1
|
Chevalier C, Denis C, Nedjar SA, Ledoré Y, Silvestre F, Schaerlinger B, Milla S. Comparative study of the growth, stress status and reproductive capabilities of four wild-type zebrafish (Danio rerio) lines. Biol Res 2024; 57:67. [PMID: 39300594 PMCID: PMC11411999 DOI: 10.1186/s40659-024-00549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Zebrafish are widely used in various research fields and to fulfil the diverse research needs, numerous zebrafish lines are available, each with a unique domestication background, potentially resulting in intraspecies differences in specific biological functions. Few studies have compared multiple zebrafish lines under identical conditions to investigate both inter- and intra-line variability related to different functions. However, such variability could pose a challenge for the reproducibility of results in studies utilising zebrafish, particularly when the line used is not clearly specified. This study assessed growth, stress status (cortisol, serotonin) and reproductive capabilities (maturity, fecundity, fertilisation rate, sperm quality) of four commonly used wild-type zebrafish lines (AB, SJD, TU, WIK) using standardized protocols. RESULTS The stress markers levels were found to be similar across the lines, indicating that the endocrine stress status is robust to diverse domestication histories. Variations were observed in the growth and reproductive parameters. The lines exhibited differences in the timing of puberty (86 dpf for AB and SJD lines vs. 107 dpf for the WIK line) despite achieving similar sizes, suggesting that there are line-specific variations in the induction of maturation. Additionally, the AB line demonstrated higher sperm quality than did the other lines and higher fecundity and fertilization rates than did the SJD line. The AB line also exhibiting a smaller adult size but a heavier brain relative to its body weight. CONCLUSION These findings emphasize the importance of line selection for zebrafish research, indicating that researchers should consider line-specific traits to ensure the biological relevance and reproducibility of the results.
Collapse
Affiliation(s)
| | - Clémence Denis
- University of Lorraine, INRAE, L2A, 54 000, Nancy, France
| | | | - Yannick Ledoré
- University of Lorraine, INRAE, L2A, 54 000, Nancy, France
| | - Frédéric Silvestre
- Institute of Life, Earth and Environment (ILEE), University of Namur, URBE, 5000, Namur, Belgium
| | | | - Sylvain Milla
- University of Lorraine, INRAE, L2A, 54 000, Nancy, France.
| |
Collapse
|
2
|
Ghosh S, Biswas S, Mukherjee U, Karmakar S, Maitra S. Participation of follicular superoxides, inflammatory modulators, and endocrine factors in zebrafish (Danio rerio) ovulation: Cross-talk between PKA and MAPK signaling in Pgr regulation of ovulatory markers. Mol Cell Endocrinol 2024; 585:112180. [PMID: 38342135 DOI: 10.1016/j.mce.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
The ovulatory response involves diverse molecular determinants, the interplay between which remains less investigated in fish. This study explores the temporal changes in the follicular microenvironment, regulatory factors, and underlying signaling events during ovulation in female zebrafish subjected to 14L:10D at 28 ± 1 °C in vivo vis-à-vis in hCG-stimulated full-grown (FG) follicles in vitro. Congruent with reduced GSH levels, SOD, and GPx activity, a graded increase in follicular free radicals, Nox4, and p38 MAPK phosphorylation in the morning hour groups (05:00 and 06:30) correlates positively with the ovulatory surge in inflammatory mediators (Tnf-α, Il-1β, Il-6, Nos2, and Cox-2). Further, elevated Pgr expression and its nuclear translocation, congruent with follicular lhcgr, star, and hsd20b2 upregulation in vivo, corroborates well with the transcriptional activation of genes (pla2g4aa, ptgesl, ptger4b, mmp9, adamts9), triggering ovulation in this species. Mechanistically, an elevated ovulatory response in hCG-treated FG follicles in vitro involves the upregulation of inflammatory mediators, pgr and ovulation-associated genes in a manner sensitive to PKA- and MAPK3/1-mediated signaling.
Collapse
Affiliation(s)
- Soumyajyoti Ghosh
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Subhasri Biswas
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Urmi Mukherjee
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sampurna Karmakar
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
3
|
Yang W, Bu Q, Shi Q, Zhao R, Huang H, Yang L, Tang J, Ma Y. Emerging Contaminants in the Effluent of Wastewater Should Be Regulated: Which and to What Extent? TOXICS 2024; 12:309. [PMID: 38787088 PMCID: PMC11125804 DOI: 10.3390/toxics12050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Effluent discharged from urban wastewater treatment plants (WWTPs) is a major source of emerging contaminants (ECs) requiring effective regulation. To this end, we collected discharge datasets of pharmaceuticals (PHACs) and endocrine-disrupting chemicals (EDCs), representing two primary categories of ECs, from Chinese WWTP effluent from 2012 to 2022 to establish an exposure database. Moreover, high-risk ECs' long-term water quality criteria (LWQC) were derived using the species sensitivity distribution (SSD) method. A total of 140 ECs (124 PHACs and 16 EDCs) were identified, with concentrations ranging from N.D. (not detected) to 706 μg/L. Most data were concentrated in coastal regions and Gansu, with high ecological risk observed in Gansu, Hebei, Shandong, Guangdong, and Hong Kong. Using the assessment factor (AF) method, 18 high-risk ECs requiring regulation were identified. However, only three of them, namely carbamazepine, ibuprofen, and bisphenol-A, met the derivation requirements of the SSD method. The LWQC for these three ECs were determined as 96.4, 1010, and 288 ng/L, respectively. Exposure data for carbamazepine and bisphenol-A surpassed their derived LWQC, indicating a need for heightened attention to these contaminants. This study elucidates the occurrence and risks of ECs in Chinese WWTPs and provides theoretical and data foundations for EC management in urban sewage facilities.
Collapse
Affiliation(s)
- Weiwei Yang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Qianhui Shi
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Ruiqing Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Haitao Huang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuning Ma
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Madureira TV, Santos D, Simões T, Lemos MFL, Rocha E. Liver and Plasma Fatty Acid Characterization in Cultured Brown Trout at Distinct Reproductive Stages. BIOLOGY 2023; 12:1434. [PMID: 37998033 PMCID: PMC10669687 DOI: 10.3390/biology12111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Fatty acids are energy sources, and their profiles are used as biomarkers of metabolic status and physiological changes in fish. Within this context, the main aim of this study was to identify the fatty acids that best discriminate the reproductive status of male and female farmed brown trout. The fatty acid composition in liver and plasma samples from the adults of both sexes was monitored along four distinct reproductive stages, namely the spawning capable (December), regressing (March), regenerating (July), and developing (November) stages. Irrespective of the sex and stage, the most representative fatty acids were palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1 n-9), arachidonic acid (20:4 n-6), eicosapentaenoic acid (EPA, 20:5 n-3), and docosahexaenoic acid (DHA, 22:6 n-3). There were no significant sex differences in fatty acid classes in the liver and plasma. Despite this, there were several changes in individual fatty acid levels between the sexes. In the liver, both males and females showed high monounsaturated fatty acid and low polyunsaturated fatty acid (PUFA) levels during the regressing and regenerating stages. At spawning capable and developing stages, a reverse profile was noted. The plasma profiles were mainly influenced by changes in saturated fatty acids and PUFAs in males and by PUFA in females. Based on the most representative fatty acids, four patterns were established for female plasma samples, one for each reproductive stage. This scenario suggests that female plasma samples are promising for the discrimination of gonadal reproductive status, and this potential can be further explored in aquaculture and environmental monitoring studies.
Collapse
Affiliation(s)
- Tânia Vieira Madureira
- Team of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (D.S.); (E.R.)
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (U. Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Diana Santos
- Team of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (D.S.); (E.R.)
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (U. Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Tiago Simões
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal;
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal;
| | - Eduardo Rocha
- Team of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (D.S.); (E.R.)
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (U. Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Ramachandran D, Sharma K, Saxena V, Nipu N, Rajapaksha DC, Mennigen JA. Knock-out of vasotocin reduces reproductive success in female zebrafish, Danio rerio. Front Endocrinol (Lausanne) 2023; 14:1151299. [PMID: 37670879 PMCID: PMC10475537 DOI: 10.3389/fendo.2023.1151299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/13/2023] [Indexed: 09/07/2023] Open
Abstract
The vertebrate nonapeptide vasotocin/vasopressin is evolutionarily highly conserved and acts as neuromodulator and endocrine/paracrine signaling molecule. Circumstantial and mechanistic evidence from pharmacological manipulations of the vasotocin system in several teleost fishes suggest sex- and species-specific reproductive roles of vasotocin. While effects of vasotocin on teleost reproductive physiology involve both courtship behaviors and the regulation of the hypothalamic-pituitary-gonadal (HPG) axes, comprehensive studies investigating behavioral and physiological reproductive consequences of genetic ablation of vasotocin in a genetically tractable fish model, such as the zebrafish, are currently lacking. Here, we report the generation of homozygous CRISPR/Cas9-based vasotocin gene knock-out zebrafish. Breeding pairs of vasotocin knock-out fish produce significantly fewer fertilized eggs per clutch compared to wildtype fish, an effect coincident with reduced female quivering courtship behavior. Crossbreeding experiments reveal that this reproductive phenotype is entirely female-dependent, as vasotocin-deficient males reproduce normally when paired with female wild-type fish. Histological analyses of vasotocin knock-out ovaries revealed an overall reduction in oocytes and differential distribution of oocyte maturation stages, demonstrating that the reproductive phenotype is linked to oocyte maturation and release. Ovarian hormone quantification and gene expression analysis in mutant fish indicated reduced synthesis of Prostaglandin F2α, a hormone involved in ovarian maturation, egg release and regulation of female courtship behavior in some cyprinids. However, acute injection of vasotocin did not rescue the female mutant reproductive phenotype, suggesting a contribution of organizational effects of vasotocin. Together, this study provides further support for emerging roles of vasotocin in female teleost reproduction in an important teleost model species.
Collapse
Affiliation(s)
| | | | | | | | | | - Jan A. Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Ariki DGF, Roza de Abreu M, de Jesus Silva LM, Sato RT, Batlouni SR. Attempts for increasing Astyanax altiparanae spawning rates and percentage of responsive oocytes. Anim Reprod Sci 2023; 254:107262. [PMID: 37295049 DOI: 10.1016/j.anireprosci.2023.107262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
In this study, we aimed to propose changes in the protocol of cultured Astyanax altiparanae hypophysation to increase the maximum ovulation rate of 60% registered previously. To that two consecutive experiments were conducted. In the first experiment, three carp pituitary homogenate (CPH) doses (3, 6, and 9 mg/kg) were administered in a single injection, while in the second experiment, the 6 mg/kg CPH dose was tested either in single or double injections. In the first experiment, a single injection of 3 mg/kg CPH did not induce final oocyte maturation or spawning, while a dose of 6 mg/kg CPH resulted in an increase in the plasma level of prostaglandin (PGF2α) at ovulation. The single higher dose of 9 mg/kg CPH did not improve reproductive performance and even though anticipated the resumption of meiosis it was detrimental to the spawning rate. In the second experiment, the dose of 6 mg/kg CPH fractionated into two injections led to a higher spawning rate, spawning volume per female body mass, frequency of post-ovulatory complexes, and PGF2α concentration at ovulation compared to the single injection. The most effective treatment remained the 6 mg/kg of CPH fractionated into two injections, but still providing very low proportion of ovulated females (∼40 %). Overall, this study indicates that the spawning protocols for this species need to be improved to induce ovulation in a larger number of females and be more potent in those females that respond positively.
Collapse
Affiliation(s)
- Daniel Guimarães Figueiredo Ariki
- Centro de Aquicultura da UNESP - CAUNESP, Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castellane, S/N, 14884-900 Jaboticabal, SP, Brazil
| | - Mariana Roza de Abreu
- Centro de Aquicultura da UNESP - CAUNESP, Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castellane, S/N, 14884-900 Jaboticabal, SP, Brazil
| | - Laíza Maria de Jesus Silva
- Centro de Aquicultura da UNESP - CAUNESP, Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castellane, S/N, 14884-900 Jaboticabal, SP, Brazil
| | - Rafael Tomoda Sato
- Centro de Aquicultura da UNESP - CAUNESP, Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castellane, S/N, 14884-900 Jaboticabal, SP, Brazil
| | - Sergio Ricardo Batlouni
- Centro de Aquicultura da UNESP - CAUNESP, Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castellane, S/N, 14884-900 Jaboticabal, SP, Brazil.
| |
Collapse
|
7
|
Ogiwara K, Fujimori C, Takahashi T. The PGE 2/Ptger4b pathway regulates ovulation by inducing intracellular actin cytoskeleton rearrangement via the Rho/Rock pathway in the granulosa cells of periovulatory follicles in the teleost medaka. Mol Cell Endocrinol 2023; 560:111816. [PMID: 36410550 DOI: 10.1016/j.mce.2022.111816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
We have previously shown that the prostaglandin E2/Ptger4b receptor system is involved in ovulation in teleost medaka and induces intracellular actin cytoskeleton rearrangement in the granulosa cells of preovulatory follicles. In this study, we investigated the signaling pathways through which prostaglandin E2 induces a change in the actin cytoskeleton. Treating preovulatory follicles with GW627368X (Ptger4b antagonist), a Rho inhibitor, or Y-27632 [Rho-associated protein kinase (Rock) inhibitor] inhibited not only in vitro follicle ovulation but also intracellular actin cytoskeleton rearrangement. Active Rhoa-c and Rock1 were detected in follicles immediately before ovulation. GW627368X also inhibited Rhoa-c activation and cytoskeleton rearrangement. PGE2-induced actin cytoskeleton rearrangement was not observed in the Ptger4b-, Rhoa-c-, or Rock1-deficient OLHNI-2 cells. These results indicate that the PGE2/Ptger4b pathway regulates intracellular actin cytoskeleton rearrangement via the Rho/Rock pathway in the granulosa cells of preovulatory follicles during medaka ovulation.
Collapse
Affiliation(s)
- Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Chika Fujimori
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
8
|
Shen Y, Li L, Luo X, Huang M, Ke C, You W, Li W. Prostaglandin E2 involvement in the reproduction of small abalone, Haliotis diversicolor. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Exposure to acetaminophen impairs gametogenesis and fertility in zebrafish (Danio rerio). Arch Toxicol 2023; 97:263-278. [PMID: 36167911 DOI: 10.1007/s00204-022-03390-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/21/2022] [Indexed: 01/19/2023]
Abstract
Acetaminophen (ACE; paracetamol) is one of the most widely used nonsteroidal anti-inflammatory drugs worldwide and is often found in aquatic systems, where it can act on nontarget species and impair fish reproduction. This study aimed to investigate the effects of chronic exposure to environmentally relevant ACE concentrations (0.5, 5 and 50 µg/L) on multiple reproductive parameters in zebrafish (Danio rerio). Gametogenesis was analyzed using histology, morphometry, cell proliferation, and apoptosis. This study also evaluated sex steroids, and prostaglandin E2 (PGE2) levels, gene expression for sex steroids and PGE2 receptors, fertilization rate, and semen quality. In females, exposure to 5 and 50 µg/L ACE induced larger and more abundant vitellogenic follicles and increased follicular atresia. In these treatments, males showed a lower proportion and proliferation of undifferentiated spermatogonia and a higher proportion of TUNEL-positive differentiated spermatogonia, spermatids, and spermatozoa, resulting in lower sperm production. ACE increased 17β-estradiol (E2) and reduced 11-ketotestosterone levels in the testis, whereas only E2 increased in the ovaries. In both sexes, gonadal PGE2 levels were reduced. ACE at 50 µg/L induced an increase in the gene expression of androgen, estrogen, and PGE2 receptors in the ovaries, and reduced expression in the testes. Results also showed lower egg production and fertilization rate from 28 days of exposure with reduced sperm quality. These results demonstrated that ACE impairs the reproductive performance of zebrafish, affecting multiple reproductive parameters, which may be caused by the synergistic action of the imbalance of sex steroids, with a reduction of PGE2 and its receptors.
Collapse
|
10
|
Fang N, Zhang C, Hu H, Li Y, Wang X, Zhao X, Jiang J. Histology and metabonomics reveal the toxic effects of kresoxim-methyl on adult zebrafish. CHEMOSPHERE 2022; 309:136739. [PMID: 36223820 DOI: 10.1016/j.chemosphere.2022.136739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Studies have shown that kresoxim-methyl (KM) and other strobilurin fungicides have toxic effects on aquatic organisms. However, the potential deleterious effects of kresoxim-methyl (KM) on adult zebrafish regarding the ecological risk of environmental concentration remain unclear. Here, the histology and untargeted metabonomics was used to investigate the adverse effect on female zebrafish after exposure to KM at environmental concentration, aquatic life benchmark and one-half LC50 of adult zebrafish. Results demonstrated KM affected zebrafish liver, ovary and intestine development, blurred the boundary between hepatocytes or caused hepatic vacuoles, increased the percentage of perinucleolar oocyte and cortical alveolus oocyte, decreased intestinal goblet cells and disturbed villus and wall integrity after 21 d exposure. Metabonomics showed different concentrations of KM simultaneously influenced the metabolites annotated to vitamin digestion and absorption, serotonergic synapse, retinol metabolism, ovarian steroidogenesis and arachidonic acid (AA) metabolism in zebrafish liver. Results showed the decreased triglyceride and cholesterol levels, as well as the metabolic alterations in amino acid, lipid, vitamin and retinol metabolism caused by KM, might disturb the energy supply for normal liver development and oocyte maturation. In addition, KM altered the transcription of Tdo2a, Tdo2b, Ido1, Cxcl8b, Cyp7a, Cyp11a, Cyp11b, Cyp17a, Cyp19a, Hsd3β, Hsd17β, Pla2, Ptgs2a and Ptgs2b, the level of TG, TC, MDA, IFN, IL6 and Ca2+, and the activity of CAT, SOD Ca2+-ATPase in zebrafish liver. Moreover, cytoscape analysis suggested the disturbed AA metabolism caused by KM, might interconnect multiple metabolic pathways to share implicated function in the regulation of oocyte maturation and immune response. Current study brought us closer to an incremental understanding of the toxic mechanism of KM on adult zebrafish, indicated there was crosstalk among different regulatory pathways to regulate the metabolic disorders and biologically hazardous effects induced by KM.
Collapse
Affiliation(s)
- Nan Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Haoze Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
| | - Yanjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
11
|
Silori R, Shrivastava V, Singh A, Sharma P, Aouad M, Mahlknecht J, Kumar M. Global groundwater vulnerability for Pharmaceutical and Personal care products (PPCPs): The scenario of second decade of 21st century. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115703. [PMID: 35932733 DOI: 10.1016/j.jenvman.2022.115703] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The global production of PPCPs have increased by multiple folds promoting excessive exposure of its metabolites to humans via different aquatic systems. The higher residence time of toxic precursors of these metabolites pose direct human health risk. Among the different aquatic systems, the contamination of groundwater by PPCPs is the most concerning threat. This threat is especially critical considering the lesser oxidizing potential of the groundwater as compared to freshwater/river water. A major challenge also arises due to excessive dependency of the world's population on groundwater, which is exponentially increasing with time. This makes the identification and characterization of spatial contamination hotspots highly probabilistic as compared to other freshwater systems. The situation is more vulnerable in developing countries where there is a reported inadequacy of wastewater treatment facilities, thereby forcing the groundwater to behave as the only available sequestrating sink for all these contaminants. With increased consumption of antibiotics and other pharmaceuticals compounds, these wastes have proven capability in terms of enhancing the resistance among the biotic community of the soil systems, which ultimately can become catastrophic and carcinogenic in near future. Recent studies are supporting the aforementioned concern where compounds like diclofenac (analgesic) have attained a concentration of 1.3 mgL-1 in the aquifer systems of Delhi, India. The situation is far worse for developed nations where prolonged and indiscriminate usage of antidepressants and antibiotics have life threating consequences. It has been confirmed that certain compounds like ofloxacin (antibiotics) and bis-(2-ethylhexyl)phthalate are present in some of the most sensitive wells/springs of the United States and Mexico. The current trend of the situation has been demonstrated by integrating a comparative approach of the published literatures in last three years. This review provides first-hand information report for formulating a directive policy framework for tackling PPCPs issues in the groundwater system.
Collapse
Affiliation(s)
- Rahul Silori
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Vikalp Shrivastava
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Ashwin Singh
- Discipline of Civil Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, Gujarat, India
| | - Pradeep Sharma
- Department of Environmental Science, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India
| | - Marwan Aouad
- College of Engineering, Applied Science University (ASU), Kingdom of Bahrain
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Manish Kumar
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
12
|
Mennigen JA, Ramachandran D, Shaw K, Chaube R, Joy KP, Trudeau VL. Reproductive roles of the vasopressin/oxytocin neuropeptide family in teleost fishes. Front Endocrinol (Lausanne) 2022; 13:1005863. [PMID: 36313759 PMCID: PMC9606234 DOI: 10.3389/fendo.2022.1005863] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
The vertebrate nonapeptide families arginine vasopressin (AVP) and oxytocin (OXT) are considered to have evolved from a single vasopressin-like peptide present in invertebrates and termed arginine vasotocin in early vertebrate evolution. Unprecedented genome sequence availability has more recently allowed new insight into the evolution of nonapeptides and especially their receptor families in the context of whole genome duplications. In bony fish, nonapeptide homologues of AVP termed arginine vasotocin (Avp) and an OXT family peptide (Oxt) originally termed isotocin have been characterized. While reproductive roles of both nonapeptide families have historically been studied in several vertebrates, their roles in teleost reproduction remain much less understood. Taking advantage of novel genome resources and associated technological advances such as genetic modifications in fish models, we here critically review the current state of knowledge regarding the roles of nonapeptide systems in teleost reproduction. We further discuss sources of plasticity of the conserved nonapeptide systems in the context of diverse reproductive phenotypes observed in teleost fishes. Given the dual roles of preoptic area (POA) synthesized Avp and Oxt as neuromodulators and endocrine/paracrine factors, we focus on known roles of both peptides on reproductive behaviour and the regulation of the hypothalamic-pituitary-gonadal axis. Emphasis is placed on the identification of a gonadal nonapeptide system that plays critical roles in both steroidogenesis and gamete maturation. We conclude by highlighting key research gaps including a call for translational studies linking new mechanistic understanding of nonapeptide regulated physiology in the context of aquaculture, conservation biology and ecotoxicology.
Collapse
Affiliation(s)
- Jan A. Mennigen
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| | - Divya Ramachandran
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| | - Katherine Shaw
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| | - Radha Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Keerikkattil P. Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, India
| | - Vance L. Trudeau
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| |
Collapse
|
13
|
Jiang J, Zhang C, Wang L, Wang X, He H, Wu S, Zhao X. Insights into the combined effects of environmental concentration of difenoconazole and tebuconazole on zebrafish early life stage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154687. [PMID: 35314214 DOI: 10.1016/j.scitotenv.2022.154687] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Limited literature had focused on the combined effect of triazole fungicides on aquatic organisms at environmental concentrations. In this research, difenoconazole (DIF) and tebuconazole (TEB) mixture exhibited additive effect on the acute toxicity to zebrafish embryos. The transcriptomics and metabolomics demonstrated DIF and TEB mixtures at aquatic life benchmark and environmental concentration simultaneously influenced the lipid metabolism, arachidonic acid metabolism, steroid hormone biosynthesis and tryptophan metabolism, but showed diverse response patterns mediating the combined effects on zebrafish embryos after 120 h exposure. The DIF and TEB mixture at aquatic life benchmark caused combined effect on yolk sac resorption and metabolites, was less than the additive effect of individual DIF and TEB. It was found environmental concentration of DIF and TEB caused much lower levels of IFN and IL6, induced higher levels of PGE2, l-kynurenine and formylanthranilate in zebrafish larvae, and their binary mixture caused synergistic effect on the accumulation of metabolites in metabolic pathways, which might cause more negative effect and risk on growth in zebrafish later life stages. Results further demonstrated that adding arachidonic acid (AA) increased the transcripts of Pla2, Ptgs1, Cyp19a and Cxcl8b, allayed the accumulation of PLA2 and 17β-E2, and induced more PGF2α, IFN and IL6 levels in zebrafish larvae, indicated AA metabolism might play important regulatory roles on hormone synthesis and immune response caused by DIF and TEB mixtures. Current results indicated the risk assessment of mixtures based on single concentration may not precisely estimate the environmental risk and health effect, it is crucially important to consider the multi-concentration combinations, and more attention should be paid to the environmental concentration.
Collapse
Affiliation(s)
- Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Luyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Hongmei He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
14
|
Molecular determinants regulating the release of the egg during ovulation: Perspectives in piscine models. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Yang H, Chen X, Li Z, Wu X, Zhou M, Zhang X, Liu Y, Sun Y, Zhu C, Guo Q, Chen T, Zhang J. Genome-Wide Analysis Indicates a Complete Prostaglandin Pathway from Synthesis to Inactivation in Pacific White Shrimp, Litopenaeus vannamei. Int J Mol Sci 2022; 23:ijms23031654. [PMID: 35163575 PMCID: PMC8835781 DOI: 10.3390/ijms23031654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins (PGs) play many essential roles in the development, immunity, metabolism, and reproduction of animals. In vertebrates, arachidonic acid (ARA) is generally converted to prostaglandin G2 (PGG2) and H2 (PGH2) by cyclooxygenase (COX); then, various biologically active PGs are produced through different downstream prostaglandin synthases (PGSs), while PGs are inactivated by 15-hydroxyprostaglandin dehydrogenase (PGDH). However, there is very limited knowledge of the PG biochemical pathways in invertebrates, particularly for crustaceans. In this study, nine genes involved in the prostaglandin pathway, including a COX, seven PGSs (PGES, PGES2, PGDS1/2, PGFS, AKR1C3, and TXA2S), and a PGDH were identified based on the Pacific white shrimp (Litopenaeus vannamei) genome, indicating a more complete PG pathway from synthesis to inactivation in crustaceans than in insects and mollusks. The homologous genes are conserved in amino acid sequences and structural domains, similar to those of related species. The expression patterns of these genes were further analyzed in a variety of tissues and developmental processes by RNA sequencing and quantitative real-time PCR. The mRNA expression of PGES was relatively stable in various tissues, while other genes were specifically expressed in distant tissues. During embryo development to post-larvae, COX, PGDS1, GDS2, and AKR1C3 expressions increased significantly, and increasing trends were also observed on PGES, PGDS2, and AKR1C3 at the post-molting stage. During the ovarian maturation, decreasing trends were found on PGES1, PGDS2, and PGDH in the hepatopancreas, but all gene expressions remained relatively stable in ovaries. In conclusion, this study provides basic knowledge for the synthesis and inactivation pathway of PG in crustaceans, which may contribute to the understanding of their regulatory mechanism in ontogenetic development and reproduction.
Collapse
Affiliation(s)
- Hao Yang
- Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.Y.); (Y.L.); (Y.S.)
| | - Xiaoli Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.C.); (C.Z.)
| | - Zhi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (Z.L.); (X.W.); (M.Z.)
| | - Xugan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (Z.L.); (X.W.); (M.Z.)
| | - Mingyu Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (Z.L.); (X.W.); (M.Z.)
| | - Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
| | - Yujie Liu
- Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.Y.); (Y.L.); (Y.S.)
| | - Yuying Sun
- Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.Y.); (Y.L.); (Y.S.)
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.C.); (C.Z.)
| | - Qiuhui Guo
- EasyATGC Limited Liability Company, Shenzhen 518081, China;
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
- Correspondence: (T.C.); (J.Z.)
| | - Jiquan Zhang
- Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.Y.); (Y.L.); (Y.S.)
- Correspondence: (T.C.); (J.Z.)
| |
Collapse
|
16
|
Evidence-based hormonal, mutational, and endocrine-disrupting chemical-induced zebrafish as an alternative model to study PCOS condition similar to mammalian PCOS model. Life Sci 2022; 291:120276. [PMID: 34990650 DOI: 10.1016/j.lfs.2021.120276] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022]
Abstract
Polycystic ovarian syndrome (PCOS) causes swollen ovaries in women at reproductive age due to hormonal disorder with small cysts on the outer edges. The cause of the disorder is still yet to be found. Multiple factors have increased PCOS prevalence, hyperandrogenism, oxidative stress, inflammation, and insulin resistance. Various animal PCOS models have been developed to imitate the pathophysiology of PCOS in humans. Zebrafish is one of the most versatile animal experimental models because of the transparency of the embryos, small size, and rapid growth. The zebrafish similarity to higher vertebrates made it a useful non-mammalian model for PCOS drug testing and screening. This review provides an insight into the usage of zebrafish, a non-mammalian model for PCOS, as an opportunity for evaluating future initiatives in such a research domain.
Collapse
|
17
|
Lyu L, Wang R, Wen H, Li Y, Li J, Wang X, Yao Y, Li J, Qi X. Cyclooxygenases of ovoviviparous black rockfish (Sebastes schlegelii): Cloning, tissue distribution and potential role in mating and parturition. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110677. [PMID: 34653596 DOI: 10.1016/j.cbpb.2021.110677] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023]
Abstract
Prostaglandins are a series of unsaturated fatty acids that play critical roles in regulating reproductive events. The prostaglandins endoperoxide H synthases-1/2 (PGHS-1/2; also named cyclooxygenases-1/2, COX-1/2) catalyse the commitment step in prostaglandin synthesis. However, the of the cox genes in teleosts, especially ovoviviparous teleosts, is still unclear. The aim of the present study was to determine the potential role of cox genes in mating and parturition behaviour using black rockfish (Sebastes schlegelii) as a model species. Two transcripts, cox1 and cox2, were cloned. The phylogenetic analysis results revealed that both cox genes were closely related to mammalian coxs. qPCR analyses of their tissue distribution showed that cox1 was mainly expressed in the heart in both sexes, while cox2 was mainly expressed in the testis and ovary. Detection of cox expression in samples from reproductive-related stages further showed that both cox genes may play important roles in mating and parturition processes. In situ hybridization further detected positive cox mRNA signals in the testis and ovary, where they are known to be involved in mating and parturition behaviour. These data suggest that cox1 and cox2 are crucial in inducing mating, gonad regeneration and parturition behaviour.
Collapse
Affiliation(s)
- Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Ru Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianshuang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yijia Yao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jifang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
18
|
Baker SJC, Van Der Kraak G. ADAMTS1 is regulated by the EP4 receptor in the zebrafish ovary. Gen Comp Endocrinol 2021; 311:113835. [PMID: 34181931 DOI: 10.1016/j.ygcen.2021.113835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/29/2022]
Abstract
Prostaglandins (PGs) are a class of fatty-acid derived hormones that are essential in ovulation of teleosts, but their exact role remains unknown. One putative target of PGs in ovulation is regulation of the expression of members of the A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) family, which are implicated in follicular rupture. This study investigated the regulation of ADAMTS, other proteases, and their inhibitors in response to treatment with PGE2 or PGF2α. Four members of the ADAMTS family, ADAMTS1, ADAMTS5, ADAMTS9, and ADAMTS16 were shown to be expressed in the ovary of zebrafish, but only adamts1 was upregulated in full-grown follicles following treatment with PGE2. Inhibitors of the PG receptors EP1 and EP2 had no effect on PGE2-stimulated adamts1 expression, while treatment of full-grown follicles with both PGE2 and GW627368x, an inhibitor of EP4 function, prevented the PGE2-induced increase in adamts1 expression. Treatment of full-grown follicles with the maturation-inducing hormone 17α,20β-dihydroxy-4-pregnen-3-one (17,20β-P) in vitro had no effect on the expression of adamts1 mRNA. These findings suggest that expression of ADAMTS1 in zebrafish ovarian follicles is regulated by the prostaglandin PGE2 via the EP4 series prostaglandin receptor.
Collapse
Affiliation(s)
- Sheridan J C Baker
- Department of Integrative Biology, University of Guelph, Ontario N1G 2W1, Canada
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
19
|
Baker SJC, Corrigan E, Melnyk N, Hilker R, Van Der Kraak G. Nuclear progesterone receptor regulates ptger4b and PLA2G4A expression in zebrafish (Danio rerio) ovulation. Gen Comp Endocrinol 2021; 311:113842. [PMID: 34252451 DOI: 10.1016/j.ygcen.2021.113842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023]
Abstract
Previous studies have implicated the nuclear progesterone receptor (Pgr or nPR) as being critical to ovulation in fishes. This study investigated the expression of Pgr in zebrafish ovarian follicles throughout development as well as putative downstream targets of Pgr by searching the promoter regions of selected genes for specific DNA sequences to which Pgr binds and acts as a transcription factor. Expression of Pgr mRNA increases dramatically as follicles grow and mature. In silico analysis of selected genes linked to ovulation showed that the prostaglandin receptors ptger4a and ptger4b contained the progesterone responsive element (PRE) GRCCGGA in their promoter regions. Studies using full-grown follicles incubated in vitro revealed that ptger4b was upregulated in response to 17,20β-P. Our studies also showed that the expression of phospholipase A2 (PLA2G4A) mRNA and protein, a key enzyme in prostaglandin synthesis, was upregulated in response to 17,20β-P treatment. pla2g4a was not found to contain a PRE, indicating that it is regulated indirectly by 17,20β-P or that it may contain an as-of-yet unidentified PRE in its promoter region. Collectively, these studies provide further evidence of the importance of Pgr during the periovulatory periods through its involvement in prostaglandin production and function by controlling expression of PLA2G4A and the receptor EP4b and that these genes appear to be regulated through the actions of 17,20β-P.
Collapse
Affiliation(s)
- Sheridan J C Baker
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Emily Corrigan
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Nicholas Melnyk
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Renee Hilker
- Department of Animal Biosciences, University of Guelph, Ont. N1G 2W1, Canada
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada.
| |
Collapse
|
20
|
Bhuiyan MNH, Kang H, Choi J, Lim S, Kho Y, Choi K. Effects of 3,4-dichloroaniline (3,4-DCA) and 4,4'-methylenedianiline (4,4'-MDA) on sex hormone regulation and reproduction of adult zebrafish (Danio rerio). CHEMOSPHERE 2021; 269:128768. [PMID: 33153842 DOI: 10.1016/j.chemosphere.2020.128768] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
3,4-dichloroaniline (3,4-DCA) and 4,4'-methylenedianiline (4,4'-MDA) have been widely used in manufacture of many industrial and consumer products, and hence often detected in aquatic environment. Reproductive toxicity of aniline and its derivatives in aquatic organisms has been suggested, however, knowledge on the endocrine disruption potentials and toxicological consequences of both anilines are not well understood, especially in fish. In this study, we aimed to understand the effects of 3,4-DCA and 4,4'-MDA on sex hormone regulation and reproduction of adult zebrafish (Danio rerio). Following 21 d exposure, significant decreases of the reproduction were observed at 0.38 mg/L 3,4-DCA, and 4.6 mg/L 4,4'-MDA. Moreover, plasma concentrations of testosterone (T) and 17β-estradiol (E2) level were significantly decreased in both male and female fish following the exposure. The sex hormone changes could be explained by the regulatory changes of the genes along the hypothalamic-pituitary-gonadal (HPG) axis, including significant down-regulation of steroidogenic acute regulatory protein (star) and cytochrome P450 family 19 subfamily A (cyp19a) genes in the gonad. Moreover, inhibition of gonadotropin hormone signaling and prostaglandin-endoperoxide synthase 2 (ptgs2) gene expression were observed, suggesting potential disruption of oocyte maturation and ovulation by the exposure. Our observations indicate that 3,4-DCA and 4,4'-MDA can impair reproduction of zebrafish potentially through disruption of steroid hormone synthesis and ovulation.
Collapse
Affiliation(s)
- Md Nurul Huda Bhuiyan
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea; Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Habyeong Kang
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jiwon Choi
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soyoung Lim
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam, 34824, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
21
|
Characterization of prostanoid pathway and the control of its activity by the eyestalk optic ganglion in the female giant freshwater prawn, Macrobrachium rosenbergii. Heliyon 2021; 7:e05898. [PMID: 33553720 PMCID: PMC7851786 DOI: 10.1016/j.heliyon.2021.e05898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/24/2020] [Accepted: 12/31/2020] [Indexed: 12/28/2022] Open
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is an economically valuable species that are distributed throughout the Asia-Pacific region. With the natural population declining due to overfishing, aquaculture of this species is deemed necessary. Hence, it is essential to understand the mechanisms regulating reproduction in order to increase their production. Prostaglandins (PGs) play an important role in reproduction in most vertebrates and several invertebrates. It has been proposed that crustaceans have PGs but the prostanoids pathway in the giant freshwater prawn is still unclear. In this study, we identified 25 prostanoid-related genes involved in the biosynthesis of active prostanoids in M. rosenbergii using in silico searches of transcriptome data. Comparative analysis of encoded proteins for the MroPGES2 gene with other species was performed to confirm their evolutionary conservation. Gene expression analysis revealed the correlation of MroPGES2 gene expression level with the progress of ovarian development. Eyestalk ablation increased the expression level of MroPGES2 gene compared to intact groups during the ovary maturation stages. Collectively, this study confirmed the existence of prostanoids in the giant freshwater prawn, as well as characterizing key gene MroPGES2 associated with the prostanoid pathway. We propose that MroPGES2 may play an important role in M. rosenbergii ovarian maturation and its expression is under the inhibitory control from the eyestalk optic ganglion hormones. Identification of genes in prostanoid pathway and their expressions enables future functional studies to be performed, which may lead to applications in the aquaculture of this species.
Collapse
|
22
|
Marmon P, Owen SF, Margiotta-Casaluci L. Pharmacology-informed prediction of the risk posed to fish by mixtures of non-steroidal anti-inflammatory drugs (NSAIDs) in the environment. ENVIRONMENT INTERNATIONAL 2021; 146:106222. [PMID: 33157376 PMCID: PMC7786791 DOI: 10.1016/j.envint.2020.106222] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 05/23/2023]
Abstract
The presence of non-steroidal anti-inflammatory drugs (NSAIDs) in the aquatic environment has raised concern that chronic exposure to these compounds may cause adverse effects in wild fish populations. This potential scenario has led some stakeholders to advocate a stricter regulation of NSAIDs, especially diclofenac. Considering their global clinical importance for the management of pain and inflammation, any regulation that may affect patient access to NSAIDs will have considerable implications for public health. The current environmental risk assessment of NSAIDs is driven by the results of a limited number of standard toxicity tests and does not take into account mechanistic and pharmacological considerations. Here we present a pharmacology-informed framework that enables the prediction of the risk posed to fish by 25 different NSAIDs and their dynamic mixtures. Using network pharmacology approaches, we demonstrated that these 25 NSAIDs display a significant mechanistic promiscuity that could enhance the risk of target-mediated mixture effects near environmentally relevant concentrations. Integrating NSAIDs pharmacokinetic and pharmacodynamic features, we provide highly specific predictions of the adverse phenotypes associated with exposure to NSAIDs, and we developed a visual multi-scale model to guide the interpretation of the toxicological relevance of any given set of NSAIDs exposure data. Our analysis demonstrated a non-negligible risk posed to fish by NSAID mixtures in situations of high drug use and low dilution of waste-water treatment plant effluents. We anticipate that this predictive framework will support the future regulatory environmental risk assessment of NSAIDs and increase the effectiveness of ecopharmacovigilance strategies. Moreover, it can facilitate the prediction of the toxicological risk posed by mixtures via the implementation of mechanistic considerations and could be readily extended to other classes of chemicals.
Collapse
Affiliation(s)
- Philip Marmon
- Department of Life Sciences, College of Health, Medicine, and Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Stewart F Owen
- AstraZeneca, Global Environment, Alderley Park, Macclesfield, Cheshire SK10 4TF, UK
| | - Luigi Margiotta-Casaluci
- Department of Life Sciences, College of Health, Medicine, and Life Sciences, Brunel University London, London, UB8 3PH, UK.
| |
Collapse
|
23
|
Galus M, Fraz S, Gugilla A, Jönsson M, Wilson JY. Prostaglandins prevent acetaminophen induced embryo toxicity in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103463. [PMID: 32822849 DOI: 10.1016/j.etap.2020.103463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Previous research in our laboratory showed that acetaminophen (ACE) induced embryonic mortality and abnormalities in zebrafish. Here, we examined the dose response of ACE (0.05-50 μg L-1) in zebrafish embryos. Concentrations as low as 0.1 μg L-1 significantly increased abnormalities, and all test concentrations significantly increased mortality rates. In mammals, ACE inhibits cyclooxygenase (COX) enzymes to decrease prostaglandin production. Here we report COX activity and expression of the cox-1, cox-2a, and cox-2b genes in zebrafish embryos. COX activity was significantly inhibited by specific mammalian cox-1 (SC-560) and cox-2 (DuP-697) inhibitors in unexposed and ACE-exposed embryos. COX activity declined with development time. Maternal transcripts of all cox genes were found at 1 -h post fertilization and embryonic expression began in gastrulation or early segmentation. Co-exposure of ACE and prostaglandin E2 abolished the ACE-induced effects. This strongly supports that ACE elicits embryo toxicity in zebrafish though the same molecular mechanism of action of their therapeutic effects in mammals.
Collapse
Affiliation(s)
- Michal Galus
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| | - Shamaila Fraz
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| | - Akash Gugilla
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| | - Maria Jönsson
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, Uppsala, 752 36, Sweden.
| | - Joanna Y Wilson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
24
|
Li M, Cao J, Zhao Y, Wu P, Li X, Khodaei F, Han Y, Wang J. Fluoride impairs ovary development by affecting oogenesis and inducing oxidative stress and apoptosis in female zebrafish (Danio rerio). CHEMOSPHERE 2020; 256:127105. [PMID: 32450357 DOI: 10.1016/j.chemosphere.2020.127105] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have shown that waterborne fluoride exposure has adverse effects on the reproductive system of zebrafish. However, the underlying toxic mechanisms were still not clear. In the present study, female zebrafish were exposed to different concentrations of 0.787 (Control), 18.599, 36.832 mg/L of fluoride for 30 d and 60 d, and the effects of different doses of fluoride on ovary development, reproductive hormones, oogenesis, ROS content, antioxidant levels, and the expression of apoptosis-related genes and proteins in the ovaries of female zebrafish were analyzed. The results showed that ovarian weight and GSI were significantly decreased, FSH, LH and VTG levels were significantly reduced, the transcriptional profiles of oogenesis-related genes (tgfβ1, bmp15, gdf9, mprα, mprβ, ptg2β) were remarkably altered, ROS levels was notably increased, the SOD, CAT, GPx activities and GSH content as well as their mRNA expressions were significantly decreased, MDA content was remarkably increased, the expressions of apoptosis-related genes and proteins (caspase3, caspase8, caspase9, Fas-L, Cytochrome C, Bax and Bcl-2) were significantly changed, the ratio of Bax/Bcl-2 protein levels were notably increased. Taken together, this study demonstrated that fluoride exposure significantly affected ovarian development, decreased the reproductive hormones, affected oogenesis, induced oxidative stress, caused apoptosis through both extrinsic and intrinsic pathways in ovary of zebrafish. Indicating that oogenesis, oxidative stress, and apoptosis were responsible for the impairment of ovarian development.
Collapse
Affiliation(s)
- Meiyan Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jinling Cao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yangfei Zhao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Panhong Wu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xuehua Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Forouzan Khodaei
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yongli Han
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
25
|
Chatterjee A, Guchhait R, Maity S, Mukherjee D, Pramanick K. Functions of interleukin-6 in ovulation of female climbing perch, Anabas testudineus. Anim Reprod Sci 2020; 219:106528. [PMID: 32828404 DOI: 10.1016/j.anireprosci.2020.106528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
In mammals, interleukin 6 (IL-6) has an important function during ovulation, however, the functions of IL-6 in fish have not been elucidated. In the present study, there was quantification of de novo synthesis of ovarian IL-6 and tumor necrosis factor-alpha (TNFα) in control and hCG-treated fish and results were compared with those from an in vitro study where there was evaluation of the regulatory functions of gonadotropins and TNFα of IL-6 secretions. Relatively greater concentrations of ovarian IL-6 at the post-GVBD (post-germinal vesicle breakdown) stage indicates IL-6 modulates ovulatory processes. The hCG-induced increase in relative abundance of IL-6 (in vitro) mRNA transcript and secretion from the ovary were attenuated when there was administration of the inhibitor of TNFα secreting enzyme, TAPI-I, which indicates TNFα modulates IL-6 secretion. Treatments with IL-6 induced a marked increase in ovulation rate in vitro when there was induction of activating matrix metalloproteinase (MMP). Furthermore, treatment with IL-6 resulted in production of prostaglandin as indicated by the IL-6 induced increase in the abundance of ptgs2 mRNA transcript in the ovary of Anabas testudineus. Furthermore, results indicate the source of IL-6 in the ovary is the granulosa cells with secretion of IL-6 being induced by the additions of hCG and TNFα in the medium. There was also an IL-6-induced increase in abundance of receptors (IL-6 Rα and gp130) to which it binds indicating IL-6 autoregulates this population of receptors. Results from this study, for the first time, elucidate the reproductive functions of IL-6 in a teleost fish.
Collapse
Affiliation(s)
- Ankit Chatterjee
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Rajkumar Guchhait
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India; P.G. Department of Zoology, Mahishadal Raj College, Purba Medinipur, India
| | - Sukhendu Maity
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Dilip Mukherjee
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, India
| | - Kousik Pramanick
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
26
|
He S, Du H, Ren P, Leng XQ, Tan QS, Li CJ, Liang XF, Wei QW. Transcriptome analysis of ovarian maturation in a chondrostei Chinese sturgeon Acipenser sinensis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:280-293. [PMID: 32483872 DOI: 10.1002/jez.b.22973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
Chinese sturgeon (Acipenser sinensis) with an evolutionary history of over 200 million years, has a long lifespan, and an extremely late and asynchronous sexual maturation (8-18 years for males and 14-26 years for females), resulting in the difficulty of mature adult culture. However, little is known about the regulatory mechanisms of the transition among ovarian maturation stages in the Chinese sturgeon. We performed de novo transcriptome sequencing of the Chinese sturgeon at different ovarian maturation stages (FII, FIII, and FIV). The number of differentially expressed genes (DEGs) between FII and FIII/FIV (33,517/34,217) was more than that between FIII and FIV (22,123), suggesting that the transition from FII to FIII/FIV is more important than that from FIII to FIV for ovarian maturation. The number of upregulated genes was more than that of the downregulated genes, suggesting that increased gene expression was involved in the transition from FII to FIII/FIV. The representative pathways of DEGs were steroid biosynthesis, fatty acid biosynthesis, fatty acid elongation, glycerolipid metabolism, biosynthesis of unsaturated fatty acid, and α-linolenic acid metabolism. The differential expressions from the transcriptome sequencing were validated with real-time reverse-transcription polymerase chain reaction. We also found 13 genes in sexual development, female sex determination, gonadal development, ovarian maturation, ovarian follicle development, and oocyte development pathways, which were differently expressed among fish at FII, FIII, and FIV. We suggest that enhanced synthesis of steroid, unsaturated fatty acid, and α-linolenic acid may contribute to ovarian maturation of the Chinese sturgeon. These potential determinants provide a glimpse of the molecular architecture of ovary development in sturgeons.
Collapse
Affiliation(s)
- Shan He
- Chinese Perch Research Center, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Ping Ren
- Chinese Perch Research Center, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Qian Leng
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Qing-Song Tan
- Chinese Perch Research Center, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chuang-Ju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Xu-Fang Liang
- Chinese Perch Research Center, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qi-Wei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| |
Collapse
|
27
|
Hou L, Chen S, Shi W, Chen H, Liang Y, Wang X, Tan J, Wang Y, Deng X, Zhan M, Long J, Cai G, Luo S, Zhang C, Liu J, Leung JYS, Xie L. Norethindrone alters mating behaviors, ovary histology, hormone production and transcriptional expression of steroidogenic genes in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110496. [PMID: 32213369 DOI: 10.1016/j.ecoenv.2020.110496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
The impact of progestins (i.e. synthetic forms of progesterone) on aquatic organisms has drawn increasing attention due to their widespread occurrence in the aquatic environments and potential effects on the endocrine system of fish. In this study, the effects of norethindrone (NET, a progestin) on the reproductive behavior, sex hormone production and transcriptional expressions were evaluated by exposing female zebrafish to NET at 0, 3.1, 36.2 and 398.6 ng L-1 for 60 days. Results showed that NET impaired the mating behaviors of female at 36.2 and 398.6 ng L-1 exhibited by males and increased the frequency of atretic follicular cells in the ovary exposed to NET at 398.6 ng L-1. As for sex hormones, plasma testosterone concentration in zebrafish increased, while estradiol concentration decreased. Up-regulation of genes (Npr, Mpra, Mprβ, Fshβ, Lβ, Tshb, Nis and Dio2) was detected in the brain of fish exposed to NET at 398.6 ng L-1. The transcriptional levels of genes (Esr1, Vtg1, Ar, Cyp19a, Cyp11b and Ptgs2) were generally inhibited in the ovary of zebrafish by NET at 398.6 ng L-1. Moreover, the transcripts of genes (Vtg1, Esr1, Ar and Pgr) in the liver were reduced by NET at 36.2 and 398.6 ng L-1. Our findings suggest that NET can potentially diminish the of fish populations not only by damaging their reproductive organs, but also by altering their mating behavior through the changes in the expressions of genes responsible for the production of sex hormones.
Collapse
Affiliation(s)
- Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Shanduo Chen
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Wenjun Shi
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Hongxing Chen
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yanqiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Jiefeng Tan
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Yifan Wang
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Xikai Deng
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Manjun Zhan
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Jianzhao Long
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Guowei Cai
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Shaowen Luo
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Cuiping Zhang
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution, China.
| | - Jonathan Y S Leung
- Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China; School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia.
| | - Lingtian Xie
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
28
|
Bereketoglu C, Pradhan A, Olsson PE. Nonsteroidal anti-inflammatory drugs (NSAIDs) cause male-biased sex differentiation in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 223:105476. [PMID: 32315829 DOI: 10.1016/j.aquatox.2020.105476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/03/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used pharmaceuticals to treat pain, fever and inflammation. NSAIDs are also known to have many side effects including adverse effects on reproduction in both humans and animals. As NSAIDs usage is not regulated they are frequently detected at high concentrations in the environment. In order to understand the effect of NSAIDs on zebrafish sex differentiation, we used seven different NSAIDs which were either Cox-1 selective, Cox-1 biased, non-selective or COX-2 selective. We show that at higher concentration, NSAIDs are toxic to zebrafish embryo as they lead to mortality and hatching delay. Gene expression analysis following short term exposure of NSAIDs led to downregulation of female specific genes including zp2, vtg2 foxl2 and wnt4. Long term exposure of larvae to environmentally relevant concentrations of Cox-2 selective and non-selective NSAIDs resulted in male-biased sex ratio which confirmed the qRT-PCR analysis. However, the Cox-1 selective acetylsalicylic acid and the Cox-1 biased ketoprofen did not alter sex ratio. The observed male-biased sex ratio could also be due to induction of apoptosis process as the genes including p21 and casp8 were significantly upregulated following exposure to the Cox-2 selective and the non-selective NSAIDs. The present study indicates that NSAIDs alter sex differentiation in zebrafish, primarily through inhibition of Cox-2. This study clearly demonstrates that the use of NSAIDs and their release into the aquatic environment should be carefully monitored to avoid adverse effects to the aquatic organisms.
Collapse
Affiliation(s)
- Ceyhun Bereketoglu
- Biology, The LifeScience Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Ajay Pradhan
- Biology, The LifeScience Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Per-Erik Olsson
- Biology, The LifeScience Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
| |
Collapse
|
29
|
Khajeh M, Nouri M, Ghasemzadeh A, Mehdizadeh A, Shanehbandi D, Yousefi S, Darabi M, Rahbarghazi R. Arachidonic acid alleviates the detrimental effects of acetylsalicylic acid on human granulosa cells performance in vitro. Mol Reprod Dev 2020; 87:607-619. [PMID: 32270588 DOI: 10.1002/mrd.23343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 02/21/2020] [Accepted: 03/22/2020] [Indexed: 12/14/2022]
Abstract
Here, we investigated the biological effects of arachidonic acid (AA) in human cumulus granulosa cells (CGCs) after exposure to ASA. Cells were isolated from the follicular fluid and incubated with 0.5 mM acetylsalicylic acid (ASA) and 50 µM AA. Cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. E2 and P4 levels were measured by chemiluminescence assay. Expression of genes including CYP19A1, FACN, and SCD1 was measured by real-time polymerase chain reaction assay. Oxidative status was analyzed by monitoring glutathione peroxidase activity. The fatty acid profile was analyzed by the gas chromatography technique. Enzyme-linked immunosorbent assay was used to measure prostaglandin E2 (PGE2 ) in CGCs after exposure to ASA and AA. Protein levels of the estrogen receptor were studied by immunofluorescence staining. Ultrastructural changes were evaluated by transmission electron microscopy imaging. ASA treatment reduced E2 production, Cyp19a1 expression, glutathione peroxidase (GPx) activity, and estradiol receptor expression in CGCs. The addition of AA prevented the ASA-induced E2 reduction (p < .05) and expression of Cyp19a1. Moreover, AA increased the antioxidant capacity of CGCs exposed to ASA by promoting GPx activity (p < .05). AA increased monounsaturated fatty acid/saturated fatty acid ratio compared with the ASA group (p < .05). AA supplementation triggered the synthesis and secretion of PGE2 in ASA-treated CGCS (p < .05). Cytoplasmic vacuolation observed in the ASA group and treatment with AA intensified vacuolation rate. The expression of the estrogen receptor was increased after AA supplementation. Data demonstrated that AA decreased the detrimental effects of ASA on human CGCs after 72 hr.
Collapse
Affiliation(s)
- Masoumeh Khajeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aalie Ghasemzadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudabe Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Baker SJC, Van Der Kraak G. Investigating the role of prostaglandin receptor isoform EP4b in zebrafish ovulation. Gen Comp Endocrinol 2019; 283:113228. [PMID: 31348957 DOI: 10.1016/j.ygcen.2019.113228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/26/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
Prostaglandins (PGs) are a class of fatty acid-derived hormones that play an essential role in the regulation of ovulation of teleosts. This study investigated the various isoforms of ovarian PG receptors in the zebrafish ovary and their role in ovulation. Using real time qPCR, six PG receptor isoforms (ptger1a, ptger1b, ptger2a, ptger4a, ptger4b, and ptgfr) were shown to be expressed in the ovary. Only the PG receptor isoform ptger4b was upregulated at the time of ovulation in vivo, or following treatment in vivo with Ovaprim, which contains a gonadotropin releasing hormone analogue and a dopamine receptor antagonist and stimulates ovulation. Treatment of full-grown follicles with the maturation-inducing hormone 17α,20β-dihydroxy-4-pregnen-3-one (17,20βP) in vitro also induced expression of EP4b mRNA. Females ovulate in vivo after injection with Ovaprim, or injection with Ovaprim and inhibitors of EP1 (ONO-8130) or EP2 (TG4-155) function; they do not ovulate when injected with Ovaprim and an EP4 inhibitor (GW237368x). These findings suggest that the EP4 receptor, in particular the EP4b isoform, is essential for ovulation.
Collapse
Affiliation(s)
- Sheridan J C Baker
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada.
| |
Collapse
|
31
|
Jiang YX, Shi WJ, Ma DD, Zhang JN, Ying GG, Zhang H, Ong CN. Dydrogesterone exposure induces zebrafish ovulation but leads to oocytes over-ripening: An integrated histological and metabolomics study. ENVIRONMENT INTERNATIONAL 2019; 128:390-398. [PMID: 31078873 DOI: 10.1016/j.envint.2019.04.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 05/21/2023]
Abstract
Dydrogesterone (DDG) is a synthetic progestin widely used in numerous gynecological diseases. DDG has been shown to disturb fish reproduction, however, the mechanism is still unclear. Here we studied the histological changes and differences of metabolome between exposed and control fish gonads after exposure of zebrafish (Danio rerio) embryos to 2.8, 27.6, and 289.8 ng/L DDG until sexual maturity for a total of 140 days. Dydrogesterone exposure led to male-biased zebrafish sex ratios. Histological examination revealed that DDG induced postovulatory follicles and atretic follicles in the ovary of the female fish. Postovulatory follicles indicated the occurrence of ovulation. DDG also increased spermatids and spermatozoa in the male fish testis, suggesting promotion of spermatogenesis. Ovarian metabolome showed that DDG increased the concentrations of free amino acids, urea, putrescine, free fatty acids, acylcarnitines, lysophospholipids, and other metabolites catabolized from phospholipids. Most of these metabolites are biodegradation products of proteins and lipids, suggesting the existence of ovulated oocytes over-ripening. Further, DDG upregulated arachidonic acid (AA) and its 5‑lipoxygenase (5-LOX) metabolites 5‑oxo‑6,8,11,14‑eicosatetraenoic acid (5-oxo-ETE) in the ovary, which could lead to suppression of AA cyclooxygenase (COX) metabolite prostaglandin F2α (PGF2α). It is believed that AA induced oocyte maturation, while 5-oxo-ETE and related metabolites in purinergic signaling promoted ovulation. Whereas, the suppression of PGF2α production might block spawning and damaged follicular tissue digestion, which explained the oocytes over-ripening and atretic follicles in the treated ovary. Overall, our results suggested that DDG exposure induced zebrafish oocyte maturation and ovulation but led to oocytes over-ripening via the AA metabolic pathway and purinergic signaling.
Collapse
Affiliation(s)
- Yu-Xia Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jin-Na Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Hui Zhang
- NUS Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Choon-Nam Ong
- School of Public Health, National University of Singapore, 117547, Singapore.
| |
Collapse
|
32
|
Baek HJ, Lee DS. Prostaglandin affects in vitro ovulation and 17α, 20β-Dihydroxy- 4-pregnen-3-one production in longchin goby, Chasmichthys dolichognathus oocytes. Dev Reprod 2019; 23:111-117. [PMID: 31321351 PMCID: PMC6635616 DOI: 10.12717/dr.2019.23.2.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/27/2019] [Accepted: 06/08/2019] [Indexed: 01/02/2023]
Abstract
This study focused on the association of prostaglandins and a progestin,
17α, 20β-dihydroxy-4-pregnen-3-one (17α20βP) during
the ovulation process in longchin goby, Chasmichthys
dolichognathus. We performed several in vitro
experiments using 850–920 μm diameter oocytes which were at the
migratory nucleus stage. With the 890–920 μm diameter oocytes, no
significant difference in ovulation was observed in any of the prostaglandins
(PGE1, PGE2, and PGF2α) treated groups although PGE2 and PGF2α at
concentrations of 50 ng/mL increased ovulation slightly compared with controls;
however, 17α20βP production was stimulated with PGE1 alone at low
concentrations (5 ng/mL). In 850 μm diameter oocytes, PGF2α at
concentrations of 50 and 500 ng/ml resulted in a significant increase in
ovulation. 17α20βP (50 ng/ml) alone had no observable effect on
ovulation, but in the combined of PGF2α 50 or 500 ng/ml it caused the
greatest effect on ovulation. The sensitivity of oocytes to the induction of
ovulation varies between 850 and 890–920 μm, it appeared to vary
depending on the migration status of nucleus. These results suggest that
PGF2α (or combined of 17α20βP) was more potent in inducing
ovulation of the longchin goby.
Collapse
Affiliation(s)
- Hea Ja Baek
- Dept. of Marine Biology, Pukyong National University, Busan 48513, Korea
| | - Da Som Lee
- Dept. of Marine Biology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
33
|
Photoreceptor cell development requires prostaglandin signaling in the zebrafish retina. Biochem Biophys Res Commun 2019; 510:230-235. [DOI: 10.1016/j.bbrc.2019.01.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/16/2019] [Indexed: 01/02/2023]
|
34
|
Duangprom S, Ampansri W, Suwansa-Ard S, Chotwiwatthanakun C, Sobhon P, Kornthong N. Identification and expression of prostaglandin E synthase (PGES) gene in the central nervous system and ovary during ovarian maturation of the female mud crab, Scylla olivacea. Anim Reprod Sci 2018; 198:220-232. [PMID: 30292571 DOI: 10.1016/j.anireprosci.2018.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/19/2018] [Accepted: 09/27/2018] [Indexed: 01/16/2023]
Abstract
Prostaglandins have important physiological roles in marine invertebrates, including larval development and reproduction. The prostaglandin E concentration fluctuates during the ovarian development of crustaceans. The biosynthetic pathway of prostaglandin, however, has not been well studied in portunid crabs, including in the mud crab, Scylla olivacea. In this study, the aim was to investigate the presence of prostaglandin E synthase (PGES), enzyme that catalyzes the terminal conversion in the prostaglandin E2 (PGE2) biosynthesis, and its gene expression in the central nervous system (CNS) and ovary during ovarian maturation of S. olivacea. cDNA sequence encoding PGES was cloned from the S. olivacea ovary. The PGES transcript of S. olivacea (Scyol-PGES) consists of 1258 nucleotides, which encodes for 420 amino acid PGES protein precursor. Investigation of gene expression by RT-PCR indicated that Scyol-PGES was detected in all organs studied. Based on in situ hybridization, Scyol-PGES was detected in the I to III stages for oocyte development of Stage 3 of ovarian development, and in the CNS, including the various neuronal clusters of the brain. In the ventral nerve cord, the Scyol-PGES gene was expressed in the neurons within the subesophageal, thoracic and abdominal ganglia. The Scyol-PGES gene expression as indicated by relative abundance of mRNA in the Stage 4 of ovarian development was greater than that at Stages 1 to 3 of ovarian development. This is the first report on PGES in the mud crab, S. olivacea, and its gene expression suggested the involvement of PGES in the ovarian development of this species.
Collapse
Affiliation(s)
- Supawadee Duangprom
- Chulabhorn International Collage of Medicine, Thammasat University, Rangsit Campus, Pathumthani, Thailand
| | - Wilailuk Ampansri
- Chulabhorn International Collage of Medicine, Thammasat University, Rangsit Campus, Pathumthani, Thailand
| | - Saowaros Suwansa-Ard
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Charoonroj Chotwiwatthanakun
- Mahidol University, Nakhonsawan Campus, Nakhonsawan, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, Thailand; Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Rd., SeanSook Sub-District, Mueang District, Chonburi, Thailand
| | - Napamanee Kornthong
- Chulabhorn International Collage of Medicine, Thammasat University, Rangsit Campus, Pathumthani, Thailand.
| |
Collapse
|
35
|
Tang H, Wang L, Chen Y, He J, Qu L, Guo Y, Liu Y, Liu X, Lin H. Ovulation is associated with the LH-dependent induction of pla2g4aa in zebrafish. Mol Cell Endocrinol 2018; 473:53-60. [PMID: 29326060 DOI: 10.1016/j.mce.2018.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/17/2017] [Accepted: 01/07/2018] [Indexed: 01/14/2023]
Abstract
The effects of the preovulatory luteinizing hormone (LH) surge on the ovulatory process are mediated by prostaglandins (PGs), the synthesis of which involves prostaglandin synthetase and cytosolic phospholipase A2 (cPLA2). In our previous study, we systematically investigated the function of prostaglandin endoperoxide synthase (ptgs) genes on ovulation in zebrafish. However, the role of cPLA2 in ovulation was not determined in zebrafish. In this study, we investigated the function of cpla2α in PGs production and ovulation in periovulatory follicles. Our data showed that the expression of pla2g4aa increased during zebrafish folliculogenesis and the follicular layer was the primary region with expression of pla2g4aa. In addition, the expression of pla2g4aa was regulated by LH in vitro and in vivo. Furthermore, injection of AACOCF3, a specific inhibitor of cPLA2, significantly reduced ovarian PGs level and blocked hCG-induced ovulation. Collectively, these findings suggest that pla2g4aa is related to the ovulation process in zebrafish.
Collapse
Affiliation(s)
- Haipei Tang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Le Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jianan He
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ling Qu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
36
|
Pohl J, Björlenius B, Brodin T, Carlsson G, Fick J, Larsson DGJ, Norrgren L, Örn S. Effects of ozonated sewage effluent on reproduction and behavioral endpoints in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:93-101. [PMID: 29729477 DOI: 10.1016/j.aquatox.2018.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/18/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceutical residues and other micro-contaminants may enter aquatic environments through effluent from sewage treatment plants (STPs) and could cause adverse effects in wild fish. One strategy to alleviate this situation is to improve wastewater treatment by ozonation. To test the effectiveness of full-scale wastewater effluent ozonation at a Swedish municipal STP, the added removal efficiency was measured for 105 pharmaceuticals. In addition, gene expression, reproductive and behavioral endpoints were analyzed in zebrafish (Danio rerio) exposed on-site over 21 days to ozonated or non-ozonated effluents as well as to tap water. Ozone treatment (7 g O3/m3) removed pharmaceuticals by an average efficiency of 77% in addition to the conventional treatment, leaving 11 screened pharmaceuticals above detection limits. Differences in biological responses of the exposure treatments were recorded in gene expression, reproduction and behavior. Hepatic vitellogenin gene expression was higher in male zebrafish exposed to the ozonated effluent compared to the non-ozonated effluent and tap water treatments. The reproductive success was higher in fish exposed to ozonated effluent compared to non-ozonated effluent and to tap water. The behavioral measurements showed that fish exposed to the ozonated STP effluent were less active in swimming the first minute after placed in a novel vessel. Ozonation is a capable method for removing pharmaceuticals in effluents. However, its implementation should be thoroughly evaluated for any potential biological impact. Future research is needed for uncovering the factors which produced the in vivo responses in fish.
Collapse
Affiliation(s)
- Johannes Pohl
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Berndt Björlenius
- Division of Industrial Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tomas Brodin
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Gunnar Carlsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Leif Norrgren
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
37
|
Takahashi T, Hagiwara A, Ogiwara K. Prostaglandins in teleost ovulation: A review of the roles with a view to comparison with prostaglandins in mammalian ovulation. Mol Cell Endocrinol 2018; 461:236-247. [PMID: 28919301 DOI: 10.1016/j.mce.2017.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
Prostaglandins are well known to be central regulators of vertebrate ovulation. Studies addressing the role of prostaglandins in mammalian ovulation have established that they are involved in the processes of oocyte maturation and cumulus oocyte complex expansion. In contrast, despite the first indication of the role of prostaglandins in teleost ovulation appearing 40 years ago, the mechanistic background of their role has long been unknown. However, studies conducted on medaka over the past decade have provided valuable information. Emerging evidence indicates an indispensable role of prostaglandin E2 and its receptor subtype Ptger4b in the process of follicle rupture. In this review, we summarize studies addressing the role of prostaglandins in teleost ovulation and describe recent advances. To help understand differences from and similarities to ovulation in mammalian species, the findings on the roles of prostaglandins in mammalian ovulation are discussed in parallel.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Akane Hagiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
38
|
Morthorst JE, Lund BF, Holbech H, Bjerregaard P. Two common mild analgesics have no effect on general endocrine mediated endpoints in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2018; 204:63-70. [PMID: 29180113 DOI: 10.1016/j.cbpc.2017.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/28/2022]
Abstract
Mild analgesics such as acetylsalicylic acid (ASA) and acetaminophen (APAP) exert their pain-relieving effect in humans by inhibition of prostaglandin synthesis. Prostaglandins play key roles in developmental and reproductive processes in vertebrates, and in recent years, it has been suggested that weak analgesics might also act as endocrine disrupters. In a set of experiments we investigated if ASA and APAP affect well-established endocrine endpoints in zebrafish (Danio rerio), which is a commonly used model organism in the investigation of endocrine disrupting chemicals. Zebrafish were exposed to APAP (0.22, 2.3, and 30mgL-1) or ASA (0.2, 0.5, 1.7, and 8.2mgL-1) from hatch to sexual maturity in a test design resembling the OECD Fish Sexual Development Test. No effects on sex ratio and vitellogenin levels were observed. Adult zebrafish were exposed to high concentrations (mgL-1) of ASA or APAP for eight or 14days. ASA reduced the levels of prostaglandin E2, but had no effect on the concentration of 11-ketotestosterone and vitellogenin. Overall, ASA decrease prostaglandin E2 concentrations, but well-established endpoints for endocrine disruption in zebrafish are generally not affected by aquatic exposure neither during development nor adulthood. According to the WHO/IPCS definition of an endocrine disrupter, the present results do not define APAP and ASA as endocrine disrupters.
Collapse
Affiliation(s)
- Jane E Morthorst
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark.
| | - Birgit F Lund
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark
| | - Poul Bjerregaard
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark
| |
Collapse
|
39
|
Effects of different dietary DHA:EPA ratios on gonadal steroidogenesis in the marine teleost, tongue sole (Cynoglossus semilaevis). Br J Nutr 2017; 118:179-188. [PMID: 28831954 DOI: 10.1017/s0007114517001891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was conducted to investigate the effects of dietary DHA and EPA on gonadal steroidogenesis in mature females and males, with a feeding trial on tongue sole, a typical marine teleost with sexual dimorphism. Three experimental diets differing basically in DHA:EPA ratio, that is, 0·68 (diet D:E-0·68), 1·09 (D:E-1·09) and 2·05 (D:E-2·05), were randomly assigned to nine tanks of 3-year-old tongue sole (ten females and fifteen males in each tank). The feeding trail lasted for 90 d before and during the spawning season. Fish were reared in a flowing seawater system and fed to apparent satiation twice daily. Compared with diet D:E-0·68, diet D:E-1·09 significantly enhanced the oestradiol production in females, whereas diet D:E-2·05 significantly enhanced the testosterone production in males. In ovaries, diet D:E-1·09 induced highest mRNA expression of follicle-stimulating hormone receptor (FSHR), steroidogenic acute regulatory protein, 17α-hydroxylase (P450c17) and 3β-hydroxysteroid dehydrogenase (3β-HSD). In testes, diet 2·05 resulted in highest mRNA expression of FSHR, cholesterol side-chain cleavage enzyme, P450c17 and 3β-HSD. Fatty acid profiles in fish tissues reflected closely those of diets. Female fish had more gonadal EPA content but less DHA content than male fish, whereas there was a reverse observation in liver. In conclusion, the dietary DHA:EPA ratio, possibly combined with the dietary EPA:arachidonic acid ratio, differentially regulated sex steroid hormone synthesis in mature female and male tongue soles. Females seemed to require more EPA but less DHA for the gonadal steroidogenesis than males. The results are beneficial to sex-specific nutritive strategies in domestic teleost.
Collapse
|
40
|
Norberg B, Kleppe L, Andersson E, Thorsen A, Rosenlund G, Hamre K. Effects of dietary arachidonic acid on the reproductive physiology of female Atlantic cod (Gadus morhua L.). Gen Comp Endocrinol 2017; 250:21-35. [PMID: 28576420 DOI: 10.1016/j.ygcen.2017.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/08/2017] [Accepted: 05/28/2017] [Indexed: 01/07/2023]
Abstract
The present study was designed to investigate potential effects of arachidonic acid (ARA) on the reproductive physiology of female Atlantic cod (Gadus morhua L.). Two-year old Atlantic cod of both sexes were equally distributed into eight sea cages after completion of their first spawning in May 2005. Four experimental groups were established and fed diets with different levels of ARA corresponding to 0.5, 1, 2 and 4% of total fatty acid. Ovarian growth and development was documented every month. Fatty acid composition was analysed in ovaries, liver and plasma at the beginning of the experiment, one month prior to spawning, and in spent fish, one month after spawning was completed. Plasma concentrations of estradiol-17β, testosterone and vitellogenin, and ovarian gene transcript levels of steroidogenic acute regulatory protein (star), P450aromatase (cyp19a1a) and 20β-hydroxy steroid dehydrogenase (20bhsd/cbr1) were monitored every month in fish fed the experimental diets and related to oocyte stage. Potential fecundity was calculated based on ovarian samples taken one month before onset of spawning. Ovarian and plasma ARA levels were highly correlated to dietary ARA levels. There was a net accumulation of ARA compared to other essential fatty acids in ovarian tissue that was reflected in a decrease in EPA:ARA ratio. Plasma concentrations of vitellogenin, estradiol-17β and testosterone and key gene transcript levels were affected by dietary ARA and stage of maturation. The results show that ARA has a significant influence on the reproductive physiology of female Atlantic cod.
Collapse
Affiliation(s)
- Birgitta Norberg
- Institute of Marine Research, Austevoll Research Station, N-5392 Storebø, Norway.
| | - Lene Kleppe
- Institute of Marine Research, P.O. Box 1870 Nordnes, N-5817 Bergen, Norway
| | - Eva Andersson
- Institute of Marine Research, P.O. Box 1870 Nordnes, N-5817 Bergen, Norway
| | - Anders Thorsen
- Institute of Marine Research, P.O. Box 1870 Nordnes, N-5817 Bergen, Norway
| | | | - Kristin Hamre
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, N-5817 Bergen, Norway
| |
Collapse
|
41
|
Williams TA, Bergstrome JC, Scott J, Bernier NJ. CRF and urocortin 3 protect the heart from hypoxia/reoxygenation-induced apoptosis in zebrafish. Am J Physiol Regul Integr Comp Physiol 2017; 313:R91-R100. [PMID: 28539353 PMCID: PMC5582954 DOI: 10.1152/ajpregu.00045.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/08/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022]
Abstract
Fish routinely experience environmental hypoxia and have evolved various strategies to tolerate this challenge. Given the key role of the CRF system in coordinating the response to stressors and its cardioprotective actions against ischemia in mammals, we sought to characterize the cardiac CRF system in zebrafish and its role in hypoxia tolerance. We established that all genes of the CRF system, the ligands CRFa, CRFb, urotensin 1 (UTS1), and urocortin 3 (UCN3); the two receptor subtypes (CRFR1 and CRFR2); and the binding protein (CRFBP) are expressed in the heart of zebrafish: crfr1 > crfr2 = crfbp > crfa > ucn3 > crfb > uts1 In vivo, exposure to 5% O2 saturation for 15 min and 90 min of recovery resulted in four- to five-fold increases in whole heart crfb and ucn3 mRNA levels but did not affect the gene expression of other CRF system components. In vitro, as assessed by monitoring caspase 3 activity and the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells, pretreatment of excised whole hearts with CRF or UCN3 for 30 min prevented the increase in apoptosis associated with exposure to 1% O2 saturation for 30 min with a 24-h recovery. Lastly, the addition of the nonselective CRF receptor antagonist αh-CRF(9-41) prevented the cytoprotective effects of CRF. We show that the CRF system is expressed in fish heart, is upregulated by hypoxia, and is cytoprotective. These findings identify a novel role for the CRF system in fish and a new strategy to tolerate hypoxia.
Collapse
Affiliation(s)
- Tegan A Williams
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jillian C Bergstrome
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Juliana Scott
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
42
|
Tang H, Liu Y, Li J, Li G, Chen Y, Yin Y, Guo Y, Cheng CHK, Liu X, Lin H. LH signaling induced ptgs2a expression is required for ovulation in zebrafish. Mol Cell Endocrinol 2017; 447:125-133. [PMID: 28254490 DOI: 10.1016/j.mce.2017.02.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/25/2017] [Accepted: 02/26/2017] [Indexed: 11/30/2022]
Abstract
It is well known that ovulation is induced by luteinizing hormone (LH) surge. However, the down-stream factors that mediating LH surge induced ovulation are less clear. The cyclooxygenases (also known as PTGS) as key enzymes for prostaglandins synthesis appear to be important for ovulation in mammals, but their functional roles and molecular mechanism in regulation of fish ovulation are largely unexplored. In this study, we have systematically investigated the expression, regulation and functional roles of cox genes during zebrafish ovulation. Three types of cox genes including ptgs1, ptgs2a and ptgs2b have been identified in zebrafish. The ptgs2a was dominantly expressed in the ovary with a maximal level at the maturation stage of the follicles. In addition, the ptgs2a expression is up-regulated by LH signaling in vitro and in vivo. Moreover, co-injection of a selective Ptgs2 inhibitor and non-selective Ptgs inhibitor with hCG could significantly block the stimulatory effect of hCG induced ovulation in vivo. Collectively, our findings indicate that LH signaling induced ptgs2a expression is required for ovulation in zebrafish.
Collapse
Affiliation(s)
- Haipei Tang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jianzhen Li
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Gaofei Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yike Yin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences Core Laboratory, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China.
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China
| |
Collapse
|
43
|
Martinović-Weigelt D, Mehinto AC, Ankley GT, Berninger JP, Collette TW, Davis JM, Denslow ND, Durhan EJ, Eid E, Ekman DR, Jensen KM, Kahl MD, LaLone CA, Teng Q, Villeneuve DL. Derivation and Evaluation of Putative Adverse Outcome Pathways for the Effects of Cyclooxygenase Inhibitors on Reproductive Processes in Female Fish. Toxicol Sci 2017; 156:344-361. [PMID: 28201806 PMCID: PMC11017233 DOI: 10.1093/toxsci/kfw257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cyclooxygenase (COX) inhibitors are ubiquitous in aquatic systems and have been detected in fish tissues. The exposure of fish to these pharmaceuticals is concerning because COX inhibitors disrupt the synthesis of prostaglandins (PGs), which modulate a variety of essential biological functions, including reproduction. In this study, we investigated the effects of well-characterized mammalian COX inhibitors on female fathead minnow reproductive health. Fish (n = 8) were exposed for 96 h to water containing indomethacin (IN; 100 µg/l), ibuprofen (IB; 200 µg/l) or celecoxib (CX; 20 µg/l), and evaluated for effects on liver metabolome and ovarian gene expression. Metabolomic profiles of IN, IB and CX were not significantly different from control or one another. Exposure to IB and CX resulted in differential expression of comparable numbers of genes (IB = 433, CX = 545). In contrast, 2558 genes were differentially expressed in IN-treated fish. Functional analyses (canonical pathway and gene set enrichment) indicated extensive effects of IN on PG synthesis pathway, oocyte meiosis, and several other processes consistent with physiological roles of PGs. Transcriptomic data were congruent with PG data; IN-reduced plasma PG F2α concentration, whereas IB and CX did not. Five putative AOPs were developed linking the assumed molecular initiating event of COX inhibition, with PG reduction and the adverse outcome of reproductive failure via reduction of: (1) ovulation, (2) reproductive behaviors mediated by exogenous or endogenous PGs, and (3) oocyte maturation in fish. These pathways were developed using, in part, empirical data from the present study and other publicly available data.
Collapse
Affiliation(s)
| | - Alvine C. Mehinto
- University of Florida, Gainesville, FL, 32611
- Southern California Coastal Water Research Project, Costa Mesa, CA, 92626
| | - Gerald T. Ankley
- U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, MN, 55804
| | - Jason P. Berninger
- U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, MN, 55804
| | - Timothy W. Collette
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Ecosystems Research Division, Athens, GA, 30605
| | - John M. Davis
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Ecosystems Research Division, Athens, GA, 30605
| | | | - Elizabeth J. Durhan
- U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, MN, 55804
| | - Evan Eid
- U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, MN, 55804
| | - Drew R. Ekman
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Ecosystems Research Division, Athens, GA, 30605
| | - Kathleen M. Jensen
- U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, MN, 55804
| | - Mike D. Kahl
- U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, MN, 55804
| | - Carlie A. LaLone
- U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, MN, 55804
| | - Quincy Teng
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Ecosystems Research Division, Athens, GA, 30605
| | - Daniel L. Villeneuve
- U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, MN, 55804
| |
Collapse
|
44
|
Yokota H, Eguchi S, Hasegawa S, Okada K, Yamamoto F, Sunagawa A, Tanaka M, Yamamoto R, Nakano E. Assessment of in vitro antiovulatory activities of nonsteroidal anti-inflammatory drugs and comparison with in vivo reproductive toxicities of medaka (Oryzias latipes). ENVIRONMENTAL TOXICOLOGY 2016; 31:1710-1719. [PMID: 26183440 DOI: 10.1002/tox.22173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used therapeutic agents; however, their pharmacological actions raise concerns about potential risks to the reproductive health of aquatic vertebrates. In the present study, a medaka ovulation assay was applied as an in vitro model to evaluate NSAID-induced antiovulatory activity. We first tested five NSAIDs, including diclofenac sodium (DCF), ketoprofen (KP), salicylic acid (SA), mefenamic acid (MA), and acetylsalicylic acid (ASA) for their antiovulatory activities toward the follicles isolated from the ovaries of spawning females. Of all the chemicals tested, DCF had the highest antiovulatory activity, with the concentration that caused 50% inhibition (IC50) (101 µM). MA was the second most potent inhibitor following DCF, but KP, SA, or ASA had little inhibitory effect on the ovulation of the follicles. The in vitro antiovulatory activity of five NSAIDs showed good correlation with data published on the inhibitory activity on human COX-2. Second, we selected DCF and SA as the most and least potent NSAIDs, respectively, and examined the effects on reproduction of intact fish in order to evaluate whether the ovulation assay was a reasonable predictor of potential reproductive effects in fish. Females exposed to DCF showed a concentration-dependent decrease in the number of spawned eggs and an increment in the gonadosomatic index (GSI), possibly due to an anovulation in the females. In contrast, neither fecundity nor the GSI of females decreased at up to 20 mg/L of SA, at which acute lethality to medaka was induced. In conclusion, the medaka ovulation assay reflected the potency of NSAID-induced antiovulatory activity and may thus serve as an in vitro model for the prediction of NSAID-induced reproductive toxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1710-1719, 2016.
Collapse
Affiliation(s)
- Hirofumi Yokota
- Department of Biosphere Sciences, School of Human Sciences, Kobe College, 4-1 Okadayama, Nishinomiya-Shi, Hyogo, 662-8505, Japan
| | - Sayaka Eguchi
- Department of Biosphere Sciences, School of Human Sciences, Kobe College, 4-1 Okadayama, Nishinomiya-Shi, Hyogo, 662-8505, Japan
| | - Saki Hasegawa
- Department of Biosphere Sciences, School of Human Sciences, Kobe College, 4-1 Okadayama, Nishinomiya-Shi, Hyogo, 662-8505, Japan
| | - Kana Okada
- Department of Biosphere Sciences, School of Human Sciences, Kobe College, 4-1 Okadayama, Nishinomiya-Shi, Hyogo, 662-8505, Japan
| | - Fumiko Yamamoto
- Department of Biosphere Sciences, School of Human Sciences, Kobe College, 4-1 Okadayama, Nishinomiya-Shi, Hyogo, 662-8505, Japan
| | - Ayaka Sunagawa
- Department of Biosphere Sciences, School of Human Sciences, Kobe College, 4-1 Okadayama, Nishinomiya-Shi, Hyogo, 662-8505, Japan
| | - Marie Tanaka
- Department of Biosphere Sciences, School of Human Sciences, Kobe College, 4-1 Okadayama, Nishinomiya-Shi, Hyogo, 662-8505, Japan
| | - Rika Yamamoto
- Department of Biosphere Sciences, School of Human Sciences, Kobe College, 4-1 Okadayama, Nishinomiya-Shi, Hyogo, 662-8505, Japan
| | - Eiko Nakano
- Department of Biosphere Sciences, School of Human Sciences, Kobe College, 4-1 Okadayama, Nishinomiya-Shi, Hyogo, 662-8505, Japan
| |
Collapse
|
45
|
Patel A, Panter GH, Trollope HT, Glennon YC, Owen SF, Sumpter JP, Rand-Weaver M. Testing the "read-across hypothesis" by investigating the effects of ibuprofen on fish. CHEMOSPHERE 2016; 163:592-600. [PMID: 27572306 PMCID: PMC5034852 DOI: 10.1016/j.chemosphere.2016.08.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 05/10/2023]
Abstract
Human pharmaceuticals present in the environment have the potential to cause adverse effects on non-target organisms. The "read-across hypothesis" stipulates that pharmaceuticals will exhibit similar biological effects across species (e.g. human and fish) if the molecular target has been conserved and the effective drug concentrations are reached (Cmax). We tested this hypothesis by evaluating if ibuprofen, a non-selective inhibitor of prostaglandins and the cyclooxygenase (COX) enzyme, can mimic its primary effect in humans, on fish, at comparable plasma concentrations. The endpoints, prostaglandin E metabolite (PGEM) levels and the mRNA expression of COX (ptgs) gene, were measured in the gills of control and exposed fathead minnows (Pimephales promelas), using enzyme-immunoassay and quantitative real-time PCR (qPCR). Fish were exposed, for 24-72 h, to measured water concentrations of 9 (n = 12), 370 (n = 40) and 470 μg ibuprofen/L (n = 12). Water and blood plasma concentrations were determined using LC-MS/MS. Results showed that PGEM levels in fish exposed to 370 and 470 μg ibuprofen/L were significantly decreased compared to control fish, when mean plasma ibuprofen concentrations were 1.8-5.6-fold below the Cmax. The plasma ibuprofen concentrations and PGEM levels varied greatly between individuals. In fish exposed to 9 μg ibuprofen/L, when the mean plasma ibuprofen concentration was 224-fold below Cmax, no change in PGEM levels was observed. These data provide evidence for the read-across hypothesis, but suggest establishing a direct dose-response between internal plasma and PGEM is difficult, and would require significantly larger numbers of fish to overcome the inter-individual variation.
Collapse
Affiliation(s)
- Alpa Patel
- Biosciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom
| | - Grace H Panter
- AstraZeneca, Brixham Environmental Laboratory, Freshwater Quarry, Brixham, Devon, TQ5 8BA, United Kingdom
| | - Henry T Trollope
- AstraZeneca, Brixham Environmental Laboratory, Freshwater Quarry, Brixham, Devon, TQ5 8BA, United Kingdom
| | - Yohanna C Glennon
- AstraZeneca, Brixham Environmental Laboratory, Freshwater Quarry, Brixham, Devon, TQ5 8BA, United Kingdom
| | - Stewart F Owen
- AstraZeneca, Brixham Environmental Laboratory, Freshwater Quarry, Brixham, Devon, TQ5 8BA, United Kingdom
| | - John P Sumpter
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom.
| | - Mariann Rand-Weaver
- Biosciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom
| |
Collapse
|
46
|
Skoblina MN, Minin AA. Hormone-induced in vitro maturation and ovulation of Danio rerio oocytes and production of eggs capable of fertilization and futher development. Russ J Dev Biol 2016. [DOI: 10.1134/s106236041605009x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Gene knockout of nuclear progesterone receptor provides insights into the regulation of ovulation by LH signaling in zebrafish. Sci Rep 2016; 6:28545. [PMID: 27333837 PMCID: PMC4917859 DOI: 10.1038/srep28545] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/06/2016] [Indexed: 12/27/2022] Open
Abstract
It is well established that the luteinizing hormone surge triggers ovulation, a dynamic process leading to the release of the mature oocyte from the ovarian follicle. But how this process controlled by LH signaling remains largely unknown in non-mammalian species. In this study, we investigated the roles of nuclear progesterone receptor (npr) in LH-induced ovulation. Our results indicate that the nuclear progesterone receptor serves as an important mediator of LH action on ovulation. This conclusion is based on the following results: (1) the expression level of npr peaks at the full-grown stage of the follicles; (2) the expression of npr is stimulated by LH signaling in vitro and in vivo; and (3) the npr null females are infertile due to ovulation defects. Moreover, we further show that LH signaling could induce ptger4b expression in an npr-dependent manner, and blockage of Ptger4b could also block hCG-induced ovulation. Collectively, our results not only demonstrate that npr serves an indispensable role in mediating the action of LH on ovulation in zebrafish, but also provide insights into the molecular mechanisms of the regulation of ovulation in fish.
Collapse
|
48
|
Hua J, Han J, Wang X, Guo Y, Zhou B. The binary mixtures of megestrol acetate and 17α-ethynylestradiol adversely affect zebrafish reproduction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:776-784. [PMID: 27038209 DOI: 10.1016/j.envpol.2016.03.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/08/2016] [Accepted: 03/12/2016] [Indexed: 06/05/2023]
Abstract
Synthetic progesterones and estrogens are broadly used bioactive pharmaceutical agents and have been detected in aquatic environments. In the present study, we investigated the combined reproductive effects of megestrol acetate (MTA) and 17α-ethinylestradiol (EE2) on zebrafish. Adult zebrafish were exposed to MTA (33, 100 or 333 ng/L), EE2 (10 ng/L) or a mixture of both (MTA + EE2: 33 + 10, 100 + 10 or 333 + 10 ng/L) for 21 days. Results demonstrated that egg production was significantly reduced by exposure to 10 ng/L EE2, but not MTA. However, a combined exposure to MTA and EE2 caused further reduction of fish fecundity compared to EE2 exposure alone, suggesting an additive effect on egg production when EE2 is supplemented with MTA. Plasma concentrations of 17β-estradiol and testosterone in the females and 11-ketotestosterone in the males were significantly decreased in the groups exposed to EE2 or MTA alone compared with the solvent control, and the plasma concentrations of the three hormones were further reduced in the co-exposure groups relative to the MTA exposure group, but not the EE2 exposure group. These data indicate that the inhibitory effects on plasma concentrations in the co-exposures were predominantly caused by EE2. Furthermore, exposure to MTA and EE2 (alone or in combination) led to histological alterations in the ovaries (decreased vitellogenic/mature oocytes), but not in the testes. This study has important implications for environmental risk assessment of synthetic hormones that are concurrently present in aquatic systems.
Collapse
Affiliation(s)
- Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Han
- Biology Institute of Shangdong Academy of Sciences, Jinan 250014, China
| | - Xianfeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
49
|
Sumpownon C, Engsusophon A, Siangcham T, Sugiyama E, Soonklang N, Meeratana P, Wanichanon C, Hanna PJ, Setou M, Sobhon P. Variation of prostaglandin E2 concentrations in ovaries and its effects on ovarian maturation and oocyte proliferation in the giant fresh water prawn, Macrobrachium rosenbergii. Gen Comp Endocrinol 2015; 223:129-38. [PMID: 25963041 DOI: 10.1016/j.ygcen.2015.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
Prostaglandins (PGs) are important bioactive mediators for many physiological functions. In some decapod crustaceans, prostaglandin E2 (PGE2) has been detected in reproductive organs, and may play a role in the control of ovarian maturation. However, in the freshwater prawn, Macrobrachium rosenbergii, the presences of PGE2 and key enzymes for PGE2 biosynthesis, as well as its effects on ovarian maturation have not yet been investigated. In this study we reported the presence of PGE2, cyclooxygenase1 (COX1) and prostaglandin E synthase (PGES) in the ovarian tissues of M. rosenbergii, using immunohistochemistry. Intense immunoreactivities of PGE2 (PGE2-ir), COX1 (Cox1-ir) and PGES (PGES-ir) were detected in previtellogenic oocytes (Oc1 and Oc2), while the immunoreactivities were absent in the late vitellogenic oocytes (Oc4). This finding supports the hypothesis that the PGE2 biosynthesis occurs in the ovary of this prawn. To ascertain this finding we used LC-MS/MS to quantitate PGE2 concentrations during ovarian developmental cycle. The levels of PGE2 were significantly higher in the early ovarian stages (St I and II) than in the late stages (St III and IV). Moreover, we found that administration of PGE2 stimulated the ovarian maturation in this species by shortening the length of the ovarian cycle, increasing ovarian-somatic index, oocyte proliferation, and vitellogenin (Vg) level in the hemolymph.
Collapse
Affiliation(s)
- Chanudporn Sumpownon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Attakorn Engsusophon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Tanapan Siangcham
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Eiji Sugiyama
- Department of Cell Biology and Anatomy, School of Medicine, Hamamatsu University, Hamamatsu, Shizuoka, Japan
| | - Nantawan Soonklang
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Prasert Meeratana
- Deparment of Biomedical Sciences, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Chaitip Wanichanon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Peter J Hanna
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand; Pro Vice-Chancellor's Office, Faculty of Science and Technology, Deakin University, Locked Bag 2000, Geelong, Victoria 3220, Australia
| | - Mitsutoshi Setou
- Department of Cell Biology and Anatomy, School of Medicine, Hamamatsu University, Hamamatsu, Shizuoka, Japan
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
| |
Collapse
|
50
|
Cosme MM, Lister AL, Van Der Kraak G. Inhibition of spawning in zebrafish (Danio rerio): Adverse outcome pathways of quinacrine and ethinylestradiol. Gen Comp Endocrinol 2015; 219:89-101. [PMID: 25644209 DOI: 10.1016/j.ygcen.2015.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/05/2015] [Accepted: 01/16/2015] [Indexed: 01/31/2023]
Abstract
This study determined the effects of the estrogen receptor agonist ethinylestradiol (EE2) and the phospholipase A2 inhibitor quinacrine (QUIN) on the pathways controlling follicular development, steroidogenesis, oocyte maturation, ovulation and spawning success in adult zebrafish. Both EE2 and QUIN inhibited spawning but did so through different mechanisms. EE2 affected follicular development (reduced ovarian size and reduction in the proportion of cortical alveolus, vitellogenic and mature follicle stages), steroidogenesis (reduced expression of aromatase), maturation (reduced luteinizing hormone receptor expression) and ovulation (reduced expression of cytosolic phospholipase A2 and the nuclear progesterone receptor). Although EE2 alters the proportion of follicle stages within the ovary, the downregulation of gene expression as a consequence of EE2 exposure was primarily due to a decline in expression of the genes of interest in vitellogenic and mature ovarian follicles. QUIN targeted ovulation via a reduction of the steroid 17α,20β dihydroxy-4-prenen-3-one (17α,20β-P) and decreased expression of the prostaglandin metabolizing enzyme cyclooxygenase 2. This study demonstrates the usefulness in defining the impacts of toxicants at the molecular and cellular, organ and whole organism level and how connections between these impacts can be used to describe the adverse outcome pathways (AOPs) that mediate toxicant action. Histological analysis and gene expression were effective tools in defining the AOPs of QUIN and EE2 while the measurement of reproductive hormones level did not provide much valuable information regarding the toxicant's mode of action.
Collapse
Affiliation(s)
- Madelyne M Cosme
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Andrea L Lister
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|