1
|
Werren EA, Rodriguez Bey G, Majethia P, Kaur P, Patil SJ, Kekatpure MV, Afenjar A, Qebibo L, Burglen L, Tomoum H, Demurger F, Duborg C, Siddiqui S, Tsan YC, Abdullah U, Ali Z, Saadi SM, Baig SM, Houlden H, Maroofian R, Padiath QS, Bielas SL, Shukla A. Biallelic EPB41L3 variants underlie a developmental disorder with seizures and myelination defects. Brain 2024; 147:4033-4042. [PMID: 39292993 PMCID: PMC11733690 DOI: 10.1093/brain/awae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/09/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
Erythrocyte membrane protein band 4.1 like 3 (EPB41L3: NM_012307.5), also known as DAL1, encodes the ubiquitously expressed, neuronally enriched 4.1B protein, part of the 4.1 superfamily of membrane-cytoskeleton adaptors. The 4.1B protein plays key roles in cell spreading, migration and cytoskeletal scaffolding that support oligodendrocyte axon adhesions essential for proper myelination. We herein describe six individuals from five unrelated families with global developmental delay, intellectual disability, seizures, hypotonia, neuroregression and delayed myelination. Exome sequencing identified biallelic variants in EPB41L3 in all affected individuals: two nonsense [c.466C>T, p.(R156*); c.2776C>T, p.(R926*)] and three frameshift [c.666delT, p.(F222Lfs*46); c.2289dupC, p.(V764Rfs*19); c.948_949delTG, p.(A317Kfs*33)]. Quantitative-real time PCR and western blot analyses of human fibroblasts harbouring EPB41L3:c.666delT, p.(F222Lfs*46) indicated ablation of EPB41L3 mRNA and 4.1B protein expression. Inhibition of the nonsense mediated decay (NMD) pathway led to an upregulation of EPB41L3:c.666delT transcripts, supporting NMD as a pathogenic mechanism. Epb41l3-deficient mouse oligodendroglia cells showed significant reduction in mRNA expression of key myelin genes, reduced branching and increased apoptosis. Our report provides the first clinical description of an autosomal recessive disorder associated with variants in EPB41L3, which we refer to as EPB41L3-associated developmental disorder (EADD). Moreover, our functional studies substantiate the pathogenicity of EPB41L3 hypothesized loss-of-function variants.
Collapse
Affiliation(s)
- Elizabeth A Werren
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Guillermo Rodriguez Bey
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Purvi Majethia
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Parneet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Siddaramappa J Patil
- Division of Medical Genetics, Narayana Health-Mazumdar Shaw Medical Center, Narayana Health, Bangalore 560099, India
| | - Minal V Kekatpure
- Department of Neurology, Division of Pediatric Neurology, Mazumdar Shaw Medical Center, Narayana Health, Bangalore 560099, India
| | - Alexandra Afenjar
- Reference Center for Malformations and Congenital Diseases of the Cerebellum and Unit of Molecular Genetics, Department of Genetics, Trousseau Hospital, APHP Sorbonne University, Paris 75012, France
| | - Leila Qebibo
- Reference Center for Malformations and Congenital Diseases of the Cerebellum and Unit of Molecular Genetics, Department of Genetics, Trousseau Hospital, APHP Sorbonne University, Paris 75012, France
- Developmental Brain Disorders Laboratory, Imagine Institute, Paris 75015, France
| | - Lydie Burglen
- Reference Center for Malformations and Congenital Diseases of the Cerebellum and Unit of Molecular Genetics, Department of Genetics, Trousseau Hospital, APHP Sorbonne University, Paris 75012, France
- Developmental Brain Disorders Laboratory, Imagine Institute, Paris 75015, France
| | - Hoda Tomoum
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Florence Demurger
- Department of Clinical Genetics, Vannes Hospital, Vannes 56017, France
| | - Christele Duborg
- Service de Génétique Moléculaire, CHU Rennes, Hôpital Sud, CLAD Ouest, Rennes 40770, France
| | - Shahyan Siddiqui
- Department of Neuroimaging and Interventional Radiology, STAR Institute of Neurosciences, STAR Hospitals, Hyderabad 500034, India
| | - Yao-Chang Tsan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan
| | - Zafar Ali
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, Swat, Khyber Pakhtunkhwa 19120, Pakistan
| | - Saadia Maryam Saadi
- Human Molecular Genetics Laboratory, NIBGE-PIEAS, Faisalabad 61010, Pakistan
| | - Shahid Mahmood Baig
- Faculty of Life Sciences, Health Services Academy, Islamabad 44000, Pakistan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Quasar Saleem Padiath
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
2
|
Maul-Newby HM, Halene S. Splicing the Difference: Harnessing the Complexity of the Transcriptome in Hematopoiesis. Exp Hematol 2024; 140:104655. [PMID: 39393608 PMCID: PMC11732257 DOI: 10.1016/j.exphem.2024.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Alternative splicing has long been recognized as a powerful tool to expand the diversity of the transcriptome and the proteome. The study of hematopoiesis, from hematopoietic stem cell maintenance and differentiation into committed progenitors to maturation into functional blood cells, has led the field of stem cell research and cellular differentiation for decades. The importance of aberrant splicing due to mutations in cis has been exemplified in thalassemias, resulting from aberrant expression of β-globin. The simultaneous development of increasingly sophisticated technologies, in particular the combination of multicolor flow cytometric cell sorting with bulk and single-cell sequencing, has provided sophisticated insights into the complex regulation of the blood system. The recognition that mutations in key splicing factors drive myeloid malignancies, in particular myelodysplastic syndromes, has galvanized research into alternative splicing in hematopoiesis and its diseases. In this review, we will update the audience on the exciting novel technologies, highlight alternative splicing events and their regulators with essential functions in hematopoiesis, and provide a high-level overview how splicing factor mutations contribute to hematologic malignancies.
Collapse
Affiliation(s)
- Hannah M Maul-Newby
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
3
|
Liu J, Ding C, Liu X, Kang Q. Cytoskeletal Protein 4.1R in Health and Diseases. Biomolecules 2024; 14:214. [PMID: 38397451 PMCID: PMC10887211 DOI: 10.3390/biom14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The protein 4.1R is an essential component of the erythrocyte membrane skeleton, serving as a key structural element and contributing to the regulation of the membrane's physical properties, including mechanical stability and deformability, through its interaction with spectrin-actin. Recent research has uncovered additional roles of 4.1R beyond its function as a linker between the plasma membrane and the membrane skeleton. It has been found to play a crucial role in various biological processes, such as cell fate determination, cell cycle regulation, cell proliferation, and cell motility. Additionally, 4.1R has been implicated in cancer, with numerous studies demonstrating its potential as a diagnostic and prognostic biomarker for tumors. In this review, we provide an updated overview of the gene and protein structure of 4.1R, as well as its cellular functions in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Jiaojiao Liu
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Cong Ding
- Children's Hospital Affiliated of Zhengzhou University, Zhengzhou 450018, China
| | - Xin Liu
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Qiaozhen Kang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Correlation of Genetic Variants and the Incidence, Prevalence and Mortality Rates of Acute Lymphoblastic Leukemia. J Pers Med 2022; 12:jpm12030370. [PMID: 35330370 PMCID: PMC8954641 DOI: 10.3390/jpm12030370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 11/26/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer during childhood, representing about 30–35% of cases. Its etiology is complex and not fully understood. ALL is influenced by genetic variants, and their frequencies (Fq) vary in different ethnic groups, which consequently could influence the epidemiology of this cancer worldwide. The aim of this study was to investigate the correlation between the genetic variants and their impacts on incidence (IC), mortality (MT), and prevalence (PV) rates of ALL in different world populations. Methods: Sixty variants were selected from the literature with Genome Wide Association studies (GWAS). Information regarding allele Fq was selected from the 1000 Genomes platform. Epidemiological data were taken from the Global Burden of disease visualisations (GBD) Compare website. Statistical analyses were calculated in RStudio v.3.5.1 software. Results: Four variants demonstrated significant results in correlations with epidemiological data for ALL. The PAX5 gene variant (rs2297105) had an indirect relationship with PV and IC of ALL, showing that an increased Fq of this variant is related to low rates of both. An increased Fq of rs915172 in EPB4IL2 gene was also correlated with a lower IC of ALL. The rs1048943 of the CYP1A1 gene and the rs3088440 polymorphism of the CDKN2A gene were shown to have a direct proportional relationship with MT rate, showing that an increased Fq of these variants correlates with a worse prognosis worldwide. Conclusion: Our study points out four important variants for understanding the IC, PV, and MT rates for ALL. The ascertainment of these data may help to choose molecular markers to investigate the susceptibility and prognosis of ALL.
Collapse
|
5
|
Park B, Park C. Kernel variable selection for multicategory support vector machines. J MULTIVARIATE ANAL 2021. [DOI: 10.1016/j.jmva.2021.104800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Yang Q, Liu J, Wang Z. 4.1N-Mediated Interactions and Functions in Nerve System and Cancer. Front Mol Biosci 2021; 8:711302. [PMID: 34589518 PMCID: PMC8473747 DOI: 10.3389/fmolb.2021.711302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/16/2021] [Indexed: 01/05/2023] Open
Abstract
Scaffolding protein 4.1N is a neuron-enriched 4.1 homologue. 4.1N contains three conserved domains, including the N-terminal 4.1-ezrin-radixin-moesin (FERM) domain, internal spectrin–actin–binding (SAB) domain, and C-terminal domain (CTD). Interspersed between the three domains are nonconserved domains, including U1, U2, and U3. The role of 4.1N was first reported in the nerve system. Then, extensive studies reported the role of 4.1N in cancers and other diseases. 4.1N performs numerous vital functions in signaling transduction by interacting, locating, supporting, and coordinating different partners and is involved in the molecular pathogenesis of various diseases. In this review, recent studies on the interactions between 4.1N and its contactors (including the α7AChr, IP3R1, GluR1/4, GluK1/2/3, mGluR8, KCC2, D2/3Rs, CASK, NuMA, PIKE, IP6K2, CAM 1/3, βII spectrin, flotillin-1, pp1, and 14-3-3) and the 4.1N-related biological functions in the nerve system and cancers are specifically and comprehensively discussed. This review provides critical detailed mechanistic insights into the role of 4.1N in disease relationships.
Collapse
Affiliation(s)
- Qin Yang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,School of Medical Laboratory, Shao Yang University, Shaoyang, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zi Wang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
7
|
Navvabi N, Kolikova P, Hosek P, Zitricky F, Navvabi A, Vycital O, Bruha J, Palek R, Rosendorf J, Liska V, Pitule P. Altered Expression of MBNL Family of Alternative Splicing Factors in Colorectal Cancer. Cancer Genomics Proteomics 2021; 18:295-306. [PMID: 33893082 DOI: 10.21873/cgp.20260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/AIM Colorectal cancer is currently the third leading cause of cancer-related deaths and recently, alternative splicing has risen as its important regulator and potential treatment target. In the present study, we analyzed gene expression of the MBNL family of regulators of alternative splicing in various stages of colorectal cancer development, together with the MBNL-target splicing events in FOXP1 and EPB41L3 genes and tumor-related CD44 variants. MATERIALS AND METHODS Samples of tumor tissue and non-malignant mucosa from 108 patients were collected. After RNA isolation and reverse transcription, the relative gene expression of a selected gene panel was tested by quantitative real-time PCR, followed by statistical analysis. RESULTS MBNL expression was decreased in tumor tissue compared to non-tumor mucosa. In addition, lower expression was observed for the variants of FOXP1 and EPB41L3, while higher expression in tumor tissue was detected both for total CD44 and its cancer-related variants 3 and 6. Transcript levels of the MBNL genes were not found to be related to any of the studied clinicopathological characteristics. Multiple significant associations were identified in the target gene panel, including higher transcript levels of FOXP1 and CD44v3 in patients with distant metastases and connections between recurrence-free survival and altered levels of FOXP1 and CD44v3. CONCLUSION Our results identified for the first-time deregulation of MBNL genes in colorectal cancer. Down-regulation of their transcripts in tumor tissue compared to matched non-tumor mucosa can lead to transition of alternative splicing patterns towards a less differentiated phenotype, which highlights the importance of alternative splicing regulation for tumor growth and propagation.
Collapse
Affiliation(s)
- Nazila Navvabi
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavla Kolikova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Petr Hosek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Frantisek Zitricky
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Azita Navvabi
- Biological Center, Faculty of Marine Sciences and Technologies in Bandar Abbas, Hormozgan University, Hormozgan, Iran
| | - Ondrej Vycital
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Bruha
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Richard Palek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jachym Rosendorf
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Vaclav Liska
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Pitule
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; .,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
8
|
Yuan X, Piao L, Wang L, Han X, Zhuang M, Liu Z. Pivotal roles of protein 4.1B/DAL‑1, a FERM‑domain containing protein, in tumor progression (Review). Int J Oncol 2019; 55:979-987. [PMID: 31545421 DOI: 10.3892/ijo.2019.4877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/04/2019] [Indexed: 11/06/2022] Open
Abstract
Protein 4.1B/DAL‑1, encoded by erythrocyte membrane protein band 4.1‑like 3 (EPB41L3), belongs to the protein 4.1 superfamily, a group of proteins that share a conserved four.one‑ezrin‑radixin‑moesin (FERM) domain. Protein 4.1B/DAL‑1 serves a crucial role in cytoskeletal organization and a number of processes through multiple interactions with membrane proteins via its FERM, spectrin‑actin‑binding and C‑terminal domains. A number of studies have indicated that a loss of EPB41L3 expression is commonly observed in lung cancer, breast cancer, esophageal squamous cell carcinoma and meningiomas. DNA methylation and a loss of heterozygosity have been reported to contribute to the downregulation of EPB41L3. To date, the biological functions of protein 4.1B/DAL‑1 in carcinogenesis remain unknown. The present review summarizes the current understanding of the role of protein 4.1B/DAL‑1 in cancer and highlights its potential as a cancer diagnostic and prognostic biomarker in cancer therapeutics.
Collapse
Affiliation(s)
- Xiaofeng Yuan
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Lianhua Piao
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, P.R. China
| | - Luhui Wang
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Xu Han
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Ming Zhuang
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Zhiwei Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
9
|
Wang Z, Zhang J, Ye M, Zhu M, Zhang B, Roy M, Liu J, An X. Tumor suppressor role of protein 4.1B/DAL-1. Cell Mol Life Sci 2014; 71:4815-30. [PMID: 25183197 PMCID: PMC11113756 DOI: 10.1007/s00018-014-1707-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 07/21/2014] [Accepted: 08/15/2014] [Indexed: 12/14/2022]
Abstract
Protein 4.1B/DAL-1 is a membrane skeletal protein that belongs to the protein 4.1 family. Protein 4.1B/DAL-1 is localized to sites of cell-cell contact and functions as an adapter protein, linking the plasma membrane to the cytoskeleton or associated cytoplasmic signaling effectors and facilitating their activities in various pathways. Protein 4.1B/DAL-1 is involved in various cytoskeleton-associated processes, such as cell motility and adhesion. Moreover, protein 4.1B/DAL-1 also plays a regulatory role in cell growth, differentiation, and the establishment of epithelial-like cell structures. Protein 4.1B/DAL-1 is normally expressed in multiple human tissues, but loss of its expression or prominent down-regulation of its expression is frequently observed in corresponding tumor tissues and tumor cell lines, suggesting that protein 4.1B/DAL-1 is involved in the molecular pathogenesis of these tumors and acts as a potential tumor suppressor. This review will focus on the structure of protein 4.1B/DAL-1, 4.1B/DAL-1-interacting molecules, 4.1B/DAL-1 inactivation and tumor progression, and anti-tumor activity of the 4.1B/DAL-1.
Collapse
Affiliation(s)
- Zi Wang
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Ji Zhang
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
- Department of Hematology, The First Affiliated Hospital, University of South China, Hengyang, 421001 China
| | - Mao Ye
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082 China
| | - Min Zhu
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Bin Zhang
- Department of Histology and Embryology, Xiangya School Medicine, Central South University, Changsha, 410083 China
| | - Mridul Roy
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
- State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, 310 E 67th Street, New York, 10065 USA
| |
Collapse
|
10
|
Kim SJ, Kim SY, Kim JH, Kim DJ. Effects of smoking cessation on gene expression in human leukocytes of chronic smoker. Psychiatry Investig 2014; 11:290-6. [PMID: 25110502 PMCID: PMC4124188 DOI: 10.4306/pi.2014.11.3.290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/25/2013] [Accepted: 10/30/2013] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE The risks of cigarette smoking concerning higher systemic disease mortality are lessened by smoking cessation. METHODS Microarray analysis compared the expression profiles of smokers who were successful and not successful at smoking cessation, with the goal of identifying genes that might serve as potential biomarkers or that might be valuable in elucidating distinct biological mechanisms. The mRNAs were isolated and compared from peripheral leukocytes of six smokers who were successful in cessation and six smokers who failed in smoking cessation. RESULTS Two hundred ninety nine genes displayed significantly different expression; 196 genes were up-regulated and 103 genes were down-regulated in the success group compared to the failure group. Twenty four of these genes were identified with biological processes including immunity, cytoskeleton and cell growth/cycle. Real-time PCR confirmed the differential gene expression. The mRNA levels of HEPACAM family member 2 (HEPACAM2) and tropomodulin 1 (TMOD1) were significantly more expressed in the success group, while the mRNA ubiquitin specific peptides 18 (USP18) were significantly less expressed in the success group compared to the failure group. CONCLUSION The results suggest that smoking cessation can modulate cell adhesion and immune response by regulating expression levels of genes, especially HEPACAM2, TMOD1 and USP18, which have an important relationship with smoking cessation.
Collapse
Affiliation(s)
- Soo-Jeong Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Su Young Kim
- Department of Pathology, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Jae Hwa Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Zhang J, Yang S, An C, Wang J, Yan H, Huang Y, Song J, Yin C, Baines AJ, Mohandas N, An X. Comprehensive characterization of protein 4.1 expression in epithelium of large intestine. Histochem Cell Biol 2014; 142:529-39. [PMID: 24912669 DOI: 10.1007/s00418-014-1224-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2014] [Indexed: 11/24/2022]
Abstract
The protein 4.1 family consists of four members, 4.1R, 4.1N, 4.1B and 4.1G, each encoded by a distinct gene. All 4.1 mRNAs undergo extensive alternative splicing. Functionally, they usually serve as adapters that link actin-based cytoskeleton to plasma membrane proteins. It has been reported that 4.1 proteins are expressed in most animal cell types and tissues including epithelial cells and epithelial tissues. However, the expression of 4.1 proteins in large intestine has not been well characterized. In the present study, we performed RT-PCR, western blot and immunohistochemistry analysis to characterize the transcripts, the protein expression and cellular localization of 4.1 proteins in the epithelia of mouse large intestine. We show that multiple transcripts derive from each gene, including eight 4.1R isoforms, four 4.1N isoforms, four 4.1B isoforms and six 4.1G isoforms. However, at the protein level, only one or two major bands were detected, implying that not all transcripts are translated and/or the proteins do not accumulate at detectable levels. Immunohistochemistry revealed that 4.1R, 4.1N and 4.1B are all expressed at the lateral membrane as well as cytoplasm of epithelial cells, suggesting a potentially redundant role of these proteins. Our findings not only provide new insights into the structure of protein 4.1 genes but also lay the foundation for future functional studies.
Collapse
Affiliation(s)
- Jingxin Zhang
- Department of Biophysics, Peking University Health Science Center, Xueyuan Road, Haidian District, Beijing, 100191, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Baines AJ, Lu HC, Bennett PM. The Protein 4.1 family: hub proteins in animals for organizing membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:605-19. [PMID: 23747363 DOI: 10.1016/j.bbamem.2013.05.030] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 01/10/2023]
Abstract
Proteins of the 4.1 family are characteristic of eumetazoan organisms. Invertebrates contain single 4.1 genes and the Drosophila model suggests that 4.1 is essential for animal life. Vertebrates have four paralogues, known as 4.1R, 4.1N, 4.1G and 4.1B, which are additionally duplicated in the ray-finned fish. Protein 4.1R was the first to be discovered: it is a major mammalian erythrocyte cytoskeletal protein, essential to the mechanochemical properties of red cell membranes because it promotes the interaction between spectrin and actin in the membrane cytoskeleton. 4.1R also binds certain phospholipids and is required for the stable cell surface accumulation of a number of erythrocyte transmembrane proteins that span multiple functional classes; these include cell adhesion molecules, transporters and a chemokine receptor. The vertebrate 4.1 proteins are expressed in most tissues, and they are required for the correct cell surface accumulation of a very wide variety of membrane proteins including G-Protein coupled receptors, voltage-gated and ligand-gated channels, as well as the classes identified in erythrocytes. Indeed, such large numbers of protein interactions have been mapped for mammalian 4.1 proteins, most especially 4.1R, that it appears that they can act as hubs for membrane protein organization. The range of critical interactions of 4.1 proteins is reflected in disease relationships that include hereditary anaemias, tumour suppression, control of heartbeat and nervous system function. The 4.1 proteins are defined by their domain structure: apart from the spectrin/actin-binding domain they have FERM and FERM-adjacent domains and a unique C-terminal domain. Both the FERM and C-terminal domains can bind transmembrane proteins, thus they have the potential to be cross-linkers for membrane proteins. The activity of the FERM domain is subject to multiple modes of regulation via binding of regulatory ligands, phosphorylation of the FERM associated domain and differential mRNA splicing. Finally, the spectrum of interactions of the 4.1 proteins overlaps with that of another membrane-cytoskeleton linker, ankyrin. Both ankyrin and 4.1 link to the actin cytoskeleton via spectrin, and we hypothesize that differential regulation of 4.1 proteins and ankyrins allows highly selective control of cell surface protein accumulation and, hence, function. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé
Collapse
Affiliation(s)
| | - Hui-Chun Lu
- Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Pauline M Bennett
- Randall Division of Cell and Molecular Biophysics, King's College London, UK.
| |
Collapse
|
13
|
Wang J, Song J, An C, Dong W, Zhang J, Yin C, Hale J, Baines AJ, Mohandas N, An X. A 130-kDa protein 4.1B regulates cell adhesion, spreading, and migration of mouse embryo fibroblasts by influencing actin cytoskeleton organization. J Biol Chem 2013; 289:5925-37. [PMID: 24381168 DOI: 10.1074/jbc.m113.516617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protein 4.1B is a member of protein 4.1 family, adaptor proteins at the interface of membranes and the cytoskeleton. It is expressed in most mammalian tissues and is known to be required in formation of nervous and cardiac systems; it is also a tumor suppressor with a role in metastasis. Here, we explore functions of 4.1B using primary mouse embryonic fibroblasts (MEF) derived from wild type and 4.1B knock-out mice. MEF cells express two 4.1B isoforms: 130 and 60-kDa. 130-kDa 4.1B was absent from 4.1B knock-out MEF cells, but 60-kDa 4.1B remained, suggesting incomplete knock-out. Although the 130-kDa isoform was predominantly located at the plasma membrane, the 60-kDa isoform was enriched in nuclei. 130-kDa-deficient 4.1B MEF cells exhibited impaired cell adhesion, spreading, and migration; they also failed to form actin stress fibers. Impaired cell spreading and stress fiber formation were rescued by re-expression of the 130-kDa 4.1B but not the 60-kDa 4.1B. Our findings document novel, isoform-selective roles for 130-kDa 4.1B in adhesion, spreading, and migration of MEF cells by affecting actin organization, giving new insight into 4.1B functions in normal tissues as well as its role in cancer.
Collapse
Affiliation(s)
- Jie Wang
- From the Department of Biophysics, Peking University Health Science Center, Xueyuan Road, Haidian District, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Einheber S, Meng X, Rubin M, Lam I, Mohandas N, An X, Shrager P, Kissil J, Maurel P, Salzer JL. The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons. Glia 2012; 61:240-53. [PMID: 23109359 DOI: 10.1002/glia.22430] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/10/2012] [Indexed: 12/13/2022]
Abstract
Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e., nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels by Schwann cells, which also robustly express 4.1G. Immunofluorescence and immuno-EM demonstrates 4.1B is expressed subjacent to the axon membrane in all domains except the nodes. Mice deficient in 4.1B have preserved paranodes, based on marker staining and EM in contrast to the juxtaparanodes, which are substantially affected in both the PNS and CNS. The juxtaparanodal defect is evident in developing and adult nerves and is neuron-autonomous based on myelinating cocultures in which wt Schwann cells were grown with 4.1B-deficient neurons. Despite the juxtaparanodal defect, nerve conduction velocity is unaffected. Preservation of paranodal markers in 4.1B deficient mice is associated with, but not dependent on an increase of 4.1R at the axonal paranodes. Loss of 4.1B in the axon is also associated with reduced levels of the internodal proteins, Necl-1 and Necl-2, and of alpha-2 spectrin. Mutant nerves are modestly hypermyelinated and have increased numbers of Schmidt-Lanterman incisures, increased expression of 4.1G, and express a residual, truncated isoform of 4.1B. These results demonstrate that 4.1B is a key cytoskeletal scaffold for axonal adhesion molecules expressed in the juxtaparanodal and internodal domains that unexpectedly regulates myelin sheath thickness.
Collapse
Affiliation(s)
- Steven Einheber
- School of Health Sciences, Hunter College, City University of New York, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Need A, McEvoy J, Gennarelli M, Heinzen E, Ge D, Maia J, Shianna K, He M, Cirulli E, Gumbs C, Zhao Q, Campbell C, Hong L, Rosenquist P, Putkonen A, Hallikainen T, Repo-Tiihonen E, Tiihonen J, Levy D, Meltzer H, Goldstein D. Exome sequencing followed by large-scale genotyping suggests a limited role for moderately rare risk factors of strong effect in schizophrenia. Am J Hum Genet 2012; 91:303-12. [PMID: 22863191 PMCID: PMC3415532 DOI: 10.1016/j.ajhg.2012.06.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/20/2012] [Accepted: 06/22/2012] [Indexed: 01/28/2023] Open
Abstract
Schizophrenia is a severe psychiatric disorder with strong heritability and marked heterogeneity in symptoms, course, and treatment response. There is strong interest in identifying genetic risk factors that can help to elucidate the pathophysiology and that might result in the development of improved treatments. Linkage and genome-wide association studies (GWASs) suggest that the genetic basis of schizophrenia is heterogeneous. However, it remains unclear whether the underlying genetic variants are mostly moderately rare and can be identified by the genotyping of variants observed in sequenced cases in large follow-up cohorts or whether they will typically be much rarer and therefore more effectively identified by gene-based methods that seek to combine candidate variants. Here, we consider 166 persons who have schizophrenia or schizoaffective disorder and who have had either their genomes or their exomes sequenced to high coverage. From these data, we selected 5,155 variants that were further evaluated in an independent cohort of 2,617 cases and 1,800 controls. No single variant showed a study-wide significant association in the initial or follow-up cohorts. However, we identified a number of case-specific variants, some of which might be real risk factors for schizophrenia, and these can be readily interrogated in other data sets. Our results indicate that schizophrenia risk is unlikely to be predominantly influenced by variants just outside the range detectable by GWASs. Rather, multiple rarer genetic variants must contribute substantially to the predisposition to schizophrenia, suggesting that both very large sample sizes and gene-based association tests will be required for securely identifying genetic risk factors.
Collapse
Affiliation(s)
- Anna C. Need
- Center for Human Genome Variation, Duke University School of Medicine, Durham, NC 27708, USA
- Department of Medicine, Section of Medical Genetics, Duke University, Durham, NC 27708, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph P. McEvoy
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Massimo Gennarelli
- Genetic Unit, Centro San Giovanni di Dio–Fatebenefratelli, Istituto di Ricovero e Cura a Carattere Scientifico, 25123 Brescia, Italy
- Department of Biomedical Sciences and Biotechnologies, Biology and Genetic Division, University School of Medicine, 25121 Brescia, Italy
| | - Erin L. Heinzen
- Center for Human Genome Variation, Duke University School of Medicine, Durham, NC 27708, USA
- Department of Medicine, Section of Medical Genetics, Duke University, Durham, NC 27708, USA
| | - Dongliang Ge
- Center for Human Genome Variation, Duke University School of Medicine, Durham, NC 27708, USA
| | - Jessica M. Maia
- Center for Human Genome Variation, Duke University School of Medicine, Durham, NC 27708, USA
| | - Kevin V. Shianna
- Center for Human Genome Variation, Duke University School of Medicine, Durham, NC 27708, USA
- Department of Medicine, Section of Medical Genetics, Duke University, Durham, NC 27708, USA
| | - Min He
- Center for Human Genome Variation, Duke University School of Medicine, Durham, NC 27708, USA
| | - Elizabeth T. Cirulli
- Center for Human Genome Variation, Duke University School of Medicine, Durham, NC 27708, USA
| | - Curtis E. Gumbs
- Center for Human Genome Variation, Duke University School of Medicine, Durham, NC 27708, USA
| | - Qian Zhao
- Center for Human Genome Variation, Duke University School of Medicine, Durham, NC 27708, USA
| | - C. Ryan Campbell
- Center for Human Genome Variation, Duke University School of Medicine, Durham, NC 27708, USA
| | - Linda Hong
- Center for Human Genome Variation, Duke University School of Medicine, Durham, NC 27708, USA
| | - Peter Rosenquist
- Department of Psychiatry and Behavioral Medicine, Wake Forest University, North Carolina Baptist Hospital, Winston-Salem, NC 27157, USA
| | - Anu Putkonen
- University of Eastern Finland, Department of Forensic Psychiatry, Niuvanniemi Hospital, FI-70240 Kuopio, Finland
| | - Tero Hallikainen
- University of Eastern Finland, Department of Forensic Psychiatry, Niuvanniemi Hospital, FI-70240 Kuopio, Finland
| | - Eila Repo-Tiihonen
- University of Eastern Finland, Department of Forensic Psychiatry, Niuvanniemi Hospital, FI-70240 Kuopio, Finland
| | - Jari Tiihonen
- University of Eastern Finland, Department of Forensic Psychiatry, Niuvanniemi Hospital, FI-70240 Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Deborah L. Levy
- Psychology Research Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - Herbert Y. Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - David B. Goldstein
- Center for Human Genome Variation, Duke University School of Medicine, Durham, NC 27708, USA
- Department of Molecular Genetics of Microbiology, Duke University School of Medicine, Durham, NC 27708, USA
| |
Collapse
|
16
|
Pinder JC, Taylor-Harris PM, Bennett PM, Carter E, Hayes NVL, King MDA, Holt MR, Maggs AM, Gascard P, Baines AJ. Isoforms of protein 4.1 are differentially distributed in heart muscle cells: relation of 4.1R and 4.1G to components of the Ca2+ homeostasis system. Exp Cell Res 2012; 318:1467-79. [PMID: 22429617 DOI: 10.1016/j.yexcr.2012.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/01/2012] [Accepted: 03/02/2012] [Indexed: 11/30/2022]
Abstract
The 4.1 proteins are cytoskeletal adaptor proteins that are linked to the control of mechanical stability of certain membranes and to the cellular accumulation and cell surface display of diverse transmembrane proteins. One of the four mammalian 4.1 proteins, 4.1R (80 kDa/120 kDa isoforms), has recently been shown to be required for the normal operation of several ion transporters in the heart (Stagg MA et al. Circ Res, 2008; 103: 855-863). The other three (4.1G, 4.1N and 4.1B) are largely uncharacterised in the heart. Here, we use specific antibodies to characterise their expression, distribution and novel activities in the left ventricle. We detected 4.1R, 4.1G and 4.1N by immunofluorescence and immunoblotting, but not 4.1B. Only one splice variant of 4.1N and 4.1G was seen whereas there are several forms of 4.1R. 4.1N, like 4.1R, was present in intercalated discs, but unlike 4.1R, it was not localised at the lateral plasma membrane. Both 4.1R and 4.1N were in internal structures that, at the level of resolution of the light microscope, were close to the Z-disc (possibly T-tubules). 4.1G was also in intracellular structures, some of which were coincident with sarcoplasmic reticulum. 4.1G existed in an immunoprecipitable complex with spectrin and SERCA2. 80 kDa 4.1R was present in subcellular fractions enriched in intercalated discs, in a complex resistant to solubilization under non-denaturing conditions. At the intercalated disc 4.1R does not colocalise with the adherens junction protein, β-catenin, but does overlap with the other plasma membrane signalling proteins, the Na/K-ATPase and the Na/Ca exchanger NCX1. We conclude that isoforms of 4.1 proteins are differentially compartmentalised in the heart, and that they form specific complexes with proteins central to cardiomyocyte Ca(2+) metabolism.
Collapse
Affiliation(s)
- Jennifer C Pinder
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Comprehensive characterization of expression patterns of protein 4.1 family members in mouse adrenal gland: implications for functions. Histochem Cell Biol 2010; 134:411-20. [PMID: 20890708 DOI: 10.1007/s00418-010-0749-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2010] [Indexed: 01/22/2023]
Abstract
The members of the protein 4.1 family, 4.1R, 4.1G, 4.1N, and 4.1B, are encoded by four genes, all of which undergo complex alternative splicing. It is well established that 4.1R, the prototypical member of the family, serves as an adapter that links the spectrin-actin based cytoskeleton to the plasma membrane in red cells. It is required for mechanical resilience of the membrane, and it ensures the cell surface accumulation of selected membrane proteins. However, the function of 4.1 proteins outside erythrocytes remains under-explored, especially in endocrine tissues. Transcripts of all 4.1 homologs have previously been documented to be abundantly expressed in adrenal gland. In order to begin to decipher the function of 4.1 proteins in adrenal gland, we performed a detailed characterization of the expression pattern of various 4.1 proteins and their cellular localization. We show that 4.1R (~80 and ~135 kDa) splice forms are expressed on the membrane of all cells, while a ~160 kDa 4.1G splice form is distributed in the cytoplasm and the membrane of zona glomerulosa and of medullary cells. Two 4.1N splice forms, ~135 and ~95 kDa, are present in the peri-nuclear region of both zona glomerulosa and medullary cells, while a single ~130 kDa 4.1B splice form, is detected in all layers of adrenal gland in both the cytoplasm and the membrane. The characterization of distinct splice forms of various 4.1 proteins with diverse cellular and sub-cellular localization indicates multiple functions for this family of proteins in endocrine functions of adrenal gland.
Collapse
|
18
|
Baines AJ. Evolution of the spectrin-based membrane skeleton. Transfus Clin Biol 2010; 17:95-103. [PMID: 20688550 DOI: 10.1016/j.tracli.2010.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 06/23/2010] [Indexed: 12/16/2022]
Abstract
A group of four proteins - spectrin, ankyrin, 4.1 and adducin - evolved with the metazoa. These membrane-cytoskeletal proteins cross-link actin on the cytoplasmic face of plasma membranes and link a variety of transmembrane proteins to the cytoskeleton. In this paper, the evolution of these proteins is analysed. Genomics indicate that spectrin was the first to appear, since the genome of the choanoflagellate Monosiga brevicolis contains genes for alpha, beta and betaH spectrin. This organism represents a lineage of free-living and colonial protists from which the metazoa are considered to have diverged. This indicates that spectrin emerged in evolution before the animals. Simple animals such as the placozoan Trichoplax adherens also contain recognizable precursors of 4.1, ankyrin and adducin, but these could probably not bind spectrin. Ankyrin and adducin seem to have acquired spectrin-binding activity with the appearance of tissues since they appear to have largely the same domain structure in all eumetazoa. 4.1 was adapted more recently, with the emergence of the vertebrates, to bind spectrin and promote its interaction with actin. A simple hypothesis is that spectrin was prerequisite (but not sufficient) for animal life; that spectrin interaction with ankyrin and adducin was required for evolution of major tissues; and that 4.1 acquired a spectrin-actin binding activity as animal size increased with the appearance of vertebrates. The spectrin/ankyrin/adducin/4.1 complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.
Collapse
Affiliation(s)
- A J Baines
- School of Biosciences and Centre for Biomedical Informatics, University of Kent, CT2 7NJ, Canterbury, United Kingdom.
| |
Collapse
|
19
|
Rose M, Dütting E, Enz R. Band 4.1 proteins are expressed in the retina and interact with both isoforms of the metabotropic glutamate receptor type 8. J Neurochem 2010; 105:2375-87. [PMID: 18373558 DOI: 10.1111/j.1471-4159.2008.05331.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The function of the CNS depends on the correct regulation of neurotransmitter receptors by interacting proteins. Here, we screened a retinal cDNA library for proteins interacting with the intracellular C-terminus of the metabotropic glutamate receptor isoform 8a (mGluR8a). The band 4.1B protein binds to the C-termini of mGluR8a and mGluR8b, co-localizes with these glutamate receptors in transfected mammalian cells, facilitates their cell surface expression and inhibits the mGluR8 mediated reduction of intracellular cAMP concentrations. In contrast, no interaction with 4.1B was observed for other mGluRs tested. Amino acids encoded by exons 19 and 20 of 4.1B and a stretch of four basic amino acids present in the mGluR8 C-termini mediate the protein interaction. Besides binding to 4.1B, mGluR8 isoforms interact with 4.1G, 4.1N, and 4.1R. Because band 4.1 transcripts undergo extensive alternative splicing, we analyzed the splicing pattern of interacting regions and detected a 4.1B isoform expressed specifically in the retina. Within this tissue, mGluR8 and 4.1B, 4.1G, 4.1N, and 4.1R show a comparable distribution, being expressed in both synaptic layers and in somata of the ganglion cell layer. In summary, our studies identified band 4.1 proteins as new players for the mGluR8 mediated signal transduction.
Collapse
Affiliation(s)
- Melanie Rose
- Institut für Biochemie (Emil-Fischer-Zentrum), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
20
|
Baines AJ. The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. PROTOPLASMA 2010; 244:99-131. [PMID: 20668894 DOI: 10.1007/s00709-010-0181-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/05/2010] [Indexed: 05/29/2023]
Abstract
The cells in animals face unique demands beyond those encountered by their unicellular eukaryotic ancestors. For example, the forces engendered by the movement of animals places stresses on membranes of a different nature than those confronting free-living cells. The integration of cells into tissues, as well as the integration of tissue function into whole animal physiology, requires specialisation of membrane domains and the formation of signalling complexes. With the evolution of mammals, the specialisation of cell types has been taken to an extreme with the advent of the non-nucleated mammalian red blood cell. These and other adaptations to animal life seem to require four proteins--spectrin, ankyrin, 4.1 and adducin--which emerged during eumetazoan evolution. Spectrin, an actin cross-linking protein, was probably the earliest of these, with ankyrin, adducin and 4.1 only appearing as tissues evolved. The interaction of spectrin with ankyrin is probably a prerequisite for the formation of tissues; only with the advent of vertebrates did 4.1 acquires the ability to bind spectrin and actin. The latter activity seems to allow the spectrin complex to regulate the cell surface accumulation of a wide variety of proteins. Functionally, the spectrin-ankyrin-4.1-adducin complex is implicated in the formation of apical and basolateral domains, in aspects of membrane trafficking, in assembly of certain signalling and cell adhesion complexes and in providing stability to otherwise mechanically fragile cell membranes. Defects in this complex are manifest in a variety of hereditary diseases, including deafness, cardiac arrhythmia, spinocerebellar ataxia, as well as hereditary haemolytic anaemias. Some of these proteins also function as tumor suppressors. The spectrin-ankyrin-4.1-adducin complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.
Collapse
Affiliation(s)
- Anthony J Baines
- School of Biosciences and Centre for Biomedical Informatics, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
21
|
Terada N, Ohno N, Saitoh S, Saitoh Y, Komada M, Kubota H, Ohno S. Involvement of a membrane skeletal protein, 4.1G, for Sertoli/germ cell interaction. Reproduction 2010; 139:883-92. [DOI: 10.1530/rep-10-0005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We previously reported that a membrane skeletal protein, 4.1G (also known as EPB41L2), is immunolocalized in mouse seminiferous tubules. In this study, the 4.1G immunolocalizaiton was precisely evaluated at various stages of the mouse seminiferous epithelial cycle with ‘in vivocryotechnique’ and also with pre-embedding immunoelectron microscopy in testicular tissues whose ultrastructures were well preserved with glycerol treatment before cryosectioning. In addition, 4.1G-deficient mice were produced, and the morphology of their seminiferous tubules was also evaluated. The 4.1G immunolocalization was different among stages, indicating that it was not only along cell membranes of Sertoli cells, but also those of spermatogonia and early spermatocytes. To confirm the 4.1G immunolocalization in germ cells,in vitroculture of spermatogonial stem cells (SSCs) was used for immunocytochemistry and immunoblotting analysis. In the cultured SSCs, 4.1G was clearly expressed and immunolocalized along cell membranes, especially at mutual attaching regions. In testicular tissues, cell adhesion molecule-1 (CADM1), an intramembranous adhesion molecule, was colocalized on basal parts of the seminiferous tubules and immunoprecipitated with 4.1G in the tissue lysate. Interestingly, in the 4.1G-deficient mice, histological manifestation of the seminiferous tubules was not different from that in wild-type mice, and the CADM1 was also immunolocalized in the same pattern as that in the wild-type. Moreover, the 4.1G-deficient male mice were fertile. These results were probably due to functional redundancy of unknown membrane skeletal molecules in germ cells. Thus, a novel membrane skeletal protein, 4.1G, was found in germ cells, and considering its interaction with CADM family, it probably has roles in attachment of both Sertoli–germ and germ–germ cells.
Collapse
|
22
|
Han S, Lee KM, Park SK, Lee JE, Ahn HS, Shin HY, Kang HJ, Koo HH, Seo JJ, Choi JE, Ahn YO, Kang D. Genome-wide association study of childhood acute lymphoblastic leukemia in Korea. Leuk Res 2010; 34:1271-4. [PMID: 20189245 DOI: 10.1016/j.leukres.2010.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/20/2010] [Accepted: 02/01/2010] [Indexed: 02/01/2023]
Abstract
We conducted a genome-wide association study of childhood acute lymphoblastic leukemia (ALL) in a case-control study conducted in Korea. Incident childhood ALL cases (n=50) and non-cancer controls (n=50) frequency-matched to cases by age and sex, recruited from three teaching hospitals in Seoul between 2003 and 2008, were genotyped using Affymetrix SNP Array 6.0 platform. ALL risks were estimated as odds ratios (ORs) and 95% confidence intervals (CIs) adjusted for age and birth weight. The false discovery rate (FDR) was used for adjusting multiple tests. Of these 1 million SNPs, six SNPs in 4 genes (HAO1 rs6140264, EPB41L2 rs9388856, rs9388857, rs1360756, C2orf3 12105972, MAN2A1 rs3776932) were strongly associated with childhood ALL risk (P(dominant)<or=0.0001 and P(trend)<0.006). These SNPs remained significant after FDR adjustment (FDR value <0.2). Our genome-wide association study in Korea children identified a few genetic variations as potential susceptibility markers for ALL, warranting further replication studies among various ethnic groups.
Collapse
Affiliation(s)
- Sohee Han
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
de Tayrac M, Lê S, Aubry M, Mosser J, Husson F. Simultaneous analysis of distinct Omics data sets with integration of biological knowledge: Multiple Factor Analysis approach. BMC Genomics 2009; 10:32. [PMID: 19154582 PMCID: PMC2636827 DOI: 10.1186/1471-2164-10-32] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 01/20/2009] [Indexed: 02/04/2023] Open
Abstract
Background Genomic analysis will greatly benefit from considering in a global way various sources of molecular data with the related biological knowledge. It is thus of great importance to provide useful integrative approaches dedicated to ease the interpretation of microarray data. Results Here, we introduce a data-mining approach, Multiple Factor Analysis (MFA), to combine multiple data sets and to add formalized knowledge. MFA is used to jointly analyse the structure emerging from genomic and transcriptomic data sets. The common structures are underlined and graphical outputs are provided such that biological meaning becomes easily retrievable. Gene Ontology terms are used to build gene modules that are superimposed on the experimentally interpreted plots. Functional interpretations are then supported by a step-by-step sequence of graphical representations. Conclusion When applied to genomic and transcriptomic data and associated Gene Ontology annotations, our method prioritize the biological processes linked to the experimental settings. Furthermore, it reduces the time and effort to analyze large amounts of 'Omics' data.
Collapse
Affiliation(s)
- Marie de Tayrac
- CNRS UMR 6061, Université de Rennes 1, IFR 140, Faculté de Médecine, CS 34317, 35043 Rennes, France.
| | | | | | | | | |
Collapse
|
24
|
Ohno N, Terada N, Komada M, Saitoh S, Costantini F, Pace V, Germann PG, Weber K, Yamakawa H, Ohara O, Ohno S. Dispensable role of protein 4.1B/DAL-1 in rodent adrenal medulla regarding generation of pheochromocytoma and plasmalemmal localization of TSLC1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:506-15. [PMID: 19321127 DOI: 10.1016/j.bbamcr.2009.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 12/06/2008] [Accepted: 01/06/2009] [Indexed: 02/07/2023]
Abstract
Protein 4.1B is a membrane skeletal protein expressed in various organs, and is associated with tumor suppressor in lung cancer-1 (TSLC1) in vitro. Although involvement of 4.1B in the intercellular junctions and tumor-suppression was suggested, some controversial results posed questions to the general tumor-suppressive function of 4.1B and its relation to TSLC1 in vivo. In this study, the expression of 4.1B and its interaction with TSLC1 were examined in rodent adrenal gland, and the involvement of 4.1B in tumorigenesis and the effect of 4.1B deficiency on TSLC1 distribution were also investigated using rodent pheochromocytoma and 4.1B-knockout mice. Although plasmalemmal immunolocalization of 4.1B was shown in chromaffin cells of rodent adrenal medulla, expression of 4.1B was maintained in developed pheochromocytoma, and morphological abnormality or pheochromocytoma generation could not be found in 4.1B-deficient mice. Furthermore, molecular interaction and colocalization of 4.1B and TSLC1 were observed in mouse adrenal gland, but the immunolocalization of TSLC1 along chromaffin cell membranes was not affected in the 4.1B-deficient mice. These results suggest that the function of 4.1B as tumor suppressor might significantly differ among organs and species, and that plasmalemmal retention of TSLC1 would be maintained by molecules other than 4.1B interacting in rodent chromaffin cells.
Collapse
Affiliation(s)
- Nobuhiko Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
A novel locus for autosomal recessive primary torsion dystonia (DYT17) maps to 20p11.22–q13.12. Neurogenetics 2008; 9:287-93. [PMID: 18688663 DOI: 10.1007/s10048-008-0142-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 07/22/2008] [Indexed: 12/29/2022]
|
26
|
Krauss SW, Spence JR, Bahmanyar S, Barth AIM, Go MM, Czerwinski D, Meyer AJ. Downregulation of protein 4.1R, a mature centriole protein, disrupts centrosomes, alters cell cycle progression, and perturbs mitotic spindles and anaphase. Mol Cell Biol 2008; 28:2283-94. [PMID: 18212055 PMCID: PMC2268423 DOI: 10.1128/mcb.02021-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 01/08/2008] [Indexed: 01/11/2023] Open
Abstract
Centrosomes nucleate and organize interphase microtubules and are instrumental in mitotic bipolar spindle assembly, ensuring orderly cell cycle progression with accurate chromosome segregation. We report that the multifunctional structural protein 4.1R localizes at centrosomes to distal/subdistal regions of mature centrioles in a cell cycle-dependent pattern. Significantly, 4.1R-specific depletion mediated by RNA interference perturbs subdistal appendage proteins ninein and outer dense fiber 2/cenexin at mature centrosomes and concomitantly reduces interphase microtubule anchoring and organization. 4.1R depletion causes G(1) accumulation in p53-proficient cells, similar to depletion of many other proteins that compromise centrosome integrity. In p53-deficient cells, 4.1R depletion delays S phase, but aberrant ninein distribution is not dependent on the S-phase delay. In 4.1R-depleted mitotic cells, efficient centrosome separation is reduced, resulting in monopolar spindle formation. Multipolar spindles and bipolar spindles with misaligned chromatin are also induced by 4.1R depletion. Notably, all types of defective spindles have mislocalized NuMA (nuclear mitotic apparatus protein), a 4.1R binding partner essential for spindle pole focusing. These disruptions contribute to lagging chromosomes and aberrant microtubule bridges during anaphase/telophase. Our data provide functional evidence that 4.1R makes crucial contributions to the structural integrity of centrosomes and mitotic spindles which normally enable mitosis and anaphase to proceed with the coordinated precision required to avoid pathological events.
Collapse
Affiliation(s)
- Sharon Wald Krauss
- Department of Cell Biology and Imaging, University of California-LBNL, 1 Cyclotron Road, MS 74-157, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Intrasplicing coordinates alternative first exons with alternative splicing in the protein 4.1R gene. EMBO J 2007; 27:122-31. [PMID: 18079699 DOI: 10.1038/sj.emboj.7601957] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 11/19/2007] [Indexed: 11/08/2022] Open
Abstract
In the protein 4.1R gene, alternative first exons splice differentially to alternative 3' splice sites far downstream in exon 2'/2 (E2'/2). We describe a novel intrasplicing mechanism by which exon 1A (E1A) splices exclusively to the distal E2'/2 acceptor via two nested splicing reactions regulated by novel properties of exon 1B (E1B). E1B behaves as an exon in the first step, using its consensus 5' donor to splice to the proximal E2'/2 acceptor. A long region of downstream intron is excised, juxtaposing E1B with E2'/2 to generate a new composite acceptor containing the E1B branchpoint/pyrimidine tract and E2 distal 3' AG-dinucleotide. Next, the upstream E1A splices over E1B to this distal acceptor, excising the remaining intron plus E1B and E2' to form mature E1A/E2 product. We mapped branchpoints for both intrasplicing reactions and demonstrated that mutation of the E1B 5' splice site or branchpoint abrogates intrasplicing. In the 4.1R gene, intrasplicing ultimately determines N-terminal protein structure and function. More generally, intrasplicing represents a new mechanism by which alternative promoters can be coordinated with downstream alternative splicing.
Collapse
|
28
|
Gosens I, Sessa A, den Hollander AI, Letteboer SJF, Belloni V, Arends ML, Le Bivic A, Cremers FPM, Broccoli V, Roepman R. FERM protein EPB41L5 is a novel member of the mammalian CRB-MPP5 polarity complex. Exp Cell Res 2007; 313:3959-70. [PMID: 17920587 DOI: 10.1016/j.yexcr.2007.08.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 08/19/2007] [Accepted: 08/23/2007] [Indexed: 01/02/2023]
Abstract
Cell polarity is induced and maintained by separation of the apical and basolateral domains through specialized cell-cell junctions. The Crumbs protein and its binding partners are involved in formation and stabilization of adherens junctions. In this study, we describe a novel component of the mammalian Crumbs complex, the FERM domain protein EPB41L5, which associates with the intracellular domains of all three Crumbs homologs through its FERM domain. Surprisingly, the same FERM domain is involved in binding to the HOOK domain of MPP5/PALS1, a previously identified interactor of Crumbs. Co-expression and co-localization studies suggested that in several epithelial derived tissues Epb4.1l5 interacts with at least one Crumbs homolog, and with Mpp5. Although at early embryonic stages Epb4.1l5 is found at the basolateral membrane compartment, in adult tissues it co-localizes at the apical domain with Crumbs proteins and Mpp5. Overexpression of Epb4.1l5 in polarized MDCK cells affects tightness of cell junctions and results in disorganization of the tight junction markers ZO-1 and PATJ. Our results emphasize the importance of a conserved Crumbs-MPP5-EPB41L5 polarity complex in mammals.
Collapse
Affiliation(s)
- Ilse Gosens
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ule J, Ule A, Spencer J, Williams A, Hu JS, Cline M, Wang H, Clark T, Fraser C, Ruggiu M, Zeeberg BR, Kane D, Weinstein JN, Blume J, Darnell RB. Nova regulates brain-specific splicing to shape the synapse. Nat Genet 2005; 37:844-52. [PMID: 16041372 DOI: 10.1038/ng1610] [Citation(s) in RCA: 395] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 06/17/2005] [Indexed: 01/27/2023]
Abstract
Alternative RNA splicing greatly increases proteome diversity and may thereby contribute to tissue-specific functions. We carried out genome-wide quantitative analysis of alternative splicing using a custom Affymetrix microarray to assess the role of the neuronal splicing factor Nova in the brain. We used a stringent algorithm to identify 591 exons that were differentially spliced in the brain relative to immune tissues, and 6.6% of these showed major splicing defects in the neocortex of Nova2-/- mice. We tested 49 exons with the largest predicted Nova-dependent splicing changes and validated all 49 by RT-PCR. We analyzed the encoded proteins and found that all those with defined brain functions acted in the synapse (34 of 40, including neurotransmitter receptors, cation channels, adhesion and scaffold proteins) or in axon guidance (8 of 40). Moreover, of the 35 proteins with known interaction partners, 74% (26) interact with each other. Validating a large set of Nova RNA targets has led us to identify a multi-tiered network in which Nova regulates the exon content of RNAs encoding proteins that interact in the synapse.
Collapse
Affiliation(s)
- Jernej Ule
- Howard Hughes Medical Institute and Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Taylor-Harris PM, Keating LA, Maggs AM, Phillips GW, Birks EJ, Franklin RCG, Yacoub MH, Baines AJ, Pinder JC. Cardiac muscle cell cytoskeletal protein 4.1: Analysis of transcripts and subcellular location?relevance to membrane integrity, microstructure, and possible role in heart failure. Mamm Genome 2005; 16:137-51. [PMID: 15834631 DOI: 10.1007/s00335-004-2436-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 10/26/2004] [Indexed: 11/27/2022]
Abstract
The spectrin-based cytoskeleton assembly has emerged as a major player in heart functioning; however, cardiac protein 4.1, a key constituent, is uncharacterized. Protein 4.1 evolved to protect cell membranes against mechanical stresses and to organize membrane microstructure. 4.1 Proteins are multifunctional and, among other activities, link integral/signaling proteins on the plasma and internal membranes with the spectrin-based cytoskeleton. Four genes, EPB41, EPB41L1, EPB41L2, and EPB41L3 encode proteins 4.1R, 4.1N, 4.1G, and 4.1B, respectively. All are extensively spliced. Different isoforms are expressed according to tissue and developmental state, individual function being controlled through inclusion/exclusion of interactive domains. We have defined mouse and human cardiac 4.1 transcripts; other than 4. 1B in humans, all genes show activity. Cardiac transcripts constitutively include conserved FERM and C-terminal domains; both interact with membrane-bound signaling/transport/cell adhesion molecules. Variable splicing within and adjacent to the central spectrin/actin-binding domain enables regulation of cytoskeleton-binding activity. A novel heart-specific exon occurs in human 4.1G, but not in mouse. Immunofluorescence reveals 4.1 staining within mouse cardiomyocytes; thus, both at the plasma membrane and, interdigitated with sarcomeric myosin, across myofibrils in regions close to the sarcoplasmic reticulum. These are all regions to which spectrin locates. 4.1R in human heart shows similar distribution; however, there is limited plasma membrane staining. We conclude that cardiac 4.1s are highly regulated in their ability to crosslink plasma/integral cell membranes with the spectrin-actin cytoskeleton. We speculate that over the repetitive cycles of heart muscle contraction and relaxation, 4.1s are likely to locate, support, and coordinate functioning of key membrane-bound macromolecular assemblies.
Collapse
Affiliation(s)
- Pamela M Taylor-Harris
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Minovitsky S, Gee SL, Schokrpur S, Dubchak I, Conboy JG. The splicing regulatory element, UGCAUG, is phylogenetically and spatially conserved in introns that flank tissue-specific alternative exons. Nucleic Acids Res 2005; 33:714-24. [PMID: 15691898 PMCID: PMC548355 DOI: 10.1093/nar/gki210] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Previous studies have identified UGCAUG as an intron splicing enhancer that is frequently located adjacent to tissue-specific alternative exons in the human genome. Here, we show that UGCAUG is phylogenetically and spatially conserved in introns that flank brain-enriched alternative exons from fish to man. Analysis of sequence from the mouse, rat, dog, chicken and pufferfish genomes revealed a strongly statistically significant association of UGCAUG with the proximal intron region downstream of brain-enriched alternative exons. The number, position and sequence context of intronic UGCAUG elements were highly conserved among mammals and in chicken, but more divergent in fish. Control datasets, including constitutive exons and non-tissue-specific alternative exons, exhibited a much lower incidence of closely linked UGCAUG elements. We propose that the high sequence specificity of the UGCAUG element, and its unique association with tissue-specific alternative exons, mark it as a critical component of splicing switch mechanism(s) designed to activate a limited repertoire of splicing events in cell type-specific patterns. We further speculate that highly conserved UGCAUG-binding protein(s) related to the recently described Fox-1 splicing factor play a critical role in mediating this specificity.
Collapse
Affiliation(s)
| | | | | | | | - John G. Conboy
- To whom correspondence should be addressed. Tel: +1 510 4866973; Fax: +1 510 4866746;
| |
Collapse
|