1
|
Lin Z, Li S, Wu Q, Qu H, Shi X, Wang K, Tang C, Yin C. In situ customized apolipoprotein B48-enriched protein corona enhances oral gene delivery of chitosan-based nanoparticles. Biomaterials 2024; 311:122704. [PMID: 39018697 DOI: 10.1016/j.biomaterials.2024.122704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
The formation of protein corona (PC) is important for promoting the in vivo delivery of nanoparticles (NPs). However, PC formed in the physiological environment of oral delivery is poorly understood. Here, we engineered seven types of trimethyl chitosan-cysteine (TC) NPs, with distinct molecular weights, quaternization degrees, and thiolation degrees, to deeply investigate the influence of various PC formed in the physiological environment of oral delivery on in vivo gene delivery of polymeric NPs, further constructing the relationship between the surface characteristics of NPs and the efficacy of oral gene delivery. Our findings reveal that TC7 NPs, with high molecular weight, moderate quaternization, and high sulfhydryl content, modulate PC formation in the gastrointestinal tract, thereby reducing particle size and promoting oral delivery of gene loaded TC7 NPs. Orally delivered TC7 NPs target macrophages by in situ adsorption of apolipoprotein (Apo) B48 in intestinal tissue, leading to the improved in vivo antihepatoma efficacy via the natural tumor homing ability of macrophages. Our results suggest that efficient oral delivery of genes can be achieved through an in situ customized ApoB48-enriched PC, offering a promising modality in treating macrophage-related diseases.
Collapse
Affiliation(s)
- Ziyun Lin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Shengqi Li
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Qiuji Wu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Hongfei Qu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Xiliang Shi
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Ke Wang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China.
| |
Collapse
|
2
|
Zheng Y, Luo S, Xu M, He Q, Xie J, Wu J, Huang Y. Transepithelial transport of nanoparticles in oral drug delivery: From the perspective of surface and holistic property modulation. Acta Pharm Sin B 2024; 14:3876-3900. [PMID: 39309496 PMCID: PMC11413706 DOI: 10.1016/j.apsb.2024.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 05/25/2024] [Indexed: 09/25/2024] Open
Abstract
Despite the promising prospects of nanoparticles in oral drug delivery, the process of oral administration involves a complex transportation pathway that includes cellular uptake, intracellular trafficking, and exocytosis by intestinal epithelial cells, which are necessary steps for nanoparticles to enter the bloodstream and exert therapeutic effects. Current researchers have identified several crucial factors that regulate the interaction between nanoparticles and intestinal epithelial cells, including surface properties such as ligand modification, surface charge, hydrophilicity/hydrophobicity, intestinal protein corona formation, as well as holistic properties like particle size, shape, and rigidity. Understanding these properties is essential for enhancing transepithelial transport efficiency and designing effective oral drug delivery systems. Therefore, this review provides a comprehensive overview of the surface and holistic properties that influence the transepithelial transport of nanoparticles, elucidating the underlying principles governing their impact on transepithelial transport. The review also outlines the chosen of parameters to be considered for the subsequent design of oral drug delivery systems.
Collapse
Affiliation(s)
- Yaxian Zheng
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Shiqin Luo
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Min Xu
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin He
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiang Xie
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiawei Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Seessle J, Liebisch G, Staffer S, Tuma-Kellner S, Merle U, Herrmann T, Chamulitrat W. Enterocyte-specific FATP4 deficiency elevates blood lipids via a shift from polar to neutral lipids in distal intestine. Am J Physiol Gastrointest Liver Physiol 2024; 327:G202-G216. [PMID: 38915276 DOI: 10.1152/ajpgi.00109.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Fatty acid transport protein (FATP)4 was thought to mediate intestinal lipid absorption, which was disputed by a study using keratinocyte-Fatp4-rescued Fatp4-/- mice. These knockouts when fed with a Western diet showed elevated intestinal triglyceride (TG) and fatty acid levels. To investigate a possible role of FATP4 on intestinal lipid processing, ent-Fatp4 (KO) mice were generated by Villin-Cre-specific inactivation of the Fatp4 gene. We aimed to measure circulating and intestinal lipids in control and KO mice after acute or chronic fat intake or during aging. Remarkably, ent-Fatp4 mice displayed an approximately 30% decrease in ileal behenic, lignoceric, and nervonic acids, ceramides containing these FA, as well as, ileal sphingomyelin, phosphatidylcholine, and phosphatidylinositol levels. Such decreases were concomitant with an increase in jejunal cholesterol ester. After a 2-wk recovery from high lipid overload by tyloxapol and oral-lipid treatment, ent-Fatp4 mice showed an increase in plasma TG and chylomicrons. Upon overnight fasting followed by an oral fat meal, ent-Fatp4 mice showed an increase in plasma TG-rich lipoproteins and the particle number of chylomicrons and very low-density lipoproteins. During aging or after feeding with a high-fat high-cholesterol (HFHC) diet, ent-Fatp4 mice showed an increase in plasma TG, fatty acids, glycerol, and lipoproteins as well as intestinal lipids. HFHC-fed KO mice displayed an increase in body weight, the number of lipid droplets with larger sizes in the ileum, concomitant with a decrease in ileal ceramides and phosphatidylcholine. Thus, enterocyte FATP4 deficiency led to a metabolic shift from polar to neutral lipids in distal intestine rendering an increase in plasma lipids and lipoproteins.NEW & NOTEWORTHY Enterocyte-specific Fatp4 deficiency in mice increased intestinal lipid absorption with elevation of blood lipids during fasting and aging, as well as after an acute oral fat-loading or chronic HFHC feeding. Lipidomics revealed that knockout mice displayed a shift from very long-chain to long-chain fatty acids, and from polar to neutral lipids, predominantly in the ileum. Thus, FATP4 may have a physiological function in the control of blood lipids via metabolic shifts in distal intestine.
Collapse
Affiliation(s)
- Jessica Seessle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Simone Staffer
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Herrmann
- Department of Medical Clinic 1, Westkuesten Hospital, Heide, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Dai J, Chen T, Meng R, Jardi F, Kourula S, Pham L, De Jonghe S, De Smedt A, Frisk AL, Xie J. Species differences in small intestinal exposure-related epithelial vacuolation in rats and dogs treated with a heteroaryldihydropyrimidine molecule. J Appl Toxicol 2024; 44:400-414. [PMID: 37814191 DOI: 10.1002/jat.4550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Small intestinal epithelial vacuolation induced by a heteroaryldihydropyrimidine compound (HAP-1) was observed in rats but not in dogs at termination in screening toxicity studies, despite the plasma exposure being higher in dogs. To understand the species differences, investigational studies with multiple time points following single dose (SD) and 7-day repeated dose (RD) were conducted in both species at doses resulting in comparable plasma exposures. In rats, epithelial vacuolation in the duodenum and jejunum were observed at all time points. In dogs, transient vacuolation was noted at 8 h post-SD (SD_8h) and 4 h post-RD (RD_4 h), but not at termination (RD_24 h). Special stains demonstrated lipid accumulation within enterocytes in both species and intracytoplasmic inclusion bodies in rats. Transmission electron microscopy identified these inclusion bodies as endoplasmic reticulum (ER) membranous structures. Transcriptomic analysis on jejunal mucosa at SD_8 h and RD_24 h revealed perturbations of lipid metabolism-related genes at SD_8 h in both species, but not at RD_24 h in dogs. ER stress-related gene changes at both time points were observed in rats only. Despite comparable HAP-1 plasma exposures, the duodenum and jejunum tissue concentrations of HAP-1 and acyl glucuronide metabolite were >5- and >30-fold higher in rats than in dogs, respectively. In vitro, similar cytotoxicity was observed in rat and dog duodenal organoids treated with HAP-1. In conclusion, HAP-1-induced intestinal epithelial vacuolation was related to lipid metabolism dysregulation in both species and ER-related injuries in rats only. The species differences were likely related to the difference in intestinal exposure to HAP-1 and its reactive metabolite.
Collapse
Affiliation(s)
- Jieyu Dai
- Preclinical Sciences and Translational Safety (PSTS), Janssen R&D, Shanghai, China
| | - Tao Chen
- Preclinical Sciences and Translational Safety (PSTS), Janssen R&D, Shanghai, China
| | - Ryan Meng
- Preclinical Sciences and Translational Safety (PSTS), Janssen R&D, Shanghai, China
| | | | | | - Ly Pham
- PSTS, Janssen Pharmaceuticals Inc., Spring House, Pennsylvania, USA
| | | | | | | | - Jianxun Xie
- Preclinical Sciences and Translational Safety (PSTS), Janssen R&D, Shanghai, China
| |
Collapse
|
5
|
Pilon M, Ruiz M. PAQR proteins and the evolution of a superpower: Eating all kinds of fats: Animals rely on evolutionarily conserved membrane homeostasis proteins to compensate for dietary variation. Bioessays 2023; 45:e2300079. [PMID: 37345585 DOI: 10.1002/bies.202300079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Recently published work showed that members of the PAQR protein family are activated by cell membrane rigidity and contribute to our ability to eat a wide variety of diets. Cell membranes are primarily composed of phospholipids containing dietarily obtained fatty acids, which poses a challenge to membrane properties because diets can vary greatly in their fatty acid composition and could impart opposite properties to the cellular membranes. In particular, saturated fatty acids (SFAs) can pack tightly and form rigid membranes (like butter at room temperature) while unsaturated fatty acids (UFAs) form more fluid membranes (like vegetable oils). Proteins of the PAQR protein family, characterized by the presence of seven transmembrane domains and a cytosolic N-terminus, contribute to membrane homeostasis in bacteria, yeasts, and animals. These proteins respond to membrane rigidity by stimulating fatty acid desaturation and incorporation of UFAs into phospholipids and explain the ability of animals to thrive on diets with widely varied fat composition. Also see the video abstract here: https://youtu.be/6ckcvaDdbQg.
Collapse
Affiliation(s)
- Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Kim KS, Na K, Bae YH. Nanoparticle oral absorption and its clinical translational potential. J Control Release 2023; 360:149-162. [PMID: 37348679 DOI: 10.1016/j.jconrel.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/04/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Oral administration of pharmaceuticals is the most preferred route of administration for patients, but it is challenging to effectively deliver active ingredients (APIs) that i) have extremely high or low solubility in intestinal fluids, ii) are large in size, iii) are subject to digestive and/or metabolic enzymes present in the gastrointestinal tract (GIT), brush border, and liver, and iv) are P-glycoprotein substrates. Over the past decades, efforts to increase the oral bioavailability of APIs have led to the development of nanoparticles (NPs) with non-specific uptake pathways (M cells, mucosal, and tight junctions) and target-specific uptake pathways (FcRn, vitamin B12, and bile acids). However, voluminous findings from preclinical models of different species rarely meet practical standards when translated to humans, and API concentrations in NPs are not within the adequate therapeutic window. Various NP oral delivery approaches studied so far show varying bioavailability impacted by a range of factors, such as species, GIT physiology, age, and disease state. This may cause difficulty in obtaining similar oral delivery efficacy when research results in animal models are translated into humans. This review describes the selection of parameters to be considered for translational potential when designing and developing oral NPs.
Collapse
Affiliation(s)
- Kyoung Sub Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - You Han Bae
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
7
|
López-Lluch G. Coenzyme Q-related compounds to maintain healthy mitochondria during aging. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:277-308. [PMID: 37437981 DOI: 10.1016/bs.apcsb.2023.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Mitochondrial dysfunction is one of the main factors that affects aging progression and many age-related diseases. Accumulation of dysfunctional mitochondria can be driven by unbalanced mito/autophagy or by decrease in mitochondrial biosynthesis and turnover. Coenzyme Q is an essential component of the mitochondrial electron transport chain and a key factor in the protection of membrane and mitochondrial DNA against oxidation. Coenzyme Q levels decay during aging and this can be considered an accelerating factor in mitochondrial dysfunction and aging progression. Supplementation with coenzyme Q is successful for some tissues and organs but not for others. For this reason, the role of coenzyme Q in systemic aging is a complex picture that needs different strategies depending on the organ considered the main objective to be addressed. In this chapter we focus on the different effects of coenzyme Q and related compounds and the probable strategies to induce endogenous synthesis to maintain healthy aging.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
8
|
Coenzyme Q10 Metabolism: A Review of Unresolved Issues. Int J Mol Sci 2023; 24:ijms24032585. [PMID: 36768907 PMCID: PMC9916783 DOI: 10.3390/ijms24032585] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
The variable success in the outcome of randomised controlled trials supplementing coenzyme Q10 (CoQ10) may in turn be associated with a number of currently unresolved issues relating to CoQ10 metabolism. In this article, we have reviewed what is currently known about these factors and where gaps in knowledge exist that need to be further elucidated. Issues addressed include (i) whether the bioavailability of CoQ10 could be improved; (ii) whether CoQ10 could be administered intravenously; (iii) whether CoQ10 could be administered via alternative routes; (iv) whether CoQ10 can cross the blood-brain barrier; (v) how CoQ10 is transported into and within target cells; (vi) why some clinical trials supplementing CoQ10 may have been unsuccessful; and (vii) which is the most appropriate tissue for the clinical assessment of CoQ10 status.
Collapse
|
9
|
Parchem K, Baranowska M, Kościelak A, Kłosowska-Chomiczewska I, Domingues MR, Macierzanka A, Bartoszek A. Effect of oxidation and in vitro intestinal hydrolysis on phospholipid toxicity towards HT29 cell line serving as a model of human intestinal epithelium. Food Res Int 2023; 163:112227. [PMID: 36596156 DOI: 10.1016/j.foodres.2022.112227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Oxidation of food-derived phospholipids (PLs) can influence nutrient digestion and induce oxidative stress in gastrointestinal epithelium. In this study, hen egg yolk PL fraction was used to evaluate the effect of lipoxygenase (LOX)-induced PL oxidation on the rate of PL hydrolysis catalyzed by pancreatic phospholipase A2 (PLA2) in the presence of bile salts (BSs). Then, PL/BS solutions containing native or oxidized PLs were used in in vitro intestinal digestion to assess the effect of PL oxidation and hydrolysis on the toxicity towards HT29 cell line. Based on the obtained results, we suggest that hexanal and (E)-2-nonenal, formed by the decomposition of PL hydroperoxides, inhibited PLA2 activity. The cell exposure to simulated intestinal fluid (SIF) containing BSs decreased HT29 cell viability and significantly damaged cellular DNA. However, the genotoxic effect was reversed in the presence of all tested PL samples, while the protective effect against the BS-induced cytotoxicity was observed for native non-hydrolyzed PLs, but was not clearly visible for other samples. This can result from an overlap of other toxic effects such as lipotoxicity or disturbance of cellular redox homeostasis. Taking into account the data obtained, it was proposed that the PLA2 activity decline in the presence of PL oxidation products may be a kind of protective mechanism against rapid release of oxidized FAs characterized by high cytotoxic effect towards intestinal epithelium cells.
Collapse
Affiliation(s)
- Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdansk, Poland.
| | - Monika Baranowska
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdansk, Poland.
| | - Anna Kościelak
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdansk, Poland.
| | - Ilona Kłosowska-Chomiczewska
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdansk, Poland.
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| | - Adam Macierzanka
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdansk, Poland.
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdansk, Poland.
| |
Collapse
|
10
|
Ramaker ME, Corcoran DL, Apsley AT, Kobor MS, Kraus VB, Kraus WE, Lin DTS, Orenduff MC, Pieper CF, Waziry R, Huffman KM, Belsky DW. Epigenome-wide Association Study Analysis of Calorie Restriction in Humans, CALERIETM Trial Analysis. J Gerontol A Biol Sci Med Sci 2022; 77:2395-2401. [PMID: 35965483 PMCID: PMC9799188 DOI: 10.1093/gerona/glac168] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 01/20/2023] Open
Abstract
Calorie restriction (CR) increases healthy life span and is accompanied by slowing or reversal of aging-associated DNA methylation (DNAm) changes in animal models. In the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIETM) human trial, we evaluated associations of CR and changes in whole-blood DNAm. CALERIETM randomized 220 healthy, nonobese adults in a 2:1 allocation to 2 years of CR or ad libitum (AL) diet. The average CR in the treatment group through 24 months of follow-up was 12%. Whole blood (baseline, 12, and 24 months) DNAm profiles were measured. Epigenome-wide association study (EWAS) analysis tested CR-induced changes from baseline to 12 and 24 months in the n = 197 participants with available DNAm data. CR treatment was not associated with epigenome-wide significant (false discovery rate [FDR] < 0.05) DNAm changes at the individual-CpG-site level. Secondary analysis of sets of CpG sites identified in published EWAS revealed that CR induced DNAm changes opposite to those associated with higher body mass index and cigarette smoking (p < .003 at 12- and 24-month follow-ups). In contrast, CR altered DNAm at chronological-age-associated CpG sites in the direction of older age (p < .003 at 12- and 24-month follow-ups). Although individual CpG site DNAm changes in response to CR were not identified, analyses of sets CpGs identified in prior EWAS revealed CR-induced changes to blood DNAm. Altered CpG sets were enriched for insulin production, glucose tolerance, inflammation, and DNA-binding and DNA-regulation pathways, several of which are known to be modified by CR. DNAm changes may contribute to CR effects on aging.
Collapse
Affiliation(s)
- Megan E Ramaker
- Duke University Molecular Physiology Institute, Durham, North Carolina, USA
| | - David L Corcoran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Abner T Apsley
- Behavioral Health Department, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biobehavioral Health, Molecular, Cellular, and Integrative Biosciences Program, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Michael S Kobor
- BC Children’s Hopsital Research Institute (BCCHR), Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- Program in Child and Brain Development, CIFA, MaRS Centre, Vancouver, British Columbia, Canada
- The Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Virginia B Kraus
- Duke University Molecular Physiology Institute, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - William E Kraus
- Duke University Molecular Physiology Institute, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - David T S Lin
- BC Children’s Hopsital Research Institute (BCCHR), Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Melissa C Orenduff
- Duke University Molecular Physiology Institute, Durham, North Carolina, USA
| | - Carl F Pieper
- Center for Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA
| | - Reem Waziry
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Kim M Huffman
- Duke University Molecular Physiology Institute, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Daniel W Belsky
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, New York, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA
| |
Collapse
|
11
|
Streich K, Klein M, Siebert A, Bleich A, Buettner M. Diet-induced obesity results in impaired oral tolerance induction. Immun Inflamm Dis 2022; 10:e720. [PMID: 36444631 PMCID: PMC9673425 DOI: 10.1002/iid3.720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Obesity increases the risk of several diseases, such as type 2 diabetes mellitus and cardiovascular disease. Obesity also affects the immune system. When dietary lipids are transported via the lymphatics, they pass the mesenteric lymph nodes (mLNs). In these secondary lymphoid organs, immune responses towards pathogens are generated, or tolerance against harmless antigens is induced. METHODS In this study, the effects of diet-induced obesity (DIO) on mLN induced oral tolerance induction were examined in C57BL/6NCrl mice. Therefore, mice were fed a high-fat or a low-fat diet for 14 weeks. After 10 weeks of feeding oral tolerance induction started, ending up in measuring the delayed-type hypersensitivity reaction, the cell subset composition and cytokine expression. RESULTS We detected an impaired oral tolerance induction during DIO, but changes were reversible after switching the feed to standard chow. Thus, the altered immunological function of mLNs depends on the intake of dietary lipids. Additionally, our results show an influence of the microenvironment on the development of oral tolerance during DIO as oral tolerance was induced in transplanted peripheral lymph nodes. CONCLUSION This indicates a functional influence of dietary lipids on stromal cells involved in immune system induction in the mLNs.
Collapse
Affiliation(s)
- Katharina Streich
- Institute for Laboratory Animal ScienceHannover Medical SchoolHannoverGermany
| | - Margarethe Klein
- Institute for Laboratory Animal ScienceHannover Medical SchoolHannoverGermany
- Institute for NeurophysiologyHannover Medical SchoolHannoverGermany
| | - Anja Siebert
- Institute for Laboratory Animal ScienceHannover Medical SchoolHannoverGermany
| | - André Bleich
- Institute for Laboratory Animal ScienceHannover Medical SchoolHannoverGermany
| | - Manuela Buettner
- Institute for Laboratory Animal ScienceHannover Medical SchoolHannoverGermany
| |
Collapse
|
12
|
Reovirus uses temporospatial compartmentalization to orchestrate core versus outercapsid assembly. PLoS Pathog 2022; 18:e1010641. [PMID: 36099325 PMCID: PMC9514668 DOI: 10.1371/journal.ppat.1010641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/27/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Reoviridae virus family members, such as mammalian orthoreovirus (reovirus), encounter a unique challenge during replication. To hide the dsRNA from host recognition, the genome remains encapsidated in transcriptionally active proteinaceous core capsids that transcribe and release +RNA. De novo +RNAs and core proteins must repeatedly assemble into new progeny cores in order to logarithmically amplify replication. Reoviruses also produce outercapsid (OC) proteins μ1, σ3 and σ1 that assemble onto cores to create highly stable infectious full virions. Current models of reovirus replication position amplification of transcriptionally-active cores and assembly of infectious virions in shared factories, but we hypothesized that since assembly of OC proteins would halt core amplification, OC assembly is somehow regulated. Kinetic analysis of virus +RNA production, core versus OC protein expression, and core particles versus whole virus particle accumulation, indicated that assembly of OC proteins onto core particles was temporally delayed. All viral RNAs and proteins were made simultaneously, eliminating the possibility that delayed OC RNAs or proteins account for delayed OC assembly. High resolution fluorescence and electron microscopy revealed that core amplification occurred early during infection at peripheral core-only factories, while all OC proteins associated with lipid droplets (LDs) that coalesced near the nucleus in a μ1–dependent manner. Core-only factories transitioned towards the nucleus despite cycloheximide-mediated halting of new protein expression, while new core-only factories developed in the periphery. As infection progressed, OC assembly occurred at LD-and nuclear-proximal factories. Silencing of OC μ1 expression with siRNAs led to large factories that remained further from the nucleus, implicating μ1 in the transition to perinuclear factories. Moreover, late during infection, +RNA pools largely contributed to the production of de-novo viral proteins and fully-assembled infectious viruses. Altogether the results suggest an advanced model of reovirus replication with spatiotemporal segregation of core amplification, OC complexes and fully assembled virions. It is important to understand how viruses replicate and assemble to discover antiviral therapies and to modify viruses for applications like gene therapy or cancer therapy. Reovirus is a harmless virus being tested as a cancer therapy. Reovirus has two coats of proteins, an inner coat and an outer coat. To replicate, reovirus particles need only the inner coat, but to become infectious they require the outer coat. Strangely, inner and outer coat proteins are all made by the virus at once, so it was unknown what determines whether newly made viruses will contain just the inner coat to continue to replicate, or both coats to transmit to new hosts. Our experiments reveal that the inner coat proteins are located in a different area of an infected cell versus the outer coat proteins. The location therefore determines if the newly made viruses contain just the inner coat versus both coats. Reoviruses have evolved extravagant mechanisms to be able to efficiently take on the best composition required for replication and transmission.
Collapse
|
13
|
Lockridge A, Hanover JA. A nexus of lipid and O-Glcnac metabolism in physiology and disease. Front Endocrinol (Lausanne) 2022; 13:943576. [PMID: 36111295 PMCID: PMC9468787 DOI: 10.3389/fendo.2022.943576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Although traditionally considered a glucose metabolism-associated modification, the O-linked β-N-Acetylglucosamine (O-GlcNAc) regulatory system interacts extensively with lipids and is required to maintain lipid homeostasis. The enzymes of O-GlcNAc cycling have molecular properties consistent with those expected of broad-spectrum environmental sensors. By direct protein-protein interactions and catalytic modification, O-GlcNAc cycling enzymes may provide both acute and long-term adaptation to stress and other environmental stimuli such as nutrient availability. Depending on the cell type, hyperlipidemia potentiates or depresses O-GlcNAc levels, sometimes biphasically, through a diversity of unique mechanisms that target UDP-GlcNAc synthesis and the availability, activity and substrate selectivity of the glycosylation enzymes, O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA). At the same time, OGT activity in multiple tissues has been implicated in the homeostatic regulation of systemic lipid uptake, storage and release. Hyperlipidemic patterns of O-GlcNAcylation in these cells are consistent with both transient physiological adaptation and feedback uninhibited obesogenic and metabolic dysregulation. In this review, we summarize the numerous interconnections between lipid and O-GlcNAc metabolism. These links provide insights into how the O-GlcNAc regulatory system may contribute to lipid-associated diseases including obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Amber Lockridge
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Ghanem M, Lewis GF, Xiao C. Recent advances in cytoplasmic lipid droplet metabolism in intestinal enterocyte. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159197. [PMID: 35820577 DOI: 10.1016/j.bbalip.2022.159197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
Processing of dietary fats in the intestine is a highly regulated process that influences whole-body energy homeostasis and multiple physiological functions. Dysregulated lipid handling in the intestine leads to dyslipidemia and atherosclerotic cardiovascular disease. In intestinal enterocytes, lipids are incorporated into lipoproteins and cytoplasmic lipid droplets (CLDs). Lipoprotein synthesis and CLD metabolism are inter-connected pathways with multiple points of regulation. This review aims to highlight recent advances in the regulatory mechanisms of lipid processing in the enterocyte, with particular focus on CLDs. In-depth understanding of the regulation of lipid metabolism in the enterocyte may help identify therapeutic targets for the treatment and prevention of metabolic disorders.
Collapse
Affiliation(s)
- Murooj Ghanem
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Gary F Lewis
- Departments of Medicine and Physiology, University of Toronto, and University Health Network, Toronto, ON, Canada
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Lymphatics are known to have active, regulated pumping by smooth muscle cells that enhance lymph flow, but whether active regulation of lymphatic pumping contributes significantly to the rate of appearance of chylomicrons (CMs) in the blood circulation (i.e., CM production rate) is not currently known. In this review, we highlight some of the potential mechanisms by which lymphatics may regulate CM production. RECENT FINDINGS Recent data from our lab and others are beginning to provide clues that suggest a more active role of lymphatics in regulating CM appearance in the circulation through various mechanisms. Potential contributors include apolipoproteins, glucose, glucagon-like peptide-2, and vascular endothelial growth factor-C, but there are likely to be many more. SUMMARY The digested products of dietary fats absorbed by the small intestine are re-esterified and packaged by enterocytes into large, triglyceride-rich CM particles or stored temporarily in intracellular cytoplasmic lipid droplets. Secreted CMs traverse the lamina propria and are transported via lymphatics and then the blood circulation to liver and extrahepatic tissues, where they are stored or metabolized as a rich energy source. Although indirect data suggest a relationship between lymphatic pumping and CM production, this concept requires more experimental evidence before we can be sure that lymphatic pumping contributes significantly to the rate of CM appearance in the blood circulation.
Collapse
Affiliation(s)
- Majid M Syed-Abdul
- Departments of Medicine and Physiology and Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lili Tian
- Departments of Medicine and Physiology and Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gary F Lewis
- Departments of Medicine and Physiology and Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Buerger AN, Parente CE, Harris JP, Watts EG, Wormington AM, Bisesi JH. Impacts of diethylhexyl phthalate and overfeeding on physical fitness and lipid mobilization in Danio rerio (zebrafish). CHEMOSPHERE 2022; 295:133703. [PMID: 35066078 DOI: 10.1016/j.chemosphere.2022.133703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
As the prevalence of obesity has steadily increased on a global scale, research has shifted to explore potential contributors to this pandemic beyond overeating and lack of exercise. Environmental chemical contaminants, known as obesogens, alter metabolic processes and exacerbate the obese phenotype. Diethylhexyl phthalate (DEHP) is a common chemical plasticizer found in medical supplies, food packaging, and polyvinyl materials, and has been identified as a probable obesogen. This study investigated the hypothesis that co-exposure to DEHP and overfeeding would result in decreased lipid mobilization and physical fitness in Danio rerio (zebrafish). Four treatment groups were randomly assigned: Regular Fed (control, 10 mg/fish/day with 0 mg/kg DEHP), Overfed (20 mg/fish/day with 0 mg/kg DEHP), Regular Fed + DEHP (10 mg/fish/day with 3 mg/kg DEHP), Overfed + DEHP (20 mg/fish/day with 3 mg/kg DEHP). After 24 weeks, swim tunnel assays were conducted on half of the zebrafish from each treatment to measure critical swimming speeds (Ucrit); the other fish were euthanized without swimming. Body mass index (BMI) was measured, and tissues were collected for blood lipid characterization and gene expression analyses. Co-exposure to DEHP and overfeeding decreased swim performance as measured by Ucrit. While no differences in blood lipids were observed with DEHP exposure, differential expression of genes related to lipid metabolism and utilization in the gastrointestinal and liver tissue suggests alterations in metabolism and lipid packaging, which may impact utilization and ability to mobilize lipid reserves during physical activity following chronic exposures.
Collapse
Affiliation(s)
- Amanda N Buerger
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Caitlyn E Parente
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA; Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Jason P Harris
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA; Department of Biology, University of Florida, Gainesville, FL, USA
| | - Emily G Watts
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA; Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Alexis M Wormington
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
Wit M, Trujillo-Viera J, Strohmeyer A, Klingenspor M, Hankir M, Sumara G. When fat meets the gut-focus on intestinal lipid handling in metabolic health and disease. EMBO Mol Med 2022; 14:e14742. [PMID: 35437952 PMCID: PMC9081902 DOI: 10.15252/emmm.202114742] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
The regular overconsumption of energy‐dense foods (rich in lipids and sugars) results in elevated intestinal nutrient absorption and consequently excessive accumulation of lipids in the liver, adipose tissue, skeletal muscles, and other organs. This can eventually lead to obesity and obesity‐associated diseases such as type 2 diabetes (T2D), non‐alcoholic fatty liver disease (NAFLD), cardiovascular disease, and certain types of cancer, as well as aggravate inflammatory bowel disease (IBD). Therefore, targeting the pathways that regulate intestinal nutrient absorption holds significant therapeutic potential. In this review, we discuss the molecular and cellular mechanisms controlling intestinal lipid handling, their relevance to the development of metabolic diseases, and emerging therapeutic strategies.
Collapse
Affiliation(s)
- Magdalena Wit
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Jonathan Trujillo-Viera
- Rudolf-Virchow-Zentrum, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Akim Strohmeyer
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Freising, Germany.,EKFZ - Else Kröner-Fresenius-Center for Nutritional Medicine, Technical University of Munich, Munich, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Freising, Germany.,EKFZ - Else Kröner-Fresenius-Center for Nutritional Medicine, Technical University of Munich, Munich, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Mohammed Hankir
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| |
Collapse
|
18
|
Hamsanathan S, Gurkar AU. Lipids as Regulators of Cellular Senescence. Front Physiol 2022; 13:796850. [PMID: 35370799 PMCID: PMC8965560 DOI: 10.3389/fphys.2022.796850] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Lipids are key macromolecules that perform a multitude of biological functions ranging from maintaining structural integrity of membranes, energy storage, to signaling molecules. Unsurprisingly, variations in lipid composition and its levels can influence the functional and physiological state of the cell and its milieu. Cellular senescence is a permanent state of cell cycle arrest and is a hallmark of the aging process, as well as several age-related pathologies. Senescent cells are often characterized by alterations in morphology, metabolism, chromatin remodeling and exhibit a complex pro-inflammatory secretome (SASP). Recent studies have shown that the regulation of specific lipid species play a critical role in senescence. Indeed, some lipid species even contribute to the low-grade inflammation associated with SASP. Many protein regulators of senescence have been well characterized and are associated with lipid metabolism. However, the link between critical regulators of cellular senescence and senescence-associated lipid changes is yet to be elucidated. Here we systematically review the current knowledge on lipid metabolism and dynamics of cellular lipid content during senescence. We focus on the roles of major players of senescence in regulating lipid metabolism. Finally, we explore the future prospects of lipid research in senescence and its potential to be targeted as senotherapeutics.
Collapse
Affiliation(s)
- Shruthi Hamsanathan
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Aditi U. Gurkar
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States
- *Correspondence: Aditi U. Gurkar,
| |
Collapse
|
19
|
Dietary excess regulates absorption and surface of gut epithelium through intestinal PPARα. Nat Commun 2021; 12:7031. [PMID: 34857752 PMCID: PMC8639731 DOI: 10.1038/s41467-021-27133-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023] Open
Abstract
Intestinal surface changes in size and function, but what propels these alterations and what are their metabolic consequences is unknown. Here we report that the food amount is a positive determinant of the gut surface area contributing to an increased absorptive function, reversible by reducing daily food. While several upregulated intestinal energetic pathways are dispensable, the intestinal PPARα is instead necessary for the genetic and environment overeating-induced increase of the gut absorptive capacity. In presence of dietary lipids, intestinal PPARα knock-out or its pharmacological antagonism suppress intestinal crypt expansion and shorten villi in mice and in human intestinal biopsies, diminishing the postprandial triglyceride transport and nutrient uptake. Intestinal PPARα ablation limits systemic lipid absorption and restricts lipid droplet expansion and PLIN2 levels, critical for droplet formation. This improves the lipid metabolism, and reduces body adiposity and liver steatosis, suggesting an alternative target for treating obesity.
Collapse
|
20
|
Mattavelli E, Catapano AL, Baragetti A. Molecular Immune-Inflammatory Connections between Dietary Fats and Atherosclerotic Cardiovascular Disease: Which Translation into Clinics? Nutrients 2021; 13:3768. [PMID: 34836026 PMCID: PMC8625932 DOI: 10.3390/nu13113768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022] Open
Abstract
Current guidelines recommend reducing the daily intake of dietary fats for the prevention of ischemic cardiovascular diseases (CVDs). Avoiding saturated fats while increasing the intake of mono- or polyunsaturated fatty acids has been for long time the cornerstone of dietary approaches in cardiovascular prevention, mainly due to the metabolic effects of these molecules. However, recently, this approach has been critically revised. The experimental evidence, in fact, supports the concept that the pro- or anti-inflammatory potential of different dietary fats contributes to atherogenic or anti-atherogenic cellular and molecular processes beyond (or in addition to) their metabolic effects. All these aspects are hardly translatable into clinics when trying to find connections between the pro-/anti-inflammatory potential of dietary lipids and their effects on CVD outcomes. Interventional trials, although providing stronger potential for causal inference, are typically small sample-sized, and they have short follow-up, noncompliance, and high attrition rates. Besides, observational studies are confounded by a number of variables and the quantification of dietary intakes is far from optimal. A better understanding of the anatomic and physiological barriers for the absorption and the players involved in the metabolism of dietary lipids (e.g., gut microbiota) might be an alternative strategy in the attempt to provide a first step towards a personalized dietary approach in CVD prevention.
Collapse
Affiliation(s)
- Elisa Mattavelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (E.M.); (A.L.C.)
- S.I.S.A. Centre for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Cinisello Balsamo, 20092 Milan, Italy
| | - Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (E.M.); (A.L.C.)
- IRCCS Multimedica Hospital, Sesto San Giovanni, 20092 Milan, Italy
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (E.M.); (A.L.C.)
- IRCCS Multimedica Hospital, Sesto San Giovanni, 20092 Milan, Italy
| |
Collapse
|
21
|
New Insights into Intestinal Permeability in Irritable Bowel Syndrome-Like Disorders: Histological and Ultrastructural Findings of Duodenal Biopsies. Cells 2021; 10:cells10102593. [PMID: 34685576 PMCID: PMC8533783 DOI: 10.3390/cells10102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Diarrhea, abdominal pain, and bloating are frequent in irritable bowel syndrome (IBS)-like disorders, although little is known about their intestinal ultrastructural alterations. The aim of the present study was to study duodenal biopsies from IBS-like patients to find ultrastructural alterations. MATERIALS AND METHODS Study design: descriptive comparative pilot study. Thirty outpatients (9 male and 21 female; median age 37.7 years; range, 20 to 65 years) complaining of IBS-like symptoms were enrolled between January 2015 to May 2019 and were divided into 6 groups, each equally consisting of 5 patients: (A) untreated celiac disease (uCD); (B) treated celiac disease (tCD); (C) wheat allergy (WA); (D) Non-celiac gluten sensitivity (NCGS); (E) Nickel allergic contact mucositis (Ni ACM); (F) controls affected by GERD. Transmission electron microscopy (TEM) morphological characteristics were: microvilli length, intermicrovillar distance, junctional complexes (JC) gap width, autophagic bodies, apoptosis, altered mitochondria, lipid/chylomicron droplets, and mast cells. Regarding JC, we focused on tight junctions (TJ), adherens junctions (AJ), and desmosomes. RESULTS Major alterations in microvilli length and intermicrovillar distance have been observed in the subjects affected by uCD. Microvilli of tCD patients showed marked recovery after adequate GFD, although not comparable to controls. Intermediate microvillar alterations were instead observed in NCGS and Ni ACM, while characteristics of WA subjects appeared more similar to tCD. Regarding JC, TJ did not show significant differences between all groups studied, including controls. The AJ were significantly more dilated in all groups compared to controls, while no significant differences were found between the pathological groups. The distance between desmosomes was greater in uCD, NCGS, and Ni ACM than in tCD, WA, and controls. Finally, intracellular alterations have been detected in most of the groups studied although they seemed more unspecific. CONCLUSIONS TEM analysis confirmed damages to the intestinal barrier and defense mechanisms by enterocytes in IBS-like patients, probably linked to low-grade inflammation or adverse reactions triggered by food allergens, heavy metals, or other unknown. On the other hand, our study needs confirmation and further investigations with larger populations to facilitate diagnosis, therapy, and prevention of IBS-like disorders in the future.
Collapse
|
22
|
Zhang Z, Lu Y, Qi J, Wu W. An update on oral drug delivery via intestinal lymphatic transport. Acta Pharm Sin B 2021; 11:2449-2468. [PMID: 34522594 PMCID: PMC8424224 DOI: 10.1016/j.apsb.2020.12.022] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/14/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Orally administered drug entities have to survive the harsh gastrointestinal environment, penetrate the enteric epithelia and circumvent hepatic metabolism before reaching the systemic circulation. Whereas the gastrointestinal stability can be well maintained by taking proper measures, hepatic metabolism presents as a formidable barrier to drugs suffering from first-pass metabolism. The pharmaceutical academia and industries are seeking alternative pathways for drug transport to circumvent problems associated with the portal pathway. Intestinal lymphatic transport is emerging as a promising pathway to this end. In this review, we intend to provide an updated overview on the rationale, strategies, factors and applications involved in intestinal lymphatic transport. There are mainly two pathways for peroral lymphatic transport-the chylomicron and the microfold cell pathways. The underlying mechanisms are being unraveled gradually and nowadays witness increasing research input and applications.
Collapse
Key Words
- ACQ, aggregation-caused quenching
- ASRT, apical sodium-dependent bile acid transporter
- AUC, area under curve
- BCS, biopharmaceutics classification system
- CM, chylomicron
- Chylomicron
- DC, dendritic cell
- DDT, dichlorodiphenyltrichloroethane
- DTX, docetaxel
- Drug absorption
- Drug carriers
- Drug delivery
- FA, fatty acid
- FAE, follicle-associated epithelia
- FRET, Föster resonance energy transfer
- GIT, gastrointestinal tract
- HBsAg, hepatitis B surface antigen
- HIV, human immunodeficiency virus
- LDL, low-density lipoprotein
- LDV, Leu-Asp-Val
- LDVp, LDV peptidomimetic
- Lymphatic transport
- M cell, microfold cells
- MG, monoglyceride
- MPA, mycophenolic acid
- MPS, mononuclear phagocyte system
- Microfold cell
- Nanoparticles
- OA, oleate
- Oral
- PCL, polycaprolactone
- PEG-PLA, polyethylene glycol-poly(lactic acid)
- PEI, polyethyleneimine
- PLGA, poly(lactic-co-glycolic acid)
- PVA, poly(vinyl alcohol)
- RGD, Arg-Gly-Asp
- RGDp, RGD peptidomimetic
- SEDDS, self-emulsifying drug delivery system
- SLN, solid lipid nanoparticles
- SNEDDS, self-nanoemulsifying drug delivery system
- TEM, transmission electron microscopy
- TG, triglyceride
- TPGS, D-α-tocopherol polyethylene glycol 1000 succinate
- TU, testosterone undecanoate
- WGA, wheat germ agglutinin
- YCW, yeast cell wall
Collapse
Affiliation(s)
- Zichen Zhang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
23
|
Sferra R, Pompili S, Cappariello A, Gaudio E, Latella G, Vetuschi A. Prolonged Chronic Consumption of a High Fat with Sucrose Diet Alters the Morphology of the Small Intestine. Int J Mol Sci 2021; 22:ijms22147280. [PMID: 34298894 PMCID: PMC8303301 DOI: 10.3390/ijms22147280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
(1) The high-fat diet (HFD) of western countries has dramatic effect on the health of several organs, including the digestive tract, leading to the accumulation of fats that can also trigger a chronic inflammatory process, such as that which occurs in non-alcohol steatohepatitis. The effects of a HFD on the small intestine, the organ involved in the absorption of this class of nutrients, are still poorly investigated. (2) To address this aspect, we administered a combined HFD with sucrose (HFD w/Suc, fat: 58% Kcal) regimen (18 months) to mice and investigated the morphological and molecular changes that occurred in the wall of proximal tract of the small intestine compared to the intestine of mice fed with a standard diet (SD) (fat: 18% Kcal). (3) We found an accumulation of lipid droplets in the mucosa of HFD w/Suc-fed mice that led to a disarrangement of mucosa architecture. Furthermore, we assessed the expression of several key players involved in lipid metabolism and inflammation, such as perilipin, leptin, leptin receptor, PI3K, p-mTOR, p-Akt, and TNF-α. All these molecules were increased in HFD mice compared to the SD group. We also evaluated anti-inflammatory molecules like adiponectin, adiponectin receptor, and PPAR-γ, and observed their significant reduction in the HFD w/Suc group compared to the control. Our data are in line with the knowledge that improper eating habits present a primary harmful assault on the bowel and the entire body's health. (4) These results represent a promising starting point for future studies, helping to better understand the complex and not fully elucidated spectrum of intestinal alterations induced by the overconsumption of fat.
Collapse
Affiliation(s)
- Roberta Sferra
- Department of Biotechnological and Applied Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.P.); (A.C.); (A.V.)
- Correspondence: ; Tel.: +39-0862-433504
| | - Simona Pompili
- Department of Biotechnological and Applied Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.P.); (A.C.); (A.V.)
| | - Alfredo Cappariello
- Department of Biotechnological and Applied Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.P.); (A.C.); (A.V.)
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Division of Gastroenterology, Hepatology, and Nutrition, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.P.); (A.C.); (A.V.)
| |
Collapse
|
24
|
Schittmayer M, Vujic N, Darnhofer B, Korbelius M, Honeder S, Kratky D, Birner-Gruenberger R. Spatially Resolved Activity-based Proteomic Profiles of the Murine Small Intestinal Lipases. Mol Cell Proteomics 2020; 19:2104-2115. [PMID: 33023980 PMCID: PMC7710144 DOI: 10.1074/mcp.ra120.002171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/28/2020] [Indexed: 01/05/2023] Open
Abstract
Despite the crucial function of the small intestine in nutrient uptake our understanding of the molecular events underlying the digestive function is still rudimentary. Recent studies demonstrated that enterocytes do not direct the entire dietary triacylglycerol toward immediate chylomicron synthesis. Especially after high-fat challenges, parts of the resynthesized triacylglycerol are packaged into cytosolic lipid droplets for transient storage in the endothelial layer of the small intestine. The reason for this temporary storage of triacylglycerol is not completely understood. To utilize lipids from cytosolic lipid droplets for chylomicron synthesis in the endoplasmic reticulum, stored triacylglycerol has to be hydrolyzed either by cytosolic lipolysis or lipophagy. Interestingly, triacylglycerol storage and chylomicron secretion rates are unevenly distributed along the small intestine, with the proximal jejunum exhibiting the highest intermittent storage capacity. We hypothesize that correlating hydrolytic enzyme activities with the reported distribution of triacylglycerol storage and chylomicron secretion in different sections of the small intestine is a promising strategy to determine key enzymes in triacylglycerol remobilization. We employed a serine hydrolase specific activity-based labeling approach in combination with quantitative proteomics to identify and rank hydrolases based on their relative activity in 11 sections of the small intestine. Moreover, we identified several clusters of enzymes showing similar activity distribution along the small intestine. Merging our activity-based results with substrate specificity and subcellular localization known from previous studies, carboxylesterase 2e and arylacetamide deacetylase emerge as promising candidates for triacylglycerol mobilization from cytosolic lipid droplets in enterocytes.
Collapse
Affiliation(s)
- Matthias Schittmayer
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria; Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Nemanja Vujic
- Gottfried Schatz Research Center, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Melanie Korbelius
- Gottfried Schatz Research Center, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Sophie Honeder
- Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria; Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
25
|
Lema I, Araújo JR, Rolhion N, Demignot S. Jejunum: The understudied meeting place of dietary lipids and the microbiota. Biochimie 2020; 178:124-136. [PMID: 32949677 DOI: 10.1016/j.biochi.2020.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Although the jejunum is the main intestinal compartment responsible for lipid digestion and absorption, most of the studies assessing the impact of dietary lipids on the intestinal microbiota have been performed in the ileum, colon and faeces. This lack of interest in the jejunum is due to the much lower number of microbes present in this intestinal region and to the difficulty in accessing its lumen, which requires invasive methods. Recently, several recent publications highlighted that the whole jejunal microbiota or specific bacterial members are able to modulate lipid absorption and metabolism in enterocytes. This information reveals new strategies in the development of bacterial- and metabolite-based therapeutic interventions or nutraceutical recommendations to treat or prevent metabolic-related disorders, including obesity, cardiovascular diseases and malnutrition. This review is strictly focused on the following triad: dietary lipids, the jejunal epithelium and the jejunal microbiota. First, we will describe each member of the triad: the structure and functions of the jejunum, the composition of the jejunal microbiota, and dietary lipid handling by enterocytes and by microorganisms. Then, we will present the mechanisms leading to lipid malabsorption in small intestinal bacterial overgrowth (SIBO), a disease in which the jejunal microbiota is altered and which highlights the strong interactions among this triad. We will finally review the recent literature about the interactions among members of the triad, which should encourage research teams to further explore the mechanisms by which specific microbial strains or metabolites, alone or in concert, can mediate, control or modulate lipid absorption in the jejunum.
Collapse
Affiliation(s)
- Ingrid Lema
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, UMR_S 938, F-75012, Paris, France; EPHE, PSL University, F-75014, Paris, France
| | - João Ricardo Araújo
- Nutrition and Metabolism, NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal; Center for Health Technology Services Research (CINTESIS), Oporto, Portugal
| | - Nathalie Rolhion
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, UMR_S 938, F-75012, Paris, France
| | - Sylvie Demignot
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, UMR_S 938, F-75012, Paris, France; EPHE, PSL University, F-75014, Paris, France.
| |
Collapse
|
26
|
Korbelius M, Vujic N, Sachdev V, Obrowsky S, Rainer S, Gottschalk B, Graier WF, Kratky D. ATGL/CGI-58-Dependent Hydrolysis of a Lipid Storage Pool in Murine Enterocytes. Cell Rep 2020; 28:1923-1934.e4. [PMID: 31412256 PMCID: PMC6713565 DOI: 10.1016/j.celrep.2019.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 03/29/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
As circulating lipid levels are balanced by the rate of lipoprotein release and clearance from the plasma, lipid absorption in the small intestine critically contributes to the maintenance of whole-body lipid homeostasis. Within enterocytes, excessive triglycerides are transiently stored as cytosolic lipid droplets (cLDs), and their mobilization sustains lipid supply during interprandial periods. Using mice lacking adipose triglyceride lipase (ATGL) and its coactivator comparative gene identification-58 (CGI-58) exclusively in the intestine (intestine-specific double KO [iDKO]), we show that ATGL/CGI-58 are not involved in providing substrates for chylomicron synthesis. Massive intestinal cLD accumulation in iDKO mice independent of dietary lipids together with inefficient lipid incorporation into cLDs in the early absorption phase demonstrate the existence of a secretion/re-uptake cycle, corroborating the availability of two diverse cLD pools. This study identified ATGL/CGI-58 as critical players in the catabolism of basolaterally (blood) derived lipids and highlights the necessity to modify the current model of intestinal lipid metabolism.
Collapse
Affiliation(s)
- Melanie Korbelius
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Nemanja Vujic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Vinay Sachdev
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Sascha Obrowsky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Silvia Rainer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria; BioTechMed-Graz, 8010 Graz, Styria, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria; BioTechMed-Graz, 8010 Graz, Styria, Austria.
| |
Collapse
|
27
|
Streich K, Smoczek M, Hegermann J, Dittrich-Breiholz O, Bornemann M, Siebert A, Bleich A, Buettner M. Dietary lipids accumulate in macrophages and stromal cells and change the microarchitecture of mesenteric lymph nodes. J Adv Res 2020; 24:291-300. [PMID: 32405435 PMCID: PMC7210474 DOI: 10.1016/j.jare.2020.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
In obesity, increased dietary lipids are taken up and transported by the lymphatic systems into the circulatory system. Increased fat accumulation results in impairments in the lymph fluid and lymph node (LN) atrophy. LNs filter the lymph fluid for foreign antigens to induce and control immune responses, and the alteration of this function during obesity remains underexplored. Here, the changes within the microarchitecture of mesenteric LNs (mLNs) during high levels of lipid transport were investigated, and the role of stromal cells in mice fed a high-fat diet for 10 weeks was assessed. Microarray experiments revealed that gene probes involved in lipid metabolism are expressed by mLN stromal cells. Transmission electron microscopy enabled the identification of lipid droplets in lymphatic endothelial cells, different reticulum cells, and macrophages, and the lipid droplet sizes as well as their numbers and intercellular distances increased after 10 weeks of high-fat diet feeding. The results indicate that changes in the microarchitecture and increased accumulation of lipid droplets in stromal cells and macrophages influence the immunological function of mLNs.
Collapse
Affiliation(s)
- Katharina Streich
- Institute of Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Margarethe Smoczek
- Institute of Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany.,Institute for Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Jan Hegermann
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | | | - Melanie Bornemann
- Institute for Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
| | - Anja Siebert
- Institute of Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Andre Bleich
- Institute of Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Manuela Buettner
- Institute of Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
28
|
Grasp55 -/- mice display impaired fat absorption and resistance to high-fat diet-induced obesity. Nat Commun 2020; 11:1418. [PMID: 32184397 PMCID: PMC7078302 DOI: 10.1038/s41467-020-14912-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/31/2020] [Indexed: 12/27/2022] Open
Abstract
The Golgi apparatus plays a central role in the intracellular transport of macromolecules. However, molecular mechanisms of Golgi-mediated lipid transport remain poorly understood. Here, we show that genetic inactivation of the Golgi-resident protein GRASP55 in mice reduces whole-body fat mass via impaired intestinal fat absorption and evokes resistance to high-fat diet induced body weight gain. Mechanistic analyses reveal that GRASP55 participates in the Golgi-mediated lipid droplet (LD) targeting of some LD-associated lipases, such as ATGL and MGL, which is required for sustained lipid supply for chylomicron assembly and secretion. Consequently, GRASP55 deficiency leads to reduced chylomicron secretion and abnormally large LD formation in intestinal epithelial cells upon exogenous lipid challenge. Notably, deletion of dGrasp in Drosophila causes similar defects of lipid accumulation in the midgut. These results highlight the importance of the Golgi complex in cellular lipid regulation, which is evolutionary conserved, and uncover potential therapeutic targets for obesity-associated diseases. The physiological roles of the Golgi reassembly-stacking protein 55 (GRASP55/GORASP55) remain largely elusive. Here, the authors show that the Golgi-resident protein GRASP55 plays a crucial role in lipid homeostasis by regulating intestinal lipid uptake.
Collapse
|
29
|
Ko CW, Qu J, Black DD, Tso P. Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol 2020; 17:169-183. [PMID: 32015520 DOI: 10.1038/s41575-019-0250-7] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Lipids entering the gastrointestinal tract include dietary lipids (triacylglycerols, cholesteryl esters and phospholipids) and endogenous lipids from bile (phospholipids and cholesterol) and from shed intestinal epithelial cells (enterocytes). Here, we comprehensively review the digestion, uptake and intracellular re-synthesis of intestinal lipids as well as their packaging into pre-chylomicrons in the endoplasmic reticulum, their modification in the Golgi apparatus and the exocytosis of the chylomicrons into the lamina propria and subsequently to lymph. We also discuss other fates of intestinal lipids, including intestinal HDL and VLDL secretion, cytosolic lipid droplets and fatty acid oxidation. In addition, we highlight the applicability of these findings to human disease and the development of therapeutics targeting lipid metabolism. Finally, we explore the emerging role of the gut microbiota in modulating intestinal lipid metabolism and outline key questions for future research.
Collapse
Affiliation(s)
- Chih-Wei Ko
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jie Qu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Dennis D Black
- Children's Foundation Research Institute at Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
30
|
Xiao C, Stahel P, Nahmias A, Lewis GF. Emerging Role of Lymphatics in the Regulation of Intestinal Lipid Mobilization. Front Physiol 2020; 10:1604. [PMID: 32063861 PMCID: PMC7000543 DOI: 10.3389/fphys.2019.01604] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Intestinal handling of dietary triglycerides has important implications for health and disease. Following digestion in the intestinal lumen, absorption, and re-esterification of fatty acids and monoacylglycerols in intestinal enterocytes, triglycerides are packaged into lipoprotein particles (chylomicrons) for secretion or into cytoplasmic lipid droplets for transient or more prolonged storage. Despite the recognition of prolonged retention of triglycerides in the post-absorptive phase and subsequent release from the intestine in chylomicron particles, the underlying regulatory mechanisms remain poorly understood. Chylomicron secretion involves multiple steps, including intracellular assembly and post-assembly transport through cellular organelles, the lamina propria, and the mesenteric lymphatics before being released into the circulation. Contrary to the long-held view that the intestinal lymphatic vasculature acts mainly as a passive conduit, it is increasingly recognized to play an active and regulatory role in the rate of chylomicron release into the circulation. Here, we review the latest advances in understanding the role of lymphatics in intestinal lipid handling and chylomicron secretion. We highlight emerging evidence that oral glucose and the gut hormone glucagon-like peptide-2 mobilize retained enteral lipid by differing mechanisms to promote the secretion of chylomicrons via glucose possibly by mobilizing cytoplasmic lipid droplets and via glucagon-like peptide-2 possibly by targeting post-enterocyte secretory mechanisms. We discuss other potential regulatory factors that are the focus of ongoing and future research. Regulation of lymphatic pumping and function is emerging as an area of great interest in our understanding of the integrated absorption of dietary fat and chylomicron secretion and potential implications for whole-body metabolic health.
Collapse
Affiliation(s)
- Changting Xiao
- Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Priska Stahel
- Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Avital Nahmias
- Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Gary F Lewis
- Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Bose T, Venkatesh KV, Mande SS. Investigating host-bacterial interactions among enteric pathogens. BMC Genomics 2019; 20:1022. [PMID: 31881845 PMCID: PMC6935094 DOI: 10.1186/s12864-019-6398-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/15/2019] [Indexed: 01/07/2023] Open
Abstract
Background In 2017, World Health Organization (WHO) published a catalogue of 12 families of antibiotic-resistant “priority pathogens” that are posing the greatest threats to human health. Six of these dreaded pathogens are known to infect the human gastrointestinal system. In addition to causing gastrointestinal and systemic infections, these pathogens can also affect the composition of other microbes constituting the healthy gut microbiome. Such aberrations in gut microbiome can significantly affect human physiology and immunity. Identifying the virulence mechanisms of these enteric pathogens are likely to help in developing newer therapeutic strategies to counter them. Results Using our previously published in silico approach, we have evaluated (and compared) Host-Pathogen Protein-Protein Interaction (HPI) profiles of four groups of enteric pathogens, namely, different species of Escherichia, Shigella, Salmonella and Vibrio. Results indicate that in spite of genus/ species specific variations, most enteric pathogens possess a common repertoire of HPIs. This core set of HPIs are probably responsible for the survival of these pathogen in the harsh nutrient-limiting environment within the gut. Certain genus/ species specific HPIs were also observed. Conslusions The identified bacterial proteins involved in the core set of HPIs are expected to be helpful in understanding the pathogenesis of these dreaded gut pathogens in greater detail. Possible role of genus/ species specific variations in the HPI profiles in the virulence of these pathogens are also discussed. The obtained results are likely to provide an opportunity for development of novel therapeutic strategies against the most dreaded gut pathogens.
Collapse
Affiliation(s)
- Tungadri Bose
- Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Limited, Pune, India.,Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Limited, Pune, India.
| |
Collapse
|
32
|
Kumar M, Majumder D, Mal S, Chakraborty S, Gupta P, Jana K, Gupta UD, Ghosh Z, Kundu M, Basu J. Activating transcription factor 3 modulates the macrophage immune response to Mycobacterium tuberculosis infection via reciprocal regulation of inflammatory genes and lipid body formation. Cell Microbiol 2019; 22:e13142. [PMID: 31709711 DOI: 10.1111/cmi.13142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 10/20/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022]
Abstract
Infection of macrophages by Mycobacterium tuberculosis elicits an immune response that clears the bacterium. However, the bacterium is able to subvert the innate immune response. Differential expression of transcription factors (TFs) is central to the dynamic balance of this interaction. Among other functions, TFs regulate the production of antibacterial agents such as nitric oxide, pro-inflammatory cytokines and neutral lipids which are stored in lipid bodies (LBs) and favour bacterial survival. Here, we demonstrate that the TF activating transcription factor 3 (ATF3) is upregulated early during infection of macrophages or mice. Depletion of ATF3 enhances mycobacterial survival in macrophages suggesting its host-protective role. ATF3 interacts with chromatin remodelling protein brahma-related gene 1 and both associate with the promoters of interleukin-12p40, interleukin-6 and nitric oxide synthase 2, to activate expression of these genes. Strikingly, ATF3 downregulates LB formation by associating at the promoters of positive regulators of LB formation such as cholesterol 25 hydroxylase and the microRNA-33 locus. ATF3 represses the association of the activating mark, acetyl histone H4 lysine 8 at the promoter of cholesterol 25 hydroxylase. Our study suggests opposing roles of ATF3 in regulation of distinct sets of macrophage genes during infection, converging on a host-protective immune response.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry, Bose Institute, Kolkata, India
| | | | - Soumya Mal
- Department of Chemistry, Bose Institute, Kolkata, India
| | | | - Pushpa Gupta
- National JALMA Institute of Leprosy and Other Mycobacterial Disease, Agra, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Umesh D Gupta
- National JALMA Institute of Leprosy and Other Mycobacterial Disease, Agra, India
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | | | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, India
| |
Collapse
|
33
|
Li Q, Hu S, Wang Y, Deng Y, Yang S, Hu J, Li L, Wang J. mRNA and miRNA Transcriptome Profiling of Granulosa and Theca Layers From Geese Ovarian Follicles Reveals the Crucial Pathways and Interaction Networks for Regulation of Follicle Selection. Front Genet 2019; 10:988. [PMID: 31708963 PMCID: PMC6820619 DOI: 10.3389/fgene.2019.00988] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022] Open
Abstract
Follicle development is characterized by the recruitment, growth, selection, and dominance of follicles, and follicle selection determines the lifetime reproductive performance. However, in birds, the molecular mechanisms underlying follicle selection still remain elusive. This study analyzed genome-wide changes in the mRNA and miRNA expression profiles in both the granulosa and theca layers of geese ovarian follicles before selection (4–6- and 8–10-mm follicles) and after selection (F5). The sequencing results showed that a higher number of both differentially expressed (DE) mRNAs and DE miRNAs were identified between 8–10-mm and F5 follicles compared with those between the 4–6- and 8–10-mm follicles, especially in the granulosa layer. Moreover, a Short Time-series Expression Miner analysis identified a large number of DE mRNAs and DE miRNAs that are associated with follicle selection. The functional enrichment analysis showed that DE genes in the granulosa layer during follicle selection were mainly enriched in five pathways related to junctional adhesion and two pathways associated with lipid metabolism. Additionally, an interaction network was constructed to visualize interactions among protein-coding genes, which identified 53 junctional adhesion- and 15 lipid regulation-related protein-coding genes. Then, a co-expression network between mRNAs and miRNAs in relation to junctional adhesion was also visualized and mainly included acy-miR-2954, acy-miR-218, acy-miR-2970, acy-miR-100, acy-miR-1329, acy-miR-199, acy-miR-425, acy-miR-181, and acy-miR-147. Furthermore, miRNA–mRNA interaction pairs related to lipid regulation were constructed including acy-miR-107, acy-miR-138, acy-miR-130, acy-miR-128, and acy-miR-101 during follicular selection. In summary, these data highlight the key roles of junctional adhesion and lipid metabolism during follicular selection and contribute to a better understanding of the mechanisms underlying follicle selection in birds.
Collapse
Affiliation(s)
- Qin Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Poultry Science Institute, Chongqing Academy of Animal Science, Chongqing, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yushi Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shuang Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
34
|
Li D, Rodia CN, Johnson ZK, Bae M, Muter A, Heussinger AE, Tambini N, Longo AM, Dong H, Lee JY, Kohan AB. Intestinal basolateral lipid substrate transport is linked to chylomicron secretion and is regulated by apoC-III. J Lipid Res 2019; 60:1503-1515. [PMID: 31152000 PMCID: PMC6718441 DOI: 10.1194/jlr.m092460] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/31/2019] [Indexed: 01/26/2023] Open
Abstract
Chylomicron metabolism is critical for determining plasma levels of triacylglycerols (TAGs) and cholesterol, both of which are risk factors for CVD. The rates of chylomicron secretion and remnant clearance are controlled by intracellular and extracellular factors, including apoC-III. We have previously shown that human apoC-III overexpression in mice (apoC-IIITg mice) decreases the rate of chylomicron secretion into lymph, as well as the TAG composition in chylomicrons. We now find that this decrease in chylomicron secretion is not due to the intracellular effects of apoC-III, but instead that primary murine enteroids are capable of taking up TAG from TAG-rich lipoproteins (TRLs) on their basolateral surface; and via Seahorse analyses, we find that mitochondrial respiration is induced by basolateral TRLs. Furthermore, TAG uptake into the enterocyte is inhibited when excess apoC-III is present on TRLs. In vivo, we find that dietary TAG is diverted from the cytosolic lipid droplets and driven toward mitochondrial FA oxidation when plasma apoC-III is high (or when basolateral substrates are absent). We propose that this pathway of basolateral lipid substrate transport (BLST) plays a physiologically relevant role in the maintenance of dietary lipid absorption and chylomicron secretion. Further, when apoC-III is in excess, it inhibits BLST and chylomicron secretion.
Collapse
Affiliation(s)
- Diana Li
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Cayla N Rodia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Zania K Johnson
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Angelika Muter
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Amy E Heussinger
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Nicholas Tambini
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Austin M Longo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Hongli Dong
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Alison B Kohan
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT.
| |
Collapse
|
35
|
Łukawski M, Dałek P, Borowik T, Foryś A, Langner M, Witkiewicz W, Przybyło M. New oral liposomal vitamin C formulation: properties and bioavailability. J Liposome Res 2019; 30:227-234. [PMID: 31264495 DOI: 10.1080/08982104.2019.1630642] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vitamin C is the exogenous compound necessary for a variety of metabolic processes; therefore, the efficient delivery is critical for the maintenance of body homeostasis. Vitamin C pharmacokinetics and low quantities in processed foodstuff, necessitates its continuous supplementation. In the paper, we present the new liposomal formulation of vitamin C free of harmful organic solvents. The formulation was quantitatively characterized with respect to its chemically composition and nano-structuring. The vitamin C accessibility to cells from the formulation was evaluated using evidence derived from experiments performed on cell cultures. Finally, the enhanced bioavailability of vitamin C from the formulation was demonstrated in the medical experiment.
Collapse
Affiliation(s)
- Maciej Łukawski
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Paulina Dałek
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland.,Lipid Systems Ltd, Wrocław, Poland
| | | | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Marek Langner
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland.,Lipid Systems Ltd, Wrocław, Poland
| | - Wojciech Witkiewicz
- Research and Development Centre, Specialized Hospital in Wrocław, Wrocław, Poland
| | - Magdalena Przybyło
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland.,Lipid Systems Ltd, Wrocław, Poland
| |
Collapse
|
36
|
Kaufman S, Arnold M, Diaz AA, Neubauer H, Wolfrum S, Köfeler H, Langhans W, Krieger JP. Roux-en-Y gastric bypass surgery reprograms enterocyte triglyceride metabolism and postprandial secretion in rats. Mol Metab 2019; 23:51-59. [PMID: 30905616 PMCID: PMC6480308 DOI: 10.1016/j.molmet.2019.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Roux-en-Y gastric bypass (RYGB) surgery produces rapid and persistent reductions in plasma triglyceride (TG) levels associated with fewer cardiovascular events. The mechanisms of the reduction in systemic TG levels remain unclear. We hypothesized that RYGB reduces intestinal TG secretion via altered enterocyte lipid handling. METHODS RYGB or Sham surgery was performed in diet-induced obese, insulin-resistant male Sprague-Dawley rats. First, we tested whether RYGB reduced test meal-induced TG levels in the intestinal lymph, a direct readout of enterocyte lipid secretion. Second, we examined whether RYGB modified TG enterocyte secretion at the single lipid level and in comparison to other lipid subclasses, applying mass spectrometry lipidomics to the intestinal lymph of RYGB and Sham rats (0-21 days after surgery). Third, we explored whether RYGB modulated the metabolic characteristics of primary enterocytes using transcriptional and functional assays relevant to TG absorption, reesterification, storage in lipid droplets, and oxidation. RESULTS RYGB reduced overall postprandial TG concentrations compared to Sham surgery in plasma and intestinal lymph similarly. RYGB reduced lymphatic TG concentrations more than other lipid subclasses, and shifted the remaining TG pool towards long-chain, unsaturated species. In enterocytes of fasted RYGB rats, lipid uptake was transcriptionally (Fatp4, Fabp2, Cd36) and functionally reduced compared to Sham, whereas TG reesterification genes were upregulated. CONCLUSION Our results show that RYGB substantially reduces intestinal TG secretion and modifies enterocyte lipid absorption and handling in rats. These changes likely contribute to the improvements in the plasma TG profile observed after RYGB in humans.
Collapse
Affiliation(s)
- Sharon Kaufman
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland.
| | - Myrtha Arnold
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | | | - Heike Neubauer
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH and Co. KG, 88397 Biberach/Riss, Germany
| | - Susanne Wolfrum
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Harald Köfeler
- Core Facility Mass Spectrometry Lipidomics Research Center Graz, Austria
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | | |
Collapse
|
37
|
Lee KC, Chen P, Maricic I, Inamine T, Hu J, Gong S, Sun JC, Dasgupta S, Lin HC, Lin YT, Loomba R, Stärkel P, Kumar V, Schnabl B. Intestinal iNKT cells migrate to liver and contribute to hepatocyte apoptosis during alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 2019; 316:G585-G597. [PMID: 30817180 PMCID: PMC6580241 DOI: 10.1152/ajpgi.00269.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/19/2019] [Accepted: 02/23/2019] [Indexed: 01/31/2023]
Abstract
We investigated the migration of intestinal immune cells to the liver and their contribution to alcoholic liver disease. In mice fed ethanol, we found that an increased number of invariant natural killer T (iNKT) cells, which respond to the antigen presented by CD1d, migrated from mesenteric lymph nodes to the liver. iNKT cells react to lipid antigens, so we studied their activities in mice with intestinal epithelial cell-specific deletion of Pparg (PpargΔIEC) as a model for altering intestinal lipidomic profiles. Levels of CD1d increased in intestines of ethanol-fed PpargΔIEC mice, and in cell-tracking experiments, more iNKT cells migrated to the liver, compared with mice without disruption of Pparg. Livers of PpargΔIEC mice had increased markers of apoptosis and liver injury after ethanol feeding. iNKT cells isolated from livers of ethanol-fed PpargΔIEC mice induced apoptosis of cultured hepatocytes. An inhibitor of iNKT cells reduced ethanol-induced liver injury in PpargΔIEC mice. Duodenal tissues from patients with alcohol-use disorder have been found to have increased levels of CD1d compared with tissues from patients without alcohol overuse. Ethanol use, therefore, activates iNKT cells in the intestine to migrate to liver, where they-along with the resident hepatic iNKT cells-contribute to hepatocyte death and injury. NEW & NOTEWORTHY In this article, we studied migration of intestinal immune cells into the liver in response to ethanol-induced liver disease. We found that chronic ethanol feeding induces expression of CD1d by enterocytes, which activate invariant natural killer T (iNKT) cells in mesenteric lymph nodes; activation is further increased with loss of peroxisome proliferator-activated receptor gamma gene and altered lipid profiles. The activated iNKT cells migrate into the liver, where they promote hepatocyte apoptosis. Patients with alcohol use disorder have increased expression of CD1d in the small intestine. Strategies to block these processes might be developed to treat alcoholic liver disease.
Collapse
Affiliation(s)
- Kuei-Chuan Lee
- Department of Medicine, University of California San Diego , La Jolla, California
- Division of Gastroenterology & Hepatology, Taipei Veterans General Hospital , Taipei , Taiwan
- Department of Medicine, National Yang-Ming University School of Medicine , Taipei , Taiwan
| | - Peng Chen
- Department of Medicine, University of California San Diego , La Jolla, California
- Department of Pathophysiology, Southern Medical University , Guangzhou , China
- Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University , Guangzhou , China
| | - Igor Maricic
- Department of Medicine, University of California San Diego , La Jolla, California
| | - Tatsuo Inamine
- Department of Medicine, University of California San Diego , La Jolla, California
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Jingjuan Hu
- Department of Pathophysiology, Southern Medical University , Guangzhou , China
- Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University , Guangzhou , China
| | - Shenhai Gong
- Department of Pathophysiology, Southern Medical University , Guangzhou , China
- Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University , Guangzhou , China
| | - Julia C Sun
- Department of Medicine, University of California San Diego , La Jolla, California
| | | | - Han-Chieh Lin
- Division of Gastroenterology & Hepatology, Taipei Veterans General Hospital , Taipei , Taiwan
- Department of Medicine, National Yang-Ming University School of Medicine , Taipei , Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan
- Department of Medicine, National Yang-Ming University School of Medicine , Taipei , Taiwan
| | - Rohit Loomba
- Department of Medicine, University of California San Diego , La Jolla, California
| | - Peter Stärkel
- St. Luc University Hospital, Université Catholique de Louvain , Brussels , Belgium
| | - Vipin Kumar
- Department of Medicine, University of California San Diego , La Jolla, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego , La Jolla, California
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
38
|
D'Aquila T, Zembroski AS, Buhman KK. Diet Induced Obesity Alters Intestinal Cytoplasmic Lipid Droplet Morphology and Proteome in the Postprandial Response to Dietary Fat. Front Physiol 2019; 10:180. [PMID: 30890954 PMCID: PMC6413465 DOI: 10.3389/fphys.2019.00180] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/13/2019] [Indexed: 12/31/2022] Open
Abstract
Dietary fat absorption by the small intestine is an efficient, multistep process that regulates the uptake and delivery of essential nutrients and energy. Fatty acids taken up by enterocytes, the absorptive cells of the small intestine, are resynthesized into triacylglycerol (TAG) and either secreted in chylomicrons or temporarily stored in cytoplasmic lipid droplets (CLDs). Proteins that associate with CLDs are thought to regulate the dynamics of TAG storage and mobilization. It is currently unclear what effect diet induced obesity (DIO) has on the balance between dietary fat storage and secretion. Specifically, there is limited knowledge of how DIO affects the level and diversity of proteins that associate with CLDs and regulate CLD dynamics. In the current study, we characterize CLDs from lean and DIO mice through histological and proteomic analyses. We demonstrate that DIO mice have larger intestinal CLDs compared to lean mice in response to dietary fat. Additionally, we identified 375 proteins in the CLD fraction isolated from enterocytes of lean and DIO mice. We identified a subgroup of lipid related proteins that are either increased or unique to the DIO CLD proteome. These proteins are involved in steroid synthesis, TAG synthesis, and lipolysis. This analysis expands our knowledge of the effect of DIO on the process of dietary fat absorption in the small intestine (D’Aquila, 2016).
Collapse
Affiliation(s)
- Theresa D'Aquila
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Alyssa S Zembroski
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
39
|
Xiao C, Stahel P, Lewis GF. Regulation of Chylomicron Secretion: Focus on Post-Assembly Mechanisms. Cell Mol Gastroenterol Hepatol 2018; 7:487-501. [PMID: 30819663 PMCID: PMC6396431 DOI: 10.1016/j.jcmgh.2018.10.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
Abstract
Rapid and efficient digestion and absorption of dietary triglycerides and other lipids by the intestine, the packaging of those lipids into lipoprotein chylomicron (CM) particles, and their secretion via the lymphatic duct into the blood circulation are essential in maintaining whole-body lipid and energy homeostasis. Biosynthesis and assembly of CMs in enterocytes is a complex multistep process that is subject to regulation by intracellular signaling pathways as well as by hormones, nutrients, and neural factors extrinsic to the enterocyte. Dysregulation of this process has implications for health and disease, contributing to dyslipidemia and a potentially increased risk of atherosclerotic cardiovascular disease. There is increasing recognition that, besides intracellular regulation of CM assembly and secretion, regulation of postassembly pathways also plays important roles in CM secretion. This review examines recent advances in our understanding of the regulation of CM secretion in relation to mobilization of intestinal lipid stores, drawing particular attention to post-assembly regulatory mechanisms, including intracellular trafficking of triglycerides in enterocytes, CM mobilization from the lamina propria, and regulated transport of CM by intestinal lymphatics.
Collapse
Affiliation(s)
- Changting Xiao
- Changting Xiao, PhD, Princess Margaret Cancer Research Tower 10-203, Medical and Related Science Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada. fax: (416) 581-7487.
| | | | - Gary F. Lewis
- Correspondence Address correspondence to: Gary F. Lewis, MD, FRCPC, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada. fax: (416) 340-3314.
| |
Collapse
|
40
|
Xiao C, Stahel P, Carreiro AL, Hung YH, Dash S, Bookman I, Buhman KK, Lewis GF. Oral Glucose Mobilizes Triglyceride Stores From the Human Intestine. Cell Mol Gastroenterol Hepatol 2018; 7:313-337. [PMID: 30704982 PMCID: PMC6357697 DOI: 10.1016/j.jcmgh.2018.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS The small intestine regulates plasma triglyceride (TG) concentration. Within enterocytes, dietary TGs are packaged into chylomicrons (CMs) for secretion or stored temporarily in cytoplasmic lipid droplets (CLDs) until further mobilization. We and others have shown that oral and intravenous glucose enhances CM particle secretion in human beings, however, the mechanisms through which this occurs are incompletely understood. METHODS Two separate cohorts of participants ingested a high-fat liquid meal and, 5 hours later, were assigned randomly to ingest either a glucose solution or an equivalent volume of water. In 1 group (N = 6), plasma and lipoprotein TG responses were assessed in a randomized cross-over study. In a separate group (N = 24), duodenal biopsy specimens were obtained 1 hour after ingestion of glucose or water. Ultrastructural and proteomic analyses were performed on duodenal biopsy specimens. RESULTS Compared with water, glucose ingestion increased circulating TGs within 30 minutes, mainly in the CM fraction. It decreased the total number of CLDs and the proportion of large-sized CLDs within enterocytes. We identified 2919 proteins in human duodenal tissue, 270 of which are related to lipid metabolism and 134 of which were differentially present in response to glucose compared with water ingestion. CONCLUSIONS Oral glucose mobilizes TGs stored within enterocyte CLDs to provide substrate for CM synthesis and secretion. Future studies elucidating the underlying signaling pathways may provide mechanistic insights that lead to the development of novel therapeutics for the treatment of hypertriglyceridemia.
Collapse
Affiliation(s)
- Changting Xiao
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Priska Stahel
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Alicia L. Carreiro
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana
| | - Yu-Han Hung
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana
| | - Satya Dash
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Ian Bookman
- Kensington Screening Clinic, Toronto, Ontario, Canada
| | - Kimberly K. Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana
| | - Gary F. Lewis
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada,Correspondence Address correspondence to: Gary F. Lewis, MD, FRCPC, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario, M5G 2C4 Canada. fax: (416) 340-3314.
| |
Collapse
|
41
|
Sæle Ø, Rød KEL, Quinlivan VH, Li S, Farber SA. A novel system to quantify intestinal lipid digestion and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:948-957. [PMID: 29778665 PMCID: PMC6054555 DOI: 10.1016/j.bbalip.2018.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 02/05/2023]
Abstract
The zebrafish larva is a powerful tool for the study of dietary triglyceride (TG) digestion and how fatty acids (FA) derived from dietary lipids are absorbed, metabolized and distributed to the body. While fluorescent FA analogues have enabled visualization of FA metabolism, methods for specifically assaying TG digestion are badly needed. Here we present a novel High Performance Liquid Chromatography (HPLC) method that quantitatively differentiates TG and phospholipid (PL) molecules with one or two fluorescent FA analogues. We show how this tool may be used to discriminate between undigested and digested TG or phosphatidylcholine (PC), and also the products of TG or PC that have been digested, absorbed and re-synthesized into new lipid molecules. Using this approach, we explored the dietary requirement of zebrafish larvae for phospholipids. Here we demonstrate that dietary TG is digested and absorbed in the intestinal epithelium, but without dietary PC, TG accumulates and is not transported out of the enterocytes. Consequently, intestinal ER stress increases and the ingested lipid is not available support the energy and metabolic needs of other tissues. In TG diets with PC, TG is readily transported from the intestine and subsequently metabolized.
Collapse
Affiliation(s)
- Øystein Sæle
- Institute of Marine Research, Strandgaten 229, 5004 Bergen, Norway.
| | - Kari Elin L Rød
- Institute of Marine Research, Strandgaten 229, 5004 Bergen, Norway
| | - Vanessa H Quinlivan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; The Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Shengrong Li
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, AL 35007-9105, USA
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; The Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA.
| |
Collapse
|
42
|
Moghieb A, Clair G, Mitchell HD, Kitzmiller J, Zink EM, Kim YM, Petyuk V, Shukla A, Moore RJ, Metz TO, Carson J, McDermott JE, Corley RA, Whitsett JA, Ansong C. Time-resolved proteome profiling of normal lung development. Am J Physiol Lung Cell Mol Physiol 2018; 315:L11-L24. [PMID: 29516783 PMCID: PMC6087896 DOI: 10.1152/ajplung.00316.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/31/2018] [Accepted: 03/01/2018] [Indexed: 12/20/2022] Open
Abstract
Biochemical networks mediating normal lung morphogenesis and function have important implications for ameliorating morbidity and mortality in premature infants. Although several transcript-level studies have examined normal lung development, corresponding protein-level analyses are lacking. Here we performed proteomics analysis of murine lungs from embryonic to early adult ages to identify the molecular networks mediating normal lung development. We identified 8,932 proteins, providing a deep and comprehensive view of the lung proteome. Analysis of the proteomics data revealed discrete modules and the underlying regulatory and signaling network modulating their expression during development. Our data support the cell proliferation that characterizes early lung development and highlight responses of the lung to exposure to a nonsterile oxygen-rich ambient environment and the important role of lipid (surfactant) metabolism in lung development. Comparison of dynamic regulation of proteomic and recent transcriptomic analyses identified biological processes under posttranscriptional control. Our study provides a unique proteomic resource for understanding normal lung formation and function and can be freely accessed at Lungmap.net.
Collapse
Affiliation(s)
- Ahmed Moghieb
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Hugh D Mitchell
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Joseph Kitzmiller
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Erika M Zink
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Young-Mo Kim
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Vladislav Petyuk
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Anil Shukla
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Ronald J Moore
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Thomas O Metz
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - James Carson
- Texas Advanced Computing Center, University of Texas at Austin , Austin, Texas
| | - Jason E McDermott
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Richard A Corley
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Charles Ansong
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| |
Collapse
|
43
|
|
44
|
Liang YS, Qi WT, Guo W, Wang CL, Hu ZB, Li AK. Genistein and daidzein induce apoptosis of colon cancer cells by inhibiting the accumulation of lipid droplets. Food Nutr Res 2018; 62:1384. [PMID: 29849534 PMCID: PMC5965345 DOI: 10.29219/fnr.v62.1384] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/19/2018] [Accepted: 04/04/2018] [Indexed: 01/05/2023] Open
Abstract
Aim The purpose of this study was to investigate the possible mechanisms of genistein (GEN) and daidzein (DAI) in inducing apoptosis of colon cancer cells by inhibition of lipid droplets (LDs) accumulation. Methods HT-29 cells were used and treated by GEN or DAI in this paper. LDs accumulation was induced and inhibited by oleic acid (OA) and C75, respectively. The expression changes of LDs-related markers were confirmed by semiquantitative real time-PCR (RT–PCR), Western blotting, and immunofluorescence staining. Results GEN and DAI effectively reduced the LDs accumulation and downregulated the expression of Perilipin-1, ADRP and Tip-47 family proteins and vimentin levels. GEN and DAI significantly induced the mRNA expression of PPAR-γ, Fas, FABP, glycerol-3-phosphate acyltransferase (GPAT3), and microsomal TG transfer protein (MTTP), and reduced the mRNA expression of UCP2. Furthermore, the results showed a decrease of PI3K expression by GEN and DAI when compared with OA treatment, and both GEN and DAI can increase the expression of FOXO3a and caspase-8 significantly when these proteins were decreased by OA treatment. GEN is more effective than DAI in inducing cell apoptosis. Conclusion Our results demonstrated that GEN and DAI inhibit the accumulation of LDs by regulating LDs-related factors and lead to a final apoptosis of colon cancer cells. These results may provide important new insights into the possible molecular mechanisms of isoflavones in anti-obesity and anti-tumor functions.
Collapse
Affiliation(s)
- Yu-Si Liang
- 1Cereals & Oils Nutrition Research Group, Academy of State Administration of Grain (ASAG), Beijing, The People's Republic of China.,2Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, The People's Republic of China
| | - Wen-Tao Qi
- 1Cereals & Oils Nutrition Research Group, Academy of State Administration of Grain (ASAG), Beijing, The People's Republic of China
| | - Weiqun Guo
- 1Cereals & Oils Nutrition Research Group, Academy of State Administration of Grain (ASAG), Beijing, The People's Republic of China
| | - Chun-Ling Wang
- 2Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, The People's Republic of China
| | - Ze-Bin Hu
- 3Institute for In Vitro Diagnostic Reagents Control, The National Institutes for Food and Drug Control (NIFDC), Beijing, The People's Republic of China
| | - Ai-Ke Li
- 1Cereals & Oils Nutrition Research Group, Academy of State Administration of Grain (ASAG), Beijing, The People's Republic of China
| |
Collapse
|
45
|
Gázquez A, Uhl O, Ruíz-Palacios M, Gill C, Patel N, Koletzko B, Poston L, Larqué E. Placental lipid droplet composition: Effect of a lifestyle intervention (UPBEAT) in obese pregnant women. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:998-1005. [PMID: 29702246 DOI: 10.1016/j.bbalip.2018.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/18/2018] [Accepted: 04/22/2018] [Indexed: 01/01/2023]
Abstract
Maternal obesity is associated with adverse outcomes. Placental lipid droplets (LD) have been implicated in maternal-fetal lipid transfer but it is not known whether placental LD fat composition is modifiable. We evaluated the effects of a diet and physical activity intervention in obese pregnant women compared to routine antenatal care (UPBEAT study) on placental LD composition. LD were isolated by ultracentrifugation. Total FAs and phospholipids (phosphatidylcholines, PCs; sphingomyelins, SMs and lyso-phosphatidylcholines, Lyso-PCs) were analyzed by LC-MS/MS. Placenta MFSD2a expression was assessed by western blot. Placental LDs from obese women were comprised of predominantly saturated and monounsaturated FAs. TG and Chol composition was similar between intervention (n = 20) and control (n = 23) groups. PCs containing dihomo-ɣ-linolenic acid in LD were positively associated with gestational weight gain (P < 0.007), and lowered by the intervention. In the whole sample, PCs carrying DHA and arachidonic acid were inversely associated with placental weight. Placenta MFSD2a expression was associated with DHA cord blood metabolites and relationships were observed between LD lipids, especially DHA carrying species, and cord blood metabolites. We describe placenta LD composition for the first time and demonstrate modest, potentially beneficial effects of a lifestyle intervention on LD FAs in obese pregnant women.
Collapse
Affiliation(s)
- Antonio Gázquez
- LMU - Ludwig-Maximilians-Universität Munich, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Germany; Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Olaf Uhl
- LMU - Ludwig-Maximilians-Universität Munich, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Germany
| | - María Ruíz-Palacios
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Carolyn Gill
- Department of Women and Children's Health, King's College London, St. Thomas' Hospital, London, UK
| | - Nashita Patel
- Department of Women and Children's Health, King's College London, St. Thomas' Hospital, London, UK
| | - Berthold Koletzko
- LMU - Ludwig-Maximilians-Universität Munich, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Lucilla Poston
- Department of Women and Children's Health, King's College London, St. Thomas' Hospital, London, UK
| | - Elvira Larqué
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain.
| | | |
Collapse
|
46
|
Xiao C, Stahel P, Carreiro AL, Buhman KK, Lewis GF. Recent Advances in Triacylglycerol Mobilization by the Gut. Trends Endocrinol Metab 2018; 29:151-163. [PMID: 29306629 DOI: 10.1016/j.tem.2017.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 11/26/2022]
Abstract
Dietary lipid absorption and lipoprotein secretion by the gut are important in maintaining whole-body energy homeostasis and have significant implications for health and disease. The processing of dietary lipids, including storage within and subsequent mobilization and transport from enterocyte cytoplasmic lipid droplets or other intestinal lipid storage pools (including the secretary pathway, lamina propria and lymphatics) and secretion of chylomicrons, involves coordinated steps that are subject to various controls. This review summarizes recent advances in our understanding of the mechanisms that underlie lipid storage and mobilization by small intestinal enterocytes and the intestinal lymphatic vasculature. Therapeutic targeting of lipid processing by the gut may provide opportunities for the treatment and prevention of dyslipidemia, and for improving health status.
Collapse
Affiliation(s)
- Changting Xiao
- Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Priska Stahel
- Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Alicia L Carreiro
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Gary F Lewis
- Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
47
|
Auclair N, Melbouci L, St-Pierre D, Levy E. Gastrointestinal factors regulating lipid droplet formation in the intestine. Exp Cell Res 2018; 363:1-14. [PMID: 29305172 DOI: 10.1016/j.yexcr.2017.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022]
Abstract
Cytoplasmic lipid droplets (CLD) are considered as neutral lipid reservoirs, which protect cells from lipotoxicity. It became clear that these fascinating dynamic organelles play a role not only in energy storage and metabolism, but also in cellular lipid and protein handling, inter-organelle communication, and signaling among diverse functions. Their dysregulation is associated with multiple disorders, including obesity, liver steatosis and cardiovascular diseases. The central aim of this review is to highlight the link between intra-enterocyte CLD dynamics and the formation of chylomicrons, the main intestinal dietary lipid vehicle, after overviewing the morphology, molecular composition, biogenesis and functions of CLD.
Collapse
Affiliation(s)
- N Auclair
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5
| | - L Melbouci
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - D St-Pierre
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - E Levy
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada G1V 0A6.
| |
Collapse
|
48
|
Morel E, Ghezzal S, Lucchi G, Truntzer C, Pais de Barros JP, Simon-Plas F, Demignot S, Mineo C, Shaul PW, Leturque A, Rousset M, Carrière V. Cholesterol trafficking and raft-like membrane domain composition mediate scavenger receptor class B type 1-dependent lipid sensing in intestinal epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:199-211. [PMID: 29196159 DOI: 10.1016/j.bbalip.2017.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/13/2017] [Accepted: 11/27/2017] [Indexed: 02/02/2023]
Abstract
Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics.
Collapse
Affiliation(s)
- Etienne Morel
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Sara Ghezzal
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Géraldine Lucchi
- Clinical Innovation Proteomic Platform CLIPP, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Caroline Truntzer
- Clinical Innovation Proteomic Platform CLIPP, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jean-Paul Pais de Barros
- Plateforme de Lipidomique, INSERM UMR1231, Université de Bourgogne Franche Comté, F-21000 Dijon, France
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Sylvie Demignot
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France; EPHE, PSL Research University, F-75006 Paris, France
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas, Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas, Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Armelle Leturque
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Monique Rousset
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Véronique Carrière
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France.
| |
Collapse
|
49
|
Xiong X, Bales ES, Ir D, Robertson CE, McManaman JL, Frank DN, Parkinson J. Perilipin-2 modulates dietary fat-induced microbial global gene expression profiles in the mouse intestine. MICROBIOME 2017; 5:117. [PMID: 28877764 PMCID: PMC5588750 DOI: 10.1186/s40168-017-0327-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/20/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Intestinal microbiota are critical determinants of obesity and metabolic disease risk. In previous work, we showed that deletion of the cytoplasmic lipid droplet (CLD) protein perilipin-2 (Plin2) modulates gut microbial community structure and abrogates long-term deleterious effects of a high-fat (HF) diet in mice. However, the impact of Plin2 on microbiome function is unknown. RESULTS Here, we used metatranscriptomics to identify differences in microbiome transcript expression in WT and Plin2-null mice following acute exposure to high-fat/low-carbohydrate (HF) or low-fat/high-carbohydrate (LF) diets. Consistent with previous studies, dietary changes resulted in significant taxonomic shifts. Unexpectedly, when fed a HF diet, the microbiota of Plin2-null and WT mice exhibited dramatic shifts in transcript expression despite no discernible shift in community structure. For Plin2-null mice, these changes included the coordinated upregulation of metabolic enzymes directing flux towards the production of growth metabolites such as fatty acids, nucleotides, and amino acids. In contrast, the LF diet did not appear to induce the same dramatic changes in transcript or pathway expression between the two genotypes. CONCLUSIONS Our data shows that a host genotype can modulate microbiome function without impacting community structure and identify Plin2 as a specific host determinant of diet effects on microbial function. Along with uncovering potential mechanisms for integrating how diet modulates host and microbial metabolism, our findings demonstrate the limits of 16S rRNA surveys to inform on community functional activities and the need to prioritize metatranscriptomic studies to gain more meaningful insights into microbiome function.
Collapse
Affiliation(s)
- Xuejian Xiong
- Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4 ON Canada
| | - Elise S. Bales
- Division of Reproductive Sciences, University of Colorado, 12700 E. 19th Avenue, Aurora, 80045 CO USA
| | - Diana Ir
- Division of Infectious Diseases, University of Colorado, 12700 E. 19th Avenue, Aurora, 80045 CO USA
| | - Charles E. Robertson
- Division of Infectious Diseases, University of Colorado, 12700 E. 19th Avenue, Aurora, 80045 CO USA
- Microbiome Research Consortium, University of Colorado, 12700 E. 19th Avenue, Aurora, 80045 CO USA
| | - James L. McManaman
- Division of Reproductive Sciences, University of Colorado, 12700 E. 19th Avenue, Aurora, 80045 CO USA
- The Center for Human Nutrition, University of Colorado, 12700 E. 19th Avenue, Aurora, 80045 CO USA
| | - Daniel N. Frank
- Division of Infectious Diseases, University of Colorado, 12700 E. 19th Avenue, Aurora, 80045 CO USA
- Microbiome Research Consortium, University of Colorado, 12700 E. 19th Avenue, Aurora, 80045 CO USA
| | - John Parkinson
- Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4 ON Canada
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, M5S 1A8 ON Canada
- Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, M5S 1A8 ON Canada
| |
Collapse
|
50
|
Hou TY, Davidson LA, Kim E, Fan YY, Fuentes NR, Triff K, Chapkin RS. Nutrient-Gene Interaction in Colon Cancer, from the Membrane to Cellular Physiology. Annu Rev Nutr 2017; 36:543-70. [PMID: 27431370 DOI: 10.1146/annurev-nutr-071715-051039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The International Agency for Research on Cancer recently released an assessment classifying red and processed meat as "carcinogenic to humans" on the basis of the positive association between increased consumption and risk for colorectal cancer. Diet, however, can also decrease the risk for colorectal cancer and be used as a chemopreventive strategy. Bioactive dietary molecules, such as n-3 polyunsaturated fatty acids, curcumin, and fermentable fiber, have been proposed to exert chemoprotective effects, and their molecular mechanisms have been the focus of research in the dietary/chemoprevention field. Using these bioactives as examples, this review surveys the proposed mechanisms by which they exert their effects, from the nucleus to the cellular membrane. In addition, we discuss emerging technologies involving the culturing of colonic organoids to study the physiological effects of dietary bioactives. Finally, we address future challenges to the field regarding the identification of additional molecular mechanisms and other bioactive dietary molecules that can be utilized in our fight to reduce the incidence of colorectal cancer.
Collapse
Affiliation(s)
- Tim Y Hou
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Laurie A Davidson
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843.,Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas 77843
| | - Eunjoo Kim
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas 77843
| | - Yang-Yi Fan
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843
| | - Natividad R Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Faculty of Toxicology, Texas A&M University, College Station, Texas 77843
| | - Karen Triff
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843;
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843.,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843.,Faculty of Toxicology, Texas A&M University, College Station, Texas 77843.,Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas 77843
| |
Collapse
|