1
|
Al-Wahaibi LH, Elshamsy AM, Ali TFS, Youssif BGM, Bräse S, Abdel-Aziz M, El-Koussi NA. Design, synthesis, in silico studies, and apoptotic antiproliferative activity of novel thiazole-2-acetamide derivatives as tubulin polymerization inhibitors. Front Chem 2025; 13:1565699. [PMID: 40308265 PMCID: PMC12040969 DOI: 10.3389/fchem.2025.1565699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction Tubulin polymerization inhibitors have emerged as interesting anticancer therapies. We present the design, synthesis, and structural elucidation of novel thiazole-based derivatives to identify novel tubulin inhibitors with potent antiproliferative efficacy and strong inhibition of tubulin polymerization. Methods The novel compounds consist of two scaffolds. Scaffold A compounds 10a-e and scaffold B compounds 13a-e. the structures of the newly synthesized compounds 10a-e and 13a-e were validated using 1H NMR, 13C NMR, and elemental analysis. Results and Discussion The most effective antitubulin derivative was 10a, exhibiting an IC50 value of 2.69 μM. Subsequently, 10o and 13d exhibited IC50 values of 3.62 μM and 3.68 μM, respectively. These compounds exhibited more potency than the reference combretastatin A-4, which displayed an IC50 value of 8.33 μM. These compounds had no cytotoxic effects on normal cells, preserving over 85% cell viability at 50 μM. The antiproliferative experiment demonstrated that compounds 10a, 10o, and 13d displayed significant activity against four cancer cell lines, with average GI50 values of 6, 7, and 8 μM, equivalent to the reference's doxorubicin and sorafenib. Compounds 10a, 10o, and 13d were demonstrated to activate caspases 3, 9, and Bax, while down-regulating the anti-apoptotic protein Bcl2. Molecular docking studies demonstrated superior binding affinities for 10a (-7.3 kcal/mol) at the colchicine binding site of tubulin, forming key hydrophobic and hydrogen bonding interactions that enhance its activity. ADMET analysis confirmed favorable drug-like properties, establishing these compounds as promising candidates for further development as anticancer agents targeting tubulin polymerization.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ali M. Elshamsy
- Pharmceutical Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Taha F. S. Ali
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Bahaa G. M. Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Nawal A. El-Koussi
- Pharmceutical Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Park I, Lee HB, Kim N, Lee S, Park K, Son MY, Cho HS, Kim DS. Uncovering gene expression signatures and diagnostic - Biomarkers in hepatocellular carcinoma through multinomial logistic regression analysis. J Biotechnol 2024; 395:31-43. [PMID: 39244092 DOI: 10.1016/j.jbiotec.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide, and classifying the developmental stages of HCC can help with early prognosis and treatment. This study aimed to investigate diagnostic and prognostic molecular signatures underlying the progression of HCC, including tumor initiation and growth, and to classify its developmental stages based on gene expression levels. We integrated data from two cancer systems, including 78 patients with Edmondson-Steiner (ES) grade and 417 patients with TNM stage cancer. Functional profiling was performed using identified signatures. Using a multinomial logistic regression model (MLR), we classified controls, early-stage HCC, and advanced-stage HCC. The model was validated in three independent cohorts comprising 45 patients (neoplastic stage), 394 patients (ES grade), and 466 patients (TNM stage). Multivariate Cox regression was employed for HCC prognosis prediction. We identified 35 genes with gradual upregulation or downregulation in both ES grade and TNM stage patients during HCC progression. These genes are involved in cell division, chromosome segregation, and mitotic cytokinesis, promoting tumor cell proliferation through the mitotic cell cycle. The MLR model accurately differentiated controls, early-stage HCC, and advanced-stage HCC across multiple cancer systems, which was further validated in various independent cohorts. Survival analysis revealed a subset of five genes from TNM stage (HR: 3.27, p < 0.0001) and three genes from ES grade (HR: 7.56, p < 0.0001) that showed significant association with HCC prognosis. The identified molecular signature not only initiates tumorigenesis but also promotes HCC development. It has the potential to improve clinical diagnosis, prognosis, and therapeutic interventions for HCC. This study enhances our understanding of HCC progression and provides valuable insights for precision medicine approaches.
Collapse
Affiliation(s)
- Ilkyu Park
- Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, 21 Namdong-daero, Namdong-gu, Incheon 21565, Republic of Korea; Department of Digital Bio Technology Innovation, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyo-Bin Lee
- Department of Digital Bio Technology Innovation, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Nakyoung Kim
- Department of Digital Bio Technology Innovation, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Sugi Lee
- Department of Digital Bio Technology Innovation, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kunhyang Park
- Department of Core Facility Management Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mi-Young Son
- Department of Stem Cell Convergence Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyun-Soo Cho
- Department of Stem Cell Convergence Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dae-Soo Kim
- Department of Digital Bio Technology Innovation, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
3
|
Mu Y, Liu H, Luo A, Zhang Q. KIFC3 promotes the progression of non-small cell lung cancer cells through the PI3K/Akt pathway. Thorac Cancer 2024; 15:2356-2364. [PMID: 39390964 PMCID: PMC11586134 DOI: 10.1111/1759-7714.15465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Kinesin family member C3 (KIFC3), as reported, plays important roles in several tumor types. Nevertheless, it is unknown whether KIFC3 has effects on non-small cell lung cancer (NSCLC) development. MATERIALS AND METHODS KIFC3 expression was detected by RT-PCR, and its correlation with prognosis was analyzed by GEPIA website. Small interfering RNA against KIFC3 were adopted for modulating KIFC3 expression in NSCLC cells. KIFC3 effects on NSCLC cell proliferation were determined using the MTT and clone formation assay. Matrigel invasion and wound healing assays were adopted for measuring the invasion and migration capability of NSCLC cells. Western blot was applied for measuring the levels of proteins associated with the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) pathway in NSCLC cells. RESULTS KIFC3 was markedly increased in NSCLC samples and cells. KIFC3 knockdown suppressed the proliferation, invasion, and migration in NSCLC. Mechanically, KIFC3 silencing suppressed NSCLC progression through inhibiting the PI3K/Akt pathway. CONCLUSIONS KIFC3 lack suppressed the proliferation, invasion, and migration which works, at least partially, by the PI3K/Akt pathway. These findings suggest that targeting KIFC3 via the PI3K/Akt pathway may offer a novel therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Yu Mu
- School of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Haoxiang Liu
- School of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Anni Luo
- School of Traditional Chinese MedicineTexas Health and Science UniversityAustinTexasUSA
| | - Qingxiang Zhang
- School of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
4
|
Ma Y, Zhang Y, Jiang X, Guan J, Wang H, Zhang J, Tong Y, Qiu X, Zhou R. KIFC3 promotes the proliferation, migration and invasion of non-small cell lung cancer through the PI3K/AKT signaling pathway. Sci Rep 2024; 14:20471. [PMID: 39227687 PMCID: PMC11372156 DOI: 10.1038/s41598-024-71602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
KIFC3 is a member of the Kinesin superfamily proteins (KIFs). The role of KIFC3 in non-small cell lung cancer (NSCLC) is unknown. This study aimed to elucidate the function of KIFC3 in NSCLC and the underlying mechanism. Immunohistochemistry indicated that KIFC3 was highly expressed in NSCLC tissues and correlated with the degree of differentiation, tumor size, lymph node metastasis and TNM stage. MTT, colony formation and Transwell assays demonstrated that KIFC3 overexpression promoted the proliferation, migration and invasion of NSCLC cells in vitro, while KIFC3 knockdown led to the opposite results. The protein expression levels of PI3Kp85α and p-Akt were increased after KIFC3 overexpression, meanwhile the downstream protein expression levels such as cyclin D1, CDK4, CDK6, RhoA, RhoC and MMP2 were increased. This promotion effect could be inhibited by a specific inhibitor of the PI3K/Akt pathway, LY294002. Co-immunoprecipitation assays confirmed the interaction between endogenous/exogenous KIFC3 and PI3Kp85α. Tumor formation experiments in nude mice confirmed that KIFC3 overexpression promoted the proliferation, migration and invasion of NSCLC cells in vivo and performed its biological function through the PI3K/Akt signaling pathway.In conclusion, KIFC3 promotes the malignant behavior of NSCLC cells through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yue Ma
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yao Zhang
- Department of Pathology, China Medical University, 77 Puhe Road, North Shenyang New Area, Shenyang, 110122, Liaoning, China
| | - Xizi Jiang
- Department of Pathology, China Medical University, 77 Puhe Road, North Shenyang New Area, Shenyang, 110122, Liaoning, China
| | - Jingqian Guan
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huanxi Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiameng Zhang
- Department of Pathology, China Medical University, 77 Puhe Road, North Shenyang New Area, Shenyang, 110122, Liaoning, China
| | - Yue Tong
- Department of Pathology, China Medical University, 77 Puhe Road, North Shenyang New Area, Shenyang, 110122, Liaoning, China
| | - Xueshan Qiu
- Department of Pathology, China Medical University, 77 Puhe Road, North Shenyang New Area, Shenyang, 110122, Liaoning, China.
| | - Renyi Zhou
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nan Jing North Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
5
|
Lucas J, Geisler M. Plant Kinesin Repertoires Expand with New Domain Architecture and Contract with the Loss of Flagella. J Mol Evol 2024; 92:381-401. [PMID: 38926179 DOI: 10.1007/s00239-024-10178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Kinesins are eukaryotic microtubule motor proteins subdivided into conserved families with distinct functional roles. While many kinesin families are widespread in eukaryotes, each organismal lineage maintains a unique kinesin repertoire composed of many families with distinct numbers of genes. Previous genomic surveys indicated that land plant kinesin repertoires differ markedly from other eukaryotes. To determine when repertoires diverged during plant evolution, we performed robust phylogenomic analyses of kinesins in 24 representative plants, two algae, two animals, and one yeast. These analyses show that kinesin repertoires expand and contract coincident with major shifts in the biology of algae and land plants. One kinesin family and five subfamilies, each defined by unique domain architectures, emerged in the green algae. Four of those kinesin groups expanded in ancestors of modern land plants, while six other kinesin groups were lost in the ancestors of pollen-bearing plants. Expansions of different kinesin families and subfamilies occurred in moss and angiosperm lineages. Other kinesin families remained stable and did not expand throughout plant evolution. Collectively these data support a radiation of kinesin domain architectures in algae followed by differential positive and negative selection on kinesins families and subfamilies in different lineages of land plants.
Collapse
Affiliation(s)
- Jessica Lucas
- Department of Biology, University of Wisconsin-Oshkosh, 800 Algoma Blvd, Oshkosh, WI, 54901, USA.
| | - Matt Geisler
- School of Biological Science, Southern Illinois University, Carbondale, IL, 54901, USA
| |
Collapse
|
6
|
de Oliveira HC, Santos MDM, Camillo-Andrade AC, Castelli RF, Dos Reis FCG, Carvalho PC, Rodrigues ML. Proteomics reveals that the antifungal activity of fenbendazole against Cryptococcus neoformans requires protein kinases. Int J Antimicrob Agents 2024; 63:107157. [PMID: 38548248 DOI: 10.1016/j.ijantimicag.2024.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Cryptococcus neoformans is responsible for over 100 000 deaths annually, and the treatment of this fungal disease is expensive and not consistently effective. Unveiling new therapeutic avenues is crucial. Previous studies have suggested that the anthelmintic drug fenbendazole is an affordable and nontoxic candidate to combat cryptococcosis. However, its mechanism of anticryptococcal activity has been only superficially investigated. In this study, we examined the global cellular response of C. neoformans to fenbendazole using a proteomic approach (data are available via ProteomeXchange with identifier PXD047041). Fenbendazole treatment mostly impacted the abundance of proteins related to metabolic pathways, RNA processing, and intracellular traffic. Protein kinases, in particular, were significantly affected by fenbendazole treatment. Experimental validation of the proteomics data using a collection of C. neoformans mutants led to the identification of critical roles of five protein kinases in fenbendazole's antifungal activity. In fact, mutants lacking the expression of genes encoding Chk1, Tco2, Tco3, Bub1, and Sch9 kinases demonstrated greater resistance to fenbendazole compared to wild-type cells. In combination with the standard antifungal drug amphotericin B, fenbendazole reduced the cryptococcal burden in mice. These findings not only contribute to the elucidation of fenbendazole's mode of action but also support its use in combination therapy with amphotericin B. In conclusion, our data suggest that fenbendazole holds promise for further development as an anticryptococcal agent.
Collapse
Affiliation(s)
| | - Marlon D M Santos
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil; Analytical Biochemistry and Proteomics Unit. IIBCE/Institut Pasteur de Montevideo, Uruguay
| | - Amanda C Camillo-Andrade
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil; Analytical Biochemistry and Proteomics Unit. IIBCE/Institut Pasteur de Montevideo, Uruguay
| | - Rafael F Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Flavia C G Dos Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil; Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paulo C Carvalho
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil; Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Queen KA, Cario A, Berger CL, Stumpff J. Modification of the neck-linker of KIF18A alters Microtubule subpopulation preference. Mol Biol Cell 2024; 35:ar3. [PMID: 37903223 PMCID: PMC10881168 DOI: 10.1091/mbc.e23-05-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
Kinesins support many diverse cellular processes, including facilitating cell division through mechanical regulation of the mitotic spindle. However, how kinesin activity is controlled to facilitate this process is not well understood. Interestingly, posttranslational modifications have been identified within the enzymatic region of all 45 mammalian kinesins, but the significance of these modifications has gone largely unexplored. Given the critical role of the enzymatic region in facilitating nucleotide and microtubule binding, it may serve as a primary site for kinesin regulation. Consistent with this idea, a phosphomimetic mutation at S357 in the neck-linker of KIF18A alters the localization of KIF18A within the spindle from kinetochore microtubules to nonkinetochore microtubules at the periphery of the spindle. Changes in localization of KIF18A-S357D are accompanied by defects in mitotic spindle positioning and the ability to promote mitotic progression. This altered localization pattern is mimicked by a shortened neck-linker mutant, suggesting that KIF18A-S357D may cause the motor to adopt a shortened neck-linker-like state that decreases KIF18A accumulation at the plus-ends of kinetochore microtubules. These findings demonstrate that posttranslational modifications in the enzymatic region of kinesins could be important for biasing their localization to particular microtubule subpopulations.
Collapse
Affiliation(s)
- Katelyn A. Queen
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
| | - Alisa Cario
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
| | - Christopher L. Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
| |
Collapse
|
8
|
Sera Y, Imanaka T, Yamaguchi M. M phase-specific interaction between SBDS and RNF2 at the mitotic spindles regulates mitotic progression. Biochem Biophys Res Commun 2023; 682:118-123. [PMID: 37806249 DOI: 10.1016/j.bbrc.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Shwachman-Diamond syndrome (SDS) is an autosomal recessive inherited disorder caused by biallelic mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene. SBDS protein is involved in ribosome biogenesis; therefore SDS is classified as a ribosomopathy. SBDS is localized at mitotic spindles and stabilizes microtubules. Previously, we showed that SBDS interacts with ring finger protein 2 (RNF2) and is degraded through RNF2-dependent ubiquitination. In this study, we investigated when and where SBDS interacts with RNF2 and the effects of the interaction on cells. We found that SBDS co-localized with RNF2 on centrosomal microtubules in the mitotic phase (M phase), whereas SBDS and RNF2 localized to the nucleolus and nucleoplasm in the interphase, respectively. The microtubule-binding assay revealed that SBDS interacted directly with microtubules and RNF2 interacted with SBDS bound to microtubules. In addition, SBDS was ubiquitinated and degraded by RNF2 during the M phase. Moreover, RNF2 overexpression accelerated mitotic progression. These findings suggest that SBDS delays mitotic progression, and RNF2 releases cells from suppression through the ubiquitination and subsequent degradation of SBDS. The interaction between SBDS and RNF2 at mitotic spindles might be involved in mitotic progression as a novel regulatory cascade.
Collapse
Affiliation(s)
- Yukihiro Sera
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hirokoshinkai 5-1-1, Kure, 737-0112, Japan
| | - Tsuneo Imanaka
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hirokoshinkai 5-1-1, Kure, 737-0112, Japan
| | - Masafumi Yamaguchi
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hirokoshinkai 5-1-1, Kure, 737-0112, Japan.
| |
Collapse
|
9
|
Ahmadi M, Najari-Hanjani P, Ghaffarnia R, Ghaderian SMH, Mousavi P, Ghafouri-Fard S. The hsa-miR-3613-5p, a potential oncogene correlated with diagnostic and prognostic merits in kidney renal clear cell carcinoma. Pathol Res Pract 2023; 251:154903. [PMID: 37879147 DOI: 10.1016/j.prp.2023.154903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
MicroRNA-3613 (hsa-miR-3613-5p), a biomarker with a dual role as an oncogenic or tumor suppressor, is associated with different types of cancer. This study aimed to determine the correlation between the hsa-miR-3613-5p gene expression and Kidney renal clear cell carcinoma (KIRC). Utilizing several bioinformatics tools, we examined the expression level and clinicopathological value of hsa-miR-3613-5p in patients with KIRC compared to normal tissues. Other bioinformatic measures, including survival analysis, diagnostic merit of hsa-miR-3613-5p, downstream target prediction, potential upstream lncRNAs, network construction, and functional enrichment analysis of hsa-miR-3613-5p, were performed. We observed that overexpression of hsa-miR-3613-5p in KIRC tissues had valuable diagnostic merit and was significantly correlated with the poor overall survival of KIRC patients. We also realized a correlation between abnormal expression of hsa-miR-3613-5p and several clinical parameters such as pathological stage, race, age, and histological grades in patients with KIRC. Moreover, we constructed the most potential regulatory network of hsa-miR-3613-5p in KIRC with 17 different axes, including four pseudogenes, two lncRNAs, and three mRNAs. Besides, we uncovered six variants in the mature form of hsa-miR-3613-5p. Finally, pathway enrichment analysis demonstrated that the top-ranked pathways for hsa-miR-3613-5p are cell cycle, cell adhesion molecules (CAMs), and hepatocellular carcinoma pathways. The present report suggests that the higher expression of hsa-miR-3613-5p is associated with the progression of KIRC. Therefore, it may be considered a valuable indicator for the early detection, risk stratification, and targeted treatment of patients with KIRC.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Najari-Hanjani
- Department of Genetics, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Roya Ghaffarnia
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Queen KA, Cario A, Berger CL, Stumpff J. Modification of the Neck Linker of KIF18A Alters Microtubule Subpopulation Preference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539080. [PMID: 37205510 PMCID: PMC10187232 DOI: 10.1101/2023.05.02.539080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Kinesins support many diverse cellular processes, including facilitating cell division through mechanical regulation of the mitotic spindle. However, how kinesin activity is controlled to facilitate this process is not well understood. Interestingly, post-translational modifications have been identified within the enzymatic region of all 45 mammalian kinesins, but the significance of these modifications has gone largely unexplored. Given the critical role of the enzymatic region in facilitating nucleotide and microtubule binding, it may serve as a primary site for kinesin regulation. Consistent with this idea, a phosphomimetic mutation at S357 in the neck-linker of KIF18A alters the localization of KIF18A within the spindle from kinetochore microtubules to peripheral microtubules. Changes in localization of KIF18A-S357D are accompanied by defects in mitotic spindle positioning and the ability to promote mitotic progression. This altered localization pattern is mimicked by a shortened neck-linker mutant, suggesting that KIF18A-S357D may cause the motor to adopt a shortened neck-linker like state that prevents KIF18A from accumulating at the plus-ends of kinetochore microtubules. These findings demonstrate that post-translational modifications in the enzymatic region of kinesins could be important for biasing their localization to particular microtubule subpopulations.
Collapse
Affiliation(s)
- Katelyn A. Queen
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
| | - Alisa Cario
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
- Current Institution: Department of Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, TN
| | - Christopher L. Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
| |
Collapse
|
11
|
Ji N, Wu CG, Wang XD, Song ZX, Wu PY, Liu X, Feng X, Zhang XM, Wang XF, Lv ZJ. Anti-aging Effects of Alu Antisense RNA on Human Fibroblast Senescence Through the MEK-ERK Pathway Mediated by KIF15. Curr Med Sci 2023; 43:35-47. [PMID: 36808398 PMCID: PMC9939868 DOI: 10.1007/s11596-022-2688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/18/2022] [Indexed: 02/23/2023]
Abstract
OBJECTIVE To investigate whether human short interspersed nuclear element antisense RNA (Alu antisense RNA; Alu asRNA) could delay human fibroblast senescence and explore the underlying mechanisms. METHODS We transfected Alu asRNA into senescent human fibroblasts and used cell counting kit-8 (CCK-8), reactive oxygen species (ROS), and senescence-associated beta-galactosidase (SA-β-gal) staining methods to analyze the anti-aging effects of Alu asRNA on the fibroblasts. We also used an RNA-sequencing (RNA-seq) method to investigate the Alu asRNA-specific mechanisms of anti-aging. We examined the effects of KIF15 on the anti-aging role induced by Alu asRNA. We also investigated the mechanisms underlying a KIF15-induced proliferation of senescent human fibroblasts. RESULTS The CCK-8, ROS and SA-β-gal results showed that Alu asRNA could delay fibroblast aging. RNA-seq showed 183 differentially expressed genes (DEGs) in Alu asRNA transfected fibroblasts compared with fibroblasts transfected with the calcium phosphate transfection (CPT) reagent. The KEGG analysis showed that the cell cycle pathway was significantly enriched in the DEGs in fibroblasts transfected with Alu asRNA compared with fibroblasts transfected with the CPT reagent. Notably, Alu asRNA promoted the KIF15 expression and activated the MEK-ERK signaling pathway. CONCLUSION Our results suggest that Alu asRNA could promote senescent fibroblast proliferation via activation of the KIF15-mediated MEK-ERK signaling pathway.
Collapse
Affiliation(s)
- Ning Ji
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017 China
| | - Chong-guang Wu
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017 China
| | - Xiao-die Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017 China
| | - Zhi-xue Song
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017 China
| | - Pei-yuan Wu
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017 China
| | - Xin Liu
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017 China
| | - Xu Feng
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017 China
| | - Xiang-mei Zhang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011 China
| | - Xiu-fang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017 China
| | - Zhan-jun Lv
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017 China
| |
Collapse
|
12
|
Dwivedi AR, Rawat SS, Kumar V, Kumar N, Kumar V, Yadav RP, Baranwal S, Prasad A, Kumar V. Benzotriazole Substituted 2-Phenylquinazolines as Anticancer Agents: Synthesis, Screening, Antiproliferative and Tubulin Polymerization Inhibition Activity. Curr Cancer Drug Targets 2023; 23:278-292. [PMID: 36306454 DOI: 10.2174/1568009623666221028121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022]
Abstract
AIMS Development of anticancer agents targeting tubulin protein. BACKGROUND Tubulin protein is being explored as an important target for anticancer drug development. Ligands binding to the colchicine binding site of the tubulin protein act as tubulin polymerization inhibitors and arrest the cell cycle in the G2/M phase. OBJECTIVE Synthesis and screening of benzotriazole-substituted 2-phenyl quinazolines as potential anticancer agents. METHODS A series of benzotriazole-substituted quinazoline derivatives have been synthesized and evaluated against human MCF-7 (breast), HeLa (cervical) and HT-29 (colon) cancer cell lines using standard MTT assays. RESULTS ARV-2 with IC50 values of 3.16 μM, 5.31 μM, 10.6 μM against MCF-7, HELA and HT29 cell lines, respectively displayed the most potent antiproliferative activities in the series while all the compounds were found non-toxic against HEK293 (normal cells). In the mechanistic studies involving cell cycle analysis, apoptosis assay and JC-1 studies, ARV-2 and ARV-3 were found to induce mitochondria-mediated apoptosis. CONCLUSION The benzotriazole-substituted 2-phenyl quinazolines have the potential to be developed as potent anticancer agents.
Collapse
Affiliation(s)
- Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Suraj Singh Rawat
- School of Basic Sciences, Indian Institute of Technology, Mandi-175005, HP, India
| | - Vijay Kumar
- Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Naveen Kumar
- Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Vinay Kumar
- Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Ravi Prakash Yadav
- Department of Microbiology, School of Biological Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Somesh Baranwal
- Department of Microbiology, School of Biological Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology, Mandi-175005, HP, India
| | - Vinod Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda-151401, Punjab, India.,Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda-151401, Punjab, India
| |
Collapse
|
13
|
Jamasbi E, Hamelian M, Hossain MA, Varmira K. The cell cycle, cancer development and therapy. Mol Biol Rep 2022; 49:10875-10883. [PMID: 35931874 DOI: 10.1007/s11033-022-07788-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
The process of cell division plays a vital role in cancer progression. Cell proliferation and error-free chromosomes segregation during mitosis are central events in life cycle. Mistakes during cell division generate changes in chromosome content and alter the balances of chromosomes number. Any defects in expression of TIF1 family proteins, SAC proteins network, mitotic checkpoint proteins involved in chromosome mis-segregation and cancer development. Here we discuss the function of organelles deal with the chromosome segregation machinery, proteins and correction mechanisms involved in the accurate chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Elaheh Jamasbi
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Hamelian
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Kambiz Varmira
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
14
|
Robello M, Salerno S, Barresi E, Orlandi P, Vaglini F, Banchi M, Simorini F, Baglini E, Poggetti V, Taliani S, Da Settimo F, Bocci G. New antiproliferative agents derived from tricyclic 3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]triazine scaffold: Synthesis and pharmacological effects. Arch Pharm (Weinheim) 2022; 355:e2200295. [PMID: 35904260 DOI: 10.1002/ardp.202200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/07/2022]
Abstract
A series of novel 3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]triazine (BIT) derivatives were designed and synthesized. In vitro antiproliferative activity was detected toward two human colorectal adenocarcinoma cell lines (CaCo-2 and HT-29) and one human dermal microvascular endothelial cell line (HMVEC-d). The most active compounds, namely 2-4 and 8, were further investigated to clarify the mechanism behind their biological activity. Through immunofluorescence assay, we identified the target of these molecules to be the microtubule cytoskeleton with subsequent formation of dense microtubule accumulation, particularly at the periphery of the cancer cells, as observed in paclitaxel-treated cells. Overall, these results highlight BIT derivatives as robust and feasible candidates deserving to be further developed in the search for novel potent antiproliferative microtubule-targeting agents.
Collapse
Affiliation(s)
- Marco Robello
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, Bethesda, Maryland, USA
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Pisa, Italy
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Pisa, Italy
| | - Paola Orlandi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Vaglini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marta Banchi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Emma Baglini
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Pisa, Italy
| | - Guido Bocci
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Zeeshan M, Rashpa R, Ferguson DJP, Abel S, Chahine Z, Brady D, Vaughan S, Moores CA, Le Roch KG, Brochet M, Holder AA, Tewari R. Genome-wide functional analysis reveals key roles for kinesins in the mammalian and mosquito stages of the malaria parasite life cycle. PLoS Biol 2022; 20:e3001704. [PMID: 35900985 PMCID: PMC9333250 DOI: 10.1371/journal.pbio.3001704] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
Kinesins are microtubule (MT)-based motors important in cell division, motility, polarity, and intracellular transport in many eukaryotes. However, they are poorly studied in the divergent eukaryotic pathogens Plasmodium spp., the causative agents of malaria, which manifest atypical aspects of cell division and plasticity of morphology throughout the life cycle in both mammalian and mosquito hosts. Here, we describe a genome-wide screen of Plasmodium kinesins, revealing diverse subcellular locations and functions in spindle assembly, axoneme formation, and cell morphology. Surprisingly, only kinesin-13 is essential for growth in the mammalian host while the other 8 kinesins are required during the proliferative and invasive stages of parasite transmission through the mosquito vector. In-depth analyses of kinesin-13 and kinesin-20 revealed functions in MT dynamics during apical cell polarity formation, spindle assembly, and axoneme biogenesis. These findings help us to understand the importance of MT motors and may be exploited to discover new therapeutic interventions against malaria.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- University of Nottingham, School of Life Sciences, Nottingham, United Kingdom
| | - Ravish Rashpa
- University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - David J P Ferguson
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, United Kingdom
- University of Oxford, John Radcliffe Hospital, Nuffield Department of Clinical Laboratory Science, Oxford, United Kingdom
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Declan Brady
- University of Nottingham, School of Life Sciences, Nottingham, United Kingdom
| | - Sue Vaughan
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, United Kingdom
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, United Kingdom
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Mathieu Brochet
- University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Anthony A Holder
- The Francis Crick Institute, Malaria Parasitology Laboratory, London, United Kingdom
| | - Rita Tewari
- University of Nottingham, School of Life Sciences, Nottingham, United Kingdom
| |
Collapse
|
16
|
Sinclair AN, de Graffenried CL. Cell division: Naegleria bundles up for mitosis. Curr Biol 2022; 32:R269-R271. [PMID: 35349811 DOI: 10.1016/j.cub.2022.01.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
How well do we understand the range of mechanisms used by eukaryotes for mitosis? A new study in a highly divergent eukaryote shows that unusual tubulin isoforms can create a mitotic spindle exclusively out of microtubule bundles.
Collapse
Affiliation(s)
- Amy N Sinclair
- Abveris, 480 Neponset Street Suite 10B, Canton, MA 02021, USA
| | | |
Collapse
|
17
|
Differential Expression of Mitosis and Cell Cycle Regulatory Genes during Recovery from an Acute Respiratory Virus Infection. Pathogens 2021; 10:pathogens10121625. [PMID: 34959580 PMCID: PMC8708581 DOI: 10.3390/pathogens10121625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/27/2022] Open
Abstract
Acute respiratory virus infections can have profound and long-term effects on lung function that persist even after the acute responses have fully resolved. In this study, we examined gene expression by RNA sequencing in the lung tissue of wild-type BALB/c mice that were recovering from a sublethal infection with the pneumonia virus of mice (PVM), a natural rodent pathogen of the same virus family and genus as the human respiratory syncytial virus. We compared these responses to gene expression in PVM-infected mice treated with Lactobacillus plantarum, an immunobiotic agent that limits inflammation and averts the negative clinical sequelae typically observed in response to acute infection with this pathogen. Our findings revealed prominent differential expression of inflammation-associated genes as well as numerous genes and gene families implicated in mitosis and cell-cycle regulation, including cyclins, cyclin-dependent kinases, cell division cycle genes, E2F transcription factors, kinesins, centromere proteins, and aurora kinases, among others. Of particular note was the differential expression of the cell division cycle gene Cdc20b, which was previously identified as critical for the ex vivo differentiation of multi-ciliated cells. Collectively, these findings provided us with substantial insight into post-viral repair processes and broadened our understanding of the mechanisms underlying Lactobacillus-mediated protection.
Collapse
|
18
|
Li K, Li S, Tang S, Zhang M, Ma Z, Wang Q, Chen F. KIF22 promotes bladder cancer progression by activating the expression of CDCA3. Int J Mol Med 2021; 48:211. [PMID: 34633053 PMCID: PMC8522959 DOI: 10.3892/ijmm.2021.5044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
Bladder cancer is a common malignant tumor of the urinary system and is associated with a high morbidity and mortality, due to the difficulty in the accurate diagnosis of patients with early‑stage bladder cancer and the lack of effective treatments for patients with advanced bladder cancer. Thus, novel therapeutic targets are urgently required for this disease. Kinesin family member 22 (KIF22) is a kinesin‑like DNA binding protein belonging to kinesin family, and is involved in the regulation of mitosis. KIF22 has also been reported to promote the progression of several types of cancer, such as breast cancer and melanoma. The present study demonstrates the high expression of KIF22 in human bladder cancer tissues. KIF22 was found to be associated with clinical features, including clinical stage (P=0.003) and recurrence (P=0.016), and to be associated with the prognosis of patients with bladder cancer. Furthermore, it was found that KIF22 silencing inhibited the proliferation of bladder cancer cells in vitro and tumor progression in mice. Additionally, it was noted that KIF22 transcriptionally activated cell division cycle‑associated protein 3 expression, which was also confirmed in tumors in mice. Taken together, the present study investigated the molecular mechanisms underlying the promotion of bladder cancer by KIF22 and provide a novel therapeutic target for the treatment of bladder cancer. Introduction.
Collapse
Affiliation(s)
- Kai Li
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Song Li
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Shuai Tang
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Minghao Zhang
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Zhen Ma
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Qi Wang
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Fangmin Chen
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| |
Collapse
|
19
|
Padilla-Mejia NE, Makarov AA, Barlow LD, Butterfield ER, Field MC. Evolution and diversification of the nuclear envelope. Nucleus 2021; 12:21-41. [PMID: 33435791 PMCID: PMC7889174 DOI: 10.1080/19491034.2021.1874135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells arose ~1.5 billion years ago, with the endomembrane system a central feature, facilitating evolution of intracellular compartments. Endomembranes include the nuclear envelope (NE) dividing the cytoplasm and nucleoplasm. The NE possesses universal features: a double lipid bilayer membrane, nuclear pore complexes (NPCs), and continuity with the endoplasmic reticulum, indicating common evolutionary origin. However, levels of specialization between lineages remains unclear, despite distinct mechanisms underpinning various nuclear activities. Several distinct modes of molecular evolution facilitate organellar diversification and to understand which apply to the NE, we exploited proteomic datasets of purified nuclear envelopes from model systems for comparative analysis. We find enrichment of core nuclear functions amongst the widely conserved proteins to be less numerous than lineage-specific cohorts, but enriched in core nuclear functions. This, together with consideration of additional evidence, suggests that, despite a common origin, the NE has evolved as a highly diverse organelle with significant lineage-specific functionality.
Collapse
Affiliation(s)
- Norma E. Padilla-Mejia
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alexandr A. Makarov
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lael D. Barlow
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Erin R. Butterfield
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Mark C. Field
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České, Czech Republic
| |
Collapse
|
20
|
Chen Z, Song H, Zeng X, Quan M, Gao Y. Screening and discrimination of optimal prognostic genes for pancreatic cancer based on a prognostic prediction model. G3 (BETHESDA, MD.) 2021; 11:6355586. [PMID: 34499727 PMCID: PMC8527504 DOI: 10.1093/g3journal/jkab296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023]
Abstract
The prognosis of pancreatic cancer is poor because patients are usually asymptomatic in the early stage and the early diagnostic rate is low. Therefore, in this study, we aimed to identify potential prognosis-related genes in pancreatic cancer to improve diagnosis and the outcome of patients. The mRNA expression profile data from The Cancer Genome Atlas database and GSE79668, GSE62452, and GSE28735 datasets from Gene Expression Omnibus were downloaded. The prognosis-relevant genes and clinical factors were analyzed using Cox regression analysis and the optimal gene sets were screened using the Cox proportional model. Next, the Kaplan-Meier survival analysis was used to evaluate the relationship between risk grouping and patient prognosis. Finally, an optimal gene-based prognosis prediction model was constructed and validated using a test dataset to discriminate the model accuracy and reliability. The results showed that 325 expression variable genes were identified, and 48 prognosis-relevant genes and three clinical factors, including lymph node stage (pathologic N), new tumor, and targeted molecular therapy were preliminarily obtained. In addition, a gene set containing 16 optimal genes was identified and included FABP6, MAL, KIF19, and REG4, which were significantly associated with the prognosis of pancreatic cancer. Moreover, a prognosis prediction model was constructed and validated to be relatively accurate and reliable. In conclusion, a gene set consisting of 16 prognosis-related genes was identified and a prognosis prediction model was constructed, which is expected to be applicable in the clinical diagnosis and treatment guidance of pancreatic cancer in the future.
Collapse
Affiliation(s)
| | | | | | - Ming Quan
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| |
Collapse
|
21
|
Bera S, Ghosh S, Ali A, Pal M, Chakrabarti P. Inhibition of microtubule assembly and cytotoxic effect of graphene oxide on human colorectal carcinoma cell HCT116. Arch Biochem Biophys 2021; 708:108940. [PMID: 34058149 DOI: 10.1016/j.abb.2021.108940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Nanomaterials, such as graphene oxide (GO), are increasingly being investigated for their suitability in biomedical applications. Tubulin is the key molecule for the formation of microtubules crucial for cellular function and proliferation, and as such an appealing target for developing anticancer drug. Here we employ biophysical techniques to study the effect of GO on tubulin structure and how the changes affect the tubulin/microtubule assembly. GO disrupts the structural integrity of the protein, with consequent retardation of tubulin polymerization. Investigating the anticancer potential of GO, we found that it is more toxic to human colon cancer cells (HCT116), as compared to human embryonic kidney epithelial cells (HEK293). Immunocytochemistry indicated the disruption of microtubule assembly in HCT116 cells. GO arrested cells in the S phase with increased accumulation in Sub-G1 population of cell cycle, inducing apoptosis by generating reactive oxygen species (ROS) in a dose- and time-dependent manner. GO inhibited microtubule formation by intervening into the polymerization of tubulin heterodimers both in vitro and ex vivo, resulting in growth arrest at the S phase and ROS induced apoptosis of HCT116 colorectal carcinoma cells. There was no significant harm to the HEK293 kidney epithelial cells used as control. Our report of pristine GO causing ROS-induced apoptosis of cancer cells and inhibition of tubulin-microtubule assembly can be of interest in cancer therapeutics and nanomedicine.
Collapse
Affiliation(s)
- Supriyo Bera
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Asif Ali
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India.
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India.
| |
Collapse
|
22
|
Abstract
Kinesins constitute a superfamily of ATP-driven microtubule motor enzymes that convert the chemical energy of ATP hydrolysis into mechanical work along microtubule tracks. Kinesins are found in all eukaryotic organisms and are essential to all eukaryotic cells, involved in diverse cellular functions such as microtubule dynamics and morphogenesis, chromosome segregation, spindle formation and elongation and transport of organelles. In this review, we explore recently reported functions of kinesins in eukaryotes and compare their specific cargoes in both plant and animal kingdoms to understand the possible roles of uncharacterized motors in a kingdom based on their reported functions in other kingdoms.
Collapse
Affiliation(s)
- Iftikhar Ali
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing, China.,The College of Advanced Agricultural Science, The University of Chinese Academy of Sciences , Beijing, China
| |
Collapse
|
23
|
Moses RL, Boyle GM, Howard-Jones RA, Errington RJ, Johns JP, Gordon V, Reddell P, Steadman R, Moseley R. Novel epoxy-tiglianes stimulate skin keratinocyte wound healing responses and re-epithelialization via protein kinase C activation. Biochem Pharmacol 2020; 178:114048. [PMID: 32446889 DOI: 10.1016/j.bcp.2020.114048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Epoxy-tiglianes are a novel class of diterpene esters. The prototype epoxy-tigliane, EBC-46 (tigilanol tiglate), possesses potent anti-cancer properties and is currently in clinical development as a local treatment for human and veterinary cutaneous tumors. EBC-46 rapidly destroys treated tumors and consistently promotes wound re-epithelialization at sites of tumor destruction. However, the mechanisms underlying these keratinocyte wound healing responses are not completely understood. Here, we investigated the effects of EBC-46 and an analogue (EBC-211) at 1.51 nM-151 µM concentrations, on wound healing responses in immortalized human skin keratinocytes (HaCaTs). Both EBC-46 and EBC-211 (1.51 nM-15.1 µM) accelerated G0/G1-S and S-G2/M cell cycle transitions and HaCaT proliferation. EBC-46 (1.51-151 nM) and EBC-211 (1.51 nM-15.1 µM) further induced significant HaCaT migration and scratch wound repopulation. Stimulated migration/wound repopulation responses were even induced by EBC-46 (1.51 nM) and EBC-211 (1.51-151 nM) with proliferation inhibitor, mitomycin C (1 μM), suggesting that epoxy-tiglianes can promote migration and wound repopulation independently of proliferation. Expression profiling analyses showed that epoxy-tiglianes modulated keratin, DNA synthesis/replication, cell cycle/proliferation, motility/migration, differentiation, matrix metalloproteinase (MMP) and cytokine/chemokine gene expression, to facilitate enhanced responses. Although epoxy-tiglianes down-regulated established cytokine and chemokine agonists of keratinocyte proliferation and migration, enhanced HaCaT responses were demonstrated to be mediated via protein kinase C (PKC) phosphorylation and significantly abrogated by pan-PKC inhibitor, bisindolylmaleimide-1 (BIM-1, 1 μM). By identifying how epoxy-tiglianes stimulate keratinocyte healing responses and re-epithelialization in treated skin, our findings support the further development of this class of small molecules as potential therapeutics for other clinical situations associated with impaired re-epithelialization, such as non-healing skin wounds.
Collapse
Affiliation(s)
- Rachael L Moses
- Regenerative Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, UK
| | - Glen M Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rachel A Howard-Jones
- Tenovus Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Rachel J Errington
- Tenovus Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Jenny P Johns
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Paul Reddell
- QBiotics Group, Yungaburra, Queensland, Australia
| | - Robert Steadman
- Welsh Kidney Research Unit, Division of Infection and Immunity, Cardiff Institute of Tissue Engineering and Repair (CITER), School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Ryan Moseley
- Regenerative Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, UK.
| |
Collapse
|
24
|
Lin Y, Wei YL, She ZY. Kinesin-8 motors: regulation of microtubule dynamics and chromosome movements. Chromosoma 2020; 129:99-110. [PMID: 32417983 DOI: 10.1007/s00412-020-00736-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/01/2023]
Abstract
Microtubules are essential for intracellular transport, cell motility, spindle assembly, and chromosome segregation during cell division. Microtubule dynamics regulate the proper spindle organization and thus contribute to chromosome congression and segregation. Accumulating studies suggest that kinesin-8 motors are emerging regulators of microtubule dynamics and organizations. In this review, we provide an overview of the studies focused on kinesin-8 motors in cell division. We discuss the structures and molecular kinetics of kinesin-8 motors. We highlight the essential roles and mechanisms of kinesin-8 in the regulation of microtubule dynamics and spindle organization. We also shed light on the functions of kinesin-8 motors in chromosome movement and the spindle assembly checkpoint during the cell cycle.
Collapse
Affiliation(s)
- Yang Lin
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350011, Fujian, China.,Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China. .,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
25
|
Ali I, Yang WC. Why are ATP-driven microtubule minus-end directed motors critical to plants? An overview of plant multifunctional kinesins. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:524-536. [PMID: 32336322 DOI: 10.1071/fp19177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
In plants, microtubule and actin cytoskeletons are involved in key processes including cell division, cell expansion, growth and development, biotic and abiotic stress, tropisms, hormonal signalling as well as cytoplasmic streaming in growing pollen tubes. Kinesin enzymes have a highly conserved motor domain for binding microtubule cytoskeleton assisting these motors to organise their own tracks, the microtubules by using chemical energy of ATP hydrolysis. In addition to this conserved binding site, kinesins possess non-conserved variable domains mediating structural and functional interaction of microtubules with other cell structures to perform various cellular jobs such as chromosome segregation, spindle formation and elongation, transport of organelles as well as microtubules-actins cross linking and microtubules sliding. Therefore, how the non-motor variable regions specify the kinesin function is of fundamental importance for all eukaryotic cells. Kinesins are classified into ~17 known families and some ungrouped orphans, of which ~13 families have been recognised in plants. Kinesin-14 family consisted of plant specific microtubules minus end-directed motors, are much diverse and unique to plants in the sense that they substitute the functions of animal dynein. In this review, we explore the functions of plant kinesins, especially from non-motor domains viewpoint, focussing mainly on recent work on the origin and functional diversity of motors that drive microtubule minus-end trafficking events.
Collapse
Affiliation(s)
- Iftikhar Ali
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; and The College of Advanced Agricultural Science, The University of Chinese Academy of Sciences, Beijing 100049, China; and Corresponding author.
| |
Collapse
|
26
|
Beeby M, Ferreira JL, Tripp P, Albers SV, Mitchell DR. Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia. FEMS Microbiol Rev 2020; 44:253-304. [DOI: 10.1093/femsre/fuaa006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages – archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes – wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force. These underlying differences reflect the tinkering required to evolve a molecular machine, in which pre-existing machines in the appropriate contexts were iteratively co-opted for new functions and whose origins are reflected in their resultant mechanisms. Contemporary homologies suggest that archaella evolved from a non-rotary pilus, flagella from a non-rotary appendage or secretion system, and cilia from a passive sensory structure. Here, we review the structure, assembly, mechanism and homologies of the three distinct solutions as a foundation to better understand how propulsive nanomachines evolved three times independently and to highlight principles of molecular evolution.
Collapse
Affiliation(s)
- Morgan Beeby
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Josie L Ferreira
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Patrick Tripp
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| |
Collapse
|
27
|
13 Plus 1: A 30-Year Perspective on Microtubule-Based Motility in Dictyostelium. Cells 2020; 9:cells9030528. [PMID: 32106406 PMCID: PMC7140473 DOI: 10.3390/cells9030528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
Individual gene analyses of microtubule-based motor proteins in Dictyostelium discoideum have provided a rough draft of its machinery for cytoplasmic organization and division. This review collates their activities and looks forward to what is next. A comprehensive approach that considers the collective actions of motors, how they balance rates and directions, and how they integrate with the actin cytoskeleton will be necessary for a complete understanding of cellular dynamics.
Collapse
|
28
|
Guo W, Zeng H, Zheng J, He Y, Zhuang X, Cai J, Huang H, Huang H, Xu M. Preliminary study on the clinical significance of kinesin Kif18a in nonsmall cell lung cancer: An analysis of 100 cases. Medicine (Baltimore) 2020; 99:e19011. [PMID: 31977917 PMCID: PMC7004722 DOI: 10.1097/md.0000000000019011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to investigate the expression of Kif18A in cancerous and paracancerous tissues from 100 patients with nonsmall cell lung cancer (NSCLC).This was a prospective study of 100 patients with pathologically confirmed NSCLC (adenocarcinoma and squamous cell carcinoma [SCC], n = 50/group) that were operated at the Quanzhou First Hospital Affiliated to Fujian Medical University between June 2015 and December 2016. Kif18A protein expression in cancerous and paracancerous normal tissues was detected by western blot and immunohistochemistry.The expression of the Kif18A protein was higher in adenocarcinoma and SCC tissues than in the corresponding paracancerous normal tissues. The expression of the Kif18A protein was higher in highly differentiated tumors, in patients with lymph node metastasis (vs no lymph node metastasis), adenocarcinoma, and in stage III NSCLC. There were no associations between Kif18A expression and age, gender, and pathologic type.The expression of the Kif18A protein by immunohistochemistry was higher in NSCLC tissues than in normal tissues, and was associated with tumor differentiation, lymph node metastasis, and TNM staging. These results could provide a theoretical basis for novel molecular targeted therapies against NSCLC.
Collapse
Affiliation(s)
- Weifeng Guo
- Department of Respiratory Medicine, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou
| | - Huiqing Zeng
- Fujian Medical University Union Hospital, Fuzhou
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Xiamen University, Xiamen
| | - Jinyang Zheng
- Department of Pathology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Yueming He
- Department of Respiratory Medicine, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou
| | - Xibin Zhuang
- Department of Respiratory Medicine, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou
| | - Jinghuang Cai
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Xiamen University, Xiamen
| | - Hong Huang
- Department of Respiratory Medicine, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou
| | - Hongbo Huang
- Department of Respiratory Medicine, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou
| | - Meng Xu
- Department of Respiratory Medicine, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou
| |
Collapse
|
29
|
Zeeshan M, Shilliday F, Liu T, Abel S, Mourier T, Ferguson DJP, Rea E, Stanway RR, Roques M, Williams D, Daniel E, Brady D, Roberts AJ, Holder AA, Pain A, Le Roch KG, Moores CA, Tewari R. Plasmodium kinesin-8X associates with mitotic spindles and is essential for oocyst development during parasite proliferation and transmission. PLoS Pathog 2019; 15:e1008048. [PMID: 31600347 PMCID: PMC6786531 DOI: 10.1371/journal.ppat.1008048] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
Kinesin-8 proteins are microtubule motors that are often involved in regulation of mitotic spindle length and chromosome alignment. They move towards the plus ends of spindle microtubules and regulate the dynamics of these ends due, at least in some species, to their microtubule depolymerization activity. Plasmodium spp. exhibit an atypical endomitotic cell division in which chromosome condensation and spindle dynamics in the different proliferative stages are not well understood. Genome-wide shared orthology analysis of Plasmodium spp. revealed the presence of two kinesin-8 motor proteins, kinesin-8X and kinesin-8B. Here we studied the biochemical properties of kinesin-8X and its role in parasite proliferation. In vitro, kinesin-8X has motility and depolymerization activities like other kinesin-8 motors. To understand the role of Plasmodium kinesin-8X in cell division, we used fluorescence-tagging and live cell imaging to define its location, and gene targeting to analyse its function, during all proliferative stages of the rodent malaria parasite P. berghei life cycle. The results revealed a spatio-temporal involvement of kinesin-8X in spindle dynamics and an association with both mitotic and meiotic spindles and the putative microtubule organising centre (MTOC). Deletion of the kinesin-8X gene revealed a defect in oocyst development, confirmed by ultrastructural studies, suggesting that this protein is required for oocyst development and sporogony. Transcriptome analysis of Δkinesin-8X gametocytes revealed modulated expression of genes involved mainly in microtubule-based processes, chromosome organisation and the regulation of gene expression, supporting a role for kinesin-8X in cell division. Kinesin-8X is thus required for parasite proliferation within the mosquito and for transmission to the vertebrate host.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Fiona Shilliday
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, United Kingdom
| | - Tianyang Liu
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, United Kingdom
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Tobias Mourier
- Biological Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, Kingdom of Saudi Arabia
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Gipsy Lane, Oxford, United Kingdom
| | - Edward Rea
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | | | - Magali Roques
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Desiree Williams
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Emilie Daniel
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Anthony J. Roberts
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, United Kingdom
| | - Anthony A. Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Arnab Pain
- Biological Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, Kingdom of Saudi Arabia
- Research Center for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-ku, Sapporo, Japan
| | - Karine G. Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Carolyn A. Moores
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, United Kingdom
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
30
|
Yamane M, Sawada JI, Ogo N, Ohba M, Ando T, Asai A. Identification of benzo[d]pyrrolo[2,1-b]thiazole derivatives as CENP-E inhibitors. Biochem Biophys Res Commun 2019; 519:505-511. [PMID: 31530389 DOI: 10.1016/j.bbrc.2019.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022]
Abstract
Kinesin centromere-associated protein E (CENP-E) has emerged as a potential target for the development of anticancer drugs due to its involvement in the mitotic progression of the cell cycle. Although several CENP-E inhibitors have been reported, more knowledge of chemical structures and inhibitory mechanisms is necessary for developing CENP-E inhibitors. Here, we describe the identification of new CENP-E inhibitors. Screening of a small-molecule chemical library identified benzo[d]pyrrolo[2,1-b]thiazole derivatives, including 1, as compounds with inhibitory activity against the microtubule-stimulated ATPase of the CENP-E motor domain. Among the mitotic kinesins examined, 1 selectively inhibited the kinesin ATPase activity of CENP-E. In a steady-state ATPase assay, 1 exhibited ATP-competitive behavior, which was different from the CENP-E inhibitor GSK923295. Compound 1 inhibited the proliferation of tumor-derived HeLa and HCT116 cells more efficiently than that of non-cancerous WI-38 cells. The inhibition of cell proliferation was attributed to the ability of 1 to induce apoptotic cell death. The compound showed antimitotic activity, which caused cell cycle arrest at mitosis via interference with proper chromosome alignment. We identified 1 and its derivatives as the lead compounds that target CENP-E, thus providing a new opportunity for the development of anticancer agents targeting kinesins.
Collapse
Affiliation(s)
- Masayoshi Yamane
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Jun-Ichi Sawada
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Naohisa Ogo
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Mai Ohba
- Department of Pharmaceutical and Food Science, Shizuoka Institute of Environment and Hygiene, Shizuoka, Japan
| | - Takayuki Ando
- Department of Pharmaceutical and Food Science, Shizuoka Institute of Environment and Hygiene, Shizuoka, Japan
| | - Akira Asai
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
31
|
Structural basis for power stroke vs. Brownian ratchet mechanisms of motor proteins. Proc Natl Acad Sci U S A 2019; 116:19777-19785. [PMID: 31506355 DOI: 10.1073/pnas.1818589116] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Two mechanisms have been proposed for the function of motor proteins: The power stroke and the Brownian ratchet. The former refers to generation of a large downhill free energy gradient over which the motor protein moves nearly irreversibly in making a step, whereas the latter refers to biasing or rectifying the diffusive motion of the motor. Both mechanisms require input of free energy, which generally involves the processing of an ATP (adenosine 5'-triphosphate) molecule. Recent advances in experiments that reveal the details of the stepping motion of motor proteins, together with computer simulations of atomistic structures, have provided greater insights into the mechanisms. Here, we compare the various models of the power stroke and the Brownian ratchet that have been proposed. The 2 mechanisms are not mutually exclusive, and various motor proteins employ them to different extents to perform their biological function. As examples, we discuss linear motor proteins Kinesin-1 and myosin-V, and the rotary motor F1-ATPase, all of which involve a power stroke as the essential element of their stepping mechanism.
Collapse
|
32
|
Lin TC, Kuo HH, Wu YC, Pan TS, Yih LH. Phosphatidylinositol-5-phosphate 4-kinase gamma accumulates at the spindle pole and prevents microtubule depolymerization. Cell Div 2019; 14:9. [PMID: 31452676 PMCID: PMC6702725 DOI: 10.1186/s13008-019-0053-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/13/2019] [Indexed: 11/10/2022] Open
Abstract
Background A previous screen of a human kinase and phosphatase shRNA library to select genes that mediate arsenite induction of spindle abnormalities resulted in the identification of phosphatidylinositol-5-phosphate 4-kinase type-2 gamma (PIP4KIIγ), a phosphatidylinositol 4,5-bisphosphate (PIP2)-synthesizing enzyme. In this study, we explored how PIP4KIIγ regulates the assembly of mitotic spindles. Results PIP4KIIγ accumulates at the spindle pole before anaphase, and is required for the assembly of functional bipolar spindles. Depletion of PIP4KIIγ enhanced the spindle pole accumulation of mitotic centromere-associated kinesin (MCAK), a microtubule (MT)-depolymerizing kinesin, and resulted in a less stable spindle pole-associated MT. Depletion of MCAK can ameliorate PIP4KIIγ depletion-induced spindle abnormalities. In addition, PIP2 binds to polo-like kinase (PLK1) and reduces PLK1-mediated phosphorylation of MCAK. These results indicate that PIP4KIIγ and PIP2 may negatively regulate the MT depolymerization activity of MCAK by reducing PLK1-mediated phosphorylation of MCAK. Consequently, depletion of PLK1 has been shown to counteract the PIP4KIIγ depletion-induced instability of spindle pole-associated MT and cell resistance to arsenite. Conclusions Our current results imply that PIP4KIIγ may restrain MT depolymerization at the spindle pole through attenuating PLK1-mediated activation of MCAK before anaphase onset.
Collapse
Affiliation(s)
- Tz-Chi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Hsiao-Hui Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Yi-Chen Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Tiffany S Pan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Ling-Huei Yih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| |
Collapse
|
33
|
Zeeshan M, Ferguson DJ, Abel S, Burrrell A, Rea E, Brady D, Daniel E, Delves M, Vaughan S, Holder AA, Le Roch KG, Moores CA, Tewari R. Kinesin-8B controls basal body function and flagellum formation and is key to malaria transmission. Life Sci Alliance 2019; 2:e201900488. [PMID: 31409625 PMCID: PMC6696982 DOI: 10.26508/lsa.201900488] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic flagella are conserved microtubule-based organelles that drive cell motility. Plasmodium, the causative agent of malaria, has a single flagellate stage: the male gamete in the mosquito. Three rounds of endomitotic division in male gametocyte together with an unusual mode of flagellum assembly rapidly produce eight motile gametes. These processes are tightly coordinated, but their regulation is poorly understood. To understand this important developmental stage, we studied the function and location of the microtubule-based motor kinesin-8B, using gene-targeting, electron microscopy, and live cell imaging. Deletion of the kinesin-8B gene showed no effect on mitosis but disrupted 9+2 axoneme assembly and flagellum formation during male gamete development and also completely ablated parasite transmission. Live cell imaging showed that kinesin-8B-GFP did not co-localise with kinetochores in the nucleus but instead revealed a dynamic, cytoplasmic localisation with the basal bodies and the assembling axoneme during flagellum formation. We, thus, uncovered an unexpected role for kinesin-8B in parasite flagellum formation that is vital for the parasite life cycle.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - David Jp Ferguson
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, UK
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Alana Burrrell
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, UK
| | - Edward Rea
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Emilie Daniel
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Michael Delves
- London School of Hygiene and Tropical Medicine, Keppel, London, UK
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, UK
| | - Anthony A Holder
- Malaria Parasitology Laboratory, Francis Crick Institute, London, UK
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, UK
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
34
|
Wang JH, Li Y, Deng SL, Liu YX, Lian ZX, Yu K. Recent Research Advances in Mitosis during Mammalian Gametogenesis. Cells 2019; 8:cells8060567. [PMID: 31185583 PMCID: PMC6628140 DOI: 10.3390/cells8060567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/02/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Mitosis is a highly sophisticated and well-regulated process during the development and differentiation of mammalian gametogenesis. The regulation of mitosis plays an essential role in keeping the formulation in oogenesis and gametogenesis. In the past few years, substantial research progress has been made by showing that cyclins/cyclin-dependent kinase (CDK) have roles in the regulation of meiosis. In addition, more functional signaling molecules have been discovered in mitosis. Growing evidence has also indicated that miRNAs influence cell cycling. In this review, we focus on specific genes, cyclins/Cdk, signaling pathways/molecules, and miRNAs to discuss the latest achievements in understanding their roles in mitosis during gametogenesis. Further elucidation of mitosis during gametogenesis may facilitate delineating all processes of mammalian reproduction and the development of disease treatments.
Collapse
Affiliation(s)
- Jia-Hao Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yan Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
35
|
Moreira T, Francisco R, Comsa E, Duban-Deweer S, Labas V, Teixeira-Gomes AP, Combes-Soia L, Marques F, Matos A, Favrelle A, Rousseau C, Zinck P, Falson P, Garcia MH, Preto A, Valente A. Polymer "ruthenium-cyclopentadienyl" conjugates - New emerging anti-cancer drugs. Eur J Med Chem 2019; 168:373-384. [PMID: 30826512 DOI: 10.1016/j.ejmech.2019.02.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
In this work, we aimed to understand the biological activity and the mechanism of action of three polymer-'ruthenium-cyclopentadienyl' conjugates (RuPMC) and a low molecular weight parental compound (Ru1) in cancer cells. Several biological assays were performed in ovarian (A2780) and breast (MCF7, MDA-MB-231) human cancer derived cell lines as well as in A2780cis, a cisplatin resistant cancer cell line. Our results show that all compounds have high activity towards cancer cells with low IC50 values in the micromolar range. We observed that all Ru-PMC compounds are mainly found inside the cells, in contrast with the parental low molecular weight compound Ru1 that was mainly found at the membrane. All compounds induced mitochondrial alterations. PMC3 and Ru1 caused F-actin cytoskeleton morphology changes and reduced the clonogenic ability of the cells. The conjugate PMC3 induced apoptosis at low concentrations comparing to cisplatin and could overcame the platinum resistance of A2780cis cancer cells. A proteomic analysis showed that these compounds induce alterations in several cellular proteins which are related to the phenotypic disorders induced by them. Our results suggest that PMC3 is foreseen as a lead candidate to future studies and acting through a different mechanism of action than cisplatin. Here we established the potential of these Ru compounds as new metallodrugs for cancer chemotherapy.
Collapse
Affiliation(s)
- Tiago Moreira
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Portugal. Campus de Gualtar, Braga, 4710-057, Portugal
| | - Rita Francisco
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Portugal. Campus de Gualtar, Braga, 4710-057, Portugal
| | - Elisabeta Comsa
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-UCBL1 UMR 5086, IBCP, 69367, Lyon, France
| | - Sophie Duban-Deweer
- Laboratoire de la barrière hémato-encéphalique (LBHE), Plateau Spectrométrie de Masse de l'ARTois (SMART), Université d'Artois, EA 2465, Lens, F-62300, France
| | - Valérie Labas
- Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), PR China, INRA, CNRS, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), PR China, INRA, CNRS, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Lucie Combes-Soia
- Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), PR China, INRA, CNRS, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N.10, 2695-066, Bobadela LRS, Portugal
| | - António Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511, Caparica, Portugal
| | - Audrey Favrelle
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Cyril Rousseau
- Unity of Catalysis and Solid State Chemistry, UMR CNRS 8181, University of Artois, 62000, Lens, France
| | - Philippe Zinck
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Pierre Falson
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-UCBL1 UMR 5086, IBCP, 69367, Lyon, France
| | - M Helena Garcia
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Ana Preto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Portugal. Campus de Gualtar, Braga, 4710-057, Portugal
| | - Andreia Valente
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
36
|
Baluška F, Lyons S. Energide-cell body as smallest unit of eukaryotic life. ANNALS OF BOTANY 2018; 122:741-745. [PMID: 29474513 PMCID: PMC6215040 DOI: 10.1093/aob/mcy022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Background The evolutionary origin of the eukaryotic nucleus is obscure and controversial. Currently preferred are autogenic concepts; ideas of a symbiotic origin are mostly discarded and forgotten. Here we briefly discuss these issues and propose a new version of the symbiotic and archaeal origin of the eukaryotic nucleus. Scope and Conclusions The nucleus of eukaryotic cells forms via its perinuclear microtubules, the primary eukaryotic unit known also as the Energide-cell body. As for all other endosymbiotic organelles, new Energides are generated only from other Energides. While the Energide cannot be generated de novo, it can use its secretory apparatus to generate de novo the cell periphery apparatus. We suggest that Virchow's tenet Omnis cellula e cellula should be updated as Omnis Energide e Energide to reflect the status of the Energide as the primary unit of the eukaryotic cell, and life. In addition, the plasma membrane provides feedback to the Energide and renders it protection via the plasma membrane-derived endosomal network. New discoveries suggest archaeal origins of both the Energide and its host cell.
Collapse
|
37
|
Caldas LA, Horvath RO, Ferreira-Silva GÁ, Ferreira MJP, Ionta M, Sartorelli P. Calein C, a Sesquiterpene Lactone Isolated From Calea Pinnatifida ( Asteraceae), Inhibits Mitotic Progression and Induces Apoptosis in MCF-7 Cells. Front Pharmacol 2018; 9:1191. [PMID: 30405412 PMCID: PMC6201056 DOI: 10.3389/fphar.2018.01191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Estrogen receptor-positive (ER+) breast cancer represents approximately 75% of diagnosed cases, while 15-20% of them are triple-negative (TN). Although there have been improvements in the therapeutic approach, the mortality rate remains elevated. Thus, it is necessary to identify new chemotherapeutic agents. The present study aimed to evaluate the effects of calein C, a sesquiterpene lactone isolated from Calea pinnatifida, on breast cancer cell lines MCF-7 (ER+), Hs578T (TN) and MDA-MB-231 (TN). Calein C significantly reduced the viability of all cell lines; however, MCF-7 cells were more responsive than MDA-MB-231 or Hs578T cells. Thus, the MCF-7 cell line was selected for further investigation. We demonstrated that calein C inhibited cell cycle progression in MCF-7 cells at M-phase. Increased frequency of mitosis was observed in calein C-treated samples compared to the control group, especially of the cell population in initial stages of the mitosis. These events were associated with the ability of calein C to modulate expression levels of critical regulators of mitosis progression. We observed a significant reduction in the relative mRNA abundance of PLK1 and AURKB along with a concomitant increase in CDKN1A (p21) in treated samples. In addition, calein C induced apoptosis in MCF-7 cells due to, at least in part, its ability to reduce the BCL2/BAX ratio. Therefore, our data provide evidence that calein C is an important antimitotic agent and should be considered for further in vivo investigations.
Collapse
Affiliation(s)
- Lhaís Araújo Caldas
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Renato O Horvath
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Guilherme Álvaro Ferreira-Silva
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Marcelo J P Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Marisa Ionta
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Patricia Sartorelli
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| |
Collapse
|
38
|
Yang XM, Cao XY, He P, Li J, Feng MX, Zhang YL, Zhang XL, Wang YH, Yang Q, Zhu L, Nie HZ, Jiang SH, Tian GA, Zhang XX, Liu Q, Ji J, Zhu X, Xia Q, Zhang ZG. Overexpression of Rac GTPase Activating Protein 1 Contributes to Proliferation of Cancer Cells by Reducing Hippo Signaling to Promote Cytokinesis. Gastroenterology 2018; 155:1233-1249.e22. [PMID: 30009820 DOI: 10.1053/j.gastro.2018.07.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Agents designed to block or alter cytokinesis can kill or stop proliferation of cancer cells. We aimed to identify cytokinesis-related proteins that are overexpressed in hepatocellular carcinoma (HCC) cells and might be targeted to slow liver tumor growth. METHODS Using the Oncomine database, we compared the gene expression patterns in 16 cancer microarray datasets and assessed gene enrichment sets using gene ontology. We performed immunohistochemical analysis of an HCC tissue microarray and identified changes in protein levels that are associated with patient survival times. Candidate genes were overexpressed or knocked down with small hairpin RNAs in SMMC7721, MHCC97H, or HCCLM3 cell lines; we analyzed their proliferation, viability, and clone-formation ability and their growth as subcutaneous or orthotopic xenograft tumors in mice. We performed microarray analyses to identify alterations in signaling pathways and immunoblot and immunofluorescence assays to detect and localize proteins in tissues. Yeast 2-hybrid screens and mass spectrometry combined with co-immunoprecipitation experiments were used to identify binding proteins. Protein interactions were validated with co-immunoprecipitation and proximity ligation assays. Chromatin immunoprecipitation, promoter luciferase activity, and quantitative real-time polymerase chain reaction analyses were used to identify factors that regulate transcription of specific genes. RESULTS The genes that were most frequently overexpressed in different types of cancer cells were involved in cell division processes. We identified 3 cytokinesis-regulatory proteins among the 10 genes most frequently overexpressed by all cancer cell types. Rac GTPase activating protein 1 (RACGAP1) was the cytokinesis-regulatory protein that was most highly overexpressed in multiple cancers. Increased expression of RACGAP1 in tumor tissues was associated with shorter survival times of patients with cancer. Knockdown of RACGAP1 in HCC cells induced cytokinesis failure and cell apoptosis. In microarray analyses, we found knockdown of RACGAP1 in SMMC7721 cells to reduce expression of genes regulated by yes-associated protein (YAP) and WW domain containing transcription regulator 1 (WWTR1 or TAZ). RACGAP1 reduced activation of the Hippo pathway in HCC cells by increasing activity of RhoA and polymerization of filamentous actin. Knockdown of YAP reduced phosphorylation of RACGAP1 and redistribution at the anaphase central spindle. We found transcription of the translocated promoter region, nuclear basket protein (TPR) to be regulated by YAP and coordinately expressed with RACGAP1 to promote proliferation of HCC cells. TPR redistributed upon nuclear envelope breakdown and formed complexes with RACGAP1 during mitosis. Knockdown of TPR in HCC cells reduced phosphorylation of RACGAP1 by aurora kinase B and impaired their redistribution at the central spindle during cytokinesis. STAT3 activated transcription of RACGAP in HCC cells. CONCLUSIONS In an analysis of gene expression patterns of multiple tumor types, we found RACGAP1 to be frequently overexpressed, which is associated with shorter survival times of patients. RACGAP1 promotes proliferation of HCC cells by reducing activation of the Hippo and YAP pathways and promoting cytokinesis in coordination with TPR.
Collapse
Affiliation(s)
- Xiao-Mei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Yan Cao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping He
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Xuan Feng
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Zhen Nie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guang-Ang Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Xin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Liu
- Department of Pathology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianguang Ji
- Center for Primary Health Care Research, Lund University Jan Waldenströms gata 35 Skåne University Hospital, Malmö, Sweden
| | - Xuefeng Zhu
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
39
|
Popchock AR, Jana S, Mehl RA, Qiu W. Engineering Heterodimeric Kinesins through Genetic Incorporation of Noncanonical Amino Acids. ACS Chem Biol 2018; 13:2229-2236. [PMID: 29894152 DOI: 10.1021/acschembio.8b00399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Kinesins are commonly homodimers with two identical heavy chains (protomers) and play indispensable roles in many intracellular processes. Engineered heterodimeric kinesins with two distinct protomers are important tools for dissecting coordination and regulation of naturally occurring kinesin homodimers. Here, we report a chemical-biology-based approach that generates kinesin heterodimers by combining genetic incorporation of reactive noncanonical amino acids and small-molecule-based cross-linking. We verified using yeast kinesin-8/Kip3 as a model system that our method yields kinesin heterodimers of desired properties without introducing unintended motility disruption. To demonstrate the utility of our method, we engineered a crippled Kip3 heterodimer that contains both a wild-type-like protomer and a catalytically inactive one, and our results revealed that the resulting heterodimer moves on the microtubule with a significant reduction in velocity but not processivity. Due to its versatility, we expect that our method can be broadly adopted to create novel heterodimers for other kinesins and will thus greatly expand the studies on kinesin mechanisms.
Collapse
Affiliation(s)
- Andrew R. Popchock
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Weihong Qiu
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
40
|
Gicking AM, Swentowsky KW, Dawe RK, Qiu W. Functional diversification of the kinesin‐14 family in land plants. FEBS Lett 2018; 592:1918-1928. [DOI: 10.1002/1873-3468.13094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/24/2018] [Accepted: 05/05/2018] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - R. Kelly Dawe
- Department of Plant Biology University of Georgia Athens GA USA
- Department of Genetics University of Georgia Athens GA USA
| | - Weihong Qiu
- Department of Physics Oregon State University Corvallis OR USA
| |
Collapse
|
41
|
Abstract
In animals and fungi, cytoplasmic dynein is a processive minus-end-directed motor that plays dominant roles in various intracellular processes. In contrast, land plants lack cytoplasmic dynein but contain many minus-end-directed kinesin-14s. No plant kinesin-14 is known to produce processive motility as a homodimer. OsKCH2 is a plant-specific kinesin-14 with an N-terminal actin-binding domain and a central motor domain flanked by two predicted coiled-coils (CC1 and CC2). Here, we show that OsKCH2 specifically decorates preprophase band microtubules in vivo and transports actin filaments along microtubules in vitro. Importantly, OsKCH2 exhibits processive minus-end-directed motility on single microtubules as individual homodimers. We find that CC1, but not CC2, forms the coiled-coil to enable OsKCH2 dimerization. Instead, our results reveal that removing CC2 renders OsKCH2 a nonprocessive motor. Collectively, these results show that land plants have evolved unconventional kinesin-14 homodimers with inherent minus-end-directed processivity that may function to compensate for the loss of cytoplasmic dynein. Land plants lack the cytoplasmic dynein motor in fungi and animals that shows processive minus-end-directed motility on microtubules. Here the authors demonstrate that land plants have evolved novel processive minus-end-directed kinesin-14 motors that likely compensate for the absence of dynein.
Collapse
|
42
|
A posttranslational modification of the mitotic kinesin Eg5 that enhances its mechanochemical coupling and alters its mitotic function. Proc Natl Acad Sci U S A 2018; 115:E1779-E1788. [PMID: 29432173 DOI: 10.1073/pnas.1718290115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Numerous posttranslational modifications have been described in kinesins, but their consequences on motor mechanics are largely unknown. We investigated one of these-acetylation of lysine 146 in Eg5-by creating an acetylation mimetic lysine to glutamine substitution (K146Q). Lysine 146 is located in the α2 helix of the motor domain, where it makes an ionic bond with aspartate 91 on the neighboring α1 helix. Molecular dynamics simulations predict that disrupting this bond enhances catalytic site-neck linker coupling. We tested this using structural kinetics and single-molecule mechanics and found that the K146Q mutation increases motor performance under load and coupling of the neck linker to catalytic site. These changes convert Eg5 from a motor that dissociates from the microtubule at low load into one that is more tightly coupled and dissociation resistant-features shared by kinesin 1. These features combined with the increased propensity to stall predict that the K146Q Eg5 acetylation mimetic should act in the cell as a "brake" that slows spindle pole separation, and we have confirmed this by expressing this modified motor in mitotically active cells. Thus, our results illustrate how a posttranslational modification of a kinesin can be used to fine tune motor behavior to meet specific physiological needs.
Collapse
|
43
|
Pike R, Ortiz-Zapater E, Lumicisi B, Santis G, Parsons M. KIF22 coordinates CAR and EGFR dynamics to promote cancer cell proliferation. Sci Signal 2018; 11:11/515/eaaq1060. [PMID: 29382784 DOI: 10.1126/scisignal.aaq1060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The coxsackievirus and adenovirus receptor (CAR) is a transmembrane receptor that plays a key role in cell-cell adhesion. CAR is found in normal epithelial cells and is increased in abundance in various human tumors, including lung carcinomas. We investigated the potential mechanisms by which CAR contributes to cancer cell growth and found that depletion of CAR in human lung cancer cells reduced anchorage-independent growth, epidermal growth factor (EGF)-dependent proliferation, and tumor growth in vivo. EGF induced the phosphorylation of CAR and its subsequent relocalization to cell junctions through the activation of the kinase PKCδ. EGF promoted the binding of CAR to the chromokinesin KIF22. KIF22-dependent regulation of microtubule dynamics led to delayed EGFR internalization, enhanced EGFR signaling, and coordination of CAR dynamics at cell-cell junctions. These data suggest a role for KIF22 in the coordination of membrane receptors and provide potential new therapeutic strategies to combat lung tumor growth.
Collapse
Affiliation(s)
- Rosemary Pike
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Elena Ortiz-Zapater
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.,Division of Asthma, Allergy and Lung Biology, King's College London, 5th Floor Tower Wing, Guy's Hospital Campus, London SE1 1UL, UK
| | - Brooke Lumicisi
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - George Santis
- Division of Asthma, Allergy and Lung Biology, King's College London, 5th Floor Tower Wing, Guy's Hospital Campus, London SE1 1UL, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
44
|
Gutiérrez-Escobar AJ, Méndez-Callejas G. Interactome Analysis of Microtubule-targeting Agents Reveals Cytotoxicity Bases in Normal Cells. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:352-360. [PMID: 29246518 PMCID: PMC5828656 DOI: 10.1016/j.gpb.2017.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/17/2017] [Accepted: 04/13/2017] [Indexed: 12/29/2022]
Abstract
Cancer causes millions of deaths annually and microtubule-targeting agents (MTAs) are the most commonly-used anti-cancer drugs. However, the high toxicity of MTAs on normal cells raises great concern. Due to the non-selectivity of MTA targets, we analyzed the interaction network in a non-cancerous human cell. Subnetworks of fourteen MTAs were reconstructed and the merged network was compared against a randomized network to evaluate the functional richness. We found that 71.4% of the MTA interactome nodes are shared, which affects cellular processes such as apoptosis, cell differentiation, cell cycle control, stress response, and regulation of energy metabolism. Additionally, possible secondary targets were identified as client proteins of interphase microtubules. MTAs affect apoptosis signaling pathways by interacting with client proteins of interphase microtubules, suggesting that their primary targets are non-tumor cells. The paclitaxel and doxorubicin networks share essential topological axes, suggesting synergistic effects. This may explain the exacerbated toxicity observed when paclitaxel and doxorubicin are used in combination for cancer treatment.
Collapse
Affiliation(s)
- Andrés Julián Gutiérrez-Escobar
- Grupo de Investigaciones Biomédicas y Genética Aplicada - GIBGA, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A., Bogotá 111166, Colombia.
| | - Gina Méndez-Callejas
- Grupo de Investigaciones Biomédicas y Genética Aplicada - GIBGA, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A., Bogotá 111166, Colombia
| |
Collapse
|
45
|
Tian S, Wu J, Liu Y, Huang X, Li F, Wang Z, Sun MX. Ribosomal protein NtRPL17 interacts with kinesin-12 family protein NtKRP and functions in the regulation of embryo/seed size and radicle growth. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5553-5564. [PMID: 29045730 PMCID: PMC5853406 DOI: 10.1093/jxb/erx361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/28/2017] [Indexed: 05/12/2023]
Abstract
We previously reported that a novel motor protein belonging to the kinesin-12 family, NtKRP, displays critical roles in regulating embryo and seed size establishment. However, it remains unknown exactly how NtKRP contributes to this developmental process. Here, we report that a 60S ribosomal protein NtRPL17 directly interacts with NtKRP. The phenotypes of NtRPL17 RNAi lines show notable embryo and seed size reduction. Structural observations of the NtRPL17-silenced embryos/seeds reveal that the embryo size reduction is due to a decrease in cell number. In these embryos, cell division cycle progression is delayed at the G2/M transition. These phenotypes are similar to that in NtKRP-silenced embryos/seeds, indicating that NtKRP and NtRPL17 function as partners in the same regulatory pathway during seed development and specifically regulate cell cycle progression to control embryo/seed size. This work reveals that NtRPL17, as a widely distributed ribosomal protein, plays a critical role in seed development and provides a new clue in the regulation of seed size. Confirmation of the interaction between NtKRP and NtRPL17 and their co-function in the control of the cell cycle also suggests that the mechanism might be conserved in both plants and animals.
Collapse
Affiliation(s)
- Shujuan Tian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jingjing Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuan Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaorong Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fen Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Zhaodan Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Agarwal S, Varma D. Targeting mitotic pathways for endocrine-related cancer therapeutics. Endocr Relat Cancer 2017; 24:T65-T82. [PMID: 28615236 PMCID: PMC5557717 DOI: 10.1530/erc-17-0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/14/2017] [Indexed: 12/21/2022]
Abstract
A colossal amount of basic research over the past few decades has provided unprecedented insights into the highly complex process of cell division. There is an ever-expanding catalog of proteins that orchestrate, participate and coordinate in the exquisite processes of spindle formation, chromosome dynamics and the formation and regulation of kinetochore microtubule attachments. Use of classical microtubule poisons has still been widely and often successfully used to combat a variety of cancers, but their non-selective interference in other crucial physiologic processes necessitate the identification of novel druggable components specific to the cell cycle/division pathway. Considering cell cycle deregulation, unscheduled proliferation, genomic instability and chromosomal instability as a hallmark of tumor cells, there lies an enormous untapped terrain that needs to be unearthed before a drug can pave its way from bench to bedside. This review attempts to systematically summarize the advances made in this context so far with an emphasis on endocrine-related cancers and the avenues for future progress to target mitotic mechanisms in an effort to combat these dreadful cancers.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Cell and Molecular BiologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dileep Varma
- Department of Cell and Molecular BiologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
47
|
She ZY, Yang WX. Molecular mechanisms of kinesin-14 motors in spindle assembly and chromosome segregation. J Cell Sci 2017; 130:2097-2110. [DOI: 10.1242/jcs.200261] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
ABSTRACT
During eukaryote cell division, molecular motors are crucial regulators of microtubule organization, spindle assembly, chromosome segregation and intracellular transport. The kinesin-14 motors are evolutionarily conserved minus-end-directed kinesin motors that occur in diverse organisms from simple yeasts to higher eukaryotes. Members of the kinesin-14 motor family can bind to, crosslink or slide microtubules and, thus, regulate microtubule organization and spindle assembly. In this Commentary, we present the common subthemes that have emerged from studies of the molecular kinetics and mechanics of kinesin-14 motors, particularly with regard to their non-processive movement, their ability to crosslink microtubules and interact with the minus- and plus-ends of microtubules, and with microtubule-organizing center proteins. In particular, counteracting forces between minus-end-directed kinesin-14 and plus-end-directed kinesin-5 motors have recently been implicated in the regulation of microtubule nucleation. We also discuss recent progress in our current understanding of the multiple and fundamental functions that kinesin-14 motors family members have in important aspects of cell division, including the spindle pole, spindle organization and chromosome segregation.
Collapse
Affiliation(s)
- Zhen-Yu She
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
48
|
Renda F, Pellacani C, Strunov A, Bucciarelli E, Naim V, Bosso G, Kiseleva E, Bonaccorsi S, Sharp DJ, Khodjakov A, Gatti M, Somma MP. The Drosophila orthologue of the INT6 onco-protein regulates mitotic microtubule growth and kinetochore structure. PLoS Genet 2017; 13:e1006784. [PMID: 28505193 PMCID: PMC5448806 DOI: 10.1371/journal.pgen.1006784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 05/30/2017] [Accepted: 04/27/2017] [Indexed: 12/01/2022] Open
Abstract
INT6/eIF3e is a highly conserved component of the translation initiation complex that interacts with both the 26S proteasome and the COP9 signalosome, two complexes implicated in ubiquitin-mediated protein degradation. The INT6 gene was originally identified as the insertion site of the mouse mammary tumor virus (MMTV), and later shown to be involved in human tumorigenesis. Here we show that depletion of the Drosophila orthologue of INT6 (Int6) results in short mitotic spindles and deformed centromeres and kinetochores with low intra-kinetochore distance. Poleward flux of microtubule subunits during metaphase is reduced, although fluorescence recovery after photobleaching (FRAP) demonstrates that microtubules remain dynamic both near the kinetochores and at spindle poles. Mitotic progression is delayed during metaphase due to the activity of the spindle assembly checkpoint (SAC). Interestingly, a deubiquitinated form of the kinesin Klp67A (a putative orthologue of human Kif18A) accumulates near the kinetochores in Int6-depleted cells. Consistent with this finding, Klp67A overexpression mimics the Int6 RNAi phenotype. Furthermore, simultaneous depletion of Int6 and Klp67A results in a phenotype identical to RNAi of just Klp67A, which indicates that Klp67A deficiency is epistatic over Int6 deficiency. We propose that Int6-mediated ubiquitination is required to control the activity of Klp67A. In the absence of this control, excess of Klp67A at the kinetochore suppresses microtubule plus-end polymerization, which in turn results in reduced microtubule flux, spindle shortening, and centromere/kinetochore deformation.
Collapse
Affiliation(s)
- Fioranna Renda
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Claudia Pellacani
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Roma, Italy
| | - Anton Strunov
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
| | | | - Valeria Naim
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Giuseppe Bosso
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Elena Kiseleva
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
| | - Silvia Bonaccorsi
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - David J. Sharp
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Roma, Italy
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
| | | |
Collapse
|
49
|
Orfanidis K, Wäster P, Lundmark K, Rosdahl I, Öllinger K. Evaluation of tubulin β-3 as a novel senescence-associated gene in melanocytic malignant transformation. Pigment Cell Melanoma Res 2017; 30:243-254. [PMID: 28024114 DOI: 10.1111/pcmr.12572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/17/2016] [Indexed: 12/22/2022]
Abstract
Malignant melanoma might develop from melanocytic nevi in which the growth-arrested state has been broken. We analyzed the gene expression of young and senescent human melanocytes in culture and compared the gene expression data with a dataset from nevi and melanomas. A concordant altered gene expression was identified in 84 genes when comparing the growth-arrested samples with proliferating samples. TUBB3, which encodes the microtubule protein tubulin β-3, showed a decreased expression in senescent melanocytes and nevi and was selected for further studies. Depletion of tubulin β-3 caused accumulation of cells in the G2/M phase and decreased proliferation and migration. Immunohistochemical assessment of tubulin β-3 in benign lesions revealed strong staining in the superficial part of the intradermal components, which faded with depth. In contrast, primary melanomas exhibited staining without gradient in a disordered pattern and strong staining of the invasive front. Our results describe an approach to find clinically useful diagnostic biomarkers to more precisely identify cutaneous malignant melanoma and present tubulin β-3 as a candidate marker.
Collapse
Affiliation(s)
- Kyriakos Orfanidis
- Department of Dermatology and Venereology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Petra Wäster
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Katarzyna Lundmark
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Clinical Pathology and Clinical Genetics, Linköping University, Linköping, Sweden
| | - Inger Rosdahl
- Department of Dermatology and Venereology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Karin Öllinger
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
50
|
Yan J, Zhang D, Yu H, Ma L, Deng M, Tang Z, Zhang X. Patupilone-loaded poly(L-glutamic acid)-graft-methoxy-poly(ethylene glycol) micelle for oncotherapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:394-414. [DOI: 10.1080/09205063.2016.1277827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Yan
- Department of Chemistry, Xiangtan University, Xiangtan, PR China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| | - Dawei Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| | - Haiyang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| | - Lili Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| | - Mingxiao Deng
- College of Chemistry, Northeast Normal University, Changchun, PR China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| | - Xuefei Zhang
- Department of Chemistry, Xiangtan University, Xiangtan, PR China
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Xiangtan University, Xiangtan, PR China
| |
Collapse
|