1
|
Xu C, Yang L, Cheng T, Wang Z, Liu C, Shao J. Sodium Houttuyfonate Ameliorates DSS-induced Colitis Aggravated by Candida albicans through Dectin-1/NF-κB/miR-32-5p/NFKBIZ Axis Based on Intestinal microRNA Profiling. Inflammation 2025; 48:820-838. [PMID: 38963571 DOI: 10.1007/s10753-024-02091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Our previous research indicated that Sodium houttuyfonate (SH) can effectively ameliorate dextran sulfate sodium (DSS)-induced colitis exacerbated by Candida albicans. However, the underlying protective mechanism of SH remains unclear. Therefore, in this study, a mice colitis model was infected with C. albicans, and the total colonic miRNAs were assessed. Furthermore, the differentially expressed miRNAs were enriched, clustered, and analyzed. Moreover, based on the dual luciferase analysis of NFKBIZ modulation by miR-32-5p, the in vitro and in vivo therapeutic effects of SH on inflammatory response, fungal burden, oxidative stress, and apoptosis were assessed at transcriptional and translational levels in the presence of agonist and antagonist. A total of 1157 miRNAs were identified, 84 of which were differentially expressed. Furthermore, qRT-PCR validated that SH treatment improved 17 differentially expressed miRNAs with > fourfold upregulation or > sixfold downregulation. Similar to most differentially altered miRNA, C. albicans significantly increased Dectin-1, NF-κB, TNF-α, IL-1β, IL-17A, and decreased miR-32-5p which negatively targeted NFKBIZ. In addition, SH treatment reduced inflammatory response and fungal burden in a colitis model with C. albicans infection. Further analyses indicated that in C. albicans infected Caco2 cells, SH inhibited fungal growth, oxidative stress, and apoptosis by increasing Dectin-1, NF-κB, NFKBIZ, TNF-α, IL-1β, IL-17A, and decreasing miR-32-5p. Therefore, SH can ameliorate the severity of colitis aggravated by C. albicans via the Dectin-1/NF-κB/miR-32-5p/NFKBIZ axis.
Collapse
Affiliation(s)
- Chen Xu
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Liu Yang
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Ting Cheng
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Zixu Wang
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Chengcheng Liu
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Jing Shao
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China.
| |
Collapse
|
2
|
Doghish AS, Abulsoud AI, Nassar YA, Nasr SM, Mohammed OA, Abdel-Reheim MA, Rizk NI, Lutfy RH, Abdel Mageed SS, Ismail MA, Abd-Elhalim HM, Awad FA, Fayez SZ, Elimam H, Mansour RM. Harnessing miRNAs: A Novel Approach to Diagnosis and Treatment of Tuberculosis. J Biochem Mol Toxicol 2025; 39:e70119. [PMID: 39799557 DOI: 10.1002/jbt.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 01/15/2025]
Abstract
Mycobacterium tuberculosis (Mtb) complex, responsible for tuberculosis (TB) infection, continues to be a predominant global cause of mortality due to intricate host-pathogen interactions that affect disease progression. MicroRNAs (miRNAs), essential posttranscriptional regulators, have become pivotal modulators of these relationships. Recent findings indicate that miRNAs actively regulate immunological responses to Mtb complex by modulating autophagy, apoptosis, and immune cell activities. This has resulted in increased interest in miRNAs as prospective diagnostic indicators for TB, especially in differentiating active infection from latent or inactive stages. Variations in miRNA expression during Mtb infection indicate disease progression and offer insights into the immune response. Furthermore, miRNAs present potential as therapeutic targets in host-directed therapy (HDT) techniques for TB infection. This work examines the function of miRNAs in TB pathogenesis, with the objective of identifying particular miRNAs that regulate the immune response to the Mtb complex, evaluating their diagnostic value and exploring their therapeutic implications in host-directed therapy for TB infection. The objective is to enhance comprehension of how miRNAs can facilitate improved diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Yara A Nassar
- Department of Botany, Biotechnology and Its Application Program, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Sami Mohamed Nasr
- Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | | | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Menattallah A Ismail
- Applied Biotechnology Program, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Haytham M Abd-Elhalim
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
- Agricultural Research Center, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Salma Zaki Fayez
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| |
Collapse
|
3
|
Ma X, Gao Y, Ren Z, Dong H, Zhang X, Niu N. Study on the role and molecular mechanism of METTL3-mediated miR-29a-3p in the inflammatory response of spinal tuberculosis. Tuberculosis (Edinb) 2024; 148:102546. [PMID: 39079219 DOI: 10.1016/j.tube.2024.102546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Spinal Tuberculosis (STB) is a common cause of spinal malformation caused by extrapulmonary tuberculosis in developing countries, which seriously affects the quality of life of patients. It was found that the expression of miRNAs in macrophages was stable, specific and readily available after Mycobacterium tuberculosis (MTB) infection. Our research group determined the differential expression of miR-29a-3p in the vertebra of spinal tuberculosis and intervertebral disc lesions through RNAs chip screening and bioinformatics analysis. However, the specific molecular mechanism of miR-29a-3p in the inflammatory response of spinal tuberculosis remains unclear. OBJECTIVE In this study, we mainly discussed the expression of miR-29a-3p in the focal tissue of spinal tuberculosis and the role and molecular mechanism of miR-29a-3p mediated by METTL3 in the inflammatory response of spinal tuberculosis. METHODS The tissues of 15 cases of lumbar degenerative diseases and vertebral lesions of spinal tuberculosis were collected, and the THP-1 macrophage model infected by Mycobacterium tuberculosis was constructed, and verified by qRT-PCR, Western blot, fluorescence in situ hybridization, immunohistochemistry, Cell fluorescence and ELISA. RESULTS AND CONCLUSION We found that the expression of miR-29a-3p was significantly down-regulated in the vertebral body and disc lesion tissues of patients with spinal tuberculosis. Overexpression of miR-29a-3p inhibited the levels of inflammatory factors including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), and inhibition of miR-29a-3p expression promoted the release of the levels of TNF-α, IL-1β and IL-6 inflammatory factors. Our study also shows that knockout of methyltransferase 3 (METTL3) can significantly reduce the expression of miR-29a-3p and promote the release of pro-inflammatory cytokines in macrophages.
Collapse
Affiliation(s)
- Xiaojun Ma
- Department of Orthopedic, General Hospital of Ningxia Medical University Yinchuan, Ningxia Hui Autonomous Region, 750004, China; Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Yuxin Gao
- Department of Orthopedic, General Hospital of Ningxia Medical University Yinchuan, Ningxia Hui Autonomous Region, 750004, China; Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Zhibo Ren
- Department of Orthopedic, General Hospital of Ningxia Medical University Yinchuan, Ningxia Hui Autonomous Region, 750004, China; Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Hui Dong
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xu Zhang
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Ningkui Niu
- Department of Orthopedic, General Hospital of Ningxia Medical University Yinchuan, Ningxia Hui Autonomous Region, 750004, China; Research Center for Prevention and Control of Bone and Joint Tuberculosis, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
4
|
Gatti DM, Tyler AL, Mahoney JM, Churchill GA, Yener B, Koyuncu D, Gurcan MN, Niazi MKK, Tavolara T, Gower A, Dayao D, McGlone E, Ginese ML, Specht A, Alsharaydeh A, Tessier PA, Kurtz SL, Elkins KL, Kramnik I, Beamer G. Systems genetics uncover new loci containing functional gene candidates in Mycobacterium tuberculosis-infected Diversity Outbred mice. PLoS Pathog 2024; 20:e1011915. [PMID: 38861581 PMCID: PMC11195971 DOI: 10.1371/journal.ppat.1011915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/24/2024] [Accepted: 04/17/2024] [Indexed: 06/13/2024] Open
Abstract
Mycobacterium tuberculosis infects two billion people across the globe, and results in 8-9 million new tuberculosis (TB) cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. Here, we investigate the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using immune and inflammatory mediators; and clinical, microbiological, and granuloma correlates of disease identified five new loci on mouse chromosomes 1, 2, 4, 16; and three known loci on chromosomes 3 and 17. Further, multiple positively correlated traits shared loci on chromosomes 1, 16, and 17 and had similar patterns of allele effects, suggesting these loci contain critical genetic regulators of inflammatory responses to M. tuberculosis. To narrow the list of candidate genes, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks to generate scores representing functional relationships. The scores were used to rank candidates for each mapped trait, resulting in 11 candidate genes: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Although all candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling, and all contain single nucleotide polymorphisms (SNPs), SNPs in only four genes (S100a8, Itgb5, Fstl1, Zfp318) are predicted to have deleterious effects on protein functions. We performed methodological and candidate validations to (i) assess biological relevance of predicted allele effects by showing that Diversity Outbred mice carrying PWK/PhJ alleles at the H-2 locus on chromosome 17 QTL have shorter survival; (ii) confirm accuracy of predicted allele effects by quantifying S100A8 protein in inbred founder strains; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this body of work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and functionally relevant gene candidates that may be major regulators of complex host-pathogens interactions contributing to granuloma necrosis and acute inflammation in pulmonary TB.
Collapse
Affiliation(s)
- Daniel M. Gatti
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Anna L. Tyler
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - Bulent Yener
- Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Deniz Koyuncu
- Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Metin N. Gurcan
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - MK Khalid Niazi
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Thomas Tavolara
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Adam Gower
- Clinical and Translational Science Institute, Boston University, Boston, Massachusetts, United States of America
| | - Denise Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Emily McGlone
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Melanie L. Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Aubrey Specht
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Anas Alsharaydeh
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Philipe A. Tessier
- Department of Microbiology and Immunology, Laval University School of Medicine, Quebec, Canada
| | - Sherry L. Kurtz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Karen L. Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Gillian Beamer
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
5
|
Gatti DM, Tyler AL, Mahoney JM, Churchill GA, Yener B, Koyuncu D, Gurcan MN, Niazi M, Tavolara T, Gower AC, Dayao D, McGlone E, Ginese ML, Specht A, Alsharaydeh A, Tessier PA, Kurtz SL, Elkins K, Kramnik I, Beamer G. Systems genetics uncover new loci containing functional gene candidates in Mycobacterium tuberculosis-infected Diversity Outbred mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572738. [PMID: 38187647 PMCID: PMC10769337 DOI: 10.1101/2023.12.21.572738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mycobacterium tuberculosis, the bacillus that causes tuberculosis (TB), infects 2 billion people across the globe, and results in 8-9 million new TB cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. We investigated the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using clinical indicators of disease, granuloma histopathological features, and immune response traits identified five new loci on mouse chromosomes 1, 2, 4, 16 and three previously identified loci on chromosomes 3 and 17. Quantitative trait loci (QTLs) on chromosomes 1, 16, and 17, associated with multiple correlated traits and had similar patterns of allele effects, suggesting these QTLs contain important genetic regulators of responses to M. tuberculosis. To narrow the list of candidate genes in QTLs, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks, generating functional scores. The scores were then used to rank candidates for each mapped trait in each locus, resulting in 11 candidates: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Importantly, all 11 candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling. Further, all candidates contain single nucleotide polymorphisms (SNPs), and some but not all SNPs were predicted to have deleterious consequences on protein functions. Multiple methods were used for validation including (i) a statistical method that showed Diversity Outbred mice carrying PWH/PhJ alleles on chromosome 17 QTL have shorter survival; (ii) quantification of S100A8 protein levels, confirming predicted allele effects; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and new functionally relevant gene candidates that may be major regulators of granuloma necrosis and acute inflammation in pulmonary TB.
Collapse
Affiliation(s)
- D M Gatti
- The Jackson Laboratory, Bar Harbor, ME
| | - A L Tyler
- The Jackson Laboratory, Bar Harbor, ME
| | | | | | - B Yener
- Rensselaer Polytechnic Institute, Troy, NY
| | - D Koyuncu
- Rensselaer Polytechnic Institute, Troy, NY
| | - M N Gurcan
- Wake Forest University School of Medicine, Winston Salem, NC
| | - Mkk Niazi
- Wake Forest University School of Medicine, Winston Salem, NC
| | - T Tavolara
- Wake Forest University School of Medicine, Winston Salem, NC
| | - A C Gower
- Clinical and Translational Science Institute, Boston University, Boston, MA
| | - D Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - E McGlone
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - M L Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Specht
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Alsharaydeh
- Texas Biomedical Research Institute, San Antonio, TX
| | - P A Tessier
- Department of Microbiology and Immunology, Laval University School of Medicine, Quebec, Canada
| | - S L Kurtz
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - K Elkins
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - I Kramnik
- NIEDL, Boston University, Boston, MA
| | - G Beamer
- Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
6
|
Zihad SNK, Sifat N, Islam MA, Monjur-Al-Hossain A, Sikdar KYK, Sarker MMR, Shilpi JA, Uddin SJ. Role of pattern recognition receptors in sensing Mycobacterium tuberculosis. Heliyon 2023; 9:e20636. [PMID: 37842564 PMCID: PMC10570006 DOI: 10.1016/j.heliyon.2023.e20636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 09/06/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
Mycobacterium tuberculosis is one of the major invasive intracellular pathogens causing most deaths by a single infectious agent. The interaction between host immune cells and this pathogen is the focal point of the disease, Tuberculosis. Host immune cells not only mount the protective action against this pathogen but also serve as the primary niche for growth. Thus, recognition of this pathogen by host immune cells and following signaling cascades are key dictators of the disease state. Immune cells, mainly belonging to myeloid cell lineage, recognize a wide variety of Mycobacterium tuberculosis ligands ranging from carbohydrate and lipids to proteins to nucleic acids by different membrane-bound and soluble pattern recognition receptors. Simultaneous interaction between different host receptors and pathogen ligands leads to immune-inflammatory response as well as contributes to virulence. This review summarizes the contribution of pattern recognition receptors of host immune cells in recognizing Mycobacterium tuberculosis and subsequent initiation of signaling pathways to provide the molecular insight of the specific Mtb ligands interacting with specific PRR, key adaptor molecules of the downstream signaling pathways and the resultant effector functions which will aid in identifying novel drug targets, and developing novel drugs and adjuvants.
Collapse
Affiliation(s)
| | - Nazifa Sifat
- Department of Pharmacy, ASA University of Bangladesh, Dhaka, 1207, Bangladesh
| | | | | | | | - Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhaka, 1205, Bangladesh
- Department of Pharmacy, Gono University, Nolam, Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - Jamil A. Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
7
|
Kargutkar N, Hariharan P, Nadkarni A. Dynamic interplay of microRNA in diseases and therapeutic. Clin Genet 2023; 103:268-276. [PMID: 36310341 PMCID: PMC9874567 DOI: 10.1111/cge.14256] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 02/04/2023]
Abstract
MicroRNAs are the major class of small non-coding RNAs, evolutionary conserved post-transcriptional regulators of gene expression. Since their discovery in 1993, they have been implicated as master regulators in numerous cellular processes. MicroRNA (miRNA)s regulate gene expression by attenuation and/or mRNA degradation and are commonly associated with cell development, differentiation, and homeostasis. Extensive research in past two decades has provided new insights into the potential implications of miRNA in the onset, progression, and therapeutic nature of miRNAs in disease manifestation. Owing to the novel discoveries, "miRNAs" would probably pave a new direction in therapeutic research. However, "micro" in length miRNAs have attracted considerable attention in numerous other fields. Understanding the functionality of miRNAs, in this review article, we discussed the mechanistic role of miRNAs in human diseases and have outlined most of the recent published work in clinical therapeutics. We have constructed different network models for miRNA and its targets which made us understand their interrelationship and association with diseases. Future research would surely overcome challenges and would introduce new strategies for the utility of miRNAs in a broader setting.
Collapse
Affiliation(s)
- Neha Kargutkar
- National Institute of Immunohaematology (ICMR)MumbaiIndia
| | | | - Anita Nadkarni
- National Institute of Immunohaematology (ICMR)MumbaiIndia
| |
Collapse
|
8
|
Horak M, Fairweather D, Kokkonen P, Bednar D, Bienertova-Vasku J. Follistatin-like 1 and its paralogs in heart development and cardiovascular disease. Heart Fail Rev 2022; 27:2251-2265. [PMID: 35867287 PMCID: PMC11140762 DOI: 10.1007/s10741-022-10262-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/29/2022]
Abstract
Cardiovascular diseases (CVDs) are a group of disorders affecting the heart and blood vessels and a leading cause of death worldwide. Thus, there is a need to identify new cardiokines that may protect the heart from damage as reported in GBD 2017 Causes of Death Collaborators (2018) (The Lancet 392:1736-1788). Follistatin-like 1 (FSTL1) is a cardiokine that is highly expressed in the heart and released to the serum after cardiac injury where it is associated with CVD and predicts poor outcome. The action of FSTL1 likely depends not only on the tissue source but also post-translation modifications that are target tissue- and cell-specific. Animal studies examining the effect of FSTL1 in various models of heart disease have exploded over the past 15 years and primarily report a protective effect spanning from inhibiting inflammation via transforming growth factor, preventing remodeling and fibrosis to promoting angiogenesis and hypertrophy. A better understanding of FSTL1 and its homologs is needed to determine whether this protein could be a useful novel biomarker to predict poor outcome and death and whether it has therapeutic potential. The aim of this review is to provide a comprehensive description of the literature for this family of proteins in order to better understand their role in normal physiology and CVD.
Collapse
Affiliation(s)
- Martin Horak
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Piia Kokkonen
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - David Bednar
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Julie Bienertova-Vasku
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
9
|
Davuluri KS, Chauhan DS. microRNAs associated with the pathogenesis and their role in regulating various signaling pathways during Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 2022; 12:1009901. [PMID: 36389170 PMCID: PMC9647626 DOI: 10.3389/fcimb.2022.1009901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Despite more than a decade of active study, tuberculosis (TB) remains a serious health concern across the world, and it is still the biggest cause of mortality in the human population. Pathogenic bacteria recognize host-induced responses and adapt to those hostile circumstances. This high level of adaptability necessitates a strong regulation of bacterial metabolic characteristics. Furthermore, the immune reponse of the host virulence factors such as host invasion, colonization, and survival must be properly coordinated by the pathogen. This can only be accomplished by close synchronization of gene expression. Understanding the molecular characteristics of mycobacterial pathogenesis in order to discover therapies that prevent or resolve illness relies on the bacterial capacity to adjust its metabolism and replication in response to various environmental cues as necessary. An extensive literature details the transcriptional alterations of host in response to in vitro environmental stressors, macrophage infection, and human illness. Various studies have recently revealed the finding of several microRNAs (miRNAs) that are believed to play an important role in the regulatory networks responsible for adaptability and virulence in Mycobacterium tuberculosis. We highlighted the growing data on the existence and quantity of several forms of miRNAs in the pathogenesis of M. tuberculosis, considered their possible relevance to disease etiology, and discussed how the miRNA-based signaling pathways regulate bacterial virulence factors.
Collapse
|
10
|
Wang L, Xiong Y, Fu B, Guo D, Zaky MY, Lin X, Wu H. MicroRNAs as immune regulators and biomarkers in tuberculosis. Front Immunol 2022; 13:1027472. [PMID: 36389769 PMCID: PMC9647078 DOI: 10.3389/fimmu.2022.1027472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 07/26/2023] Open
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is one of the most lethal infectious disease worldwide, and it greatly affects human health. Some diagnostic and therapeutic methods are available to effectively prevent and treat TB; however, only a few systematic studies have described the roles of microRNAs (miRNAs) in TB. Combining multiple clinical datasets and previous studies on Mtb and miRNAs, we state that pathogens can exploit interactions between miRNAs and other biomolecules to avoid host mechanisms of immune-mediated clearance and survive in host cells for a long time. During the interaction between Mtb and host cells, miRNA expression levels are altered, resulting in the changes in the miRNA-mediated regulation of host cell metabolism, inflammatory responses, apoptosis, and autophagy. In addition, differential miRNA expression can be used to distinguish healthy individuals, patients with TB, and patients with latent TB. This review summarizes the roles of miRNAs in immune regulation and their application as biomarkers in TB. These findings could provide new opportunities for the diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yan Xiong
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Beibei Fu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Mohamed Y. Zaky
- Department of Zoology, Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Xiaoyuan Lin
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Haibo Wu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
11
|
Liang S, Ma J, Gong H, Shao J, Li J, Zhan Y, Wang Z, Wang C, Li W. Immune regulation and emerging roles of noncoding RNAs in Mycobacterium tuberculosis infection. Front Immunol 2022; 13:987018. [PMID: 36311754 PMCID: PMC9608867 DOI: 10.3389/fimmu.2022.987018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 05/10/2024] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, engenders an onerous burden on public hygiene. Congenital and adaptive immunity in the human body act as robust defenses against the pathogens. However, in coevolution with humans, this microbe has gained multiple lines of mechanisms to circumvent the immune response to sustain its intracellular persistence and long-term survival inside a host. Moreover, emerging evidence has revealed that this stealthy bacterium can alter the expression of demic noncoding RNAs (ncRNAs), leading to dysregulated biological processes subsequently, which may be the rationale behind the pathogenesis of tuberculosis. Meanwhile, the differential accumulation in clinical samples endows them with the capacity to be indicators in the time of tuberculosis suffering. In this article, we reviewed the nearest insights into the impact of ncRNAs during Mycobacterium tuberculosis infection as realized via immune response modulation and their potential as biomarkers for the diagnosis, drug resistance identification, treatment evaluation, and adverse drug reaction prediction of tuberculosis, aiming to inspire novel and precise therapy development to combat this pathogen in the future.
Collapse
Affiliation(s)
- Shufan Liang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiechao Ma
- Artificial Intelligence (AI) Lab, Deepwise Healthcare, Beijing, China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Shao
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jingwei Li
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yuejuan Zhan
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Zhang P, Luo J, Wu T, Wang X, Yang F, Yu Y, Lu L, Yu H. MiR-32-5p/AIDA Mediates OxLDL-Induced Endothelial Injury and Inflammation. Int Heart J 2022; 63:928-938. [DOI: 10.1536/ihj.22-067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Ping Zhang
- Shenzhen Hospital, Southern Medical University
| | - Jianfang Luo
- Department of Cardiovascular, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science
| | - Tianlong Wu
- Department of Cardiovascular, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science
| | - Xuan Wang
- Department of Cardiovascular, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science
| | - Fan Yang
- Department of Cardiovascular, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science
| | - Yanhong Yu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, College of Life Science and Technology, Jinan University
| | - Lihe Lu
- Department of Pathophysiolgy, Zhongshan School of Medicine, Sun Yat-Sen University
| | - Huimin Yu
- Department of Cardiovascular, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science
| |
Collapse
|
13
|
Han M, Chen Z, He P, Li Z, Chen Q, Tong Z, Wang M, Du H, Zhang H. YgiM may act as a trigger in the sepsis caused by Klebsiella pneumoniae through the membrane-associated ceRNA network. Front Genet 2022; 13:973145. [PMID: 36212144 PMCID: PMC9537587 DOI: 10.3389/fgene.2022.973145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
Sepsis is one of the diseases that can cause serious mortality. In E. coli, an inner membrane protein YgiM encoded by gene ygiM can target the eukaryotic peroxisome. Peroxisome is a membrane-enclosed organelle associated with the ROS metabolism and was reported to play the key role in immune responses and inflammation during the development of sepsis. Klebsiella pneumoniae (K. pneumoniae) is one of the important pathogens causing sepsis. However, the function of gene vk055_4013 which is highly homologous to ygiM of E. coli has not been demonstrated in K. pneumoniae. In this study, we prepared ΔygiM of K. pneumoniae ATCC43816, and found that the deletion of ygiM did not affect bacterial growth and mouse mortality in the mouse infection model. Interestingly, ΔygiM not only resulted in reduced bacterial resistance to macrophages, but also attenuated pathological manifestations in mouse organs. Furthermore, based on the data of Gene Expression Omnibus, the expression profiles of micro RNAs (miRNAs) and messenger RNAs (mRNAs) in the serum of 44 sepsis patients caused by K. pneumoniae infection were analyzed, and 11 differently expressed miRNAs and 8 DEmRNAs associated with the membrane function were found. Finally, the membrane-associated competing endogenous RNAs (ceRNAs) network was constructed. In this ceRNAs network, DEmiRNAs (hsa-miR-7108-5p, hsa-miR-6780a-5p, hsa-miR-6756-5p, hsa-miR-4433b-3p, hsa-miR-3652, hsa-miR-342-3p, hsa-miR-32-5p) and their potential downstream target DEmRNAs (VNN1, CEACAM8, PGLYRP1) were verified in the cell model infected by wild type and ΔygiM of K. pneumoniae, respectively. Taken together, YgiM may trigger the sepsis caused by K. pneumoniae via membrane-associated ceRNAs. This study provided new insights into the role of YgiM in the process of K. pneumoniae induced sepsis.
Collapse
Affiliation(s)
- Mingxiao Han
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhihao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ping He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Clinical Laboratory, Sichuan Province Science City Hospital, Chengdu, China
| | - Ziyuan Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zelei Tong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Khan A, Zhang K, Singh VK, Mishra A, Kachroo P, Bing T, Won JH, Mani A, Papanna R, Mann LK, Ledezma-Campos E, Aguillon-Duran G, Canaday DH, David SA, Restrepo BI, Viet NN, Phan H, Graviss EA, Musser JM, Kaushal D, Gauduin MC, Jagannath C. Human M1 macrophages express unique innate immune response genes after mycobacterial infection to defend against tuberculosis. Commun Biol 2022; 5:480. [PMID: 35590096 PMCID: PMC9119986 DOI: 10.1038/s42003-022-03387-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/21/2022] [Indexed: 12/23/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is responsible for approximately 1.5 million deaths each year. Though 10% of patients develop tuberculosis (TB) after infection, 90% of these infections are latent. Further, mice are nearly uniformly susceptible to Mtb but their M1-polarized macrophages (M1-MΦs) can inhibit Mtb in vitro, suggesting that M1-MΦs may be able to regulate anti-TB immunity. We sought to determine whether human MΦ heterogeneity contributes to TB immunity. Here we show that IFN-γ-programmed M1-MΦs degrade Mtb through increased expression of innate immunity regulatory genes (Inregs). In contrast, IL-4-programmed M2-polarized MΦs (M2-MΦs) are permissive for Mtb proliferation and exhibit reduced Inregs expression. M1-MΦs and M2-MΦs express pro- and anti-inflammatory cytokine-chemokines, respectively, and M1-MΦs show nitric oxide and autophagy-dependent degradation of Mtb, leading to increased antigen presentation to T cells through an ATG-RAB7-cathepsin pathway. Despite Mtb infection, M1-MΦs show increased histone acetylation at the ATG5 promoter and pro-autophagy phenotypes, while increased histone deacetylases lead to decreased autophagy in M2-MΦs. Finally, Mtb-infected neonatal macaques express human Inregs in their lymph nodes and macrophages, suggesting that M1 and M2 phenotypes can mediate immunity to TB in both humans and macaques. We conclude that human MФ subsets show unique patterns of gene expression that enable differential control of TB after infection. These genes could serve as targets for diagnosis and immunotherapy of TB.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vipul K Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Priyanka Kachroo
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Tian Bing
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jong Hak Won
- Department of Obstetrics, Gynecology and Reproductive Sciences, UTHSC, Houston, TX, USA
| | - Arunmani Mani
- Department of Obstetrics, Gynecology and Reproductive Sciences, UTHSC, Houston, TX, USA
| | - Ramesha Papanna
- Department of Obstetrics, Gynecology and Reproductive Sciences, UTHSC, Houston, TX, USA
| | - Lovepreet K Mann
- Department of Obstetrics, Gynecology and Reproductive Sciences, UTHSC, Houston, TX, USA
| | | | | | - David H Canaday
- Division of Infectious Disease, Case Western Reserve University Cleveland VA, Cleveland, OH, USA
| | - Sunil A David
- Virovax, LLC, Adjuvant Division, Lawrence, Kansas, USA
| | - Blanca I Restrepo
- UT School of Public Health, Brownsville, and STDOI, UT Rio Grande Valley, Brownsville, TX, USA
| | | | - Ha Phan
- Center for Promotion of Advancement of Society, Ha Noi, Vietnam
| | - Edward A Graviss
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - James M Musser
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Marie Claire Gauduin
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA.
| |
Collapse
|
15
|
Zhang Y, Luo D, Tang M, Jiang D, Yi H. Circ-WDR27 regulates mycobacterial vitality and secretion of inflammatory cytokines in Mycobacterium tuberculosis-infected macrophages via the miR-370-3p/FSTL1 signal network. J Biosci 2022. [DOI: 10.1007/s12038-022-00265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front Immunol 2022. [PMID: 35309296 DOI: 10.3389/fimmu.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
17
|
Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front Immunol 2022; 13:812774. [PMID: 35309296 PMCID: PMC8927970 DOI: 10.3389/fimmu.2022.812774] [Citation(s) in RCA: 392] [Impact Index Per Article: 130.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y. Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
18
|
Awasthi K, Kootimole CN, Aravind A, Prasad TSK. Data-Independent Acquisition Approach to Proteome: A Case Study and a Spectral Library for Mass Spectrometry-Based Investigation of Mycobacterium tuberculosis. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:142-150. [PMID: 35099291 DOI: 10.1089/omi.2021.0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Currently, mass spectrometry-based data-dependent acquisition protocols require several micrograms to milligram amounts of proteins to start with, and needs fractionation and enrichment or depletion protocols to identify low abundant proteins and their modifications. However, a data-independent acquisition (DIA) approach can help us to identify a large number of proteins irrespective of their abundance, from even a very low amount of protein. In the DIA protocol, mass spectrometry data are matched against a previously established tandem mass spectrometry (MS/MS) spectra for each peptide. Therefore, establishing a spectral library is a prerequisite for successful DIA protocol. However, the DIA protocol becomes extremely important to investigate biological systems, where there is a difficulty in gathering reasonable amounts of proteins. In this context, DIA can become a valuable tool to investigate proteome dynamics of slow growing pathogen such as Mycobacterium tuberculosis that causes tuberculosis. We report here a case study of the DIA approach that is ideal for M. tuberculosis, which cannot be scaled up easily as it requires specific BSL3 laboratory facilities to be grown. We generated a spectral library for M. tuberculosis proteome using six publicly available proteomic data sets. The in-house M. tuberculosis proteome spectral library contains MS/MS spectra for peptides corresponding to 88% of proteins when compared with the M. tuberculosis H37Rv proteome. We believe that the public availability of the M. tuberculosis spectral library is an important step forward to facilitate the research community to adopt DIA approaches, for example, to investigate M. tuberculosis proteome with greater depth and efficiency.
Collapse
Affiliation(s)
- Kriti Awasthi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Chinmaya Narayana Kootimole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Anjana Aravind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
19
|
Identification of MicroRNAs as Potential Blood-Based Biomarkers for Diagnosis and Therapeutic Monitoring of Active Tuberculosis. Diagnostics (Basel) 2022; 12:diagnostics12020369. [PMID: 35204460 PMCID: PMC8871062 DOI: 10.3390/diagnostics12020369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Early diagnosis increases the treatment success rate for active tuberculosis (ATB) and decreases mortality. MicroRNAs (miRNAs) have been studied as blood-based markers of several infectious diseases. We performed miRNA profiling to identify differentially expressed (DE) miRNAs using whole blood samples from 10 healthy controls (HCs), 15 subjects with latent tuberculosis infection (LTBI), and 12 patients with ATB, and investigated the expression of the top six miRNAs at diagnosis and over the treatment period in addition to performing miRNA-target gene network and gene ontology analyses. miRNA profiling identified 84 DE miRNAs in patients with ATB, including 80 upregulated and four downregulated miRNAs. Receiver operating characteristic curves of the top six miRNAs exhibited excellent distinguishing efficiency with an area under curve (AUC) value > 0.85. Among them, miR-199a-3p and miR-6886-3p can differentiate between ATB and LTBI. Anti-TB treatment restored the levels of miR-199b-3p, miR-199a-3p, miR-16-5p, and miR-374c-5p to HC levels. Furthermore, 108 predicted target genes were related to the regulation of cellular amide metabolism, intrinsic apoptotic signaling, translation, transforming growth factor beta receptor signaling, and cysteine-type endopeptidase activity. The DE miRNAs identified herein are potential biomarkers for diagnosis and therapeutic monitoring in ATB.
Collapse
|
20
|
Li Y, Sun L, Liu J, Xu G, Hu Y, Qin A. Down-regulation of GAS5 has diagnostic value for tuberculosis and regulates the inflammatory response in mycobacterium tuberculosis infected THP-1 cells. Tuberculosis (Edinb) 2022; 132:102141. [PMID: 34808575 DOI: 10.1016/j.tube.2021.102141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study aimed to investigate the expression of long non-coding RNA (lncRNA) growth arrest-special transcript 5 (GAS5) in the serum of tuberculosis (TB) patients and discuss the mechanism of GAS5 in TB by establishing an in-vitro TB cell model. METHODS Serum expressions of GAS5 and miR-18a-5p were determined by quantitative real-time PCR (qRT-PCR). The effects of GAS5 on macrophage cell viability and the inflammatory response after MTB infection were assessed by CCK-8 and ELISA. Luciferase reporter gene assay was applied to delve into the potential target gene of GAS5. RESULTS The expression of GAS5 in TB patients was down-regulated, while miR-18a-5p was up-regulated, and the serum inflammatory factors were negatively correlated with the expression level of GAS5. MTB infection induced significant upregulation on the cell viability and inflammatory response but the acceleration effect could be rescued by GAS5-overexpression. Meanwhile, miR-18a-5p was recognized as the target gene of GAS5. CONCLUSION This study indicated that the expression level of GAS5 in the serum of TB patients was decreased, while in the cells infected with MTB, the down-regulated GAS5 might develop a role in facilitating the cell vitality and the inflammatory response by adsorbing miR-18a-5p in the form of molecular sponge.
Collapse
Affiliation(s)
- Yusong Li
- Department of Laboratory Medicine, The Fourth People's Hospital of Huai'an, Jiangsu, 223001, China
| | - Lihua Sun
- Department of Laboratory Medicine, The Fourth People's Hospital of Huai'an, Jiangsu, 223001, China
| | - Juan Liu
- Department of Laboratory Medicine, The Fourth People's Hospital of Huai'an, Jiangsu, 223001, China
| | - Guoying Xu
- School of Medical Technology, Jiangsu College of Nursing, Jiangsu, 223007, China
| | - Yan Hu
- Clinical Laboratory and Pathology Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China.
| | - Andong Qin
- Department of Laboratory Medicine, The Fourth People's Hospital of Huai'an, Jiangsu, 223001, China.
| |
Collapse
|
21
|
Li H, Yang W, Liu MW, Wan LJ, Wang YQ. Protective effects of Baicalin injection on severe acute pancreatitis through regulating follistatin-like-1 signaling pathway by down-regulating miR-429 expression in mice. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Hui Li
- Kunming Medical University, China
| | - Wei Yang
- Kunming Medical, University, China
| | | | | | | |
Collapse
|
22
|
Deng Q, Huang J, Yan J, Mao E, Chen H, Wang C. Circ_0001490/miR-579-3p/FSTL1 axis modulates the survival of mycobacteria and the viability, apoptosis and inflammatory response in Mycobacterium tuberculosis-infected macrophages. Tuberculosis (Edinb) 2021; 131:102123. [PMID: 34555658 DOI: 10.1016/j.tube.2021.102123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Macrophages play an important role in the host immune response against mycobacterial infection, and this process is regulated by various factors, including circular RNAs (circRNAs). We intended to explore the role of circ_0001490 in tuberculosis (TB) using Mycobacterium tuberculosis (M.tb)-infected THP-1 macrophages. METHODS Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were conducted to measure RNA and protein expression, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was conducted to analyze the viability of THP-1 macrophages. Flow cytometry was performed to analyze the apoptosis rate of THP-1 macrophages. Enzyme-linked immunosorbent assay (ELISA) was conducted to assess the release of inflammatory cytokines. Colony-forming unit (CFU) assay was conducted to analyze the survival of M.tb in THP-1 macrophages. Intermolecular target interaction was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULTS Circ_0001490 expression was down-regulated in the serum samples of TB patients and M.tb-infected THP-1 macrophages. Circ_0001490 overexpression suppressed M.tb survival and promoted the viability and inflammatory response of THP-1 macrophages. Circ_0001490 interacted with microRNA-579-3p (miR-579-3p), and circ_0001490 overexpression-induced protective effects in M.tb-infected THP-1 macrophages were largely overturned by the overexpression of miR-579-3p. miR-579-3p interacted with the 3' untranslated region (3'UTR) of follistatin-like protein 1 (FSTL1). FSTL1 silencing largely overturned miR-579-3p knockdown-induced effects in M.tb-infected THP-1 macrophages. Circ_0001490 acted as miR-579-3p sponge to up-regulate FSTL1 in THP-1 macrophages. CONCLUSION In conclusion, our results demonstrated that circ_0001490 suppressed M.tb survival and promoted the viability and inflammatory response of M.tb-infected THP-1 macrophages partly by regulating miR-579-3p/FSTL1 axis.
Collapse
Affiliation(s)
- Qun Deng
- Department of Tuberculosis, Jiangxi Chest Hospital, Nanchang City, Jiangxi Province, China.
| | - Jian Huang
- Deparment of Respratory and Critical Care Medicine, Jiangxi Chest Hospital, Nanchang City, Jiangxi Province, China
| | - Jinjin Yan
- Deparment of Thoracic Surgery, Jiangxi Chest Hospital, Nanchang City, Jiangxi Province, China
| | - Erning Mao
- Science and Education Section, Jiangxi Chest Hospital, Nanchang City, Jiangxi Province, China
| | - HuiJuan Chen
- Department of Ultrasound, Jiangxi Chest Hospital, Nanchang City, Jiangxi Province, China
| | - Caiwen Wang
- Department of Clinical Laboratory, Jiangxi Chest Hospital, Nanchang City, Jiangxi Province, China
| |
Collapse
|
23
|
Sampath P, Periyasamy KM, Ranganathan UD, Bethunaickan R. Monocyte and Macrophage miRNA: Potent Biomarker and Target for Host-Directed Therapy for Tuberculosis. Front Immunol 2021; 12:667206. [PMID: 34248945 PMCID: PMC8267585 DOI: 10.3389/fimmu.2021.667206] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
The end TB strategy reinforces the essentiality of readily accessible biomarkers for early tuberculosis diagnosis. Exploration of microRNA (miRNA) and pathway analysis opens an avenue for the discovery of possible therapeutic targets. miRNA is a small, non-coding oligonucleotide characterized by the mechanism of gene regulation, transcription, and immunomodulation. Studies on miRNA define their importance as an immune marker for active disease progression and as an immunomodulator for innate mechanisms, such as apoptosis and autophagy. Monocyte research is highly advancing toward TB pathogenesis and biomarker efficiency because of its innate and adaptive response connectivity. The combination of monocytes/macrophages and their relative miRNA expression furnish newer insight on the unresolved mechanism for Mycobacterium survival, exploitation of host defense, latent infection, and disease resistance. This review deals with miRNA from monocytes, their relative expression in different disease stages of TB, multiple gene regulating mechanisms in shaping immunity against tuberculosis, and their functionality as biomarker and host-mediated therapeutics. Future collaborative efforts involving multidisciplinary approach in various ethnic population with multiple factors (age, gender, mycobacterial strain, disease stage, other chronic lung infections, and inflammatory disease criteria) on these short miRNAs from body fluids and cells could predict the valuable miRNA biosignature network as a potent tool for biomarkers and host-directed therapy.
Collapse
Affiliation(s)
- Pavithra Sampath
- Department of Immunology, National Institute for Research in Tuberculosis, Chennai, India
| | | | - Uma Devi Ranganathan
- Department of Immunology, National Institute for Research in Tuberculosis, Chennai, India
| | | |
Collapse
|
24
|
Kundu M, Basu J. The Role of microRNAs and Long Non-Coding RNAs in the Regulation of the Immune Response to Mycobacterium tuberculosis Infection. Front Immunol 2021; 12:687962. [PMID: 34248974 PMCID: PMC8264550 DOI: 10.3389/fimmu.2021.687962] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
Non-coding RNAs have emerged as critical regulators of the immune response to infection. MicroRNAs (miRNAs) are small non-coding RNAs which regulate host defense mechanisms against viruses, bacteria and fungi. They are involved in the delicate interplay between Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), and its host, which dictates the course of infection. Differential expression of miRNAs upon infection with M. tuberculosis, regulates host signaling pathways linked to inflammation, autophagy, apoptosis and polarization of macrophages. Experimental evidence suggests that virulent M. tuberculosis often utilize host miRNAs to promote pathogenicity by restricting host-mediated antibacterial signaling pathways. At the same time, host- induced miRNAs augment antibacterial processes such as autophagy, to limit bacterial proliferation. Targeting miRNAs is an emerging option for host-directed therapies. Recent studies have explored the role of long non-coding RNA (lncRNAs) in the regulation of the host response to mycobacterial infection. Among other functions, lncRNAs interact with chromatin remodelers to regulate gene expression and also function as miRNA sponges. In this review we attempt to summarize recent literature on how miRNAs and lncRNAs are differentially expressed during the course of M. tuberculosis infection, and how they influence the outcome of infection. We also discuss the potential use of non-coding RNAs as biomarkers of active and latent tuberculosis. Comprehensive understanding of the role of these non-coding RNAs is the first step towards developing RNA-based therapeutics and diagnostic tools for the treatment of TB.
Collapse
Affiliation(s)
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, India
| |
Collapse
|
25
|
Pontemezzo E, Foglio E, Vernucci E, Magenta A, D’Agostino M, Sileno S, Astanina E, Bussolino F, Pellegrini L, Germani A, Russo MA, Limana F. miR-200c-3p Regulates Epitelial-to-Mesenchymal Transition in Epicardial Mesothelial Cells by Targeting Epicardial Follistatin-Related Protein 1. Int J Mol Sci 2021; 22:4971. [PMID: 34067060 PMCID: PMC8125323 DOI: 10.3390/ijms22094971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/21/2022] Open
Abstract
Recent findings suggest that epithelial to mesenchymal transition (EMT), a key step during heart development, is involved in cardiac tissue repair following myocardial infarction (MI). MicroRNAs (miRNAs) act as key regulators in EMT processes; however, the mechanisms by which miRNAs target epicardial EMT remain largely unknown. Here, by using an in vitro model of epicardial EMT, we investigated the role of miRNAs as regulators of this process and their potential targets. EMT was induced in murine epicardial-mesothelial cells (EMCs) through TGF β1 treatment for 48, 72, and 96 h as indicated by the expression of EMT-related genes by qRT-PCR, WB, and immunofluorescence. Further, enhanced expression of stemness genes was also detected. Among several EMT-related miRNAs, miR-200c-3p expression resulted as the most strongly suppressed. Interestingly, we also found a significant upregulation of Follistatin-related protein 1 (FSTL1), a miR-200c predicted target already identified as a potent cardiogenic factor produced by epicardial cells that promotes regeneration following MI. Dual-luciferase reporter assay demonstrated that miR-200c-3p directly targeted the 3'-untranslated region of FSTL1 in EMCs. Consistently, WB analysis showed that knockdown of miR-200c-3p significantly increased FSTL1 expression, whereas overexpression of miR-200c-3p counteracted TGF β1-mediated FSTL1 upregulation. Importantly, FSTL1 silencing maintained epithelial features in EMCs, despite EMT induction by TGF β1, and attenuated EMT-associated traits, including migration and stemness. In conclusion, epicardial FSTL1, an important cardiogenic factor in its secreted form, induces EMT, stemness, and migration of EMCs in a miR-200c-3p dependent pathway.
Collapse
Affiliation(s)
- Elena Pontemezzo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.P.); (E.F.); (E.V.); (L.P.)
| | - Eleonora Foglio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.P.); (E.F.); (E.V.); (L.P.)
| | - Enza Vernucci
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.P.); (E.F.); (E.V.); (L.P.)
| | - Alessandra Magenta
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (A.M.); (M.D.); (S.S.); (A.G.)
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Marco D’Agostino
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (A.M.); (M.D.); (S.S.); (A.G.)
| | - Sara Sileno
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (A.M.); (M.D.); (S.S.); (A.G.)
| | - Elena Astanina
- Department of Oncology, University of Turin, 10060 Candiolo, Italy; (E.A.); (F.B.)
- Candiolo Cancer Institute-FPO-IRCCS, 10060 Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Turin, 10060 Candiolo, Italy; (E.A.); (F.B.)
- Candiolo Cancer Institute-FPO-IRCCS, 10060 Candiolo, Italy
| | - Laura Pellegrini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.P.); (E.F.); (E.V.); (L.P.)
| | - Antonia Germani
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (A.M.); (M.D.); (S.S.); (A.G.)
| | - Matteo Antonio Russo
- IRCCS San Raffaele Pisana and MEBIC Consortium, 00166 Rome, Italy;
- Department of Human Science and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Federica Limana
- Department of Human Science and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| |
Collapse
|
26
|
Zhang Z, He J, Wang B. Circular RNA circ_HECTD1 regulates cell injury after cerebral infarction by miR-27a-3p/FSTL1 axis. Cell Cycle 2021; 20:914-926. [PMID: 33843447 DOI: 10.1080/15384101.2021.1909885] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cerebral infarction is a common cerebrovascular disease caused by neural cell injury, with high mortality worldwide. Circular RNAs HECT domain E3 ubiquitin-protein ligase 1 (circ_HECTD1) has been reported to be related to the oxygen-glucose deprivation/reperfusion (OGD/R)-caused neuronal damage in cerebral ischemia. This study is designed to explore the role and mechanism of circ_HECTD1 in OGD/R-induced cell injury in cerebral ischemia. Circ_HECTD1, microRNA-27a-3p (miR-27a-3p), and Follistatin-like 1 (FSTL1) level were detected by real-time quantitative polymerase chain reaction (RT-qPCR). The localization of circ_HECTD1 was analyzed by subcellular fractionation assay. Cell proliferative ability and apoptosis were assessed by 5-ethynyl-2'-deoxyuridine (EdU), 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), and flow cytometry assays. The protein levels of proliferating cell nuclear antigen (PCNA), B-cell lymphoma-2 (Bcl-2), Bcl-2 related X protein (Bax), Cleaved poly-ADP-ribose polymerase (PARP), and FSTL1 were examined by western blot assay. The binding relationship between miR-27a-3p and circ_HECTD1 or FSTL1 was predicted by starbase 3.0 then verified by a dual-luciferase reporter assay. Circ_HECTD1 and FSTL1 were highly expressed, and miR-27a-3p was decreased in OGD/R-treated HT22 cells. Moreover, circ_HECTD1 knockdown could boost cell proliferative ability and repress apoptosis in OGD/R-triggered HT22 cells in vitro. Mechanical analysis discovered that circ_HECTD1 could regulate FSTL1 expression by sponging miR-27a-3p. Circ_HECTD1 deficiency could mitigate OGD/R-induced HT22 cell damage by modulating the miR-27a-3p/FSTL1 axis, providing a promising therapeutic target for cerebral infarction treatment.
Collapse
Affiliation(s)
- Zhenduo Zhang
- Department of Encephalopathy Third Ward, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Jinbo He
- Department of ICU, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Baoliang Wang
- Department of Encephalopathy Third Ward, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| |
Collapse
|
27
|
TLRs in Mycobacterial Pathogenesis: Black and White or Shades of Gray. Curr Microbiol 2021; 78:2183-2193. [PMID: 33844035 DOI: 10.1007/s00284-021-02488-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Toll-like receptors (TLRs) play critical role in the innate recognition of pathogens besides orchestrating innate and adaptive immune responses. These receptors exhibit exquisite specificity for different pathogens or their products and, through a complex network of signalling, generate appropriate immune responses. TLRs induce both pro- and anti-inflammatory signals depending on interactions with the adapter molecules thereby impacting the outcome of infection. Hence, TLR signalling ought to be stringently regulated to avoid harmful effects on the host. Mycobacteria express antigens which are sensed by TLRs leading to activation of various signalling molecules important for initiating the death of infected cells and containment of pathogens. Conversely, it also utilizes TLRs for immune evasion and persistence. Due to the enormous diversity in the repertoire of virulence traits expressed by mycobacteria, genetic variations in TLRs often impair the host's ability to respond to mycobacterial-stress, affecting health and disease manifestations. Thus, understanding TLR signalling is of great importance for insights into host-mycobacterial interactions and designing effective measures for controlling the spread and persistence of the bacterium.
Collapse
|
28
|
Wang S, Liu Z. Inhibition of microRNA-143-3p Attenuates Cerebral Ischemia/Reperfusion Injury by Targeting FSTL1. Neuromolecular Med 2021; 23:500-510. [PMID: 33709299 DOI: 10.1007/s12017-021-08650-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/12/2021] [Indexed: 01/20/2023]
Abstract
MicroRNA (miRNA) miR-143-3p has been reported to participate in the progression of myocardial ischemia/reperfusion (I/R) injury, but its function in cerebral I/R injury remains unclear. Mice were subjected to 60 min of cerebral ischemia followed by different times of reperfusion to construct an I/R injury model in vivo. Human neuroblastoma SH-SY5Y cells were treated with oxygen-glucose deprivation (OGD) for 2 h followed by different times of re-oxygenation to establish I/R injury model in vitro. Neurological deficit was assessed by a five-point score. Infarct volume was detected using 2, 3, 5-triphenyltetrazolium chloride (TTC) staining. The expression of miR-143-3p was evaluated by qRT-PCR. The expression levels of FSTL1, Bcl-2, Bax and cleaved caspase-3 proteins were detected by western blot. The relationship between miR-143-3p and FSTL1 was explored by luciferase reporter assay. Cell viability was measured by CCK-8 assay. Cell apoptosis was evaluated by TUNEL staining and flow cytometry. MiR-143-3p was significantly upregulated during cerebral I/R injury both in vivo and in vitro. Inhibition of miR-143-3p effectively reduced I/R-induced neurological deficit score and infarct volume in vivo, and enhanced cell viability, while decreased cell apoptosis and LDH release of OGD/R-treated SH-SY5Y cells in vitro. Meanwhile, inhibition of miR-143-3p obviously decreased the expression levels of Bax and cleaved caspase-3, while increased the expression levels of Bcl-2. In addition, these changes induced by miR-143-3p inhibition in vitro was effectively reversed by silencing of FSTL1. Our results demonstrated that inhibition of miR-143-3p protected against cerebral I/R injury through targeting FSTL1.
Collapse
Affiliation(s)
- Shunda Wang
- Department of Rehabilitation Medicine, Shaanxi Provincial People's Hospital, Xi'an City, Shaanxi Province, 710068, PR China
| | - Zhenguo Liu
- Intensive Care Unit, Shaanxi Provincial People's Hospital, Xi'an City, Shaanxi Province, 710068, PR China.
| |
Collapse
|
29
|
Mehta P. MicroRNA research: The new dawn of Tuberculosis. Indian J Tuberc 2020; 68:321-329. [PMID: 34099196 DOI: 10.1016/j.ijtb.2020.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
Tuberculosis (TB) is global, one of the most fatal communicable diseases and leading cause of worldwide mortality. One-third of the global population is latently affected by Mtb (Mycobacterium tuberculosis) due to its ability to circumvent the host's immune response for its own survival. MicroRNAs (miRNAs) are small, non-coding RNAs which function at the post-transcriptional level and are critical in fine-tuning immune responses regulating the repertoire of genes expressed in immune cells. Recent studies have established their crucial role against TB. Furthermore, the differential expression pattern of miRNAs has revealed the potential role of miRNAs as biomarkers which could be utilized to differentiate between healthy controls and active TB patients or between active and latent TB. The recent advancements made in the field of miRNA regulation of the host responses against TB, as well as the potential of miRNAs as biomarkers for TB diagnosis are discussed here in this review.
Collapse
Affiliation(s)
- Priyanka Mehta
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
30
|
The role of non-coding RNA on macrophage modification in tuberculosis infection. Microb Pathog 2020; 149:104592. [PMID: 33098931 DOI: 10.1016/j.micpath.2020.104592] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB), a serious disease caused by Mycobacterium tuberculosis (Mtb), remains the world's top infectious killer. It is well-established that TB can circumvent the host's immune response for long-term survival. Macrophages serve as the major host cells for TB growth and persistence and their altered functions are critical for the response of the host defense against TB exposure (elimination, latency, reactivation, and bacillary dissemination). Noncoding RNAs are crucial posttranscriptional regulators of macrophage discrimination. Therefore, this review highlights the regulatory mechanism underlying the relationship between noncoding RNAs and macrophages in TB infection, which may facilitate the identification of potential therapeutic targets and effective diagnosis biomarkers for TB disease.
Collapse
|
31
|
Alipoor SD, Adcock IM, Tabarsi P, Folkerts G, Mortaz E. MiRNAs in tuberculosis: Their decisive role in the fate of TB. Eur J Pharmacol 2020; 886:173529. [PMID: 32919937 DOI: 10.1016/j.ejphar.2020.173529] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022]
Abstract
Tuberculosis (TB) is one of the most lethal global infectious diseases. Despite the availability of much higher levels of technology in health and medicine, tuberculosis still remains a serious global health problem. Mycobacterium tuberculosis has the capacity for prolonged survival inside macrophages by exploiting host metabolic and energy pathways and perturbing autophagy and apoptosis of infected cells. The mechanism(s) underlying this process are not completely understood but evidence suggests that mycobacteria subvert the host miRNA network to enable mycobacterial survival. We present here a comprehensive review on the role of miRNAs in TB immune escape mechanisms and the potential for miRNA-based TB therapeutics. Further validation studies are required to (i) elucidate the precise effect of TB on host miRNAs, (ii) determine the inhibition of mycobacterial burden using miRNA-based therapies and (iii) identify novel miRNA biomarkers that may prove useful in TB diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Shamila D Alipoor
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Lou P, Ding T, Zhan X. Long Noncoding RNA HNF1A-AS1 Regulates Osteosarcoma Advancement Through Modulating the miR-32-5p/HMGB1 Axis. Cancer Biother Radiopharm 2020; 36:371-381. [PMID: 32706998 DOI: 10.1089/cbr.2019.3486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background: Osteosarcoma (OS) is a primary malignant tumor in children and adolescents. Long noncoding RNA HNF1A antisense RNA 1 (HNF1A-AS1) is connected with OS development. However, there are few reports on the role and mechanism of HNF1A-AS1 in OS. Materials and Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to assess the expression of HNF1A-AS1, miR-32-5p, and high-mobility group protein B1 (HMGB1). Western blot analysis was performed to detect the protein level of HMGB1. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, transwell, or flow cytometer assays were applied to determine the proliferation, migration, invasion, and apoptosis of OS cells. The interaction between HNF1A-AS1 and miR-32-5p or HMGB1 was predicted by the starBase database and confirmed by dual-luciferase reporter assay. Enzyme-linked immunosorbent assay was employed to analyze levels of HMGB1 in the OS cell supernatant. Results: HNF1A-AS1 and HMGB1 were upregulated, while miR-32-5p was downregulated, in OS tissues and cells. Functionally, HNF1A-AS1 depletion induced apoptosis and impeded proliferation, migration, and invasion of OS cells. Interestingly, HNF1A-AS1 bound to miR-32-5p to regulate the expression of HMGB1. Furthermore, miR-32-5p knockdown overturned the effects of HNF1A-AS1 knockdown on apoptosis, proliferation, migration, and invasion of OS cells. In addition, the effects of HNF1A-AS1 silencing on the malignant behaviors of OS cells were reserved by HMGB1 overexpression. In addition, HNF1A-AS1 regulated the HMGB1 level in the OS cell supernatant through the miR-32-5p/HMGB1 axis. Conclusion: Downregulation of HNF1A-AS1 blocked OS progression through the miR-32-5p/HMGB1 axis, which provides a possible target and prognostic biomarker for treatment of OS.
Collapse
Affiliation(s)
- Pan Lou
- Department of Spinal Surgery, Jingmen No. 1 People's Hospital, Jingmen, China
| | - Tao Ding
- Department of Reproductive Medicine, Jingmen No. 2 People's Hospital, Jingmen, China
| | - Xu Zhan
- Department of Spinal Surgery, Jingmen No. 1 People's Hospital, Jingmen, China
| |
Collapse
|
33
|
Jin T, Zhang Y, Zhang T. MiR-524-5p Suppresses Migration, Invasion, and EMT Progression in Breast Cancer Cells Through Targeting FSTL1. Cancer Biother Radiopharm 2020; 35:789-801. [PMID: 32298609 DOI: 10.1089/cbr.2019.3046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: The effects of miR-524-5p on breast cancer (BC) have not been investigated, though studies show that miR-524-5p has an anticancer function. Thus, this study investigated the effects of miR-524-5p on BC cells and its potential molecular mechanism. Materials and Methods: The expression of miR-524-5p from the collected BC samples was determined. Cell counting kit-8 (CCK-8) assay was performed to examine the effect of miR-524-5p on BC cells viability. The target for miR-524-5p was predicted by bioinformatics and further verified by luciferase assay. Wound healing assay and transwell assay were performed to determine cell migration and invasion of BC cells. The expressions of Follistatin-like 1 (FSTL1) and related proteins in epithelial-mesenchymal transition (EMT) were detected by Western blotting and quantitative real-time polymerase chain reaction. Results: MiR-524-5p was low-expressed in BC samples, and upregulation of miR-524-5p suppressed BC cell viability, migration, and invasion. FSTL1 was predicted as a target for miR-524-5p. In addition, overexpressed FSTL1 effectively abolished the effect of miR-524-5p on inhibiting FSTL1 expression, and reversed the inhibitory effects of miR-524-5p on the migration, invasion of BC cells as well as the effect of miR-524-5p on regulating the expressions of matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), E-cadherin, and N-cadherin. Conclusions: Our findings suggest that miR-524-5p targeting FSTL1 adversely affects the progression of migration, invasion, and EMT of BC cells, thus, miR-524-5p is possibly a target for BC treatment.
Collapse
Affiliation(s)
- Taobo Jin
- Department of Thyroid and Breast Surgery, Zhuji People's Hospital, Zhuji City, China
| | - Yun Zhang
- Department of Thyroid and Breast Surgery, Zhuji People's Hospital, Zhuji City, China
| | - Tianya Zhang
- Department of Thyroid and Breast Surgery, Zhuji People's Hospital, Zhuji City, China
| |
Collapse
|
34
|
Leitão AL, Costa MC, Gabriel AF, Enguita FJ. Interspecies Communication in Holobionts by Non-Coding RNA Exchange. Int J Mol Sci 2020; 21:ijms21072333. [PMID: 32230931 PMCID: PMC7177868 DOI: 10.3390/ijms21072333] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Complex organisms are associations of different cells that coexist and collaborate creating a living consortium, the holobiont. The relationships between the holobiont members are essential for proper homeostasis of the organisms, and they are founded on the establishment of complex inter-connections between all the cells. Non-coding RNAs are regulatory molecules that can also act as communication signals between cells, being involved in either homeostasis or dysbiosis of the holobionts. Eukaryotic and prokaryotic cells can transmit signals via non-coding RNAs while using specific extracellular conveyors that travel to the target cell and can be translated into a regulatory response by dedicated molecular machinery. Within holobionts, non-coding RNA regulatory signaling is involved in symbiotic and pathogenic relationships among the cells. This review analyzes current knowledge regarding the role of non-coding RNAs in cell-to-cell communication, with a special focus on the signaling between cells in multi-organism consortia.
Collapse
Affiliation(s)
- Ana Lúcia Leitão
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal;
- MEtRICs, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Marina C. Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
| | - André F. Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
- Correspondence: ; Tel.: +351-217999480
| |
Collapse
|
35
|
Zhu Y, Xiao Y, Kong D, Liu H, Chen X, Chen Y, Zhu T, Peng Y, Zhai W, Hu C, Chen H, Suo Lang SZ, Guo A, Niu J. Down-Regulation of miR-378d Increased Rab10 Expression to Help Clearance of Mycobacterium tuberculosis in Macrophages. Front Cell Infect Microbiol 2020; 10:108. [PMID: 32257967 PMCID: PMC7094154 DOI: 10.3389/fcimb.2020.00108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/27/2020] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) can survive in the hostile microenvironment of cells by escaping host surveillance, but the molecular mechanisms are far from being fully understood. MicroRNAs might be involved in regulation of this intracellular process. By RNAseq of M. tb-infected PMA-differentiated THP-1 macrophages, we previously discovered down-regulation of miR-378d during M. tb infection. This study aimed to investigate the roles of miR-378d in M. tb infection of THP-1 cells by using a miR-378d mimic and inhibitor. First, M. tb infection was confirmed to decrease miR-378d expression in THP-1 and Raw 264.7 macrophages. Then, it was demonstrated that miR-378d mimic promoted, while its inhibitor decreased, M. tb survival in THP-1 cells. Further, the miR-378d mimic suppressed, while its inhibitor enhanced the protein production of IL-1β, TNF-α, IL-6, and Rab10 expression. By using siRNA of Rab10 (siRab10) to knock-down the Rab10 gene in THP-1 with or without miR-378d inhibitor transfection, Rab10 was determined to be a miR-378d target during M. tb infection. In addition, a dual luciferase reporter assay with the Rab10 wild-type sequence and mutant for miR-378d binding sites confirmed Rab10 as the target of miR-378d associated with M. tb infection. The involvement of four signal pathways NF-κB, P38, JNK, and ERK in miR-378d regulation was determined by detecting the effect of their respective inhibitors on miR-378d expression, and miR-378d inhibitor on activation of these four signal pathways. As a result, activation of the NF-κB signaling pathway was associated with the down-regulation of miR-378d. In conclusion, during M. tb infection of macrophages, miR-378d was down-regulated and functioned on decreasing M. tb intracellular survival by targeting Rab10 and the process was regulated by activation of the NF-κB and induction of pro-inflammatory cytokines IL-1β, TNF-α, IL-6. These findings shed light on further understanding the defense mechanisms in macrophages against M. tb infection.
Collapse
Affiliation(s)
- Yifan Zhu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yao Xiao
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Delai Kong
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Han Liu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongchong Peng
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenjun Zhai
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Si Zhu Suo Lang
- Department of Animal Sciences, Tibet Agricultural and Animal Husbandry College, Linzhi, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaqiang Niu
- Department of Animal Sciences, Tibet Agricultural and Animal Husbandry College, Linzhi, China
| |
Collapse
|
36
|
Dai Y, Yan T, Gao Y. Silence of miR-32-5p promotes endothelial cell viability by targeting KLF2 and serves as a diagnostic biomarker of acute myocardial infarction. Diagn Pathol 2020; 15:19. [PMID: 32127011 PMCID: PMC7053100 DOI: 10.1186/s13000-020-00942-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Background MicroRNAs (miRNAs) have been investigated in various cardiovascular diseases. As a fatal disease, acute myocardial infarction (AMI) is a serious global health burden. The purpose of this study was to investigate the role of miR-32-5p in AMI patients and human umbilical vein endothelial cells (HUVECs) to explore novel diagnostic and therapeutic approaches for AMI. Methods A target prediction tool miRanda and the luciferase activity assay were used to confirm the interaction of miR-32-5p with Kruppel-like factor 2 (KLF2). Effect of miR-32-5p on HUVECs viability was examined using CCK-8 assay. Serum miR-32-5p expression was measured using quantitative Real-Time PCR, and its correlation with myocardial damage and endothelial injury markers and pro-inflammatory cytokines was assessed. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic value of miR-32-5p in AMI patients. Results miR-32-5p, as a direct regulator of KLF2, could suppress the cell proliferation of HUVECs. Serum miR-32-5p expression was elevated in AMI patients and positively correlated with the biomarker levels of myocardial damage and endothelial injury and pro-inflammatory cytokines. The area under the ROC curve for miR-32-5p was 0.949, indicating the relatively high diagnostic accuracy of miR-32-5p in AMI patients. Conclusion The data of this study revealed that the increased serum miR-32-5p expression serves as a candidate diagnostic biomarker of AMI, and that miR-32-5p may be involved in the myocardial damage, endothelial injury and inflammatory responses of AMI by targeting KLF2, indicating the potential of miR-32-5p as a diagnostic biomarker and molecular target to improve the treatment of AMI.
Collapse
Affiliation(s)
- Yunxiang Dai
- Department of Emergency, Qingdao Jiaozhou Central Hospital, No. 29 Xuzhou Road, Qingdao, 266300, Shandong, China
| | - Tingguo Yan
- Department of cardiovascular medicine, Anqiu People's Hospital, Weifang, 262100, Shandong, China
| | - Yuming Gao
- Department of Emergency, Qingdao Jiaozhou Central Hospital, No. 29 Xuzhou Road, Qingdao, 266300, Shandong, China.
| |
Collapse
|
37
|
Feng J, Guo J, Wang JP, Chai BF. MiR-32-5p aggravates intestinal epithelial cell injury in pediatric enteritis induced by Helicobacter pylori. World J Gastroenterol 2019; 25:6222-6237. [PMID: 31749593 PMCID: PMC6848013 DOI: 10.3748/wjg.v25.i41.6222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pediatric enteritis is one of the infectious diseases in the digestive system that causes a variety of digestive problems, including diarrhea, vomiting, and bellyache in children. Clinically, Helicobacter pylori (H. pylori) infection is one of the common factors to cause pediatric enteritis. It has been demonstrated that aberrant expression of microRNAs (miRNAs) is found in gastrointestinal diseases caused by H. pylori, and we discovered a significant increase of miR-32-5p in H. pylori-related pediatric enteritis. However, the exact role of miR-32-5p in it is still unknown. AIM To investigate the role of aberrant miR-32-5p in pediatric enteritis induced by H. pylori. METHODS MiR-32-5p expression was detected by quantitative real time-polymerase chain reaction. The biological role of miR-32-5p in H. pylori-treated intestinal epithelial cells was evaluated by Cell Counting Kit-8 assay and flow cytometry. The potential target of miR-32-5p was predicted with TargetScanHuman and verified by luciferase assay. The downstream mechanism of miR-32-5p was explored by using molecular biology methods. RESULTS We found that miR-32-5p was overexpressed in serum of H. pylori-induced pediatric enteritis. Further investigation revealed that H. pylori infection promoted the death of intestinal epithelial cells, and increased miR-32-5p expression. Moreover, miR-32-5p mimic further facilitated apoptosis and inflammatory cytokine secretion of intestinal epithelial cells. Further exploration revealed that SMAD family member 6 (SMAD6) was the direct target of miR-32-5p, and SMAD6 overexpression partially rescued cell damage induced by H. pylori. The following experiments showed that miR-32-5p/SMAD6 participated in the apoptosis of intestinal epithelial cells induced by transforming growth factor-β-activated kinase 1 (TAK1)-p38 activation under H. pylori infection. CONCLUSION Our work uncovered the crucial role of aberrant expression of miR-32-5p in H. pylori-related pediatric enteritis, and suggested that the TAK1-p38 pathway is involved in it.
Collapse
Affiliation(s)
- Jing Feng
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, Shanxi Province, China
- Department of Gastroenterology, Shanxi Provincial People's Hospital, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Jian Guo
- Department of General Surgery, Shanxi Provincial People's Hospital, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Jun-Ping Wang
- Department of Gastroenterology, Shanxi Provincial People's Hospital, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Bao-Feng Chai
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, Shanxi Province, China
| |
Collapse
|
38
|
Cubillos-Angulo JM, Arriaga MB, Silva EC, Müller BLA, Ramalho DMP, Fukutani KF, Miranda PFC, Moreira ASR, Ruffino-Netto A, Lapa e Silva JR, Sterling TR, Kritski AL, Oliveira MM, Andrade BB. Polymorphisms in TLR4 and TNFA and Risk of Mycobacterium tuberculosis Infection and Development of Active Disease in Contacts of Tuberculosis Cases in Brazil: A Prospective Cohort Study. Clin Infect Dis 2019; 69:1027-1035. [PMID: 30481307 PMCID: PMC6735688 DOI: 10.1093/cid/ciy1001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/20/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The role of genetic polymorphisms in latent tuberculosis (TB) infection and progression to active TB is not fully understood. METHODS We tested the single-nucleotide polymorphisms (SNPs) rs5743708 (TLR2), rs4986791 (TLR4), rs361525 (TNFA), rs2430561 (IFNG) rs1143627 (IL1B) as risk factors for tuberculin skin test (TST) conversion or development of active TB in contacts of active TB cases. Contacts of microbiologically confirmed pulmonary TB cases were initially screened for longitudinal evaluation up to 24 months, with clinical examination and serial TST, between 1998 and 2004 at a referral center in Brazil. Data and biospecimens were collected from 526 individuals who were contacts of 177 active TB index cases. TST conversion was defined as induration ≥5 mm after a negative TST result (0 mm) at baseline or month 4 visit. Independent associations were tested using logistic regression models. RESULTS Among the 526 contacts, 60 had TST conversion and 44 developed active TB during follow-up. Multivariable regression analysis demonstrated that male sex (odds ratio [OR]: 2.3, 95% confidence interval [CI]: 1.1-4.6), as well as SNPs in TLR4 genes (OR: 62.8, 95% CI: 7.5-525.3) and TNFA (OR: 4.2, 95% CI: 1.9-9.5) were independently associated with TST conversion. Moreover, a positive TST at baseline (OR: 4.7, 95% CI: 2.3-9.7) and SNPs in TLR4 (OR: 6.5, 95% CI: 1.1-36.7) and TNFA (OR: 12.4, 95% CI:5.1-30.1) were independently associated with incident TB. CONCLUSIONS SNPs in TLR4 and TNFA predicted both TST conversion and active TB among contacts of TB cases in Brazil.
Collapse
Affiliation(s)
- Juan Manuel Cubillos-Angulo
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Bahia
| | - María B Arriaga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Bahia
| | - Elisângela C Silva
- Programa Acadêmico de Tuberculose, Faculdade de Medicina e Complexo Hospitalar HUCFF-IDT, Universidade Federal do Rio de Janeiro
- Recognize the Biology Laboratory, Center of Bioscience and Biotechnology, State University of North Fluminense Darcy Ribeiro
| | - Beatriz L A Müller
- Programa Acadêmico de Tuberculose, Faculdade de Medicina e Complexo Hospitalar HUCFF-IDT, Universidade Federal do Rio de Janeiro
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro
| | - Daniela M P Ramalho
- Programa Acadêmico de Tuberculose, Faculdade de Medicina e Complexo Hospitalar HUCFF-IDT, Universidade Federal do Rio de Janeiro
| | - Kiyoshi F Fukutani
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Bahia
| | - Pryscila F C Miranda
- Programa Acadêmico de Tuberculose, Faculdade de Medicina e Complexo Hospitalar HUCFF-IDT, Universidade Federal do Rio de Janeiro
| | - Adriana S R Moreira
- Programa Acadêmico de Tuberculose, Faculdade de Medicina e Complexo Hospitalar HUCFF-IDT, Universidade Federal do Rio de Janeiro
| | | | - Jose R Lapa e Silva
- Programa Acadêmico de Tuberculose, Faculdade de Medicina e Complexo Hospitalar HUCFF-IDT, Universidade Federal do Rio de Janeiro
| | - Timothy R Sterling
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Afrânio L Kritski
- Programa Acadêmico de Tuberculose, Faculdade de Medicina e Complexo Hospitalar HUCFF-IDT, Universidade Federal do Rio de Janeiro
| | - Martha M Oliveira
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Bruno B Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Bahia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Universidade Salvador (UNIFACS), Laureate University, Salvador, Bahia, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
| |
Collapse
|
39
|
Li X, Huang S, Yu T, Liang G, Liu H, Pu D, Peng N. MiR-140 modulates the inflammatory responses of Mycobacterium tuberculosis-infected macrophages by targeting TRAF6. J Cell Mol Med 2019; 23:5642-5653. [PMID: 31199066 PMCID: PMC6653720 DOI: 10.1111/jcmm.14472] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022] Open
Abstract
This study aimed to examine miR‐140 expression in clinical samples from tuberculosis (TB) patients and to explore the molecular mechanisms of miR‐140 in host‐bacterial interactions during Mycobacterium tuberculosis (M tb) infections. The miR‐140 expression and relevant mRNA expression were detected by quantitative real‐time PCR (qRT‐PCR); the protein expression levels were analysed by ELISA and western blot; M tb survival was measured by colony formation unit assay; potential interactions between miR‐140 and the 3′ untranslated region (UTR) of tumour necrosis factor receptor‐associated factor 6 (TRAF6) was confirmed by luciferase reporter assay. MiR‐140 was up‐regulated in the human peripheral blood mononuclear cells (PBMCs) from TB patients and in THP‐1 and U937 cells with M tb infection. Overexpression of miR‐140 promoted M tb survival; on the other hand, miR‐140 knockdown attenuated M tb survival. The pro‐inflammatory cytokines including interleukin 6, tumour necrosis‐α, interleukin‐1β and interferon‐γ were enhanced by M tb infection in THP‐1 and U937 cells. MiR‐140 overexpression reduced these pro‐inflammatory cytokines levels in THP‐1 and U937 cells with M tb infection; while knockdown of miR‐140 exerted the opposite actions. TRAF6 was identified to be a downstream target of miR‐140 and was negatively modulated by miR‐140. TRAF6 overexpression increased the pro‐inflammatory cytokines levels and partially restored the suppressive effects of miR‐140 overexpression on pro‐inflammatory cytokines levels in THP‐1 and U937 cells with M tb infection. In conclusion, our results implied that miR‐140 promoted M tb survival and reduced the pro‐inflammatory cytokines levels in macrophages with M tb infection partially via modulating TRAF6 expression.
Collapse
Affiliation(s)
- Xiaofei Li
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an City, China.,Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - Shan Huang
- Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - Tingting Yu
- Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - Guiliang Liang
- Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - Hongwei Liu
- Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - Dong Pu
- Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - Niancai Peng
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an City, China.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an City, China
| |
Collapse
|
40
|
Zhang Y, Zhang X, Zhao Z, Zheng Y, Xiao Z, Li F. Integrated bioinformatics analysis and validation revealed potential immune-regulatory miR-892b, miR-199b-5p and miR-582-5p as diagnostic biomarkers in active tuberculosis. Microb Pathog 2019; 134:103563. [PMID: 31175974 DOI: 10.1016/j.micpath.2019.103563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/21/2019] [Accepted: 05/31/2019] [Indexed: 01/16/2023]
Abstract
Tuberculosis (TB) is one of the most prevalent pulmonary diseases caused by Mycobacterium tuberculosis (Mtb). MiRNAs (miRNAs) participate in TB progression by modulating the host-pathogen interaction. Bioinformatics advancements provide basis for exploring novel immunoregulatory miRNAs and their performance as diagnostic biomarkers. Gene and miRNA expression datasets, GSE29190 and GSE54992, were downloaded from Gene Expression Omnibus (GEO) database. Based on fold changes and statistical significance, a total of 7463 differentially expressed mRNAs (DE-mRNAs) and 38 differentially expressed miRNAs (DE-miRNAs) were screened. Function annotation and protein-protein interaction (PPI) network were constructed to reveal underlying mechanisms of TB pathogenesis. Functional annotation identified the MAPK signalling pathway and leukocyte migration as the top enriched processes. The PPI and MGIP networks indicated that chemokine ligands like CXCL1/CXCL2 and receptors, like CCR7 were important down-regulated genes, implying that a protective mechanism against overdue inflammation induced cell death. MiRNA-gene-immune processes (MGIP) network enriched 7 deregulated miRNAs, and their expression was further examined with quantitative real-time PCR (qRT-PCR), in PBMC samples of 20 active TB patients and 20 healthy donors. The diagnostic performance was evaluated with ROC curves. MiR-892b; miR-199b-5p and miR-582-5p were significantly deregulated in TB patients, compared with healthy participants. The best overall performance was from miR-892b, with an area under curve (AUC) of 0.77, 55% sensitivity and 90% specificity. AUC of miR-199b-5p and miR-582-5p were 0.71 and 0.70, respectively. MiR-892b, miR-199b-5p and miR-582-5p could be considered promising novel diagnostic biomarkers for active tuberculosis.
Collapse
Affiliation(s)
- Yunbin Zhang
- Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaolin Zhang
- Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Zhangyan Zhao
- Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yuling Zheng
- Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Zhen Xiao
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Feng Li
- Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
41
|
Curtale G, Rubino M, Locati M. MicroRNAs as Molecular Switches in Macrophage Activation. Front Immunol 2019; 10:799. [PMID: 31057539 PMCID: PMC6478758 DOI: 10.3389/fimmu.2019.00799] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/26/2019] [Indexed: 12/25/2022] Open
Abstract
The efficacy of macrophage- mediated inflammatory response relies on the coordinated expression of key factors, which expression is finely regulated at both transcriptional and post-transcriptional level. Several studies have provided compelling evidence that microRNAs play pivotal roles in modulating macrophage activation, polarization, tissue infiltration, and resolution of inflammation. In this review, we highlight the essential molecular mechanisms underlying the different phases of inflammation that are targeted by microRNAs to inhibit or accelerate restoration to tissue integrity and homeostasis. We further review the impact of microRNA-dependent regulation of tumor-associated macrophages and the relative implication for tumor biology.
Collapse
Affiliation(s)
- Graziella Curtale
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Marcello Rubino
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| |
Collapse
|
42
|
Xiao Y, Zhang Y, Chen Y, Li J, Zhang Z, Sun Y, Shen H, Zhao Z, Huang Z, Zhang W, Chen W, Shen Z. Inhibition of MicroRNA-9-5p Protects Against Cardiac Remodeling Following Myocardial Infarction in Mice. Hum Gene Ther 2019; 30:286-301. [PMID: 30101604 DOI: 10.1089/hum.2018.059] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Follistatin-like 1 (Fstl1) protects cardiomyocytes from a broad spectrum of pathologic injuries including myocardial infarction (MI). It is worthy of note that although cardiac Fstl1 is elevated in post-MI microenvironment, its cardioprotective role is still restricted to a limited extent considering the frequency and severity of adverse cardiac remodeling following MI. We therefore propose that intrinsic Fstl1-suppressing microRNA (miRNA) may exist in the heart and its neutralization may further facilitate post-MI recovery. Here, miR-9-5p is predicted as one of the potential Fstl1-targeting miRNAs whose expression is decreased in ischemic myocardium and reversely correlated with Fstl1. Luciferase activity assay further validated Fstl1 as a direct target of miR-9-5p. In addition, forced expression of miR-9-5p in H9c2 cells is concurrent with diminished expression of Fstl1 and vice versa. Importantly, transfection of miR-9-5p mimics in hypoxic H9c2 cells exacerbates cardiac cell death, lactate dehydrogenase release, reactive oxygen species accumulation, and malonyldialdehyde concentration. More importantly, in vivo silencing of miR-9-5p by a specific antagomir in a murine acute MI model effectively preserves post-MI heart function with attenuated fibrosis and inflammatory response. Further studies demonstrated that antagomir treatment stabilizes Fstl1 expression as well as blocks cardiac cell death and reactive oxygen species generation in both ischemia-challenged hearts and hypoxia-treated cardiomyoblasts. Finally, cytoprotection against hypoxic challenge by miR-9-5p inhibitor is partially reversed by knockdown of Fstl1, indicating a novel role of miR-9-5p/Fstl1 axis in survival defense against hypoxic challenge. In summary, these findings identified miR-9-5p as a mediator of hypoxic injury in cardiomyoblasts and miR-9-5p suppression prevents cardiac remodeling after acute MI, providing a potential strategy for early treatment against MI.
Collapse
Affiliation(s)
- Yimin Xiao
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
- 2 Department of Cardiovascular Surgery, Shanghai Yoda Cardiothoracic Hospital, Shanghai, China
| | - Yanxia Zhang
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yueqiu Chen
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Jingjing Li
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zihan Zhang
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yimin Sun
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Han Shen
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zhenao Zhao
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zan Huang
- 3 Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Wencheng Zhang
- 4 The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Weiqian Chen
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zhenya Shen
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| |
Collapse
|
43
|
Yamada S, Itoh N, Nagai T, Nakai T, Ibi D, Nakajima A, Nabeshima T, Yamada K. Innate immune activation of astrocytes impairs neurodevelopment via upregulation of follistatin-like 1 and interferon-induced transmembrane protein 3. J Neuroinflammation 2018; 15:295. [PMID: 30348171 PMCID: PMC6198367 DOI: 10.1186/s12974-018-1332-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/12/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Polyriboinosinic-polyribocytidylic acid (polyI:C) triggers a strong innate immune response that mimics immune activation by viral infections. Induction of interferon-induced transmembrane protein 3 (Ifitm3) in astrocytes has a crucial role in polyI:C-induced neurodevelopmental abnormalities. Through a quantitative proteomic screen, we previously identified candidate astroglial factors, such as matrix metalloproteinase-3 (Mmp3) and follistatin-like 1 (Fstl1), in polyl:C-induced neurodevelopmental impairment. Here, we characterized the Ifitm3-dependent inflammatory processes focusing on astrocyte-derived Fstl1 following polyI:C treatment to assess the neuropathologic role of Fstl1. METHODS Astrocytes were treated with PBS (control) or polyI:C (10 μg/mL). The conditioned medium was collected 24 h after the polyI:C treatment and used as astrocyte condition medium (ACM). The expression of Fstl1 mRNA and extracellular Fstl1 protein levels were analyzed by quantitative PCR and western blotting, respectively. For functional studies, neurons were treated with ACM and the effects of ACM on dendritic elongation were assayed. To examine the role of Fstl1, recombinant Fstl1 protein and siRNA for Fstl1 were used. To investigate the expression of Fstl1 in vivo, neonatal mice were treated with vehicle or polyI:C on postnatal day 2 to 6. RESULTS ACM prepared with polyI:C (polyI:C ACM) contained significantly higher Fstl1 protein than control ACM, but no increase in Fstl1 was observed in polyI:C ACM derived from Ifitm3-deficient astrocytes. We found that the production of Fstl1 involves the inflammatory responsive molecule Ifitm3 in astrocytes and influences neuronal differentiation. In agreement, the levels of Fstl1 increased in the hippocampus of polyI:C-treated neonatal mice. COS7 cells co-transfected with both Fstl1 and Ifitm3 had higher extracellular levels of Fstl1 than the cells transfected with Fstl1 alone. Treatment of primary cultured hippocampal neurons with recombinant Fstl1 impaired dendritic elongation, and the deleterious effect of polyI:C ACM on dendritic elongation was attenuated by knockdown of Fstl1 in astrocytes. CONCLUSIONS The extracellular level of Fstl1 is regulated by Ifitm3 in astrocytes, which could be involved in polyI:C-induced neurodevelopmental impairment.
Collapse
Affiliation(s)
- Shinnosuke Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Norimichi Itoh
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Tsuyoshi Nakai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Daisuke Ibi
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Science, Meijo University, 150 Yagotoyama, Tenpaku-ku, Nagoya, Japan
| | - Akira Nakajima
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University, Graduate School of Health Science and Aino University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.
| |
Collapse
|
44
|
Niu W, Sun B, Li M, Cui J, Huang J, Zhang L. TLR-4/microRNA-125a/NF-κB signaling modulates the immune response to Mycobacterium tuberculosis infection. Cell Cycle 2018; 17:1931-1945. [PMID: 30153074 DOI: 10.1080/15384101.2018.1509636] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, could lead to kinds of clinical disorders and remains a leading global health problem, resulting in great morbidity and mortality worldwide. Previous studies have firmly demonstrated that M. tuberculosis (M.tb) has evolved to utilize different mechanisms to evade or attenuate the host immune response, such as regulation of immune-related genes by modulation of miRNAs of host or bacteria. However, the knowledge of functions of miRNAs during M.tb infection remains limited. Here, we reported that a host microRNA, miR-125a, was significantly up-regulated by M.tb infection in both RAW264.7 and THP-1cells, in a TLR4 signaling-dependent manner. Subsequently, our results demonstrated that miR-125a was a negative regulator of NF-kB pathway by directly targeting TRAF6, resulting in the suppression of cytokines, attenuation of immune response and promotion of M.tb survival. Taken together, our findings provide a novel detailed molecular mechanism in which miR-125a was enhanced to inhibit inflammatory cytokines secretion and attenuate the immune response during M.tb infection in RAW264.7 and THP-1 cells, and suggest an intrinsic a promising anti-M.tb therapeutic target.
Collapse
Affiliation(s)
- Wenyi Niu
- a Department of Tuberculosis , The First Affliated Hospital of Xinxiang Medical University , Weihui , China
| | - Bing Sun
- a Department of Tuberculosis , The First Affliated Hospital of Xinxiang Medical University , Weihui , China
| | - Mingying Li
- a Department of Tuberculosis , The First Affliated Hospital of Xinxiang Medical University , Weihui , China
| | - Junwei Cui
- a Department of Tuberculosis , The First Affliated Hospital of Xinxiang Medical University , Weihui , China
| | - Jian Huang
- a Department of Tuberculosis , The First Affliated Hospital of Xinxiang Medical University , Weihui , China
| | - Ligong Zhang
- a Department of Tuberculosis , The First Affliated Hospital of Xinxiang Medical University , Weihui , China
| |
Collapse
|
45
|
Mattiotti A, Prakash S, Barnett P, van den Hoff MJB. Follistatin-like 1 in development and human diseases. Cell Mol Life Sci 2018; 75:2339-2354. [PMID: 29594389 PMCID: PMC5986856 DOI: 10.1007/s00018-018-2805-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/27/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
Abstract
Follistatin-like 1 (FSTL1) is a secreted glycoprotein displaying expression changes during development and disease, among which cardiovascular disease, cancer, and arthritis. The cardioprotective role of FSTL1 has been intensively studied over the last years, though its mechanism of action remains elusive. FSTL1 is involved in multiple signaling pathways and biological processes, including vascularization and regulation of the immune response, a feature that complicates its study. Binding to the DIP2A, TLR4 and BMP receptors have been shown, but other molecular partners probably exist. During cancer progression and rheumatoid arthritis, controversial data have been reported with respect to the proliferative, apoptotic, migratory, and inflammatory effects of FSTL1. This controversy might reside in the extensive post-transcriptional regulation of FSTL1. The FSTL1 primary transcript also encodes for a microRNA (miR-198) in primates and multiple microRNA-binding sites are present in the 3'UTR. The switch between expression of the FSTL1 protein and miR-198 is an important regulator of tumour metastasis and wound healing. The glycosylation state of FSTL1 is a determinant of biological activity, in cardiomyocytes the glycosylated form promoting proliferation and the non-glycosylated working anti-apoptotic. Moreover, the glycosylation state shows differences between species and tissues which might underlie the differences observed in in vitro studies. Finally, regulation at the level of protein secretion has been described.
Collapse
Affiliation(s)
- Andrea Mattiotti
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Stuti Prakash
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Phil Barnett
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Maurice J B van den Hoff
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Yang T, Ge B. miRNAs in immune responses to Mycobacterium tuberculosis infection. Cancer Lett 2018; 431:22-30. [PMID: 29803788 DOI: 10.1016/j.canlet.2018.05.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) is one of the most fatal infectious diseases, affecting one third of the world's population. The causative agent, Mycobacterium tuberculosis (Mtb), has a well-established ability to circumvent the host's immune system for its long-term intracellular survival. MicroRNAs (miRNAs) are crucial post-transcriptional regulators of immune response. They act by negatively regulating the expression levels of important genes in both innate and adaptive immunity. It has been established in recent studies that the host immune response against Mtb is regulated by many miRNAs, most of which are induced by Mtb infection. Moreover, differential expression of miRNA in tuberculosis (TB) patients may help distinguish between TB patients and healthy individuals or latent TB. In this review, we present the recent advancements on the miRNA regulation of the host responses against Mtb infection, as well as the potential of miRNAs to as biomarkers for TB diagnosis.
Collapse
Affiliation(s)
- Tianshu Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China; Department of Microbiology and Immunology, Tongji University Medicine, Shanghai, China
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China; Department of Microbiology and Immunology, Tongji University Medicine, Shanghai, China.
| |
Collapse
|
47
|
miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduct Target Ther 2018; 3:14. [PMID: 29844933 PMCID: PMC5968033 DOI: 10.1038/s41392-018-0006-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/20/2017] [Accepted: 12/10/2017] [Indexed: 12/15/2022] Open
Abstract
Pathogenic bacteria cause various infections worldwide, especially in immunocompromised and other susceptible individuals, and are also associated with high infant mortality rates in developing countries. MicroRNAs (miRNAs), small non-coding RNAs with evolutionarily conserved sequences, are expressed in various tissues and cells that play key part in various physiological and pathologic processes. Increasing evidence implies roles for miRNAs in bacterial infectious diseases by modulating inflammatory responses, cell penetration, tissue remodeling, and innate and adaptive immunity. This review highlights some recent intriguing findings, ranging from the correlation between aberrant expression of miRNAs with bacterial infection progression to their profound impact on host immune responses. Harnessing of dysregulated miRNAs in bacterial infection may be an approach to improving the diagnosis, prevention and therapy of infectious diseases. Changes in production of tiny cellular RNAs in response to bacterial infection could guide the development of better diagnostics and therapies. MicroRNAs regulate other genes by binding to messenger RNA strands and controlling their translation into proteins. Xikun Zhou, Min Wu and colleagues of the University of North Dakota have now reviewed current knowledge about how microRNA levels shift during infection with various bacterial pathogens. These microRNAs can modulate the immune response as well as pathways that influence metabolic activity and cell survival. Increasing studies have indicated that shifts in microRNA levels in response to different infections could provide a potential bacterial ‘fingerprint’ for achieving accurate diagnosis. With deeper insight into how different microRNAs influence infection, it might one day day become possible to target these molecules with ‘antisense’ or ‘agonist’ drugs that modulate their activity.
Collapse
|
48
|
Shi G, Mao G, Xie K, Wu D, Wang W. MiR-1178 regulates mycobacterial survival and inflammatory responses in Mycobacterium tuberculosis-infected macrophages partly via TLR4. J Cell Biochem 2018; 119:7449-7457. [PMID: 29781535 DOI: 10.1002/jcb.27054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/23/2018] [Indexed: 12/27/2022]
Abstract
Tuberculosis is chronic respiratory infectious disease and is caused by the infection of Mycobacterium tuberculosis (M.tb). Macrophages play an important role in host immune response against M.tb infection, which is regulated by various factors, including microRNAs (miRNAs). The present study aimed to examine the in vitro functional role of miR-1178 in mycobacterial survival and inflammatory responses induced by M.tb infection in human macrophages. Our results showed that M.tb infection increased the expression of miR-1178 in human macrophages (HTP-1 and U937 cells) in a concentration- and time-dependent manner. Overexpression of miR-1178 enhanced the intracellular growth of mycobacteria during M.tb infection, while knockdown of miR-1178 suppressed the mycobacteria survival. Overexpression of miR-1178 also significantly attenuated the accumulation of proinflammatory cytokines including interferon-γ (IFN-γ), interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in the M.tb-infected macrophages, while knockdown of miR-1178 caused enhancement in these proinflammatory cytokines in the M.tb-infected macrophage. Bioinformatics analysis and luciferase reporter assay showed that toll-like receptor 4 (TLR4) was a direct target of miR-1178, and miR-1178 negatively regulated the expression of TLR4. In addition, enforced expression of TLR4 attenuated the effects of miR-1178 overexpression on promoting the production of proinflammatory cytokines including IFN-γ, IL-6, IL-1β, and TNF-α in the M.tb-infected macrophages. Collectively, our findings showed that overexpression of miR-1178 promoted mycobacteria survival and miR-1178 also modulated the immune response of M.tb-infected macrophages partly via targeting TLR4.
Collapse
Affiliation(s)
- Ge Shi
- Clinical Testing Center, the Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Guofeng Mao
- Clinical Testing Center, the Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Kejie Xie
- Clinical Testing Center, the Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Dongdong Wu
- Clinical Testing Center, the Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Wei Wang
- Department of Gastrointestinal Surgery (Quality Control), the Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| |
Collapse
|
49
|
Sabir N, Hussain T, Shah SZA, Peramo A, Zhao D, Zhou X. miRNAs in Tuberculosis: New Avenues for Diagnosis and Host-Directed Therapy. Front Microbiol 2018; 9:602. [PMID: 29651283 PMCID: PMC5885483 DOI: 10.3389/fmicb.2018.00602] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/15/2018] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB) is one of the most fatal infectious diseases and a leading cause of mortality, with 95% of these deaths occurring in developing countries. The causative agent, Mycobacterium tuberculosis (Mtb), has a well-established ability to circumvent the host's immune system for its intracellular survival. microRNAs (miRNAs) are small, non-coding RNAs having an important function at the post-transcriptional level and are involved in shaping immunity by regulating the repertoire of genes expressed in immune cells. It has been established in recent studies that the innate immune response against TB is significantly regulated by miRNAs. Moreover, differential expression of miRNA in Mtb infection can reflect the disease progression and may help distinguish between active and latent TB infection (LTBI). These findings encouraged the application of miRNAs as potential biomarkers. Similarly, active participation of miRNAs in modulation of autophagy and apoptosis responses against Mtb opens an exciting avenue for the exploitation of miRNAs as host directed therapy (HDT) against TB. Nanoparticles mediated delivery of miRNAs to treat various diseases has been reported and this technology has a great potential to be used in TB. In reality, this exploitation of miRNAs as biomarkers and in HDT is still in its infancy stage, and more studies using animal models mimicking human TB are advocated to assess the role of miRNAs as biomarkers and therapeutic targets. In this review, we attempt to summarize the recent advancements in the role of miRNAs in TB as immune modulator, miRNAs' capability to distinguish between active and latent TB and, finally, usage of miRNAs as therapeutic targets against TB.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
50
|
Wang X, Wu Y, Jiao J, Huang Q. Mycobacterium tuberculosis infection induces IL-10 gene expression by disturbing histone deacetylase 6 and histonedeacetylase 11 equilibrium in macrophages. Tuberculosis (Edinb) 2018. [DOI: 10.1016/j.tube.2017.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|