, cell-cycle proteins, and mimic the endocrine mediators like estrogen and androgen to fuel carcinogenesis. Furthermore, epidemiological studies have suggested potential links between the exposure to microplastics and the onset of various chronic diseases. Microplastics trigger uncontrolled cell proliferation and ensue tissue growth leading to various cancers affecting the lungs, blood, breasts, prostate, and ovaries. Additionally, such contamination can potentially affect sub-cellular signaling and injure multiple organs. In essence, numerous reports have claimed microplastic-induced toxicity and tumorigenesis in human and model animals. Nonetheless, the underlying molecular mechanism is still elusive and warrants further investigations. This review provides a comprehensive analysis of microplastics, covering their sources, chemistry, human exposure routes, toxicity, and carcinogenic potential at the molecular level.
Collapse
Affiliation(s)
- Sohini Goswami
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, West Bengal, India
| | | | - Ruchika Agarwal
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India.
| |
Collapse
|
12
|
He J, Xiong S, Zhou W, Qiu H, Rao Y, Liu Y, Shen G, Zhao P, Chen G, Li J. Long-term polystyrene nanoparticles exposure reduces electroretinal responses and exacerbates retinal degeneration induced by light exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134586. [PMID: 38776811 DOI: 10.1016/j.jhazmat.2024.134586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The impact of plastic pollution on living organisms have gained significant research attention. However, the effects of nanoplastics (NPs) on retina remain unclear. This study aimed to investigate the effect of long-term polystyrene nanoparticles (PS-NPs) exposure on mouse retina. Eight weeks old C57BL/6 J mice were exposed to PS-NPs at the diameter of 100 nm and concentration of 10 mg/L in drinking water for 3 months. PS-NPs were able to penetrate the blood-retina barrier, accumulated at retinal tissue, caused increased oxidative stress level and reduced scotopic electroretinal responses without remarkable structural damage. PS-NPs exposure caused cytotoxicity and reactive oxygen species accumulation in cultured photoreceptor cell. PS-NPs exposure increased oxidative stress level in retinal pigment epithelial (RPE) cells, leading to changes of gene and protein expression indicative of compromised phagocytic activity and cell junction formation. Long-term PS-NPs exposure also aggravated light-induced photoreceptor cell degeneration and retinal inflammation. The transcriptomic profile of PS-NPs-exposed, light-challenged retinal tissue shared similar features with those of age-related macular degeneration (AMD) patients in the activation of complement-mediated phagocytic and proinflammatory responses. Collectively, these findings demonstrated the oxidative stress- and inflammation-mediated detrimental effect of PS-NPs on retinal function, suggested that long-term PS-NPs exposure could be an environmental risk factor contributing to retinal degeneration.
Collapse
Affiliation(s)
- Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Shiyi Xiong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Ya Liu
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Guiyan Shen
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Guangquan Chen
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China.
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China.
| |
Collapse
|
13
|
Jang Y, Nyamjav I, Kim HR, Suh DE, Park N, Lee YE, Lee S. Identification of plastic-degrading bacteria in the human gut. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172775. [PMID: 38670383 DOI: 10.1016/j.scitotenv.2024.172775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Environmental pollution caused by the excessive use of plastics has resulted in the inflow of microplastics into the human body. However, the effects of microplastics on the human gut microbiota still need to be better understood. To determine whether plastic-degrading bacteria exist in the human gut, we collected the feces of six human individuals, did enrichment cultures and screened for bacterial species with a low-density polyethylene (LDPE) or polypropylene (PP)-degrading activity using a micro-spray method. We successfully isolated four bacterial species with an LDPE-degrading activity and three with a PP-degrading activity. Notably, all bacterial species identified with an LDPE or PP-degrading activity were opportunistic pathogens. We analyzed the microbial degradation of the LDPE or PP surface using scanning electron microscopy and confirmed that each bacterial species caused the physical changes. Chemical structural changes were further investigated using X-ray photoelectron spectroscopy and Fourier-transform-infrared spectroscopy, confirming the oxidation of the LDPE or PP surface with the formation of carbonyl groups (C=O), ester groups (CO), and hydroxyl groups (-OH) by each bacterial species. Finally, high temperature gel permeation chromatography (HT-GPC) analysis showed that these bacterial species performed to a limited extent depolymerization. These results indicate that, as a single species, these opportunistic pathogens in the human gut have a complete set of enzymes and other components required to initiate the oxidation of the carbon chains of LDPE or PP and to degrade them. Furthermore, these findings suggest that these bacterial species can potentially biodegrade and metabolize microplastics in the human gut.
Collapse
Affiliation(s)
- Yejin Jang
- School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Indra Nyamjav
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hong Rae Kim
- Department of Research and Development, Repla Inc., Suwon 16679, Republic of Korea
| | - Dong-Eun Suh
- Department of Research and Development, Repla Inc., Suwon 16679, Republic of Korea
| | - Nohyoon Park
- School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Ye Eun Lee
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Sukkyoo Lee
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| |
Collapse
|
14
|
Kadac-Czapska K, Ośko J, Knez E, Grembecka M. Microplastics and Oxidative Stress-Current Problems and Prospects. Antioxidants (Basel) 2024; 13:579. [PMID: 38790684 PMCID: PMC11117644 DOI: 10.3390/antiox13050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Microplastics (MPs) are plastic particles between 0.1 and 5000 µm in size that have attracted considerable attention from the scientific community and the general public, as they threaten the environment. Microplastics contribute to various harmful effects, including lipid peroxidation, DNA damage, activation of mitogen-activated protein kinase pathways, cell membrane breakages, mitochondrial dysfunction, lysosomal defects, inflammation, and apoptosis. They affect cells, tissues, organs, and overall health, potentially contributing to conditions like cancer and cardiovascular disease. They pose a significant danger due to their widespread occurrence in food. In recent years, information has emerged indicating that MPs can cause oxidative stress (OS), a known factor in accelerating the aging of organisms. This comprehensive evaluation exposed notable variability in the reported connection between MPs and OS. This work aims to provide a critical review of whether the harmfulness of plastic particles that constitute environmental contaminants may result from OS through a comprehensive analysis of recent research and existing scientific literature, as well as an assessment of the characteristics of MPs causing OS. Additionally, the article covers the analytical methodology used in this field. The conclusions of this review point to the necessity for further research into the effects of MPs on OS.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (K.K.-C.); (J.O.); (E.K.)
| |
Collapse
|
15
|
Roh Y, Kim J, Song H, Seol A, Kim T, Park E, Park K, Lim S, Wang S, Jung Y, Kim H, Lim Y, Hwang D. Impact of the Oral Administration of Polystyrene Microplastics on Hepatic Lipid, Glucose, and Amino Acid Metabolism in C57BL/6Korl and C57BL/6-Lep em1hwl/Korl Mice. Int J Mol Sci 2024; 25:4964. [PMID: 38732183 PMCID: PMC11084201 DOI: 10.3390/ijms25094964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The impact of microplastics (MPs) on the metabolic functions of the liver is currently unclear and not completely understood. To investigate the effects of the administration of MPs on the hepatic metabolism of normal and obese mice, alterations in the lipid, glucose (Glu), and amino acid regulation pathways were analyzed in the liver and adipose tissues of C57BL/6Korl (wild type, WT) or C57BL/6-Lepem1hwl/Korl mice (leptin knockout, Lep KO) orally administered polystyrene (PS) MPs for 9 weeks. Significant alterations in the lipid accumulation, adipogenesis, lipogenesis, and lipolysis pathways were detected in the liver tissue of MP-treated WT and Lep KO mice compared to the vehicle-treated group. These alterations in their liver tissues were accompanied by an upregulation of the serum lipid profile, as well as alterations in the adipogenesis, lipogenesis, and lipolysis pathways in the adipose tissues of MP-treated WT and Lep KO mice. Specifically, the level of leptin was increased in the adipose tissues of MP-treated WT mice without any change in their food intake. Also, MP-induced disruptions in the glycogenolysis, Glu transporter type 4 (GLUT4)-5' AMP-activated protein kinase (AMPK) signaling pathway, levels of lipid intermediates, and the insulin resistance of the liver tissues of WT and Lep KO mice were observed. Furthermore, the levels of seven endogenous metabolites were remarkably changed in the serum of WT and Lep KO mice after MP administrations. Finally, the impact of the MP administration observed in both types of mice was further verified in differentiated 3T3-L1 adipocytes and HepG2 cells. Thus, these results suggest that the oral administration of MPs for 9 weeks may be associated with the disruption of lipid, Glu, and amino acid metabolism in the liver tissue of obese WT and Lep KO mice.
Collapse
Affiliation(s)
- Yujeong Roh
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, Laboratory Animal Resources Center, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea; (Y.R.); (J.K.); (H.S.); (A.S.); (T.K.); (E.P.); (K.P.); (S.L.); (S.W.)
| | - Jieun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, Laboratory Animal Resources Center, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea; (Y.R.); (J.K.); (H.S.); (A.S.); (T.K.); (E.P.); (K.P.); (S.L.); (S.W.)
| | - Heejin Song
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, Laboratory Animal Resources Center, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea; (Y.R.); (J.K.); (H.S.); (A.S.); (T.K.); (E.P.); (K.P.); (S.L.); (S.W.)
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, Laboratory Animal Resources Center, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea; (Y.R.); (J.K.); (H.S.); (A.S.); (T.K.); (E.P.); (K.P.); (S.L.); (S.W.)
| | - Taeryeol Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, Laboratory Animal Resources Center, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea; (Y.R.); (J.K.); (H.S.); (A.S.); (T.K.); (E.P.); (K.P.); (S.L.); (S.W.)
| | - Eunseo Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, Laboratory Animal Resources Center, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea; (Y.R.); (J.K.); (H.S.); (A.S.); (T.K.); (E.P.); (K.P.); (S.L.); (S.W.)
| | - Kiho Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, Laboratory Animal Resources Center, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea; (Y.R.); (J.K.); (H.S.); (A.S.); (T.K.); (E.P.); (K.P.); (S.L.); (S.W.)
| | - Sujeong Lim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, Laboratory Animal Resources Center, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea; (Y.R.); (J.K.); (H.S.); (A.S.); (T.K.); (E.P.); (K.P.); (S.L.); (S.W.)
| | - Suha Wang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, Laboratory Animal Resources Center, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea; (Y.R.); (J.K.); (H.S.); (A.S.); (T.K.); (E.P.); (K.P.); (S.L.); (S.W.)
| | - Youngsuk Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hyesung Kim
- Department of Nanomechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Miryang 50463, Republic of Korea;
| | - Yong Lim
- Department of Clinical Laboratory Science, College of Nursing and Healthcare Science, Dong-Eui University, Busan 47340, Republic of Korea;
| | - Daeyoun Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, Laboratory Animal Resources Center, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea; (Y.R.); (J.K.); (H.S.); (A.S.); (T.K.); (E.P.); (K.P.); (S.L.); (S.W.)
| |
Collapse
|
16
|
Ma Y, Xu D, Wan Z, Wei Z, Chen Z, Wang Y, Han X, Chen Y. Exposure to different surface-modified polystyrene nanoparticles caused anxiety, depression, and social deficit in mice via damaging mitochondria in neurons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170739. [PMID: 38340854 DOI: 10.1016/j.scitotenv.2024.170739] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Nanoplastics (NPs) are unavoidable hazardous materials that result from the human production and use of plastics. While there is evidence that NPs can bioaccumulate in the brain, no enough research regarding the pathways by which NPs reach the brain was conducted, and it is also urgently needed to evaluate the health threat to the nervous system. Here, we observed accumulation of polystyrene nanoplastics (PS-NPs) with different surface modifications (PS, PS-COOH, and PS-NH2) in mouse brains. Further studies showed that PS-NPs disrupted the tight junctions between endothelial cells and transport into endothelial cells via the endocytosis and macropinocytosis pathways. Additionally, NPs exposure induced a series of alternations in behavioral tests, including anxiety- and depression-like changes and impaired social interaction performance. Further results identified that NPs could be internalized into neurons and localized in the mitochondria, bringing about mitochondrial dysfunction and a concurrent decline of ATP production, which might be associated with abnormal animal behaviors. The findings provide novel insights into the neurotoxicity of NPs and provide a basis for the formulation of policy on plastic production and usage by relevant government agencies.
Collapse
Affiliation(s)
- Yuhan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Dihui Xu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Zicheng Wan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Ziyang Wei
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Zining Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Yuheng Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
17
|
McCright J, Yarmovsky J, Maisel K. Para- and Transcellular Transport Kinetics of Nanoparticles across Lymphatic Endothelial Cells. Mol Pharm 2024; 21:1160-1169. [PMID: 37851841 PMCID: PMC10923144 DOI: 10.1021/acs.molpharmaceut.3c00720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Lymphatic vessels have received significant attention as drug delivery targets, as they shuttle materials from peripheral tissues to the lymph nodes, where adaptive immunity is formed. Delivery of immune modulatory materials to the lymph nodes via lymphatic vessels has been shown to enhance their efficacy and also improve the bioavailability of drugs when delivered to intestinal lymphatic vessels. In this study, we generated a three-compartment model of a lymphatic vessel with a set of kinematic differential equations to describe the transport of nanoparticles from the surrounding tissues into lymphatic vessels. We used previously published data and collected additional experimental parameters, including the transport efficiency of nanoparticles over time, and also examined how nanoparticle formulation affected the cellular transport mechanisms using small molecule inhibitors. These experimental data were incorporated into a system of kinematic differential equations, and nonlinear, least-squares curve fitting algorithms were employed to extrapolate transport coefficients within our model. The subsequent computational framework produced some of the first parameters to describe transport kinetics across lymphatic endothelial cells and allowed for the quantitative analysis of the driving mechanisms of transport into lymphatic vessels. Our model indicates that transcellular mechanisms, such as micro- and macropinocytosis, drive transport into lymphatics. This information is crucial to further design strategies that will modulate lymphatic transport for drug delivery, particularly in diseases like lymphedema, where normal lymphatic functions are impaired.
Collapse
Affiliation(s)
- Jacob McCright
- Department of Bioengineering, University of Maryland College Park, College Park, Maryland 20742, United States
| | - Jenny Yarmovsky
- Department of Bioengineering, University of Maryland College Park, College Park, Maryland 20742, United States
| | - Katharina Maisel
- Department of Bioengineering, University of Maryland College Park, College Park, Maryland 20742, United States
| |
Collapse
|
18
|
Peng M, Félix RC, Canário AVM, Power DM. The physiological effect of polystyrene nanoplastic particles on fish and human fibroblasts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169979. [PMID: 38215851 DOI: 10.1016/j.scitotenv.2024.169979] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Numerous studies have identified the detrimental effects for the biosphere of large plastic debris, the effect of microplastics (MPs) and nanoplastics (NPs) is less clear. The skin is the first point of contact with NPs, and skin fibroblasts have a vital role in maintaining skin structure and function. Here, a comparative approach is taken using three fibroblast cell lines from the zebrafish (SJD.1), human male newborn (BJ-5ta) and female adult (HDF/TERT164) and their response to polystyrene NP (PS-NPs) exposure is characterized. Cells were exposed to environmentally relevant PS-NP sizes (50, 500 and 1000 nm) and concentrations (0.001 to 10 μg/ml) and their uptake (1000 nm), and effect on cell viability, proliferation, migration, reactive oxygen species (ROS) production, apoptosis, alkaline phosphatase (ALP) and acid phosphatase (AP) determined. All fibroblasts took up PS-NPs, and a relationship between PS-NP particle size and concentration and the inhibition of proliferation and cell migration was identified. The inhibitory effect of PS-NPs on proliferation was more pronounced for human skin fibroblasts. The presence of PS-NPs negatively affected fibroblast migration in a time-, size- and concentration-dependent manner with larger PS-NPs at higher concentrations causing a more significant inhibition of cell migration, with human fibroblasts being the most affected. No major changes were detected in ROS production or apoptosis in NP challenged fibroblasts. While the ALP activity was increased in all fibroblast cell lines, only fish fibroblasts showed a significant increase in AP activity. The heterogeneous response of fibroblasts induced by PS-NPs was clearly revealed by the segregation of HDF, BJ.5ta and SJD.1 fibroblasts in principal component analysis. Our results demonstrate that PS-NP exposure adversely affected cellular processes in a cell-type and dose-specific manner in distinct fibroblast cell lines, emphasizing the need for further exploration of NP interactions with different cell types to better understand potential implications for human health.
Collapse
Affiliation(s)
- Maoxiao Peng
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Rute C Félix
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Adelino V M Canário
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China
| | - Deborah M Power
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
19
|
He Y, Yin R. The reproductive and transgenerational toxicity of microplastics and nanoplastics: A threat to mammalian fertility in both sexes. J Appl Toxicol 2024; 44:66-85. [PMID: 37382358 DOI: 10.1002/jat.4510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are extensively distributed in the environment. However, a comprehensive review and in-depth discussion on the effects of MPs and NPs to reproductive capacity and transgenerational toxicity on mammals, especially on humans, is lacked. It is suggested that microplastics and nanoplastics could accumulate in mammalian reproductive organs and exert toxic effects on the reproductive system for both sexes. For males, the damage of microplastics consists of abnormal testicular and sperm structure, decreased sperm vitality, and endocrine disruption, which were caused by oxidative stress, inflammation, apoptosis of testicular cells, autophagy, abnormal cytoskeleton, and abnormal hypothalamic-pituitary-testicular axis. For females, the damage of microplastics includes abnormal ovary and uterus structure and endocrine disruption, which were caused by oxidative stress, inflammation, granulosa cell apoptosis, hypothalamic-pituitary-ovary axis abnormalities, and tissue fibrosis. For transgenerational toxicity, premature mortality existed in the rodent offspring after maternal exposure to microplastics. Among the surviving offspring, metabolic disorders, reproductive dysfunction, immune, neurodevelopmental, and cognitive disorders were detected, and these events directly correlated with transgenerational translocation of MPs and NPs. Studies on human-derived cells or organoids demonstrated that transgenerational toxicity studies for both sexes are yet in the phase of exploring suitable experimental models, and more detailed research on the threat of MPs and NPs to human fertility is still urgently needed. Further studies will help assess the MPs and NPs threat to public fertility and reproductive health risks.
Collapse
Affiliation(s)
- Yuchong He
- Queen Mary School, Nanchang University, Nanchang, Jiangxi Province, China
- The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Provincial, Nanchang University, Nanchang, Jiangxi Province, China
| | - Ruocheng Yin
- Queen Mary School, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
20
|
Das A. The emerging role of microplastics in systemic toxicity: Involvement of reactive oxygen species (ROS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165076. [PMID: 37391150 DOI: 10.1016/j.scitotenv.2023.165076] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Plastic pollution is one of the most pressing environmental threats the world is facing currently. The degradation of macroplastics into smaller forms viz. microplastics (MPs) or Nanoplastics (NPs) is a potential threat to both terrestrial and marine ecosystems and also to human health by directly affecting the organs and activating a plethora of intracellular signaling, that may lead to cell death. There is accumulating evidence that supports the serious toxicity caused by MP/NPs at all levels of biological complexities (biomolecules, organelles, cells, tissues, organs, and organ systems) and the involvement of the reactive oxygen species (ROS) in this process. Studies indicate that MPs or NPs can accumulate in mitochondria and further disrupt the mitochondrial electron transport chain, cause mitochondrial membrane damage, and perturb the mitochondrial membrane potential or depolarization of the mitochondria. These events eventually lead to the generation of different types of reactive free radicals, which can induce DNA damage, protein oxidation, lipid peroxidation, and compromization of the antioxidant defense pool. Furthermore, MP-induced ROS was found to trigger a plethora of signaling cascades, such as the p53 signaling pathway, Mitogen-activated protein kinases (MAPKs) signaling pathway including the c-Jun N-terminal kinases (JNK), p38 kinase, and extracellular signal related kinases (ERK1/2) signaling cascades, Nuclear factor erythroid 2-related factor 2 (Nrf2)-pathway, Phosphatidylinositol-3-kinases (PI3Ks)/Akt signaling pathway, and Transforming growth factor-beta (TGF-β) pathways, to name a few. As a consequence of oxidative stress caused by the MPs/NPs, different types of organ damage are observed in living species, including humans, such as pulmonary toxicity, cardiotoxicity, neurotoxicity, nephrotoxicity, immunotoxicity, reproductive toxicity, hepatotoxicity, etc. Although presently, a good amount of research is going on to access the detrimental effects of MPs/NPs on human health, there is a lack of proper model systems, multi-omics approaches, interdisciplinary research, and mitigation strategies.
Collapse
Affiliation(s)
- Amlan Das
- Department of Biochemistry, School of Biosciences, The Assam Royal Global University, NH-37, opp. Tirupati Balaji Temple, Betkuchi, Guwahati, Assam 781035, India.
| |
Collapse
|
21
|
Yang Z, DeLoid GM, Zarbl H, Baw J, Demokritou P. Micro- and nanoplastics (MNPs) and their potential toxicological outcomes: State of science, knowledge gaps and research needs. NANOIMPACT 2023; 32:100481. [PMID: 37717636 PMCID: PMC10841092 DOI: 10.1016/j.impact.2023.100481] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Plastic waste has been produced at a rapidly growing rate over the past several decades. The environmental impacts of plastic waste on marine and terrestrial ecosystems have been recognized for years. Recently, researchers found that micro- and nanoplastics (MNPs), micron (100 nm - 5 mm) and nanometer (1 - 100 nm) scale particles and fibers produced by degradation and fragmentation of plastic waste in the environment, have become an important emerging environmental and food chain contaminant with uncertain consequences for human health. This review provides a comprehensive summary of recent findings from studies of potential toxicity and adverse health impacts of MNPs in terrestrial mammals, including studies in both in vitro cellular and in vivo mammalian models. Also reviewed here are recently released biomonitoring studies that have characterized the bioaccumulation, biodistribution, and excretion of MNPs in humans. The majority MNPs in the environment to which humans are most likely to be exposed, are of irregular shapes, varied sizes, and mixed compositions, and are defined as secondary MNPs. However, the MNPs used in most toxicity studies to date were commercially available primary MNPs of polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and other polymers. The emerging in vitro and in vivo evidence reviewed here suggests that MNP toxicity and bioactivity are largely determined by MNP particle physico-chemical characteristics, including size, shape, polymer type, and surface properties. For human exposure, MNPs have been identified in human blood, urine, feces, and placenta, which pose potential health risks. The evidence to date suggests that the mechanisms underlying MNP toxicity at the cellular level are primarily driven by oxidative stress. Nonetheless, large knowledge gaps in our understanding of MNP toxicity and the potential health impacts of MNP exposures still exist and much further study is needed to bridge those gaps. This includes human population exposure studies to determine the environmentally relevant MNP polymers and exposure concentrations and durations for toxicity studies, as well as toxicity studies employing environmentally relevant MNPs, with surface chemistries and other physico-chemical properties consistent with MNP particles in the environment. It is especially important to obtain comprehensive toxicological data for these MNPs to understand the range and extent of potential adverse impacts of microplastic pollutants on humans and other organisms.
Collapse
Affiliation(s)
- Zhenning Yang
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Glen M DeLoid
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Joshua Baw
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
22
|
Liu J, Liu YY, Li CS, Cao A, Wang H. Exocytosis of Nanoparticles: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2215. [PMID: 37570533 PMCID: PMC10421347 DOI: 10.3390/nano13152215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Both biomedical applications and safety assessments of manufactured nanomaterials require a thorough understanding of the interaction between nanomaterials and cells, including how nanomaterials enter cells, transport within cells, and leave cells. However, compared to the extensively studied uptake and trafficking of nanoparticles (NPs) in cells, less attention has been paid to the exocytosis of NPs. Yet exocytosis is an indispensable process of regulating the content of NPs in cells, which in turn influences, even decides, the toxicity of NPs to cells. A comprehensive understanding of the mechanisms and influencing factors of the exocytosis of NPs is not only essential for the safety assessment of NPs but also helpful for guiding the design of safe and highly effective NP-based materials for various purposes. Herein, we review the current status and progress of studies on the exocytosis of NPs. Firstly, we introduce experimental procedures and considerations. Then, exocytosis mechanisms/pathways are summarized with a detailed introduction of the main pathways (lysosomal and endoplasmic reticulum/Golgi pathway) and the role of microtubules; the patterns of exocytosis kinetics are presented and discussed. Subsequently, the influencing factors (initial content and location of intracellular NPs, physiochemical properties of NPs, cell type, and extracellular conditions) are fully discussed. Although there are inconsistent results, some rules are obtained, like smaller and charged NPs are more easily excreted. Finally, the challenges and future directions in the field have been discussed.
Collapse
Affiliation(s)
| | | | | | | | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
23
|
Bazeli J, Banikazemi Z, Hamblin MR, Sharafati Chaleshtori R. Could probiotics protect against human toxicity caused by polystyrene nanoplastics and microplastics? Front Nutr 2023; 10:1186724. [PMID: 37492595 PMCID: PMC10363603 DOI: 10.3389/fnut.2023.1186724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Nanoplastics (NPs) and microplastics (MPs) made of polystyrene (PS) can be toxic to humans, especially by ingestion of plastic particles. These substances are often introduced into the gastrointestinal tract, where they can cause several adverse effects, including disturbances in intestinal flora, mutagenicity, cytotoxicity, reproductive toxicity, neurotoxicity, and exacerbated oxidative stress. Although there are widespread reports of the protective effects of probiotics on the harm caused by chemical contaminants, limited information is available on how these organisms may protect against PS toxicity in either humans or animals. The protective effects of probiotics can be seen in organs, such as the gastrointestinal tract, reproductive tract, and even the brain. It has been shown that both MPs and NPs could induce microbial dysbiosis in the gut, nose and lungs, and probiotic bacteria could be considered for both prevention and treatment. Furthermore, the improvement in gut dysbiosis and intestinal leakage after probiotics consumption may reduce inflammatory biomarkers and avoid unnecessary activation of the immune system. Herein, we show probiotics may overcome the toxicity of polystyrene nanoplastics and microplastics in humans, although some studies are required before any clinical recommendations can be made.
Collapse
Affiliation(s)
- Javad Bazeli
- Department of Medical Emergencies, School of Nursing, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, South Africa
| | - Reza Sharafati Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
24
|
Wang Q, Zuo Z, Zhang C, Ye B, Zou J. An effect assessment of microplastics and nanoplastics interacting with androstenedione on mosquitofish (Gambusia affinis). MARINE ENVIRONMENTAL RESEARCH 2023; 189:106062. [PMID: 37390515 DOI: 10.1016/j.marenvres.2023.106062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
An increasing number of microplastics have been detected in aquatic environments, causing various damage to organisms. The size of microplastics affects the toxicity once they enter the organisms. Meanwhile, there is an increasing variety of Endocrine-disrupting chemicals (EDCs) present in aquatic environments. Androstenedione (AED) is a typical EDC. In this study, we used polystyrene microspheres of 80 nm (NPs) and 8 μm (MPs) as materials to simulate environmental contaminants in the aquatic environment with AED. We used female mosquitofish (Gambusia affinis) as the research object to investigate the effects of microplastics on fish in waters containing AED. We compared different sizes of particles accumulation in some tissues of fish and variation of enzyme activities (SOD, LDH, CAT), and the content of MDA in the gut. MPs, NPs, and AED combined exposure test investigated mRNA profiles of immune-related genes (IL-1β, IL-6, IL-8, IL-10) and hormone receptor genes (ARα, ARβ, ERα, ERβ) in the liver of fish. Our results indicated that MPs emerged in various tissues (gill, gut, and liver) of mosquitofish. Besides, NPs and MPs caused enteric abnormal enzyme activity after 48 h of exposure, which was particularly pronounced in the MPs-AED group. MPs induced significant upregulation of inflammatory factors and gonadal factor genes after 96 h of exposure, which was more pronounced when co-exposed with AED. In conclusion, NPs and MPs caused mechanisms of immune damage and inflammatory response. MPs were found to be more likely to cause adverse reactions than NPs, and these responses were enhanced by the combined effects of AED. This study demonstrated that AED can exacerbate the negative effects of MPs and NPs on mosquitofish. It provided an important basis for the effective assessment of MPs and NPs on bioaccumulation and biochemical status of mosquitofish. Additionally, it serves as a foundation to investigate the interactive effects of microplastics and EDCs in living organisms.
Collapse
Affiliation(s)
- Qiujie Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiheng Zuo
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chaonan Zhang
- Zhejiang Ecological Civilization Academy, Zhejiang, 313000, Huzhou, China
| | - Bin Ye
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
25
|
Yang Y, Li R, Liu A, Xu J, Li L, Zhao R, Qu M, Di Y. How does the internal distribution of microplastics in Scylla serrata link with the antioxidant response in functional tissues? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121423. [PMID: 36906053 DOI: 10.1016/j.envpol.2023.121423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Crabs can live in diverse lifestyles in both water and benthic environments, which are the basin of microplastics (MPs) inputs. Edible crabs with large consuming quantity, e.g., Scylla serrata were subjected to accumulate MPs in their tissues from surrounding environments and generate biological damages. However, no related research has been conducted. In order to accurately assess the potential risks to both crabs and humans consuming MPs contaminated crabs, S. serrata were exposed to different concentrations (2, 200 and 20,000 μg/L) of polyethylene (PE) microbeads (10-45 μm) for 3 days. The physiological conditions of crabs and a series of biological responses, including DNA damage, antioxidant enzymes activities and their corresponding gene expressions in functional tissues (gills and hepatopancreas) were investigated. PE-MPs accumulated in all tissues of crabs with concentration- and tissue-dependent manner, which was assumed to be via the internal distribution initialized by gills' respiration, filtration and transportation. Significantly increased DNA damages were observed in both gills and hepatopancreas under exposures, however, the physiological conditions of crabs showed no dramatic alterations. Under low and middle concentration exposures, gills energetically activated the first line of antioxidant defense to against oxidative stress, e.g., superoxide dismutase (SOD) and catalase (CAT), but lipid peroxidation damage still occurred under high concentration exposure. In comparison, SOD and CAT composed antioxidant defense in hepatopancreas tended to collapse under severe MPs exposure and the defense mechanism attempted to switch to the secondary antioxidant response by compensatively stimulating the activities of glutathione S-transferase (GST), glutathione peroxidase (GPx) and the content of glutathione (GSH). The diverse antioxidant strategies in gills and hepatopancreas were proposed to be closely related to the accumulation capacity of tissues. The results confirmed the relation between PE-MPs exposure and antioxidant defense in S. serrata, and will help to clarify the biological toxicity and corresponding ecological risks.
Collapse
Affiliation(s)
- Yingli Yang
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Ruofan Li
- Ocean College, Zhejiang University, Zhoushan, 316000, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Ao Liu
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Jianzhou Xu
- Ocean College, Zhejiang University, Zhoushan, 316000, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Liya Li
- Ocean College, Zhejiang University, Zhoushan, 316000, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Ruoxuan Zhao
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Mengjie Qu
- Ocean College, Zhejiang University, Zhoushan, 316000, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Yanan Di
- Ocean College, Zhejiang University, Zhoushan, 316000, China; Hainan Institute of Zhejiang University, Sanya, 572024, China.
| |
Collapse
|
26
|
Gimondi S, Vieira de Castro J, Reis RL, Ferreira H, Neves NM. On the size-dependent internalization of sub-hundred polymeric nanoparticles. Colloids Surf B Biointerfaces 2023; 225:113245. [PMID: 36905835 DOI: 10.1016/j.colsurfb.2023.113245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
The understanding of the interaction between nanoparticles (NPs) and cells is crucial to design nanocarriers with high therapeutic relevance. In this study, we exploited a microfluidics device to synthesize homogeneous suspensions of NPs with ≈ 30, 50, and 70 nm of size. Afterward, we investigated their level and mechanism of internalization when exposed to different types of cells (endothelial cells, macrophages, and fibroblasts). Our results show that all NPs were cytocompatible and internalized by the different cell types. However, NPs uptake was size-dependent, being the maximum uptake efficiency observed for the 30 nm NPs. Moreover, we demonstrate that size can lead to distinct interactions with different cells. For instance, 30 nm NPs were internalized with an increasing trend over time by endothelial cells, while a steady and a decreasing trend were observed when incubated with LPS-stimulated macrophages and fibroblasts, respectively. Finally, the use of different chemical inhibitors (chlorpromazine, cytochalasin-D, and nystatin), and low temperature (4 °C) indicated that phagocytosis/micropinocytosis are the main internalization mechanism for all NPs sizes. However, different endocytic pathways were initiated in the presence of particular NP sizes. In endothelial cells, for example, caveolin-mediated endocytosis occurs primarily in the presence of 50 nm NPs, whereas clathrin-mediated endocytosis substantially promotes the internalization of 70 nm NPs. This evidence demonstrates the importance of size in the NPs design for mediating interaction with specific cell types.
Collapse
Affiliation(s)
- Sara Gimondi
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Joana Vieira de Castro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
27
|
Siddiqui SA, Khan S, Tariq T, Sameen A, Nawaz A, Walayat N, Oboturova NP, Ambartsumov TG, Nagdalian AA. Potential risk assessment and toxicological impacts of nano/micro-plastics on human health through food products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:361-395. [PMID: 36863839 DOI: 10.1016/bs.afnr.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The problem of environmental pollution with plastic is becoming more and more acute every year. Due to the low rate of decomposition of plastic, its particles get into food and harm the human body. This chapter focuses on the potential risks and toxicological effects of both nano and microplastics on human health. The main places of distribution of various toxicants along with the food chain have been established. The effects of some examples of the main sources of micro/nanoplastics on the human body are also emphasised. The processes of entry and accumulation of micro/nanoplastics are described, and the mechanism of accumulation that occurs inside the body is briefly explained. Potential toxic effects reported from studies on various organisms are highlighted as well.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany.
| | - Sipper Khan
- Institute of Agricultural Engineering Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Tayyaba Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Aysha Sameen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Asad Nawaz
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | | | | | | |
Collapse
|
28
|
Khan A, Jia Z. Recent insights into uptake, toxicity, and molecular targets of microplastics and nanoplastics relevant to human health impacts. iScience 2023; 26:106061. [PMID: 36818296 PMCID: PMC9929686 DOI: 10.1016/j.isci.2023.106061] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Microplastics and nanoplastics (M-NPLs) are ubiquitous environmentally, chemically, or mechanically degraded plastic particles. Humans are exposed to M-NPLs of various sizes and types through inhalation of contaminated air, ingestion of contaminated water and food, and other routes. It is estimated that Americans ingest tens of thousands to millions of M-NPLs particles yearly, depending on socioeconomic status, age, and gender. M-NPLs have spurred interest in toxicology because of their abundance, ubiquitous nature, and ability to penetrate bodily and cellular barriers, producing toxicological effects in cells, tissues, organs, and organ systems. The present review paper highlights: (1) The current knowledge in understanding the detrimental effects of M-NPLs in mouse models and human cell lines, (2) cellular organelle localization of M-NPLs, and the underlying uptake mechanisms focusing on endocytosis, (3) the possible pathways involved in M-NPLs toxicity, particularly reactive oxygen species, nuclear factor-erythroid factor 2-related factor 2 (NRF2), Wnt/β-Catenin, Nuclear Factor Kappa B (NF-kB)-regulated inflammation, apoptosis, and autophagy signaling. We also highlight the potential role of M-NPLs in increasing the incubation time, spread, and transport of the COVID-19 virus. Finally, we discuss the future prospects in this field.
Collapse
Affiliation(s)
- Ajmal Khan
- Department of Biology, University of North Carolina at Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC 27412, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC 27412, USA
| |
Collapse
|
29
|
Han S, da Costa Marques R, Simon J, Kaltbeitzel A, Koynov K, Landfester K, Mailänder V, Lieberwirth I. Endosomal sorting results in a selective separation of the protein corona from nanoparticles. Nat Commun 2023; 14:295. [PMID: 36653346 PMCID: PMC9847456 DOI: 10.1038/s41467-023-35902-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
The formation of the protein corona is a well-known effect when nanoparticles (NP) are exposed to biological environments. The protein corona is the most important factor, which determines the rate and route of endocytosis, and decisively impacts cellular processes and even the release of the active pharmaceutical ingredient from the nanoparticles. While many studies concentrate on the effect of the protein corona formation extracellularly or the uptake consequences, little is known about the fate of the protein corona inside of cells. Here, we reconstruct for the first time the separation of the protein corona from the NPs by the cell and their further fate. Ultimately, the NPs and protein corona are separated from each other and end up in morphologically different cellular compartments. The cell directs the NPs towards recycling endosomes, whereas the protein corona gathers in multivesicular bodies. From this, we conclude that the NPs are prepared for subsequent exocytosis, while the protein corona remains in the cell and is finally metabolized there.
Collapse
Affiliation(s)
- Shen Han
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Richard da Costa Marques
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Johanna Simon
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Anke Kaltbeitzel
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| |
Collapse
|
30
|
Tang R, Zhu D, Luo Y, He D, Zhang H, El-Naggar A, Palansooriya KN, Chen K, Yan Y, Lu X, Ying M, Sun T, Cao Y, Diao Z, Zhang Y, Lian Y, Chang SX, Cai Y. Nanoplastics induce molecular toxicity in earthworm: Integrated multi-omics, morphological, and intestinal microorganism analyses. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130034. [PMID: 36206716 DOI: 10.1016/j.jhazmat.2022.130034] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/02/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
The toxicity of nanoplastics (NPs) at relatively low concentrations to soil fauna at different organismal levels is poorly understood. We investigated the responses of earthworm (Eisenia fetida) to polystyrene NPs (90-110 nm) contaminated soil at a relatively low concentration (0.02 % w:w) based on multi-omics, morphological, and intestinal microorganism analyses. Results showed that NPs accumulated in earthworms' intestinal tissues. The NPs damaged earthworms' digestive and immune systems based on injuries of the intestinal epithelium and chloragogenous tissues (tissue level) and increased the number of changed genes in the digestive and immune systems (transcriptome level). The NPs reduced gut microorganisms' diversity (Shannon index) and species richness (Chao 1 index). Proteomic, transcriptome, and histopathological analyses showed that earthworms suffered from oxidative and inflammatory stresses. Moreover, NPs influenced the osmoregulatory metabolism of earthworms as NPs damaged intestinal epithelium (tissue level), increased aldosterone-regulated sodium reabsorption (transcriptome level), inositol phosphate metabolism (proteomic level) and 2-hexyl-5-ethyl-furan-3-sulfonic acid, and decreased betaine and myo-inositol concentrations (metabolic level). Transcriptional-metabolic and transcriptional-proteomic analyses revealed that NPs disrupted earthworm carbohydrate and arachidonic acid metabolisms. Our multi-level investigation indicates that NPs at a relatively low concentration induced toxicity to earthworms and suggests that NPs pollution has significant environmental toxicity risks for soil fauna.
Collapse
Affiliation(s)
- Ronggui Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Defu He
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Haibo Zhang
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Ali El-Naggar
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Kumuduni Niroshika Palansooriya
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Keyi Chen
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yan Yan
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinghang Lu
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Minshen Ying
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Tao Sun
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuntao Cao
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhihan Diao
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuxin Zhang
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yichen Lian
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Renewable Resources, University of Alberta, Edmonton T6G2E3, Canada.
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
31
|
Sun N, Shi H, Li X, Gao C, Liu R. Combined toxicity of micro/nanoplastics loaded with environmental pollutants to organisms and cells: Role, effects, and mechanism. ENVIRONMENT INTERNATIONAL 2023; 171:107711. [PMID: 36566717 DOI: 10.1016/j.envint.2022.107711] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Micro/nanoplastics (MPs/NPs) are ubiquitous in the environment and living organisms have been exposed to these substances for a long time. When MPs/NPs enter different organisms, they transport various pollutants, including heavy metals, persistent organic pollutants, drugs, bacteria, and viruses, from the environment. On this basis, this paper summarizes the combined toxicity induced by MPs/NPs accumulating contaminants from the environment and entering organisms through a systematic review of 162 articles. Moreover, the factors influencing toxic interactions are critically discussed, thus highlighting the dominant role of the relative concentrations of contaminants in the combined toxic effects. Furthermore, for the first time, we describe the threats posed by MPs/NPs combined with other pollutants to human health, as well as their cytotoxic behavior and mechanism. We found that the "Trojan horse" effect of nanoplastics can increase the bioaccessibility of environmental pollutants, thus increasing the carcinogenic risk to humans. Simultaneously, the complex pollutants entering the cells are observed to be constantly dissociated due to the transport of lysosomes. However, current research on the intracellular release of MP/NP-loaded pollutants is relatively poor, which hinders the accurate in vivo toxicity assessment of combined pollutants. Based on the findings of our critical review, we recommend analyzing the toxic effects by clarifying the dose relationship of each component pollutant in cells, which is challenging yet crucial to exploring the toxic mechanism of combined pollution. In the future, our findings can contribute to establishing a system modeling the complete load-translocation toxicological mechanism of MP/NP-based composite pollutants.
Collapse
Affiliation(s)
- Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
32
|
Yang M, Wang WX. Recognition and movement of polystyrene nanoplastics in fish cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120627. [PMID: 36370978 DOI: 10.1016/j.envpol.2022.120627] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Although nanoplastics are being increasingly scrutinized, little is known about their kinetic behavior in living organisms, especially in cellular systems. Herein, nonspecific interactions of three polystyrene nanoplastics (pristine-PS, NH2-PS, and COOH-PS, with size range of 90-100 nm and at concentrations of 0-100 μg mL-1) with zebrafish cells were quantified for their cellular uptake and exocytosis. Cell uptake of nanoplastics reached a peak within 2 h and then decreased. The overall nanoplastics uptake was dominated by PS-particle internalization. The estimated uptake rate was comparable among the different types of PS (pristine-PS, NH2-PS, and COOH-PS), but the uptake capacity was related to their functionality. The clathrin-mediated and caveolae-mediated pathways were mainly involved in the uptake of the three nanoplastics. The internalized PS-particles were initially delivered to the cytoplasm but then transported to lysosomes using energy. Meanwhile, these PS particles were released by the cells via energy-free penetration and energy-dependent lysosomal exocytosis. PS-particles were removed by the cells at a relatively slow rate, and the estimated retention half-lives of these PS-particles were 10.1 h, 12.0 h and 15.1 h for pristine-PS, NH2-PS and COOH-PS particles, respectively, in fish cells based on our kinetic measurements. Intracellular trajectory modeling of nanoplastics movement is critical for the environmental and human health risk assessment.
Collapse
Affiliation(s)
- Meng Yang
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
33
|
Tentellino C, Tipping WJ, McGee LMC, Bain LM, Wetherill C, Laing S, Tyson-Hirst I, Suckling CJ, Beveridge R, Scott FJ, Faulds K, Graham D. Ratiometric imaging of minor groove binders in mammalian cells using Raman microscopy. RSC Chem Biol 2022; 3:1403-1415. [PMID: 36544571 PMCID: PMC9709774 DOI: 10.1039/d2cb00159d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/23/2022] [Indexed: 02/02/2023] Open
Abstract
Quantitative drug imaging in live cells is a major challenge in drug discovery and development. Many drug screening techniques are performed in solution, and therefore do not consider the impact of the complex cellular environment in their result. As such, important features of drug-cell interactions may be overlooked. In this study, Raman microscopy is used as a powerful technique for semi-quantitative imaging of Strathclyde-minor groove binders (S-MGBs) in mammalian cells under biocompatible imaging conditions. Raman imaging determined the influence of the tail group of two novel minor groove binders (S-MGB-528 and S-MGB-529) in mammalian cell models. These novel S-MGBs contained alkyne moieties which enabled analysis in the cell-silent region of the Raman spectrum. The intracellular uptake concentration, distribution and mechanism were evaluated as a function of the pK a of the tail group, morpholine and amidine, for S-MGB-528 and S-MGB-529, respectively. Although S-MGB-529 had a higher binding affinity to the minor groove of DNA in solution-phase measurements, the Raman imaging data indicated that S-MGB-528 showed a greater degree of intracellular accumulation. Furthermore, using high resolution stimulated Raman scattering (SRS) microscopy, the initial localisation of S-MGB-528 was shown to be in the nucleus before accumulation in the lysosome, which was demonstrated using a multimodal imaging approach. This study highlights the potential of Raman spectroscopy for semi-quantitative drug imaging studies and highlights the importance of imaging techniques to investigate drug-cell interactions, to better inform the drug design process.
Collapse
Affiliation(s)
- Christian Tentellino
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde Glasgow G1 1RD UK
| | - William J. Tipping
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of StrathclydeGlasgow G1 1RDUK
| | - Leah M. C. McGee
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of StrathclydeGlasgowG1 1XLUK
| | - Laura M. Bain
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of StrathclydeGlasgowG1 1XLUK
| | - Corinna Wetherill
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde Glasgow G1 1RD UK
| | - Stacey Laing
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde Glasgow G1 1RD UK
| | - Izaak Tyson-Hirst
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde Glasgow G1 1XL UK
| | - Colin J. Suckling
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of StrathclydeGlasgowG1 1XLUK
| | - Rebecca Beveridge
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde Glasgow G1 1XL UK
| | - Fraser J. Scott
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of StrathclydeGlasgowG1 1XLUK
| | - Karen Faulds
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde Glasgow G1 1RD UK
| | - Duncan Graham
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde Glasgow G1 1RD UK
| |
Collapse
|
34
|
Bilan MV, Lieshchova MA, Brygadyrenko VV. The effect of polystyrene foam in different doses on the blood parameters and relative mass of internal organs of white mice. BIOSYSTEMS DIVERSITY 2022. [DOI: 10.15421/012243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Due to their durability, versatility and economy, plastic products are widely used in all spheres of human life. Despite the inertness of polymers, recent studies show the ability of microplastic to overcome natural tissue barriers, accumulate in the animal’s body, affect metabolism and change the intestinal microbiota, negatively affecting it. In a 42-day experiment, changes in the internal organs’ relative mass, blood biochemical and morphological parameters of white mice were established under the influence of different doses of polystyrene foam in their diet. Four groups of white mice consumed crushed polystyrene foam particles (10%, 1% and 0.1% by weight of the feed, control group without the addition of polystyrene foam). At the end of the experiment, the morphofunctional state of the internal organs was determined by the organ mass index and blood biochemical parameters. Adding crushed polystyrene foam to the feed in an amount of 1% causes a significant decrease in the mass index of the heart and stomach, 10% – only the heart, and 0.1% – does not affect this indicator. Polystyrene foam had a significant effect on blood biochemical parameters, regardless of the dose, causing an increase in the activity of aspartate aminotransferase against the background of a decrease in the activity of alkaline phosphatase. The content of total bilirubin, urea, urea nitrogen and cholesterol decreased, and the concentration of creatinine and total protein increased (due to the albumin fraction). The use of crushed polystyrene foam in mice did not cause significant changes in the blood morphological composition, except for a dose-dependent increase in the number of monocytes. In the future, it is planned to determine histological, histochemical and immunohistochemical changes in the organs of laboratory animals under the influence of plastic in a laboratory experiment.
Collapse
|
35
|
Leroux N, Hosseinzadeh M, Katsumiti A, Porte C, Cajaraville MP. Lipidomic analysis of mussel hemocytes exposed to polystyrene nanoplastics. ENVIRONMENTAL RESEARCH 2022; 214:113763. [PMID: 35779621 DOI: 10.1016/j.envres.2022.113763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Plastics production and usage has exponentially increased in the last decades around the world. Due to the insufficient waste management, a significant amount of plastic ends up in the environment, where they tend to fragment into micro- and nano-plastics (NPs), and accumulate in aquatic organisms with still unknown effects. Although studies have indicated that lipid metabolism is a main target of NPs, this mechanism has not been extensively explored. In this study, we evaluated changes in the lipidome of mussel hemocytes after exposure to polystyrene (PS) NPs of 50 and 500 nm, at two different concentrations (106 and 109 particles/mL) for 24 h. The lipidome of hemocytes, analyzed by FIA-ESI (±) Orbitrap, was characterized by a relatively high abundance of cholesteryl esters (CEs) and phosphatidylcholine-plasmalogens (PC-Os/PC-Ps), involved in cell's defense against oxidative stress and membrane reorganization. In hemocytes exposed to PS NPs, a number of highly unsaturated membrane lipids were down-regulated, indicating a reorganization of the cell membranes after exposure to the particles and an oxidation of lipids with a high number of double bonds. This reduction was more evident after exposure to 50 nm NPs -both concentrations- and 500 nm NPs -high concentration-. The analysis of culture medium suggested increased release of vesicles enriched in triglycerides (TGs). The relevance of these responses to NP exposure on the immune function of hemocytes remains to be investigated.
Collapse
Affiliation(s)
- Nathalie Leroux
- Environmental Chemistry Department, IDAEA-CSIC-, C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Mahboubeh Hosseinzadeh
- Environmental Chemistry Department, IDAEA-CSIC-, C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Alberto Katsumiti
- CBET Research Group, Dept. Zoology and Animal Cell Biology; Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, Sarriena z/g, E-48940, Leioa, Basque Country, Spain; Biotechnology Division, GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio, Spain
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA-CSIC-, C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Miren P Cajaraville
- CBET Research Group, Dept. Zoology and Animal Cell Biology; Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, Sarriena z/g, E-48940, Leioa, Basque Country, Spain.
| |
Collapse
|
36
|
Ramachandraiah K, Ameer K, Jiang G, Hong GP. Micro- and nanoplastic contamination in livestock production: Entry pathways, potential effects and analytical challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157234. [PMID: 35810901 DOI: 10.1016/j.scitotenv.2022.157234] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The abundant and widespread presence of particulate plastics in the environment is considered an area of increasing environmental, animal and human health concern. Despite the abundance and the potential to cause deleterious biological effects, studies related to the impact of micro and nanoplastics (MNPs) on livestock animals are limited. This review evaluates the sources and entry pathways of particulate plastics in all the types of livestock production systems. The potential health effects of MNPs on mouse models, ruminant animals and a few other livestock animals are discussed. Since evaluation of MNPs in almost all types of matrices in hindered by analytical challenges, this review also evaluates the commonly used methods, emerging techniques, and quality control/quality assurance (QC/QA) procedures. Plastic mulching, fragmentation of plastic wastes and stream water runoff have been identified as major routes of MNPs entry in grazing-based and mixed livestock production systems. Notwithstanding the controlled indoor environment and relatively efficient waste management, MNPs have been detected in industrial livestock systems. The bioaccumulation and biomagnification of chemical toxicants can exacerbate the adverse effects of MNPs on higher trophic level species. Although there are several methods for the analysis of MNPs, dearth of standardized methods, certified reference materials, MPs standards, and global database libraries are major impediments. The adverse effects of MNPs on the internal organs of different livestock animals have to be studied using large sample sizes and without raising ethical concerns. Importantly, investigations on the accurate quantification of MNPs and its adverse effects in various livestock animals using rapid, cost-effective and robust analytical methods are required.
Collapse
Affiliation(s)
- Karna Ramachandraiah
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Guihun Jiang
- School of Public Health, Jilin Medical University, Jilin 132013, China
| | - Geun-Pyo Hong
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
37
|
Yin J, Ju Y, Qian H, Wang J, Miao X, Zhu Y, Zhou L, Ye L. Nanoplastics and Microplastics May Be Damaging Our Livers. TOXICS 2022; 10:toxics10100586. [PMID: 36287866 PMCID: PMC9610555 DOI: 10.3390/toxics10100586] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/01/2023]
Abstract
Plastics in the environment can be degraded and even broken into pieces under the action of natural factors, and the degraded products with a particle size of less than 5 mm are called microplastics (MPs). MPs exist in a variety of environmental media that come into contact with the human body. It can enter the body through environmental media and food chains. At present, there are many studies investigating the damage of MPs to marine organisms and mammals. The liver is the largest metabolizing organ and plays an important role in the metabolism of MPs in the body. However, there is no available systematic review on the toxic effects of MPs on the liver. This paper summarizes the adverse effects and mechanisms of MPs on the liver, by searching the literature and highlighting the studies that have been published to date, and provides a scenario for the liver toxicity caused by MPs.
Collapse
Affiliation(s)
- Jianli Yin
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Ye Ju
- School of Public Health, Jilin University, Changchun 130021, China
| | - Honghao Qian
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Jia Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Xiaohan Miao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Ying Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
38
|
Steckiewicz KP, Adamska A, Narajczyk M, Megiel E, Inkielewicz-Stepniak I. Fluoride enhances polystyrene nanoparticles cytotoxicity in colonocytes in vitro model. Chem Biol Interact 2022; 367:110169. [PMID: 36165825 DOI: 10.1016/j.cbi.2022.110169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
Human gastrointestinal cells can be exposed to different xenobiotics present in food or drinking water. In this work, we assessed the cytotoxicity of polystyrene nanoparticles (PS-NPs) and how it is impacted by fluoride (F-) presence. We decided to examine PS-NPs and F- which can be easily found in drinking water and food. Commercially available amine-modified 100 nm PS-NPs were used in the study. Scanning Electron Microscopy with Electron Dispersive Spectroscopy (SEM-EDS) and Dynamic Light Scattering (DLS) were used to characterize PS-NPs. The colon cell lines (HT-29, Caco-2, CCD 841 CoN) were used. Cytotoxicity of PS-NPs and F- alone or in co-exposition were assessed with MTT assay in a time- and concentration-dependent manner. Flow cytometry was used to measure reactive oxygen species (ROS) production, cell cycle distribution, and apoptosis analysis. Transmission electron microscopy (TEM) was used to determine whether PS-NPs and/or F- can cause ultrastructure changes in the cells. We have shown that PS-NPs are cytotoxic to human colon cells in a time- and concentration-dependent manner. PS-NPs did not impact neither intracellular ROS production nor the cells cell cycle distribution. However, if HT-29 cells were co-exposed to PS-NPs and F-, an increased number of cells in G0/G1 phase and decreased number of cells in G2/M were observed. PS-NPs can cause apoptosis in HT-29 cells, this effect was enhanced if cells were co-exposed to PS-NP and F-. PS-NPs were internalised by the cells and caused ultrastructure changes. Fluoride itself (1 mM) was not cytotoxic to the cells and did not cause any changes in the ultrastructure of the cells. We have proven that polystyrene nanoparticles can be cytotoxic to human gastrointestinal cells and this effect is enhanced by fluoride.
Collapse
Affiliation(s)
- Karol P Steckiewicz
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; Department of Anesthesiology and Intensive Therapy, Medical University of Gdansk, Gdansk, Poland
| | - Anna Adamska
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
39
|
Bonanomi M, Salmistraro N, Porro D, Pinsino A, Colangelo AM, Gaglio D. Polystyrene micro and nano-particles induce metabolic rewiring in normal human colon cells: A risk factor for human health. CHEMOSPHERE 2022; 303:134947. [PMID: 35580641 DOI: 10.1016/j.chemosphere.2022.134947] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Polystyrene is a thermoplastic polymer widely used in commercial products. Like all plastics, polystyrene can be degraded into microplastic and nanoplastic particles and ingested via food chain contamination. Although the ecological impact due to plastic contamination is well known, there are no studies indicating a carcinogenic potential of polystyrene microplastics (MPs) and nanoplastics (NPs). Here, we evaluated the effects of the MPs and NPs on normal human intestinal CCD-18Co cells. Our results show that internalization of NPs and MPs induces metabolic changes under both acute and chronic exposure by inducing oxidative stress, increasing glycolysis via lactate to sustain energy metabolism and glutamine metabolism to sustain anabolic processes. We also show that this decoupling of nutrients mirrors the effect of the potent carcinogenic agent azoxymethane and HCT15 colon cancer cells, carrying out the typical strategy of cancer cells to optimize nutrients utilization and allowing metabolic adaptation to environmental stress conditions. Taken together our data provide new evidence that chronic NPs and MPs exposure could act as cancer risk factor for human health.
Collapse
Affiliation(s)
- Marcella Bonanomi
- ISBE. IT/ Centre of Systems Biology, Piazza Della Scienza 4, 20126, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Noemi Salmistraro
- ISBE. IT/ Centre of Systems Biology, Piazza Della Scienza 4, 20126, Milan, Italy; Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, MI, Italy
| | - Danilo Porro
- ISBE. IT/ Centre of Systems Biology, Piazza Della Scienza 4, 20126, Milan, Italy; Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, MI, Italy
| | - Annalisa Pinsino
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Palermo, PA, Italy
| | - Anna Maria Colangelo
- ISBE. IT/ Centre of Systems Biology, Piazza Della Scienza 4, 20126, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Daniela Gaglio
- ISBE. IT/ Centre of Systems Biology, Piazza Della Scienza 4, 20126, Milan, Italy; Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, MI, Italy.
| |
Collapse
|
40
|
Microplastics in Internal Tissues of Companion Animals from Urban Environments. Animals (Basel) 2022; 12:ani12151979. [PMID: 35953968 PMCID: PMC9367336 DOI: 10.3390/ani12151979] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Microplastics are widespread anthropogenic contaminants, imposing a potential threat to organisms. A preliminary study was conducted to assess microplastics in postmortem samples of internal tissues of companion animals. Suspected microplastics were observed in the internal tissues of cats and dogs. Suspected microplastics were found in 35 out of 49 animals and 80 out of 242 samples. Particles sized 1–10 µm comprised 50.3% of the suspected microplastics. The number of particles found was very low and analytical methods must still be developed to improve the characterization and quantification of smaller-sized factions of microplastics. Moreover, this study suggests that microplastics may be internalized and distributed to the internal tissues of terrestrial vertebrates. Abstract Companion animals living in urban areas are exposed to environmental contaminants, which may include microplastics. A preliminary study was conducted by collecting postmortem samples from the internal tissue (lungs, ileum, liver, kidney, and blood clots) of 25 dogs (Canis familiaris) and 24 cats (Felis catus) living in an urban environment in Porto metropolitan area, Portugal. Suspected microplastics were found in 80 samples from 35 animals (18 cats and 17 dogs), often occurring in more than one tissue of the same animal (71.4%), primarily under small sizes (50.3% as 1–10 µm). Micro-Raman spectroscopy confirmed a fraction of particles as common polymer types (e.g., polyethylene terephthalate). However, the number of particles was very low. This study highlights the possibilities of the internalization and distribution of microplastics in the internal tissues of terrestrial vertebrates.
Collapse
|
41
|
Schröter L, Ventura N. Nanoplastic Toxicity: Insights and Challenges from Experimental Model Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201680. [PMID: 35810458 DOI: 10.1002/smll.202201680] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastic particles (NPs) can be produced or derived from the degradation of several daily used products and can therefore be found in the air, water, and food. Every day, these microscopic particles are confronted by different routes of exposure. Recent investigations have shown the internalization of these particles, differing in size and modification, in vivo in aquatic organisms and terrestrial organisms, as well as in vitro in different human cell lines. During the last years, the number of studies investigating the effects of NPs using widely different model systems and experimental approaches is exponentially growing, thus providing information about NPs, especially about polystyrene particle toxicity on health. To facilitate the grasping of the most relevant information, an overview is provided on the toxic effects of NPs coming from studies in cellular systems and in vivo in model organisms and on aspects which can be of particular relevance for particle toxicity (e.g., particle internalization mechanisms and structural modifications). Major achievements and gaps in the field as well as the point of view on how more systematic studies and exploitation of in vivo model organisms may improve the knowledge on important aspects of NPs are also pointed out.
Collapse
Affiliation(s)
- Laura Schröter
- IUF-Leibniz Institute for Environmental Medicine at the Heinrich Heine University Düsseldorf, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225, Düsseldorf, Germany
| |
Collapse
|
42
|
Adib D, Mafigholami R, Tabeshkia H, Walker TR. Optimization of polypropylene microplastics removal using conventional coagulants in drinking water treatment plants via response surface methodology. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:565-577. [PMID: 35669805 PMCID: PMC9163244 DOI: 10.1007/s40201-022-00803-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/02/2022] [Indexed: 05/12/2023]
Abstract
Background and purpose The ubiquitous presence of microplastics (MPs) in aquatic environments has been studied widely. Due to toxicological impacts of MPs and associated contaminants, it is crucial to understand the performance of MPs removal in drinking water treatment plants (DWTPs). Few studies have investigated removal characteristics of MPs via coagulation/flocculation processes, yet removal characterization of polypropylene microplastics (PPMPs) in this process is poorly understood. This study aims to optimize coagulation of virgin PPMPs in conventional DWTPs. Methods In this study, samples were synthesized through response surface methodology (RSM), polyaluminium chloride (PACl) was applied as a conventional coagulant to remove PPMPs in the coagulation/flocculation process, which has the least density among common polymers and is one of the most abundant manufactured polymers worldwide. A particle size analyzer (PSA) was used to measure floc size at different pH levels. Additionally, a zeta potential analyzer was used to measure stability of the flocs at different pH. Results Base on the experimental range in Design-Expert, results revealed that the optimum removal rate was predicted to be at pH 9, PACl concentration of 200 ppm, polyacrylamide (PAM) concentration of 21 ppm, and PPMPs size of d < 0.25 mm. According to the predicted optimum condition, actual and predicted removal rates were 18.00 ± 1.43% and 19.69%, respectively. Conclusion According to this study, PACl is not capable of efficiently removing virgin PPMPs in DWTPs, thereby exposing humans to eco-toxicological impacts of PPMPs through tap water.
Collapse
Affiliation(s)
- Danial Adib
- Department of Environment, Islamic Azad University, West Tehran Branch, Tehran, Iran
| | - Roya Mafigholami
- Department of Environment, Islamic Azad University, West Tehran Branch, Tehran, Iran
| | - Hossein Tabeshkia
- Department of Environment, Islamic Azad University, West Tehran Branch, Tehran, Iran
| | - Tony R. Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Nova Scotia B3H 4R2 Canada
| |
Collapse
|
43
|
Li Y, Liu Z, Jiang Q, Ye Y, Zhao Y. Effects of nanoplastic on cell apoptosis and ion regulation in the gills of Macrobrachium nipponense. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118989. [PMID: 35157932 DOI: 10.1016/j.envpol.2022.118989] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/24/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastic, ubiquitous in aquatic environments, are raising concern worldwide. However, studies on nanoplastic exposure and its effects on ion transport in aquatic organisms are limited. In this study, the juvenile oriental river shrimp, Macrobrachium nipponense, was exposed to five levels of nanoplastic concentrations (0, 5, 10, 20, 40 mg/L) in order to evaluate cell viability, ion content, ion transport, ATPase activity, and related gene expression. The results showed that the apoptosis rate was higher in the high concentration nanoplastic group (40 mg/L) compared to the low concentration nanoplastic group (5 mg/L) and the control group (0 mg/L). The ion content of sodium (Na+), potassium (K+), chloride (Cl-), and calcium (Ca2+) showed a decreasing trend in gill tissue compared to the control group. The Na+K+-ATPase, V(H)-ATPase, Ca2+Mg2+-ATPase, and total ATPase activities in the gills of M. nipponense showed a general decrease with the increasement of nanoplastic concentration and time of exposure. When increasing nanoplastic concentration, the expression of ion transport-related genes in the gills of M. nipponense showed first rise then descend trend. As elucidated by the results, high nanoplastic concentrations have negative effect on cell viability, ion content, ion transport ATPase activity, and ion transport-related gene expression in the gills of M. nipponense. This research provides a theoretical foundation for the toxic effects of nanoplastic in aquaculture.
Collapse
Affiliation(s)
- Yiming Li
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Zhiquan Liu
- School of Life and Environmental Sciences, Hangzhou Normal University, 310018, Hangzhou, Zhejiang, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
44
|
Sterolight as imaging tool to study sterol uptake, trafficking and efflux in living cells. Sci Rep 2022; 12:6264. [PMID: 35428843 PMCID: PMC9012876 DOI: 10.1038/s41598-022-10134-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Information about cholesterol subcellular localization and transport pathways inside cells is essential for understanding and treatment of cholesterol-related diseases. However, there is a lack of reliable tools to monitor it. This work follows the fate of Sterolight, a BODIPY-labelled sterol, within the cell and demonstrates it as a suitable probe for visualization of sterol/lipid trafficking. Sterolight enters cells through an energy-independent process and knockdown experiments suggest caveolin-1 as its potential cellular carrier. Intracellular transport of Sterolight is a rapid process, and transfer from ER and mitochondria to lysosomes and later to lipid droplets requires the participation of active microtubules, as it can be inhibited by the microtubule disruptor nocodazole. Excess of the probe is actively exported from cells, in addition to being stored in lipid droplets, to re-establish the sterol balance. Efflux occurs through a mechanism requiring energy and may be selectively poisoned with verapamil or blocked in cells with mutated cholesterol transporter NPC1. Sterolight is efficiently transferred within and between different cell populations, making it suitable for monitoring numerous aspects of sterol biology, including the live tracking and visualization of intracellular and intercellular transport.
Collapse
|
45
|
Dang F, Wang Q, Huang Y, Wang Y, Xing B. Key knowledge gaps for One Health approach to mitigate nanoplastic risks. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:11-22. [PMID: 38078201 PMCID: PMC10702905 DOI: 10.1016/j.eehl.2022.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/25/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2023]
Abstract
There are increasing concerns over the threat of nanoplastics to environmental and human health. However, multidisciplinary barriers persist between the communities assessing the risks to environmental and human health. As a result, the hazards and risks of nanoplastics remain uncertain. Here, we identify key knowledge gaps by evaluating the exposure of nanoplastics in the environment, assessing their bio-nano interactions, and examining their potential risks to humans and the environment. We suggest considering nanoplastics a complex and dynamic mixture of polymers, additives, and contaminants, with interconnected risks to environmental and human health. We call for comprehensive integration of One Health approach to produce robust multidisciplinary evidence to nanoplastics threats at the planetary level. Although there are many challenges, this holistic approach incorporates the relevance of environmental exposure and multi-sectoral responses, which provide the opportunity to identify the risk mitigation strategies of nanoplastics to build resilient health systems.
Collapse
Affiliation(s)
- Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingyu Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingnan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
46
|
Salimi A, Alavehzadeh A, Ramezani M, Pourahmad J. Differences in sensitivity of human lymphocytes and fish lymphocytes to polyvinyl chloride microplastic toxicity. Toxicol Ind Health 2022; 38:100-111. [DOI: 10.1177/07482337211065832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polyvinyl chloride (PVC) microplastics are emerging contaminants affecting biological wastewater treatment processes. So far, the toxicological investigation of PVC microplastics usually focused on the anaerobic and denitrifying bacteria. It seems that the primary lymphocytes isolated from peripheral blood are more sensitive than most other organ cell types in vitro; therefore, the aim of this study was to assess the cytotoxicity of PVC microplastic on human and fish blood lymphocytes as a useful ex vivo model for accelerated human toxicity studies. Using biochemical analyses, we showed human lymphocytes are more sensitive to toxic effects of PVC microplastic than fish lymphocytes. Our result showed that addition of PVC microplastic at 24, 48, and 96 μ g/ml for 3 h to human blood lymphocytes induced cytotoxicity. The PVC microplastic-induced cytotoxicity on human blood lymphocytes was associated with intracellular reactive oxygen species (ROS) formation, lysosomal membrane injury, mitochondrial membrane potential (MMP) collapse, depletion of glutathione, and lipid peroxidation. According to our results, PVC microplastic particles induce oxidative stress and organelle damage in human lymphocytes, while these significant alterations in toxicity parameters in PVC microplastic-treated fish lymphocytes were not observed. Finally, our findings suggest that human lymphocytes are more sensitive to PVC microplastic toxicity compared with fish lymphocytes.
Collapse
Affiliation(s)
- Ahmad Salimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical SciencesRINGGOLD, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Iran
| | - Ali Alavehzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maral Ramezani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Veszelka S, Mészáros M, Porkoláb G, Szecskó A, Kondor N, Ferenc G, Polgár TF, Katona G, Kóta Z, Kelemen L, Páli T, Vigh JP, Walter FR, Bolognin S, Schwamborn JC, Jan JS, Deli MA. A Triple Combination of Targeting Ligands Increases the Penetration of Nanoparticles across a Blood-Brain Barrier Culture Model. Pharmaceutics 2021; 14:pharmaceutics14010086. [PMID: 35056983 PMCID: PMC8778049 DOI: 10.3390/pharmaceutics14010086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/30/2022] Open
Abstract
Nanosized drug delivery systems targeting transporters of the blood-brain barrier (BBB) are promising carriers to enhance the penetration of therapeutics into the brain. The expression of solute carriers (SLC) is high and shows a specific pattern at the BBB. Here we show that targeting ligands ascorbic acid, leucine and glutathione on nanoparticles elevated the uptake of albumin cargo in cultured primary rat brain endothelial cells. Moreover, we demonstrated the ability of the triple-targeted nanovesicles to deliver their cargo into midbrain organoids after crossing the BBB model. The cellular uptake was temperature- and energy-dependent based on metabolic inhibition. The process was decreased by filipin and cytochalasin D, indicating that the cellular uptake of nanoparticles was partially mediated by endocytosis. The uptake of the cargo encapsulated in triple-targeted nanoparticles increased after modification of the negative zeta potential of endothelial cells by treatment with a cationic lipid or after cleaving the glycocalyx with an enzyme. We revealed that targeted nanoparticles elevated plasma membrane fluidity, indicating the fusion of nanovesicles with endothelial cell membranes. Our data indicate that labeling nanoparticles with three different ligands of multiple transporters of brain endothelial cells can promote the transfer and delivery of molecules across the BBB.
Collapse
Affiliation(s)
- Szilvia Veszelka
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
- Correspondence: (S.V.); (M.A.D.)
| | - Mária Mészáros
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
| | - Gergő Porkoláb
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
- Doctoral School of Biology, University of Szeged, Dugonics tér 13, H-6720 Szeged, Hungary
| | - Anikó Szecskó
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
| | - Nóra Kondor
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
| | - Györgyi Ferenc
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Tamás F. Polgár
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
| | - Gábor Katona
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Zoltán Kóta
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
| | - Lóránd Kelemen
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
| | - Tibor Páli
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
| | - Judit P. Vigh
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
- Doctoral School of Biology, University of Szeged, Dugonics tér 13, H-6720 Szeged, Hungary
| | - Fruzsina R. Walter
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 4365 Belvaux, Luxembourg; (S.B.); (J.C.S.)
| | - Jens C. Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 4365 Belvaux, Luxembourg; (S.B.); (J.C.S.)
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Mária A. Deli
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
- Correspondence: (S.V.); (M.A.D.)
| |
Collapse
|
48
|
Adib D, Mafigholami R, Tabeshkia H. Identification of microplastics in conventional drinking water treatment plants in Tehran, Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1817-1826. [PMID: 34900309 PMCID: PMC8617154 DOI: 10.1007/s40201-021-00737-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/04/2021] [Indexed: 05/06/2023]
Abstract
The presence of microplastics (MPs), as an emerging pollutant is a growing concern in drinking water, yet most of the studies have been carried out in surface waters and wastewater treatment plants and there are few studies on MPs in drinking water treatment plants (DWTPs). This study investigates these particles in three different conventional DWTPs in the city of Tehran, Iran, and aims to analyze these particles down to the size of 1 µm. A scanning electron microscope was utilized in this study to quantitatively analyze MPs. Accordingly, the average abundance of MPs in raw and treated water samples varied from 1996 ± 268 to 2808 ± 80 MPs L-1 and 971 ± 103 to 1401 ± 86 MPs L-1, respectively. While particles smaller than 10 µm comprised 65-87% of MPs. Moreover, µ-Raman spectroscopy was used to characterize MPs. As the results, polypropylene, polyethylene terephthalate, and polyethylene were the most abundant identified polymers among MPs, comprising more than 53% of particles. Additionally, MPs were categorized as fibers, fragments, and spheres. This study fills the knowledge gap of MPs presence in Tehran conventional DWTPs which is of high importance since they supply drinking water for more than 8 million people and investigates the performance of conventional DWTPs in removing MPs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-021-00737-3.
Collapse
Affiliation(s)
- Danial Adib
- West Tehran Branch, Department of Environmental Science and Engineering, Islamic Azad University, Tehran, Iran
| | - Roya Mafigholami
- West Tehran Branch, Department of Environmental Science and Engineering, Islamic Azad University, Tehran, Iran
| | - Hossein Tabeshkia
- West Tehran Branch, Department of Environmental Science and Engineering, Islamic Azad University, Tehran, Iran
| |
Collapse
|
49
|
Polystyrene nanoplastics and microplastics can act as Trojan horse carriers of benzo(a)pyrene to mussel hemocytes in vitro. Sci Rep 2021; 11:22396. [PMID: 34789853 PMCID: PMC8599475 DOI: 10.1038/s41598-021-01938-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022] Open
Abstract
In this work we studied the ability of polystyrene (PS) nanoplastics (NPs) and microplastics (MPs) to transfer benzo(a)pyrene (BaP) to mussel hemocytes and to produce toxic effects in vitro. For this, intracellular fate and toxicity of PS NPs (0.05 μm) and MPs (0.5 and 4.5 μm) alone or with BaP and of BaP alone were assessed. Particles of 0.05 and 0.5 µm largely aggregated in the exposure medium whereas presence of BaP reduced particle aggregation. Cells internalized PS NPs and MPs alone or with BaP and these were found inside and outside lysosomes, depending on their size. PS particles alone or with BaP were cytotoxic to hemocytes only at the highest concentrations tested. The same was true for most sublethal endpoints except for increased phagocytic activity provoked by NPs and 0.5 μm MPs at lower concentrations. Plastic particles appeared to be the main drivers for reduced plasma membrane integrity and increased phagocytic and lysosomal activities whereas BaP appeared to contribute more to reduced cell viability and phagocytosis and increased ROS production and genotoxicity. Overall, PS NPs and MPs can act as carriers of BaP to mussel hemocytes, rising concerns about risks plastics associated to pollutants may pose to aquatic organisms.
Collapse
|
50
|
Makvandi P, Chen M, Sartorius R, Zarrabi A, Ashrafizadeh M, Dabbagh Moghaddam F, Ma J, Mattoli V, Tay FR. Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking. NANO TODAY 2021; 40:101279. [PMID: 34518771 PMCID: PMC8425779 DOI: 10.1016/j.nantod.2021.101279] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Humans are exposed to nanoscopical nanobiovectors (e.g. coronavirus SARS-CoV-2) as well as abiotic metal/carbon-based nanomaterials that enter cells serendipitously or intentionally. Understanding the interactions of cell membranes with these abiotic and biotic nanostructures will facilitate scientists to design better functional nanomaterials for biomedical applications. Such knowledge will also provide important clues for the control of viral infections and the treatment of virus-induced infectious diseases. In the present review, the mechanisms of endocytosis are reviewed in the context of how nanomaterials are uptaken into cells. This is followed by a detailed discussion of the attributes of man-made nanomaterials (e.g. size, shape, surface functional groups and elasticity) that affect endocytosis, as well as the different human cell types that participate in the endocytosis of nanomaterials. Readers are then introduced to the concept of viruses as nature-derived nanoparticles. The mechanisms in which different classes of viruses interact with various cell types to gain entry into the human body are reviewed with examples published over the last five years. These basic tenets will enable the avid reader to design advanced drug delivery and gene transfer nanoplatforms that harness the knowledge acquired from endocytosis to improve their biomedical efficacy. The review winds up with a discussion on the hurdles to be addressed in mimicking the natural mechanisms of endocytosis in nanomaterials design.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Meiling Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples 80131, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|