1
|
Liu H, Xu R, Chen J, Wang S, Wang L, Wu M, Wang H. Viral integration and fusion transcript characteristics of possibly high-risk HPV in cervical cancer. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 130:105746. [PMID: 40180207 DOI: 10.1016/j.meegid.2025.105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
HPV34, HPV66, HPV73, and HPV82 are classified by the International Agency for Research on Cancer as possibly high-risk HPV (pHR-HPV) types. Despite their relatively lower pathogenicity, some cervical cancer (CC) patients have been found to be infected with pHR-HPV, though the underlying pathogenic characteristics remain unclear. Using viral integration detection and RNA sequencing in 8 pHR-HPV+ CC samples, we identified that the integration of pHR-HPV into the human genome and the formation of pHR-HPV-human fusion transcripts are critical events in cervical carcinogenesis. These events disrupt normal gene expression and favor the stable expression of oncogenes. Additionally, we discovered that pHR-HPV undergoes alternative splicing from the AGGTA motif. Despite their lower pathogenicity, pHR-HPV integration may represent a significant risk factor for CC development. Our findings underscore the importance of considering pHR-HPV infections in future HPV screening strategies and clinical management of cervical lesions, especially those associated with HPV integration.
Collapse
Affiliation(s)
- Hong Liu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Ruiyi Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Jinglan Chen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shuyan Wang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Lingfang Wang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Min Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.
| | - Hui Wang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
2
|
Chen Y, Dong Y, Wei S, Gao X, Li W, Zhao P. Genomic Integration of Hepatitis B Virus Into Human Hepatocytes in Early Childhood Cirrhosis. Liver Int 2025; 45:e70080. [PMID: 40130949 DOI: 10.1111/liv.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 02/09/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) remains a major global health problem. HBV DNA can be integrated into the human chromosomes. The integration in young cirrhotic chronic hepatitis B children has not been explored. This study aims to investigate HBV DNA integration in early childhood cirrhosis. METHODS Biopsy liver specimens from cirrhotic and matched non-cirrhotic chronic hepatitis B children were collected. HBV DNA integration was detected through targeted HBV DNA fragment capture sequencing. RESULTS Twenty cirrhotic and 20 non-cirrhotic children with chronic hepatitis B were included in the study. The cirrhotic group included 14 males and 6 females, and the non-cirrhotic group included 13 males and 7 females. Compared to non-cirrhotic children, cirrhotic children had lower serum HBsAg quantification (p = 0.001). The median number of HBV integrants in the cirrhotic group was 59 and that in the non-cirrhotic group was 98. No significant difference existed between the two groups (p = 0.529). In the multivariate linear regression analysis, serum HBV DNA level was correlated with the number of HBV integrants (p < 0.001, R2 = 0.322). Six differential intragenic high-frequency viral integration sites in cirrhotic children were revealed, all of which have protein-coding functions. CONCLUSION Several frequently integrated genes were observed in early childhood cirrhosis. Detailed associations between genetic alterations induced by HBV integration and early childhood cirrhosis need further exploration.
Collapse
Affiliation(s)
- Ying Chen
- Department of Clinical Laboratory, 962nd Hospital of PLA Joint Logistic Support Force, Harbin, Heilongjiang Province, China
| | - Yi Dong
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Shizhang Wei
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Gao
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Weijie Li
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Pan Zhao
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
- Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
3
|
Hu E, An J, Gersten AJ, Wu N, Kawachi N, Zhu J, Rosenblatt G, Augustine S, Smith RV, Segall JE, Ostrer H, Amelio AL, Chung CH, Prystowsky MB, Ow TJ, Deng W, Yin S. Virusplot: a web server for viral integration analysis and visualization. Front Oncol 2025; 15:1539782. [PMID: 40046621 PMCID: PMC11880266 DOI: 10.3389/fonc.2025.1539782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025] Open
Abstract
The integration of viral DNA into the human genome is a critical event in the pathogenesis of various cancers. This process leads to genomic instability, disrupts cellular regulatory mechanisms, and activates oncogenes or inactivates tumor suppressor genes. Despite significant advancements in genome sequencing technologies, there remains a notable lack of computational tools, particularly web-based applications, specifically designed for viral integration analysis and visualization. To address this gap, we present virusPlot, a web server with the following functional modules: (i) automatic retrieval of virus genome sequences and their annotation; (ii) visualization of virus integration locations and read counts through a graphical representation that links viral and host genome integration sites, facilitating the interpretation of integration patterns; (iii) analysis of virus integration hotspots using Fisher's exact test; and (iv) integration of various functions into an interactive web platform via shinyapp. VirusPlot efficiently processes and visualizes integration data from viruses and host genomes, providing researchers with an intuitive and user-friendly analytical tool that simplifies the complexity of virus integration analysis.
Collapse
Affiliation(s)
- Erqiang Hu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Einstein Pathology Single-cell & Bioinformatics Laboratory, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jianhong An
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Einstein Pathology Single-cell & Bioinformatics Laboratory, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Adam J Gersten
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nicole Wu
- The University of Texas at Austin, Austin, TX, United States
| | - Nicole Kawachi
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jing Zhu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Gregory Rosenblatt
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Stelby Augustine
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Richard V. Smith
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jeffrey E Segall
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Harry Ostrer
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Antonio L Amelio
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Christine H. Chung
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Michael B. Prystowsky
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas J. Ow
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Wenjun Deng
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shanye Yin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Einstein Pathology Single-cell & Bioinformatics Laboratory, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
4
|
Chen XJ, Guo CH, Yang Y, Wang ZC, Liang YY, Cai YQ, Cui XF, Fan LS, Wang W. HPV16 integration regulates ferroptosis resistance via the c-Myc/miR-142-5p/HOXA5/SLC7A11 axis during cervical carcinogenesis. Cell Biosci 2024; 14:129. [PMID: 39420439 PMCID: PMC11484211 DOI: 10.1186/s13578-024-01309-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Ferroptosis, a newly identified form of regulated cell death triggered by small molecules or specific conditions, plays a significant role in virus-associated carcinogenesis. However, whether tumours arising after high-risk HPV integration are associated with ferroptosis is unexplored and remains enigmatic. METHODS High-risk HPV16 integration was analysed by high-throughput viral integration detection (HIVID). Ferroptosis was induced by erastin, and the levels of ferroptosis were assessed through the measurement of lipid-reactive oxygen species (ROS), malondialdehyde (MDA), intracellular Fe2+ level and transmission electron microscopy (TEM). Additionally, clinical cervical specimens and an in vivo xenograft model were utilized for the study. RESULTS Expression of HPV16 integration hot spot c-Myc negatively correlates with ferroptosis during the progression of cervical squamous cell carcinoma (CSCC). Further investigation revealed that the upregulated oncogene miR-142-5p in HPV16-integrated CSCC cells served as a critical downstream effector of c-Myc in its target network. Inhibiting miR-142-5p significantly decreased the ferroptosis-suppressing effect mediated by c-Myc. Through a combination of computational and experimental approaches, HOXA5 was identified as a key downstream target gene of miR-142-5p. Overexpression of miR-142-5p suppressed HOXA5 expression, leading to decreased accumulation of intracellular Fe2+ and lipid peroxides (ROS and MDA). HOXA5 increased the sensitivity of CSCC cells to erastin-induced ferroptosis via transcriptional downregulation of SLC7A11, a negative regulator of ferroptosis. Importantly, c-Myc knockdown increased the anti-tumour activity of erastin by promoting ferroptosis both in vitro and in vivo. CONCLUSIONS Collectively, these data indicate that HPV16 integration hot spot c-Myc plays a novel and indispensable role in ferroptosis resistance by regulating the miR-142-5p/HOXA5/SLC7A11 signalling axis and suggest a potential therapeutic approach for HPV16 integration-related CSCC.
Collapse
Affiliation(s)
- Xiao-Jing Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Chu-Hong Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Yang Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
- Department of Obstetrics and Gynecology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511699, People's Republic of China
| | - Zi-Ci Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Yun-Yi Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Yong-Qi Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Xiao-Feng Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Liang-Sheng Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China.
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China.
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204, People's Republic of China.
| |
Collapse
|
5
|
Li W, Wang S, Jin Y, Mu X, Guo Z, Qiao S, Jiang S, Liu Q, Cui X. The role of the hepatitis B virus genome and its integration in the hepatocellular carcinoma. Front Microbiol 2024; 15:1469016. [PMID: 39309526 PMCID: PMC11412822 DOI: 10.3389/fmicb.2024.1469016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The integration of Hepatitis B Virus (HBV) is now known to be closely associated with the occurrence of liver cancer and can impact the functionality of liver cells through multiple dimensions. However, despite the detailed understanding of the characteristics of HBV integration and the mechanisms involved, the subsequent effects on cellular function are still poorly understood in current research. This study first systematically discusses the relationship between HBV integration and the occurrence of liver cancer, and then analyzes the status of the viral genome produced by HBV replication, highlighting the close relationship and structure between double-stranded linear (DSL)-HBV DNA and the occurrence of viral integration. The integration of DSL-HBV DNA leads to a certain preference for HBV integration itself. Additionally, exploration of HBV integration hotspots reveals obvious hotspot areas of HBV integration on the human genome. Virus integration in these hotspot areas is often associated with the occurrence and development of liver cancer, and it has been determined that HBV integration can promote the occurrence of cancer by inducing genome instability and other aspects. Furthermore, a comprehensive study of viral integration explored the mechanisms of viral integration and the internal integration mode, discovering that HBV integration may form extrachromosomal DNA (ecDNA), which exists outside the chromosome and can integrate into the chromosome under certain conditions. The prospect of HBV integration as a biomarker was also probed, with the expectation that combining HBV integration research with CRISPR technology will vigorously promote the progress of HBV integration research in the future. In summary, exploring the characteristics and mechanisms in HBV integration holds significant importance for an in-depth comprehension of viral integration.
Collapse
Affiliation(s)
- Weiyang Li
- Jining Medical University, Jining, China
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Suhao Wang
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Yani Jin
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Xiao Mu
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Zhenzhen Guo
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Sen Qiao
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Shulong Jiang
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Qingbin Liu
- Jining First People's Hospital, Shandong First Medical University, Jining, China
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Xiaofang Cui
- Jining Medical University, Jining, China
- School of Biological Science, Jining Medical University, Rizhao, China
| |
Collapse
|
6
|
Yang Z, Zeng J, Chen Y, Wang M, Luo H, Huang AL, Deng H, Hu Y. Detection of HBV DNA integration in plasma cell-free DNA of different HBV diseases utilizing DNA capture strategy. Virol Sin 2024; 39:655-666. [PMID: 38852920 PMCID: PMC11401475 DOI: 10.1016/j.virs.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
The landscape of hepatitis B virus (HBV) integration in the plasma cell-free DNA (cfDNA) of HBV-infected patients with different stages of liver diseases [chronic hepatitis B (CHB), liver cirrhosis (LC), and hepatocellular carcinoma (HCC)] remains unclear. In this study, we developed an improved strategy for detecting HBV DNA integration in plasma cfDNA, based on DNA probe capture and next-generation sequencing. Using this optimized strategy, we successfully detected HBV integration events in chimeric artificial DNA samples and HBV-infected HepG2-NTCP cells at day one post infection, with high sensitivity and accuracy. The characteristics of HBV integration events in the HBV-infected HepG2-NTCP cells and plasma cfDNA from HBV-infected individuals (CHB, LC, and HCC) were further investigated. A total of 112 and 333 integration breakpoints were detected in the HepG2-NTCP cells and 22 out of 25 (88%) clinical HBV-infected samples, respectively. In vivo analysis showed that the normalized number of support unique sequences (nnsus) in HCC was significantly higher than in CHB or LC patients (P values < 0.05). All integration breakpoints are randomly distributed on human chromosomes and are enriched in the HBV genome around nt 1800. The majority of integration breakpoints (61.86%) are located in the gene-coding region. Both non-homologous end-joining (NHEJ) and microhomology-mediated end-joining (MMEJ) interactions occurred during HBV integration across the three different stages of liver diseases. Our study provides evidence that HBV DNA integration can be detected in the plasma cfDNA of HBV-infected patients, including those with CHB, LC, or HCC, using this optimized strategy.
Collapse
Affiliation(s)
- Zerui Yang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Jingyan Zeng
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yueyue Chen
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Mengchun Wang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Hongchun Luo
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Haijun Deng
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Yuan Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Wang H, Hu B, Liang H, Wang R, Wei L, Su T, Li Q, Yin Q, Feng Y, Su M, Jiang J. Impact of HBV Integration on Hepatocellular Carcinoma After Long-Term Antiviral Therapy. Int J Gen Med 2024; 17:2643-2653. [PMID: 38859910 PMCID: PMC11164208 DOI: 10.2147/ijgm.s462844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/18/2024] [Indexed: 06/12/2024] Open
Abstract
Purpose Few studies have reported the integrated characteristics of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) after long-term antiviral therapy. This study aimed to investigate the HBV integration features in HBV-HCC patients who had undergone long-term antiviral therapy, evaluate their impact on clinical indicators, and analyze the potential mechanisms involved. Patients and Methods We utilized genome-wide association study (GWAS) to analyze liver cancer tissues and detect the presence of HBV integration. Seventeen patients with HBV integration were included in the integration (Int) group, while the remaining five patients were included in the non-integration (N-int) group. Clinical indicators were regularly monitored and compared between the two groups. The characteristics of HBV integration patterns were analyzed, and differences between the groups were explored at the chromosome and genomic levels. Results After long-term antiviral therapy, although the frequency of HBV integration in HBV-HCC was reduced, residual HBV integration still accelerated the development of HCC. It affected the diagnosis, treatment, and prognosis of patients. HBV integration events led to changes in chromosome structure, which were closely related to HCC. Novel fusion genes were detected at a high frequency and had the potential to be specific detection sites for HBV-HCC. Conclusion HBV integration events are synergistically involved in the human genome and HBV, which can lead to chromosome structural instability, gene rearrangement events closely related to HCC production, and the formation of new specific fusion genes.
Collapse
Affiliation(s)
- Hang Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Bobin Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Hengkai Liang
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Rongming Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Lu Wei
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Tumei Su
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Qingmei Li
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Qianbing Yin
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Yanfei Feng
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Minghua Su
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Jianning Jiang
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor(Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
8
|
Li M, Wu S, Niu J, Luo H, Chen W, Cao L, Yan Y, Tu H, He Y. Identification of hepatitis B virus infection and integration and its oncogenic role in gastric cancer. Clin Transl Med 2024; 14:e1601. [PMID: 38451008 PMCID: PMC10918734 DOI: 10.1002/ctm2.1601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Affiliation(s)
- Mengge Li
- Department of Medical OncologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Shusheng Wu
- Department of Medical OncologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Jiayu Niu
- Department of Medical OncologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Huiqin Luo
- Department of Medical OncologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Wenju Chen
- Department of Medical OncologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Lulu Cao
- Department of Medical OncologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Ying Yan
- Department of Medical OncologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Hong Tu
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yifu He
- Department of Medical OncologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
9
|
Zhang H, Li M, Liu H, Dong Y, Li W, Zhao P. Juveniles, young adults, and infants with hepatitis B virus infection: A genomic study. J Med Virol 2024; 96:e29530. [PMID: 38529528 DOI: 10.1002/jmv.29530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Integration of hepatitis B virus (HBV) DNA into the human genome is recognized as an oncogenic factor and a barrier to hepatitis B cure. In the study, biopsy liver tissues were collected from adolescents and young adults with acute HBV infection younger than or equal to 35 years of age and from HBV-infected infant patients younger than or equal to 6 months of age. A high-throughput sequencing method was used to detect HBV DNA integration. Totally, 12 adolescents, young adults, and 6 infants were included. Among the 12 patients with acute HBV infection, immunohistochemical staining of intrahepatic hepatitis B surface antigen for all displayed negative results, and no HBV DNA integrants in the hepatocyte DNA were confirmed. All infant patients had elevated levels of alanine aminotransferase and high levels of serum HBV DNA. Numerous gene sites of hepatocyte DNA were integrated by HBV DNA for each infant patient, ranging from 120 to 430 integration sites. The fragile histidine triad gene was the high-frequency integrated site in the intragenic region for infant patients. In conclusion, hepatocyte DNA is integrated by HBV DNA in babies with active hepatitis B but seems seldom affected among adolescents and young adults with acute HBV infection. Infantile hepatitis B should be taken seriously considering abundant HBV DNA integration events.
Collapse
Affiliation(s)
- Hanwen Zhang
- Chinese PLA Medical School & Chinese PLA General Hospital, Beijing, China
| | - Meina Li
- Faculty of Military Health Service, Second Military Medical University, Shanghai, China
| | - Huijuan Liu
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Yi Dong
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Weijie Li
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Pan Zhao
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Yuan S, Qian C, Zhang H, Xing Y. Preliminary study of HPV integration status on the occurrence and development of vaginal intraepithelial neoplasia. J Obstet Gynaecol Res 2024; 50:478-484. [PMID: 38072997 DOI: 10.1111/jog.15855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/27/2023] [Indexed: 03/04/2024]
Abstract
AIM The aim of this study was to investigate how the integration status of HPV in the vaginal epithelium affects the development of vaginal intraepithelial neoplasia (VaIN). METHODS Twenty-four vaginal tissues were collected before applying high-throughput viral integration detection (HIVID), medical records of them were documented, including age, thin-prep cytologic test (TCT) and HPV test results, colposcopic biopsy pathology, and other clinical data, such as history of total hysterectomy for cervical lesions, whether they were infected with HPV16/18 with a follow-up span of 2 years. We summarized the distribution of HPV integration on the host chromosome and HPV type, as well as the hotspot integration gene and its role in the development of VaIN. RESULTS In this study, 24 cases suffered from VaIN were involved. HPV integration was detected in 11 cases; furthermore, we discovered HPV 16 and 73, chromosome 1 and 2 possessed most HPV integration sites while EMBP1, CLO5A1, EHF, ELF5 as dominate hot spots. Taken clinical outcome into account, we found a significant difference between HPV integration occurrence and VaIN (p = 0.011). CONCLUSION (1) This study found a statistical difference between HPV integration and the occurrence of VaIN; (2) HPV integration may provide a new clinical predictor for VaIN and facilitate risk assessment and stratified management of high-risk patients.
Collapse
Affiliation(s)
- Shuning Yuan
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Qian
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hailong Zhang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Xing
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Xu S, Shi C, Zhou R, Han Y, Li N, Qu C, Xia R, Zhang C, Hu Y, Tian Z, Liu S, Wang L, Li J, Zhang Z. Mapping the landscape of HPV integration and characterising virus and host genome interactions in HPV-positive oropharyngeal squamous cell carcinoma. Clin Transl Med 2024; 14:e1556. [PMID: 38279874 PMCID: PMC10819103 DOI: 10.1002/ctm2.1556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Human papillomavirus (HPV) integration into the host genome is an important factor in HPV(+)OPSCC carcinogenesis, in conjunction with HPV oncoproteins E6/E7. However, a well-studied investigation about virus-host interaction still needs to be completed. Our objective is to characterise HPV integration to investigate potential mechanisms of tumourigenesis independent of E6/E7 oncoproteins. MATERIALS AND METHODS High-throughput viral integration detection was performed on 109 HPV(+)OPSCC tumours with relevant clinicopathological information. Of these tumours, 38 tumours underwent targeted gene sequencing, 29 underwent whole exome sequencing and 26 underwent RNA sequencing. RESULTS HPV integration was detected in 94% of tumours (with a mean integration count of 337). Tumours occurring at the tonsil/oropharyngeal wall that exhibit higher PD-L1 expression demonstrated increased integration sites (p = .024). HPV exhibited a propensity for integration at genomic sites located within specific fragile sites (FRA19A) or genes associated with functional roles such as cell proliferation and differentiation (PTEN, AR), immune evasion (CD274) and glycoprotein biosynthesis process (FUT8). The viral oncogenes E2, E4, E6 and E7 tended to remain intact. HPV fragments displayed enrichment within host copy number variation (CNV) regions. However, insertions into genes related to altered homologous recombination repair were infrequent. Genes with integration had distinct expression levels. Fifty-nine genes whose expression level was affected by viral integration were identified, for example, EPHB1, which was reported to be involved in cellular protein metabolic process. CONCLUSIONS HPV can promote oncogenesis through recurrent integration into functional host genome regions, leading to subsequent genomic aberrations and gene expression disruption. This study characterises viral integrations and virus-host interactions, enhancing our understanding of HPV-related carcinogenesis mechanisms.
Collapse
Affiliation(s)
- Shengming Xu
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Chaoji Shi
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Rong Zhou
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Yong Han
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - NianNian Li
- Department of BioinfomaticsSequantaShanghaiChina
| | - Chuxiang Qu
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Ronghui Xia
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Chunye Zhang
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Yuhua Hu
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Zhen Tian
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Shuli Liu
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Lizhen Wang
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Jiang Li
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| |
Collapse
|
12
|
Cui X, Li Y, Zhang C, Qi Y, Sun Y, Li W. Multiple HPV integration mode in the cell lines based on long-reads sequencing. Front Microbiol 2023; 14:1294146. [PMID: 38169727 PMCID: PMC10758443 DOI: 10.3389/fmicb.2023.1294146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Background The integration of human papillomavirus (HPV) is closely related to the occurrence of cervical cancer. However, little is known about the complete state of HPV integration into the host genome. Methods In this study, three HPV-positive cell lines, HeLa, SiHa, and CaSki, were subjected to NANOPORE long-read sequencing to detect HPV integration. Analysis of viral integration patterns using independently developed software (HPV-TSD) yielded multiple complete integration patterns for the three HPV cell lines. Results We found distinct differences between the integration patterns of HPV18 and HPV16. Furthermore, the integration characteristics of the viruses were significantly different, even though they all belonged to HPV16 integration. The HPV integration in the CaSki cells was relatively complex. The HPV18 integration status in HeLa cells was the dominant, whereas the percentage of integrated HPV 16 in SiHa and CaSki cells was significantly lower. In addition, the virus sequences in the HeLa cells were incomplete and existed in an integrated state. We also identified a large number of tandem repeats in HPV16 and HPV18 integration. Our study not only clarified the feasibility of high-throughput long-read sequencing in the study of HPV integration, but also explored a variety of HPV integration models, and confirmed that viral integration is an important form of HPV in cell lines. Conclusion Elucidating HPV integration patterns will provide critical guidance for developing a detection algorithm for HPV integration, as well as the application of virus integration in clinical practice and drug research and development.
Collapse
Affiliation(s)
- Xiaofang Cui
- Jining Medical University, Jining, Shandong, China
- Department of Bioinformatics, School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | | | - Chuanpeng Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yanwei Qi
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | | | - Weiyang Li
- Jining Medical University, Jining, Shandong, China
- Department of Bioinformatics, School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
13
|
Fukano K, Wakae K, Nao N, Saito M, Tsubota A, Toyoshima T, Aizaki H, Iijima H, Matsudaira T, Kimura M, Watashi K, Sugiura W, Muramatsu M. A versatile method to profile hepatitis B virus DNA integration. Hepatol Commun 2023; 7:e0328. [PMID: 38051537 PMCID: PMC10697629 DOI: 10.1097/hc9.0000000000000328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/26/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND HBV DNA integration into the host genome is frequently found in HBV-associated HCC tissues and is associated with hepatocarcinogenesis. Multiple detection methods, including hybrid capture-sequencing, have identified integration sites and provided clinical implications; however, each has advantages and disadvantages concerning sensitivity, cost, and throughput. Therefore, methods that can comprehensively and cost-effectively detect integration sites with high sensitivity are required. Here, we investigated the efficiency of RAISING (Rapid Amplification of Integration Site without Interference by Genomic DNA contamination) as a simple and inexpensive method to detect viral integration by amplifying HBV-integrated fragments using virus-specific primers covering the entire HBV genome. METHODS AND RESULTS Illumina sequencing of RAISING products from HCC-derived cell lines (PLC/PRF/5 and Hep3B cells) identified HBV-human junction sequences as well as their frequencies. The HBV-human junction profiles identified using RAISING were consistent with those determined using hybrid capture-sequencing, and the representative junctions could be validated by junction-specific nested PCR. The comparison of these detection methods revealed that RAISING-sequencing outperforms hybrid capture-sequencing in concentrating junction sequences. RAISING-sequencing was also demonstrated to determine the sites of de novo integration in HBV-infected HepG2-NTCP cells, primary human hepatocytes, liver-humanized mice, and clinical specimens. Furthermore, we made use of xenograft mice subcutaneously engrafted with PLC/PRF/5 or Hep3B cells, and HBV-human junctions determined by RAISING-sequencing were detectable in the plasma cell-free DNA using droplet digital PCR. CONCLUSIONS RAISING successfully profiles HBV-human junction sequences with smaller amounts of sequencing data and at a lower cost than hybrid capture-sequencing. This method is expected to aid basic HBV integration and clinical diagnosis research.
Collapse
Affiliation(s)
- Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kousho Wakae
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naganori Nao
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
| | - Masumichi Saito
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihito Tsubota
- Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Takae Toyoshima
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroko Iijima
- Department of Internal Medicine, Division of Hepatobiliary and Pancreatic Disease, Hyogo Medical University, Hyogo, Japan
| | - Takahiro Matsudaira
- Biotechnological Research Support Division, FASMAC Co., Ltd., Kanagawa, Japan
| | - Moto Kimura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wataru Sugiura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Infectious Disease Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| |
Collapse
|
14
|
Gao N, Guan G, Xu G, Wu H, Xie C, Mo Z, Deng H, Xiao S, Deng Z, Peng L, Lu F, Zhao Q, Gao Z. Integrated HBV DNA and cccDNA maintain transcriptional activity in intrahepatic HBsAg-positive patients with functional cure following PEG-IFN-based therapy. Aliment Pharmacol Ther 2023; 58:1086-1098. [PMID: 37644711 DOI: 10.1111/apt.17670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Hepatitis B surface antigen (HBsAg) seroclearance marks regression of hepatitis B virus (HBV) infection. However, more than one-fifth of patients with functional cure following pegylated interferon-based therapy may experience HBsAg seroreversion. The mechanisms causing the HBV relapse remain unclear. AIM To investigate the level and origin of HBV transcripts in patients with functional cure and their role in predicting relapse. METHODS Liver tissue obtained from patients with functional cure, as well as uncured and treatment-naïve HBeAg-negative patients with chronic hepatitis B (CHB) were analysed for intrahepatic HBV markers. HBV capture and RNA sequencing were used to detect HBV integration and chimeric transcripts. RESULTS Covalently closed circular DNA (cccDNA) levels and the proportion of HBsAg-positive hepatocytes in functionally cured patients were significantly lower than those in uncured and treatment-naïve HBeAg-negative patients. Integrated HBV DNA and chimeric transcripts declined in functionally cured patients compared to uncured patients. HBsAg-positive hepatocytes present in 25.5% of functionally cured patients, while intrahepatic HBV RNA remained in 72.2%. The levels of intrahepatic HBV RNA, integrated HBV DNA, and chimeric transcripts were higher in functionally cured patients with intrahepatic HBsAg than in those without. The residual intrahepatic HBsAg in functionally cured patients was mainly derived from transcriptionally active integrated HBV DNA; meanwhile, trace transcriptional activity of cccDNA could also remain. Two out of four functionally cured patients with intrahepatic HBsAg and trace active cccDNA experienced HBV relapse. CONCLUSION Integrated HBV DNA and cccDNA maintain transcriptional activity and maybe involved in HBsAg seroreversion in intrahepatic HBsAg-positive patients with functional cure and linked to virological relapse.
Collapse
Affiliation(s)
- Na Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Guiwen Guan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ganlin Xu
- South China Institute of Biomedicine, Guangzhou, Guangdong, China
| | - Haishi Wu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chan Xie
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhishuo Mo
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hong Deng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuying Xiao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | | | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qiyi Zhao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Rosenberg M, Poluch M, Thomas C, Sindaco P, Khoo A, Porcu P. Hepatitis B Virus and B-cell lymphoma: evidence, unmet need, clinical impact, and opportunities. Front Oncol 2023; 13:1275800. [PMID: 37927464 PMCID: PMC10623156 DOI: 10.3389/fonc.2023.1275800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Nearly a billion people worldwide are infected with the hepatitis B Virus (HBV) and about a third of them have chronic infection. HBV is an important cause of morbidity and mortality, including acute and chronic hepatitis and hepatocellular carcinoma (HCC). Screening and control of primary HBV infection through vaccination represent a major advance in global public health, but large sections of the world population, in both developed and underdeveloped countries, remain unscreened and unvaccinated. In addition to being a global cause of liver disease, an important role of HBV in lymphoma has also emerged. First, the high risk of HBV reactivation in previously infected patients receiving chemo-immunotherapy necessitates the systematic evaluation of HBV serological status in all non-Hodgkin's lymphoma (NHL) cases and preemptive antiviral therapy for those who may have chronic or occult HBV infection. Second, HBV has been shown to infect lymphocytes, namely B-cells, and has been associated with a higher risk of developing B-cell lymphoma, most clearly in countries where HBV is endemic. While the risk of HBV reactivation with chemoimmunotherapy in NHL is well known, the role and the impact of HBV as a global lymphoma risk factor and potential oncogenic driver in B-cells are very poorly understood. Here, we review the clinical and scientific evidence supporting an association between HBV and B-cell lymphoma, with a particular focus on diffuse large B-cell lymphoma (DLBCL) and provide an overview of the estimated impact of HBV infection on the biology and clinical course of DLBCL. We also discuss ways to gain a better insight into the unmet need posed by HBV in lymphoma and whether assessing immune responses to HBV, measuring viral loads, and detecting the presence of HBV-encoded proteins in tumor tissue could be integrated into the molecular and clinical risk stratification of patients with DLBCL.
Collapse
Affiliation(s)
- Maya Rosenberg
- Department of Internal Medicine, New York University Langone Health, New York, NY, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Maria Poluch
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Colin Thomas
- Department of Medical Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Paola Sindaco
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alan Khoo
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Pierluigi Porcu
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
16
|
Kojima R, Nakamoto S, Kogure T, Ma Y, Ogawa K, Iwanaga T, Qiang N, Ao J, Nakagawa R, Muroyama R, Nakamura M, Chiba T, Kato J, Kato N. Re-analysis of hepatitis B virus integration sites reveals potential new loci associated with oncogenesis in hepatocellular carcinoma. World J Virol 2023; 12:209-220. [PMID: 37396703 PMCID: PMC10311580 DOI: 10.5501/wjv.v12.i3.209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 04/12/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). HBV DNA can get integrated into the hepatocyte genome to promote carcinogenesis. However, the precise mechanism by which the integrated HBV genome promotes HCC has not been elucidated. AIM To analyze the features of HBV integration in HCC using a new reference database and integration detection method. METHODS Published data, consisting of 426 Liver tumor samples and 426 paired adjacent non-tumor samples, were re-analyzed to identify the integration sites. Genome Reference Consortium Human Build 38 (GRCh38) and Telomere-to-Telomere Consortium CHM13 (T2T-CHM13 (v2.0)) were used as the human reference genomes. In contrast, human genome 19 (hg19) was used in the original study. In addition, GRIDSS VIRUSBreakend was used to detect HBV integration sites, whereas high-throughput viral integration detection (HIVID) was applied in the original study (HIVID-hg19). RESULTS A total of 5361 integration sites were detected using T2T-CHM13. In the tumor samples, integration hotspots in the cancer driver genes, such as TERT and KMT2B, were consistent with those in the original study. GRIDSS VIRUSBreakend detected integrations in more samples than by HIVID-hg19. Enrichment of integration was observed at chromosome 11q13.3, including the CCND1 pro-moter, in tumor samples. Recurrent integration sites were observed in mitochondrial genes. CONCLUSION GRIDSS VIRUSBreakend using T2T-CHM13 is accurate and sensitive in detecting HBV integration. Re-analysis provides new insights into the regions of HBV integration and their potential roles in HCC development.
Collapse
Affiliation(s)
- Ryuta Kojima
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tadayoshi Kogure
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yaojia Ma
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Keita Ogawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Terunao Iwanaga
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Na Qiang
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Junjie Ao
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Ryo Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Ryosuke Muroyama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Jun Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
17
|
Cui X, Li Y, Xu H, Sun Y, Jiang S, Li W. Characteristics of Hepatitis B virus integration and mechanism of inducing chromosome translocation. NPJ Genom Med 2023; 8:11. [PMID: 37268616 DOI: 10.1038/s41525-023-00355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
Hepatitis B virus (HBV) integration is closely associated with the onset and progression of tumors. This study utilized the DNA of 27 liver cancer samples for high-throughput Viral Integration Detection (HIVID), with the overarching goal of detecting HBV integration. KEGG pathway analysis of breakpoints was performed using the ClusterProfiler software. The breakpoints were annotated using the latest ANNOVAR software. We identified 775 integration sites and detected two new hotspot genes for virus integration, N4BP1 and WASHP, along with 331 new genes. Furthermore, we conducted a comprehensive analysis to determine the critical impact pathways of virus integration by combining our findings with the results of three major global studies on HBV integration. Meanwhile, we found common characteristics of virus integration hotspots among different ethnic groups. To specify the direct impact of virus integration on genomic instability, we explained the causes of inversion and the frequent occurrence of translocation due to HBV integration. This study detected a series of hotspot integration genes and specified common characteristics of critical hotspot integration genes. These hotspot genes are universal across different ethnic groups, providing an effective target for better research on the pathogenic mechanism. We also demonstrated more comprehensive key pathways affected by HBV integration and elucidated the mechanism for inversion and frequent translocation events due to virus integration. Apart from the great significance of the rule of HBV integration, the current study also provides valuable insights into the mechanism of virus integration.
Collapse
Affiliation(s)
- Xiaofang Cui
- Jining Medical University, Jining, Shandong, China
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Yiyan Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hanshi Xu
- Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yuhui Sun
- BGI-Shenzhen, 518083, Shenzhen, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, China.
| | - Weiyang Li
- Jining Medical University, Jining, Shandong, China.
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
18
|
Chen Y, Wang Y, Zhou P, Huang H, Li R, Zeng Z, Cui Z, Tian R, Jin Z, Liu J, Huang Z, Li L, Huang Z, Tian X, Yu M, Hu Z. VIS Atlas: A Database of Virus Integration Sites in Human Genome from NGS Data to Explore Integration Patterns. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:300-310. [PMID: 36804047 PMCID: PMC10626058 DOI: 10.1016/j.gpb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Integration of oncogenic DNA viruses into the human genome is a key step in most virus-induced carcinogenesis. Here, we constructed a virus integration site (VIS) Atlas database, an extensive collection of integration breakpoints for three most prevalent oncoviruses, human papillomavirus, hepatitis B virus, and Epstein-Barr virus based on the next-generation sequencing (NGS) data, literature, and experimental data. There are 63,179 breakpoints and 47,411 junctional sequences with full annotations deposited in the VIS Atlas database, comprising 47 virus genotypes and 17 disease types. The VIS Atlas database provides (1) a genome browser for NGS breakpoint quality check, visualization of VISs, and the local genomic context; (2) a novel platform to discover integration patterns; and (3) a statistics interface for a comprehensive investigation of genotype-specific integration features. Data collected in the VIS Atlas aid to provide insights into virus pathogenic mechanisms and the development of novel antitumor drugs. The VIS Atlas database is available at https://www.vis-atlas.tech/.
Collapse
Affiliation(s)
- Ye Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Yuyan Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Hao Huang
- Office of Scientific Research & Development, Sun Yat-sen University, Guangzhou 510000, China
| | - Rui Li
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhen Zeng
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zifeng Cui
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Rui Tian
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhuang Jin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Jiashuo Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhaoyue Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Lifang Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Zheying Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Meiying Yu
- Department of Pathology, the Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China.
| | - Zheng Hu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China.
| |
Collapse
|
19
|
Liu M, Han Z, Zhi Y, Ruan Y, Cao G, Wang G, Xu X, Mu J, Kang J, Dai F, Wen X, Zhang Q, Li F. Long-read sequencing reveals oncogenic mechanism of HPV-human fusion transcripts in cervical cancer. Transl Res 2023; 253:80-94. [PMID: 36223881 DOI: 10.1016/j.trsl.2022.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
Integration of high-risk human papillomavirus (HPV) into the host genome is a crucial event for the development of cervical cancer, however, the underlying mechanism of HPV integration-driven carcinogenesis remains unknown. Here, we performed long-read RNA sequencing on 12 high-grade squamous intraepithelial lesions (HSIL) and cervical cancer patients, including 3 pairs of cervical cancer and corresponding para-cancerous tissue samples to investigate the full-length landscape of cross-species genome integrations. In addition to massive unannotated isoforms, transcriptional regulatory events, and gene chimerism, more importantly, we found that HPV-human fusion events were prevalent in HPV-associated cervical cancers. Combined with the genome data, we revealed the existence of a universal transcription pattern in these fusion events, whereby structurally similar fusion transcripts were generated by specific splicing in E6 and a canonical splicing donor site in E1 linking to various human splicing acceptors. Highly expressed HPV-human fusion transcripts, eg, HPV16 E6*I-E7-E1SD880-human gene, were the key driver of cervical carcinogenesis, which could trigger overexpression of E6*I and E7, and destroy the transcription of tumor suppressor genes CMAHP, TP63 and P3H2. Finally, evidence from in vitro and in vivo experiments demonstrates that the novel read-through fusion gene mRNA, E1-CMAHP (E1C, formed by the integration of HPV58 E1 with CMAHP), existed in the fusion transcript can promote malignant transformation of cervical epithelial cells via regulating downstream oncogenes to participate in various biological processes. Taken together, we reveal a previously unknown mechanism of HPV integration-driven carcinogenesis and provide a novel target for the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Min Liu
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhi
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yetian Ruan
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangxu Cao
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangxue Wang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinxin Xu
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Fangping Dai
- Genome-decoding Biomedical Technology Co., Ltd, Nantong, China
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA
| | - Qingfeng Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, China.
| | - Fang Li
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
20
|
Yeh SH, Li CL, Lin YY, Ho MC, Wang YC, Tseng ST, Chen PJ. Hepatitis B Virus DNA Integration Drives Carcinogenesis and Provides a New Biomarker for HBV-related HCC. Cell Mol Gastroenterol Hepatol 2023; 15:921-929. [PMID: 36690297 PMCID: PMC9972564 DOI: 10.1016/j.jcmgh.2023.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 01/25/2023]
Abstract
Hepatitis B virus (HBV) DNA integration is an incidental event in the virus replication cycle and occurs in less than 1% of infected hepatocytes during viral infection. However, HBV DNA is present in the genome of approximately 90% of HBV-related HCCs and is the most common somatic mutation. Whole genome sequencing of liver tissues from chronic hepatitis B patients showed integration occurring at random positions in human chromosomes; however, in the genomes of HBV-related HCC patients, there are integration hotspots. Both the enrichment of the HBV-integration proportion in HCC and the emergence of integration hotspots suggested a strong positive selection of HBV-integrated hepatocytes to progress to HCC. The activation of HBV integration hotspot genes, such as telomerase (TERT) or histone methyltransferase (MLL4/KMT2B), resembles insertional mutagenesis by oncogenic animal retroviruses. These candidate oncogenic genes might shed new light on HBV-related HCC biology and become targets for new cancer therapies. Finally, the HBV integrations in individual HCC contain unique sequences at the junctions, such as virus-host chimera DNA (vh-DNA) presumably being a signature molecule for individual HCC. HBV integration may thus provide a new cell-free tumor DNA biomarker to monitor residual HCC after curative therapies or to track the development of de novo HCC.
Collapse
Affiliation(s)
- Shiou-Hwei Yeh
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan; National Taiwan University Center for Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiao-Ling Li
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - You-Yu Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University College of Life Science, Taipei, Taiwan
| | - Ming-Chih Ho
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | - Pei-Jer Chen
- National Taiwan University Center for Genomic Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
21
|
Qi J, Liu H, Wang L, Chen Y, Fu J, Zheng H, Wang C, Chen J, Wang R, Zhao P. Follow-Up of Newborns with Hepatitis B Antigenemia. Infect Dis Ther 2022; 11:2233-2240. [PMID: 36282476 PMCID: PMC9669288 DOI: 10.1007/s40121-022-00704-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION There is a need for data to evaluate hepatitis B antigenemia in newborns of mothers with hepatitis B virus (HBV) infection. This study aims to investigate this. METHODS Newborns with positive serum hepatitis B surface antigen (HBsAg) and/or e antigen (HBeAg) were enrolled in the study. RESULTS One hundred and one newborns from 98 HBV-infected mothers were included. Median maternal serum HBV DNA level was 23,200 IU/mL at delivery. Among the newborns, 48 were boys and 53 were girls. Mean birth weight was 3190.5 g. Twenty-one newborns had concurrent seropositive HBsAg and HBeAg, nine had seropositive HBsAg and seronegative HBeAg, and 71 had seronegative HBsAg and seropositive HBeAg. Eight newborns had detectable serum HBV DNA. In the follow-up, serum HBsAg and HBeAg in the newborns with undetectable HBV DNA became negative before 6 months of age. Two infants with detectable HBV DNA were diagnosed with immunoprophylaxis failure, one of whom developed active hepatitis at 3 months of age. Liver biopsy in this case showed significant interface hepatitis, fibrous septa formation, and expansion of portal areas with occasional bridging fibrosis. CONCLUSIONS Concurrent HBV viremia and antigenemia in newborns of HBV-infected mothers requires attention, while antigenemia without viremia is often transient.
Collapse
Affiliation(s)
- Jing Qi
- Department of Disease Control and Prevention, Southern Medical Branch, Chinese PLA General Hospital, Beijing, 100071, China
| | - Huijuan Liu
- Neonatal Unit, Fifth Medical Center (Formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, 100039, China
| | - Limin Wang
- Hepato-Pancreato-Biliary Centre, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Ying Chen
- Department of Clinical Laboratory, 962 Hospital of PLA Joint Logistic Support Force, Harbin, 150080, Heilongjiang Province, China
| | - Jiahui Fu
- Neonatal Intensive Care Unit, Peking University International Hospital, Peking University, Beijing, 102206, China
| | - Huanwei Zheng
- Fifth Hospital of Shijiazhuang, Shijiazhuang, 050021, Hebei Province, China
| | - Chunya Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jing Chen
- Department of Liver Diseases, Fifth Medical Center (Formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, 100039, China
| | - Ruifang Wang
- Department of Obstetrics and Gynecology, Seventh Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
| | - Pan Zhao
- Department of Infectious Diseases, Fifth Medical Center (Formerly Beijing 302 Hospital), Chinese PLA General Hospital, No. 100 of West Fourth Ring Middle Road, Beijing, 100039, China.
| |
Collapse
|
22
|
Analysis of viral integration reveals new insights of oncogenic mechanism in HBV-infected intrahepatic cholangiocarcinoma and combined hepatocellular-cholangiocarcinoma. Hepatol Int 2022; 16:1339-1352. [PMID: 36123506 DOI: 10.1007/s12072-022-10419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/24/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Integration of HBV DNA into the human genome could progressively contribute to hepatocarcinogenesis. Both intrahepatic cholangiocarcinoma (ICC) and combined hepatocellular-cholangiocarcinoma (CHC) are known to be associated with HBV infection. However, the integration of HBV and mechanism of HBV-induced carcinogenesis in ICC and CHC remains unclear. METHODS 41 patients with ICC and 20 patients with CHC were recruited in the study. We conducted HIVID analysis on these 61 samples to identify HBV integration sites in both the tumor tissues and adjacent non-tumor liver tissues. To further explore the effect of HBV integration on gene alteration, we selected paired tumors and adjacent non-tumor liver tissues from 3 ICC and 4 CHC patients for RNA-seq and WGS. RESULTS We detected 493 HBV integration sites in ICC patients, of which 417 were from tumor samples and 76 were from non-tumor samples. And 246 HBV integration sites were detected in CHC patients, of which 156 were located in the genome of tumor samples and 90 were in non-tumor samples. Recurrent HBV integration events were detected in ICC including TERT, ZMAT4, MET, ANKFN1, PLXNB2, and in CHC like TERT, ALKBH5. Together with our established data of HBV-infected hepatocellular carcinoma, we found that HBV preferentially integrates into the specific regions which may affect the gene expression and regulation in cells and involved in carcinogenesis. We further performed genomic and transcriptomic sequencing of three ICC and four CHC patients, and found that HBV fragments could integrate near some important oncogene like TERT, causing large-scale genome variations on nearby genomic sequences, and at the same time changing the expression level of the oncogenes. CONCLUSION Comparative analysis demonstrates numerous newly discovered mutational events in ICC and CHC resulting from HBV insertions in the host genome. Our study provides an in-depth biological and clinical insights into HBV-induced ICC and CHC.
Collapse
|
23
|
Wang W, Chen Y, Wu L, Zhang Y, Yoo S, Chen Q, Liu S, Hou Y, Chen XP, Chen Q, Zhu J. HBV genome-enriched single cell sequencing revealed heterogeneity in HBV-driven hepatocellular carcinoma (HCC). BMC Med Genomics 2022; 15:134. [PMID: 35710421 PMCID: PMC9205089 DOI: 10.1186/s12920-022-01264-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/05/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) related hepatocellular carcinoma (HCC) is heterogeneous and frequently contains multifocal tumors, but how the multifocal tumors relate to each other in terms of HBV integration and other genomic patterns is not clear. METHODS To interrogate heterogeneity of HBV-HCC, we developed a HBV genome enriched single cell sequencing (HGE-scSeq) procedure and a computational method to identify HBV integration sites and infer DNA copy number variations (CNVs). RESULTS We performed HGE-scSeq on 269 cells from four tumor sites and two tumor thrombi of a HBV-HCC patient. HBV integrations were identified in 142 out of 269 (53%) cells sequenced, and were enriched in two HBV integration hotspots chr1:34,397,059 (CSMD2) and chr8:118,557,327 (MED30/EXT1). There were also 162 rare integration sites. HBV integration sites were enriched in DNA fragile sites and sequences around HBV integration sites were enriched for microhomologous sequences between human and HBV genomes. CNVs were inferred for each individual cell and cells were grouped into four clonal groups based on their CNVs. Cells in different clonal groups had different degrees of HBV integration heterogeneity. All of 269 cells carried chromosome 1q amplification, a recurrent feature of HCC tumors, suggesting that 1q amplification occurred before HBV integration events in this case study. Further, we performed simulation studies to demonstrate that the sequential events (HBV infecting transformed cells) could result in the observed phenotype with biologically reasonable parameters. CONCLUSION Our HGE-scSeq data reveals high heterogeneity of HCC tumor cells in terms of both HBV integrations and CNVs. There were two HBV integration hotspots across cells, and cells from multiple tumor sites shared some HBV integration and CNV patterns.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave., New York, NY, 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, Stamford, CT, USA
| | - Yan Chen
- The Hepatic Surgery Centre at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | | | - Yi Zhang
- Department of Mathematics, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave., New York, NY, 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, Stamford, CT, USA
| | - Quan Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave., New York, NY, 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, Stamford, CT, USA
| | | | | | - Xiao-Ping Chen
- The Hepatic Surgery Centre at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Qian Chen
- The Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave., New York, NY, 10029, USA.
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Sema4, Stamford, CT, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
24
|
Meng Y, Lin S, Zhou Y, Yi X, Wu P, Zhang Q, Ge W, Cao C, Gao P, Zhi W, Peng T, Wei J, Ding W, Ma D, Li G, Yang Q, Guo T, Zeng X, Wu P. RAB2A promotes cervical cancer progression as revealed by comprehensive analysis of HPV integration and proteome in longitudinal cervical samples. Clin Transl Med 2022; 12:e767. [PMID: 35343109 PMCID: PMC8958348 DOI: 10.1002/ctm2.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/06/2022] [Accepted: 03/02/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Yifan Meng
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shitong Lin
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Zhou
- Agricultural Bioinformatics Key Laboratory of Hubei Province and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao Yi
- Westlake Omics (Hangzhou) Biotechnology Co. Ltd., Hangzhou, Zhejiang, China
| | - Ping Wu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology Co. Ltd., Hangzhou, Zhejiang, China
| | - Canhui Cao
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peipei Gao
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhua Zhi
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Peng
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juncheng Wei
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wencheng Ding
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ding Ma
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guoliang Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qin Yang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tiannan Guo
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xi Zeng
- Agricultural Bioinformatics Key Laboratory of Hubei Province and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Peng Wu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
25
|
Bousali M, Karamitros T. Hepatitis B Virus Integration into Transcriptionally Active Loci and HBV-Associated Hepatocellular Carcinoma. Microorganisms 2022; 10:microorganisms10020253. [PMID: 35208708 PMCID: PMC8879149 DOI: 10.3390/microorganisms10020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatitis B Virus (HBV) DNA integrations into the human genome are considered major causative factors to HBV-associated hepatocellular carcinoma development. In the present study, we investigated whether HBV preferentially integrates parts of its genome in specific genes and evaluated the contribution of the integrations in HCC development per gene. We applied dedicated in-house developed pipelines on all of the available HBV DNA integration data and performed a statistical analysis to identify genes that could be characterized as hotspots of integrations, along with the evaluation of their association with HBV-HCC. Our results suggest that 15 genes are recurrently affected by HBV integrations and they are significantly associated with HBV-HCC. Further studies that focus on HBV integrations disrupting these genes are mandatory in order to understand the role of HBV integrations in clonal advantage gain and oncogenesis promotion, as well as to determine whether inhibition of the HBV-disrupted genes can provide a therapy strategy for HBV-HCC.
Collapse
Affiliation(s)
- Maria Bousali
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Laboratory of Medical Microbiology, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
- Correspondence: ; Tel.: +30-210-6478871
| |
Collapse
|
26
|
Mahapatra S, Mohanty S, Mishra R, Prasad P. An overview of cancer and the human microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:83-139. [DOI: 10.1016/bs.pmbts.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Genome-Wide Profiling Reveals HPV Integration Pattern and Activated Carcinogenic Pathways in Penile Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13236104. [PMID: 34885212 PMCID: PMC8657281 DOI: 10.3390/cancers13236104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Penile squamous cell carcinoma (PSCC) has been regarded as an HPV-related cancer for a long time. However, the integration pattern and carcinogenic pathways of HPV in PSCC remain unclear. The results of this study provide insights into the HPV-related carcinogenic mechanism in PSCC, which may be less prone to involvement in the traditional E6/E7 carcinogenic process, and are characterized by effects on the host genome, which result in the inactivation of tumor suppressors (CADM2, etc.) and the activation of oncogenes (KLF5, etc.), thus activating oncogenic signaling pathways (MAPK, JAK/STAT, etc.). This study could enhance our understanding of HPV integration and pave the way for subsequent HPV studies in PSCC. Abstract Human papillomavirus (HPV) is a significant etiologic driver of penile squamous cell carcinoma (PSCC). The integration pattern of HPV and its carcinogenic mechanism in PSCC remain largely unclear. We retrospectively reviewed 108 PSCC cases who received surgery between 2008 and 2017. Using high-throughput viral integration detection, we identified 35 HPV-integrated PSCCs. Unlike cervical cancer, the HPV E2 oncogene was not prone to involvement in integration. Eleven of the 35 (31.4%) HPV-integrated PSCCs harbored intact HPV E2; these tumors had lower HPV E6 and E7 expression and higher expression of p53 and pRb proteins than those with disrupted E2 did (p < 0.001 and p = 0.024). Integration breakpoints are preferentially distributed in or near host genes, including previously reported hotspots (KLF5, etc.) and newly identified hotspots (CADM2, etc.), which are mainly involved in oncogenic signaling pathways (MAPK, JAK/STAT, etc.). Regarding the phosphorylation levels of JNK, p38 was higher in HPV-positive tumors with MAPK-associated integration than those in HPV-positive tumors with other integration and those in HPV-negative tumors. In vitro, KLF5 knockdown inhibited proliferation and invasion of PSCC cells, while silencing CADM2 promoted migration and invasion. In conclusion, this study enhances our understanding of HPV-induced carcinogenesis in PSCC, which may not only rely on the E6/E7 oncogenes, but mat also affect the expression of critical genes and thus activate oncogenic pathways.
Collapse
|
28
|
Li W, Wei W, Hou F, Xu H, Cui X. The integration model of hepatitis B virus genome in hepatocellular carcinoma cells based on high-throughput long-read sequencing. Genomics 2021; 114:23-30. [PMID: 34843903 DOI: 10.1016/j.ygeno.2021.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022]
Abstract
HBV integration and function has gradually been expanding. However, the exact mode of HBV integration remains unclear. In our research, the high-throughput long-read sequencing was combined with bioinformatics to study the complete mode of HBV integration in hepatocellular carcinoma (HCC) cells. The results demonstrated that: 1) The HBV insertion sequences of HBV integration events accounted for 49.5% of the total HBV sequences. 2) Short insertion segments with the length of 0-1 kbp accounted for 50% and the long insertion segments (>3 kbp) accounted for 25% of HBV insertion events. 3)There were different HBV insertion length in the breakpoints formed within different regions. 4) The occurrence of HBV integration events was accompanied by more frequent structural variations. 5)Furthermore, multiple HBV integration patterns were confirmed based on complete HBV insertion sequences. Our research not only clarified a variety of perfect HBV integration models but also determined multiple specific features of HBV integration.
Collapse
Affiliation(s)
- Weiyang Li
- Jining Medical University, Jining, Shandong 272067, China; Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China.
| | - Wei Wei
- Jining Medical University, Jining, Shandong 272067, China
| | - Fei Hou
- Jining Medical University, Jining, Shandong 272067, China
| | - Hanshi Xu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510275, China
| | - Xiaofang Cui
- Jining Medical University, Jining, Shandong 272067, China.
| |
Collapse
|
29
|
Jia W, Xu C, Li SC. Resolving complex structures at oncovirus integration loci with conjugate graph. Brief Bioinform 2021; 22:6359003. [PMID: 34463709 DOI: 10.1093/bib/bbab359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/10/2023] Open
Abstract
Oncovirus integrations cause copy number variations and complex structural variations (SVs) on host genomes. However, the understanding of how inserted viral DNA impacts the local genome remains limited. The linear structure of the oncovirus integrated local genomic map (LGM) will lay the foundations to understand how oncovirus integrations emerge and compromise the host genome's functioning. We propose a conjugate graph model to reconstruct the rearranged LGM at integrated loci. Simulation tests prove the reliability and credibility of the algorithm. Applications of the algorithm to whole-genome sequencing data of human papillomavirus (HPV) and hepatitis B virus (HBV)-infected cancer samples gained biological insights on oncovirus integrations. We observed four affection patterns of oncovirus integrations from the HPV and HBV-integrated cancer samples, including the coding-frame truncation, hyper-amplification of tumor gene, the viral cis-regulation inserted at the single intron and at the intergenic region. We found that the focal duplicates and host SVs are frequent in the HPV-integrated LGMs, while the focal deletions are prevalent in HBV-integrated LGMs. Furthermore, with the results yields from our method, we found the enhanced microhomology-mediated end joining might lead to both HPV and HBV integrations and conjectured that the HPV integrations might mainly occur during the DNA replication process. The conjugate graph algorithm code and LGM construction pipeline, available at https://github.com/deepomicslab/FuseSV.
Collapse
Affiliation(s)
- Wenlong Jia
- Department of Computer Science, City University of Hong Kong, Hong Kong
| | - Chang Xu
- Department of Computer Science, City University of Hong Kong, Hong Kong
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong
| |
Collapse
|
30
|
Lin SY, Su Y, Trauger ER, Song BP, Thompson EG, Hoffman MC, Chang T, Lin Y, Kao Y, Cui Y, Hann H, Park G, Shieh F, Song W, Su Y. Detection of Hepatitis B Virus-Host Junction Sequences in Urine of Infected Patients. Hepatol Commun 2021; 5:1649-1659. [PMID: 34558837 PMCID: PMC8485884 DOI: 10.1002/hep4.1783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/24/2021] [Accepted: 06/20/2021] [Indexed: 01/25/2023] Open
Abstract
Integrated hepatitis B virus (HBV) DNA, found in more than 85% of HBV-associated hepatocellular carcinomas (HBV-HCCs), can play a significant role in HBV-related liver disease progression. HBV-host junction sequences (HBV-JSs), created through integration events, have been used to determine HBV-HCC clonality. Here, we investigate the feasibility of analyzing HBV integration in a noninvasive urine liquid biopsy. Using an HBV-targeted next-generation sequencing (NGS) assay, we first identified HBV-JSs in eight HBV-HCC tissues and designed short-amplicon junction-specific polymerase chain reaction assays to detect HBV-JSs in matched urine. We detected and validated tissue-derived junctions in five of eight matched urine samples. Next, we screened 32 urine samples collected from 25 patients infected with HBV (5 with hepatitis, 10 with cirrhosis, 4 with HCC, and 6 post-HCC). Encouragingly, all 32 urine samples contained HBV-JSs detectable by HBV-targeted NGS. Of the 712 total HBV-JSs detected in urine, 351 were in gene-coding regions, 11 of which, including TERT (telomerase reverse transcriptase), had previously been reported as recurrent integration sites in HCC tissue and were found only in the urine patients with cirrhosis or HCC. The integration breakpoints of HBV DNA detected in urine were found predominantly (~70%) at a previously identified integration hotspot, HBV DR1-2 (down-regulator of transcription 1-2). Conclusion: HBV viral-host junction DNA can be detected in urine of patients infected with HBV. This study demonstrates the potential for a noninvasive urine liquid biopsy of integrated HBV DNA to monitor patients infected with HBV for HBV-associated liver diseases and the efficacy of antiviral therapy.
Collapse
Affiliation(s)
| | - Yih‐Ping Su
- The Baruch S. Blumberg Research InstituteDoylestownPAUSA
| | | | | | | | | | - Ting‐Tsung Chang
- Department of Internal MedicineNational Cheng Kung University Hospital, College of MedicineTainanTaiwan, Republic of China
| | - Yih‐Jyh Lin
- Department of SurgeryNational Cheng Kung University Hospital, College of MedicineTainanTaiwan, Republic of China
| | - Yu‐Lan Kao
- The Baruch S. Blumberg Research InstituteDoylestownPAUSA
| | - Yixiao Cui
- The Baruch S. Blumberg Research InstituteDoylestownPAUSA
| | - Hie‐Won Hann
- Liver Disease Prevention CenterDivision of Gastroenterology and HepatologyThomas Jefferson University HospitalPhiladelphiaPAUSA
| | - Grace Park
- Liver Disease Prevention CenterDivision of Gastroenterology and HepatologyThomas Jefferson University HospitalPhiladelphiaPAUSA
| | | | - Wei Song
- JBS Science, Inc.DoylestownPAUSA
| | - Ying‐Hsiu Su
- The Baruch S. Blumberg Research InstituteDoylestownPAUSA
| |
Collapse
|
31
|
Stephens Z, O’Brien D, Dehankar M, Roberts LR, Iyer RK, Kocher JP. Exogene: A performant workflow for detecting viral integrations from paired-end next-generation sequencing data. PLoS One 2021; 16:e0250915. [PMID: 34550971 PMCID: PMC8457494 DOI: 10.1371/journal.pone.0250915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/08/2021] [Indexed: 01/14/2023] Open
Abstract
The integration of viruses into the human genome is known to be associated with tumorigenesis in many cancers, but the accurate detection of integration breakpoints from short read sequencing data is made difficult by human-viral homologies, viral genome heterogeneity, coverage limitations, and other factors. To address this, we present Exogene, a sensitive and efficient workflow for detecting viral integrations from paired-end next generation sequencing data. Exogene's read filtering and breakpoint detection strategies yield integration coordinates that are highly concordant with long read validation. We demonstrate this concordance across 6 TCGA Hepatocellular carcinoma (HCC) tumor samples, identifying integrations of hepatitis B virus that are also supported by long reads. Additionally, we applied Exogene to targeted capture data from 426 previously studied HCC samples, achieving 98.9% concordance with existing methods and identifying 238 high-confidence integrations that were not previously reported. Exogene is applicable to multiple types of paired-end sequence data, including genome, exome, RNA-Seq and targeted capture.
Collapse
Affiliation(s)
- Zachary Stephens
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Daniel O’Brien
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Mrunal Dehankar
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Lewis R. Roberts
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Ravishankar K. Iyer
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Jean-Pierre Kocher
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
32
|
Chen CC, Guan G, Qi X, Abulaiti A, Zhang T, Liu J, Lu F, Chen X. Pacbio Sequencing of PLC/PRF/5 Cell Line and Clearance of HBV Integration Through CRISPR/Cas-9 System. Front Mol Biosci 2021; 8:676957. [PMID: 34485380 PMCID: PMC8416172 DOI: 10.3389/fmolb.2021.676957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022] Open
Abstract
The integration of HBV DNA is one of the carcinogenic mechanisms of HBV. The clearance of HBV integration in hepatocyte is of great significance to cure chronic HBV infection and thereby prevent the occurrence of HBV-related hepatocellular carcinoma (HCC). However, the low throughput of traditional methods, such as Alu-PCR, results in low detecting sensitivity of HBV integration. Although the second-generation sequencing can obtain a large amount of sequencing data, but the sequencing fragments are extremely short, so it cannot fully explore the characteristics of HBV integration. In this study, we used the third-generation sequencing technology owning advantages both in sequencing length and in sequencing depth to analyze the HBV integration characteristics in PLC/PRF/5 cells comprehensively. A total of 4,142,311 cleaning reads was obtained, with an average length of 18,775.6 bp, of which 84 reads were fusion fragments of the HBV DNA and human genome. These 84 fragments located in seven chromosomes, including chr3, chr4, chr8, chr12, chr13, chr16, and chr17. We observed lots of DNA rearrangement both in the human genome and in HBV DNA fragments surrounding the HBV integration site, indicating the genome instability causing by HBV integration. By analyzing HBV integrated fragments of PLC/PRF/5 cells that can potentially express HBsAg, we selected three combinations of sgRNAs targeting the integrated fragments to knock them out with CRISPR/Cas9 system. We found that the sgRNA combinations could significantly decrease the level of HBsAg in the supernatant of PLC/PRF/5 cells, while accelerated cell proliferation. This study proved the effectiveness of third-generation sequencing to detect HBV integration, and provide a potential strategy to reach HBsAg clearance for chronic HBV infection patients, but the knock-out of HBV integration from human genome by CRISPR/Cas9 system may have a potential of carcinogenic risk.
Collapse
Affiliation(s)
- Chia-Chen Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Guiwen Guan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xuewei Qi
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Abudurexiti Abulaiti
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ting Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jia Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
33
|
Midorikawa Y, Tatsuno K, Moriyama M. Genome-wide analysis of hepatitis B virus integration in hepatocellular carcinoma: Insights next generation sequencing. Hepatobiliary Surg Nutr 2021; 10:548-552. [PMID: 34430541 DOI: 10.21037/hbsn-21-228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/25/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Yutaka Midorikawa
- Genome Science and Medicine, RCAST, University of Tokyo, Tokyo, Japan.,Department of Surgery, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kenji Tatsuno
- Genome Science and Medicine, RCAST, University of Tokyo, Tokyo, Japan
| | - Mitsuhiko Moriyama
- Department of Gastroenterology and Hepatology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Bousali M, Papatheodoridis G, Paraskevis D, Karamitros T. Hepatitis B Virus DNA Integration, Chronic Infections and Hepatocellular Carcinoma. Microorganisms 2021; 9:1787. [PMID: 34442866 PMCID: PMC8398950 DOI: 10.3390/microorganisms9081787] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B Virus (HBV) is an Old World virus with a high mutation rate, which puts its origins in Africa alongside the origins of Homo sapiens, and is a member of the Hepadnaviridae family that is characterized by a unique viral replication cycle. It targets human hepatocytes and can lead to chronic HBV infection either after acute infection via horizontal transmission usually during infancy or childhood or via maternal-fetal transmission. HBV has been found in ~85% of HBV-related Hepatocellular Carcinomas (HCC), and it can integrate the whole or part of its genome into the host genomic DNA. The molecular mechanisms involved in the HBV DNA integration is not yet clear; thus, multiple models have been described with respect to either the relaxed-circular DNA (rcDNA) or the double-stranded linear DNA (dslDNA) of HBV. Various genes have been found to be affected by HBV DNA integration, including cell-proliferation-related genes, oncogenes and long non-coding RNA genes (lincRNAs). The present review summarizes the advances in the research of HBV DNA integration, focusing on the evolutionary and molecular side of the integration events along with the arising clinical aspects in the light of WHO's commitment to eliminate HBV and viral hepatitis by 2030.
Collapse
Affiliation(s)
- Maria Bousali
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - George Papatheodoridis
- Department of Gastroenterology, “Laiko” General Hospital of Athens, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Laboratory of Medical Microbiology, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
35
|
Elpek GO. Molecular pathways in viral hepatitis-associated liver carcinogenesis: An update. World J Clin Cases 2021; 9:4890-4917. [PMID: 34307543 PMCID: PMC8283590 DOI: 10.12998/wjcc.v9.i19.4890] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/14/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of cancer among primary malignant tumors of the liver and is a consequential cause of cancer-related deaths worldwide. In recent years, uncovering the molecular mechanisms involved in the development and behavior of this tumor has led to the identification of multiple potential treatment targets. Despite the vast amount of data on this topic, HCC remains a challenging tumor to treat due to its aggressive behavior and complex molecular profile. Therefore, the number of studies aiming to elucidate the mechanisms involved in both carcinogenesis and tumor progression in HCC continues to increase. In this context, the close association of HCC with viral hepatitis has led to numerous studies focusing on the direct or indirect involvement of viruses in the mechanisms contributing to tumor development and behavior. In line with these efforts, this review was undertaken to highlight the current understanding of the molecular mechanisms by which hepatitis B virus (HBV) and hepatitis C virus (HCV) participate in oncogenesis and tumor progression in HCC and summarize new findings. Cumulative evidence indicates that HBV DNA integration promotes genomic instability, resulting in the overexpression of genes related to cancer development, metastasis, and angiogenesis or inactivation of tumor suppressor genes. In addition, genetic variations in HBV itself, especially preS2 deletions, may play a role in malignant transformation. Epigenetic dysregulation caused by both viruses might also contribute to tumor formation and metastasis by modifying the methylation of DNA and histones or altering the expression of microRNAs. Similarly, viral proteins of both HBV and HCV can affect pathways that are important anticancer targets. The effects of these two viruses on the Hippo-Yap-Taz pathway in HCC development and behavior need to be investigated. Additional, comprehensive studies are also needed to determine these viruses' interaction with integrins, farnesoid X, and the apelin system in malignant transformation and tumor progression. Although the relationship of persistent inflammation caused by HBV and HCV hepatitis with carcinogenesis is well defined, further studies are warranted to decipher the relationship among inflammasomes and viruses in carcinogenesis and elucidate the role of virus-microbiota interactions in HCC development and progression.
Collapse
Affiliation(s)
- Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| |
Collapse
|
36
|
Lin SY, Zhang A, Lian J, Wang J, Chang TT, Lin YJ, Song W, Su YH. Recurrent HBV Integration Targets as Potential Drivers in Hepatocellular Carcinoma. Cells 2021; 10:cells10061294. [PMID: 34071075 PMCID: PMC8224658 DOI: 10.3390/cells10061294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is the major etiology of hepatocellular carcinoma (HCC), frequently with HBV integrating into the host genome. HBV integration, found in 85% of HBV-associated HCC (HBV–HCC) tissue samples, has been suggested to be oncogenic. Here, we investigated the potential of HBV–HCC driver identification via the characterization of recurrently targeted genes (RTGs). A total of 18,596 HBV integration sites from our in-house study and others were analyzed. RTGs were identified by applying three criteria: at least two HCC subjects, reported by at least two studies, and the number of reporting studies. A total of 396 RTGs were identified. Among the 28 most frequent RTGs, defined as affected in at least 10 HCC patients, 23 (82%) were associated with carcinogenesis and 5 (18%) had no known function. Available breakpoint positions from the three most frequent RTGs, TERT, MLL4/KMT2B, and PLEKHG4B, were analyzed. Mutual exclusivity of TERT promoter mutation and HBV integration into TERT was observed. We present an RTG consensus through comprehensive analysis to enable the potential identification and discovery of HCC drivers for drug development and disease management.
Collapse
Affiliation(s)
- Selena Y. Lin
- JBS Science, Inc., Doylestown, PA 18902, USA; (S.Y.L.); (J.W.); (W.S.)
| | - Adam Zhang
- The Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; (A.Z.); (J.L.)
| | - Jessica Lian
- The Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; (A.Z.); (J.L.)
| | - Jeremy Wang
- JBS Science, Inc., Doylestown, PA 18902, USA; (S.Y.L.); (J.W.); (W.S.)
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Medical College, Tainan 704, Taiwan;
| | - Yih-Jyh Lin
- Department of Surgery, National Cheng Kung University Medical College, Tainan 704, Taiwan;
| | - Wei Song
- JBS Science, Inc., Doylestown, PA 18902, USA; (S.Y.L.); (J.W.); (W.S.)
| | - Ying-Hsiu Su
- The Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; (A.Z.); (J.L.)
- Correspondence: ; Tel.: +215-489-4907
| |
Collapse
|
37
|
Jiang Y, Han Q, Zhao H, Zhang J. The Mechanisms of HBV-Induced Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:435-450. [PMID: 34046368 PMCID: PMC8147889 DOI: 10.2147/jhc.s307962] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy, and the hepatitis B virus (HBV) is its major pathogenic factor. Over the past decades, it has been confirmed that HBV infection could promote disease progression through a variety of mechanisms, ultimately leading to the malignant transformation of liver cells. Many factors have been identified in the pathogenesis of HBV-associated HCC (HBV-HCC), including HBV gene integration, genomic instability caused by mutation, and activation of cancer-promoting signaling pathways. As research in the progression of HBV-HCC progresses, the role of many new mechanisms, such as epigenetics, exosomes, autophagy, metabolic regulation, and immune suppression, is also being continuously explored. The occurrence of HBV-HCC is a complex process caused by interactions across multiple genes and multiple steps, where the synergistic effects of various cancer-promoting mechanisms accelerate the process of disease evolution from inflammation to tumorigenesis. In this review, we aim to provide a brief overview of the mechanisms involved in the occurrence and development of HBV-HCC, which may contribute to a better understanding of the role of HBV in the occurrence and development of HCC.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| |
Collapse
|
38
|
Rajaby R, Zhou Y, Meng Y, Zeng X, Li G, Wu P, Sung WK. SurVirus: a repeat-aware virus integration caller. Nucleic Acids Res 2021; 49:e33. [PMID: 33444454 PMCID: PMC8034624 DOI: 10.1093/nar/gkaa1237] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/01/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023] Open
Abstract
A significant portion of human cancers are due to viruses integrating into human genomes. Therefore, accurately predicting virus integrations can help uncover the mechanisms that lead to many devastating diseases. Virus integrations can be called by analysing second generation high-throughput sequencing datasets. Unfortunately, existing methods fail to report a significant portion of integrations, while predicting a large number of false positives. We observe that the inaccuracy is caused by incorrect alignment of reads in repetitive regions. False alignments create false positives, while missing alignments create false negatives. This paper proposes SurVirus, an improved virus integration caller that corrects the alignment of reads which are crucial for the discovery of integrations. We use publicly available datasets to show that existing methods predict hundreds of thousands of false positives; SurVirus, on the other hand, is significantly more precise while it also detects many novel integrations previously missed by other tools, most of which are in repetitive regions. We validate a subset of these novel integrations, and find that the majority are correct. Using SurVirus, we find that HPV and HBV integrations are enriched in LINE and Satellite regions which had been overlooked, as well as discover recurrent HBV and HPV breakpoints in human genome-virus fusion transcripts.
Collapse
Affiliation(s)
- Ramesh Rajaby
- School of Computing, National University of Singapore, 13 Computing Drive, 117417, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, 117456, Singapore
| | - Yi Zhou
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yifan Meng
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zeng
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Wu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wing-Kin Sung
- School of Computing, National University of Singapore, 13 Computing Drive, 117417, Singapore.,Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.,Genome Institute of Singapore, 60 Biopolis Street, Genome 138672, Singapore
| |
Collapse
|
39
|
Zhao P, Lu Y, Wang C, Wang L, Li J, Li M. Clinical, Pathological and Genetic Characteristics of Pediatric Hepatocellular Carcinoma Associated with Hepatitis B Virus Infection. J Hepatocell Carcinoma 2021; 8:361-367. [PMID: 34007834 PMCID: PMC8121272 DOI: 10.2147/jhc.s306963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) remains the major challenge in the management of patients with hepatitis B virus (HBV) infection. To date, limited studies have been done on pediatric HBV-associated HCC specifically. Methods Pediatric patients younger than 16 years with HBV-associated HCC were included in the study. HBV integration detection was performed using a high-throughput viral integration detection (HIVID) method. Results Among the 13 included pediatric patients, boys predominated (10, 76.9%). The median age at diagnosis of HCC was 13 years and the youngest age was 6 years. Nine patients had initially seronegative hepatitis B e antigen (HBeAg) and 4 had seropositive HBeAg. All patients had cirrhosis and elevated alpha-fetoprotein. Splenomegaly was present in all patients. Intrahepatic HBsAg was not detected in any tumor tissues from 5 patients who underwent biopsy or excision, while it was positive in all matched non-tumor tissues. In the tumor and matched non-tumor tissues from 3 individuals, HBV integration was identified except in the neoplastic specimen from 1 patient. Integration into the reported genes associated with hepatocarcinogenesis was not found in the tumor tissues from the 3 patients. Discussion Hypervigilance for HCC development is required in HBeAg-negative cirrhotic children. The findings based on the immunohistochemical and genetic results expand the knowledge of pediatric HCC development.
Collapse
Affiliation(s)
- Pan Zhao
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Yinying Lu
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Chunya Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, People's Republic of China
| | - Limin Wang
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, People's Republic of China
| | - Jinfeng Li
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Meina Li
- Department of Health Service, Second Military Medical University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
40
|
Studies on the correlation between mutation and integration of HBV in hepatocellular carcinoma. Biosci Rep 2021; 40:226088. [PMID: 32797164 PMCID: PMC7442973 DOI: 10.1042/bsr20201988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
It is well known that both the mutation and integration of the Hepatitis B virus (HBV) are of great significance in liver cancer, however, the relationship between mutation and integration is still unclear. In the present study, sequencing data from 426 previously published samples were analyzed and 5374 specific HBV mutations in cancer tissues were discovered. By comparing integrated samples and non-integrated samples, we found that the integrated samples had higher sample single nucleotide variants (SNVs) positive rates and SNV numbers, as well as higher sample frequency of SNV in the X region of the HBV genome. Samples with HBV integration in the telomerase reverse transcriptase (TERT) region showed higher SNV positive rates and numbers than samples without integration. Moreover, the SNVs (209 [T>G] and 531 [T>C; T>G]) were seen with higher frequency in samples with integration in the TERT region. Our study showed that the occurrence of viral integration events is closely related to the occurrence of SNV, and SNV in the X region should be more directly associated with viral integration. The present study provides an initial exploration of the relationship between HBV mutation and integration to help improve our understanding of the relationship between viral integration and mutation.
Collapse
|
41
|
Li W, Qi Y, Xu H, Wei W, Cui X. Profile of different Hepatitis B virus integration frequency in hepatocellular carcinoma patients. Biochem Biophys Res Commun 2021; 553:160-164. [PMID: 33773138 DOI: 10.1016/j.bbrc.2021.03.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/19/2021] [Accepted: 03/11/2021] [Indexed: 11/26/2022]
Abstract
Hepatitis B virus (HBV) DNA integration is closely related to the occurrence of liver cancer. However, current studies mostly focus on the detection of the viral integration sites, ignoring the relationship between the frequency of viral integration and liver cancer. Thus, this study uses previous data to distinguish the breakpoints according to the integration frequency and analyzes the characteristics of different groups. This analysis revealed that three sets of breakpoints were characterized by its own integrated sample frequency, breakpoint distribution, and affected gene pathways. This result indicated an evolution in the virus integration sites in the process of tumor formation and development. Therefore, our research clarified the characteristics and differences in the sites of viral integration in tumors and adjacent tissues, and clarified the key signaling pathways affected by viral integration. Hence, these findings might be of great significance in the understanding of the role of viral integration frequency in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Weiyang Li
- Jining Medical University, Jining, Shandong, 272067, China; Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong, 272067, China.
| | - Yanwei Qi
- Jining Medical University, Jining, Shandong, 272067, China.
| | - Hanshi Xu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China.
| | - Wei Wei
- Jining Medical University, Jining, Shandong, 272067, China.
| | - Xiaofang Cui
- Jining Medical University, Jining, Shandong, 272067, China; Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
42
|
Garza-Rodríguez ML, Oyervides-Muñoz MA, Pérez-Maya AA, Sánchez-Domínguez CN, Berlanga-Garza A, Antonio-Macedo M, Valdés-Chapa LD, Vidal-Torres D, Vidal-Gutiérrez O, Pérez-Ibave DC, Treviño V. Analysis of HPV Integrations in Mexican Pre-Tumoral Cervical Lesions Reveal Centromere-Enriched Breakpoints and Abundant Unspecific HPV Regions. Int J Mol Sci 2021; 22:ijms22063242. [PMID: 33810183 PMCID: PMC8005155 DOI: 10.3390/ijms22063242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 01/11/2023] Open
Abstract
Human papillomavirus (HPV) DNA integration is a crucial event in cervical carcinogenesis. However, scarce studies have focused on studying HPV integration (HPVint) in early-stage cervical lesions. Using HPV capture followed by sequencing, we investigated HPVint in pre-tumor cervical lesions. Employing a novel pipeline, we analyzed reads containing direct evidence of the integration breakpoint. We observed multiple HPV infections in most of the samples (92%) with a median integration rate of 0.06% relative to HPV mapped reads corresponding to two or more sequence breakages. Unlike cancer studies, most integrations events were unique (supported by one read), consistent with the lack of clonal selection. Congruent to other studies, we found that breakpoints could occur, practically, in any part of the viral genome. We noted that L1 had a higher frequency of rupture integration (25%). Based on host genome integration frequencies, we found previously reported integration sites in cancer for genes like FHIT, CSMD1, and LRP1B and putatively many new ones such as those exemplified in CSMD3, ROBO2, and SETD3. Similar host integrations regions and genes were observed in diverse HPV types within many genes and even equivalent integration positions in different samples and HPV types. Interestingly, we noted an enrichment of integrations in most centromeres, suggesting a possible mechanism where HPV exploits this structural machinery to facilitate integration. Supported by previous findings, overall, our analysis provides novel information and insights about HPVint.
Collapse
Affiliation(s)
- María Lourdes Garza-Rodríguez
- Hospital Universitario “Dr. José Eleuterio González”, Centro Universitario Contra el Cáncer, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (M.L.G.-R.); (D.C.P.-I.); (O.V.-G.)
| | - Mariel Araceli Oyervides-Muñoz
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico;
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro Monterrey, Nuevo León 64460, Mexico; (A.A.P.-M.); (C.N.S.-D.)
| | - Antonio Alí Pérez-Maya
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro Monterrey, Nuevo León 64460, Mexico; (A.A.P.-M.); (C.N.S.-D.)
| | - Celia Nohemí Sánchez-Domínguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro Monterrey, Nuevo León 64460, Mexico; (A.A.P.-M.); (C.N.S.-D.)
| | - Anais Berlanga-Garza
- Departamento de Ginecología y Obstetricia, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (A.B.-G.); (M.A.-M.); (L.D.V.-C.); (D.V.-T.)
| | - Mauro Antonio-Macedo
- Departamento de Ginecología y Obstetricia, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (A.B.-G.); (M.A.-M.); (L.D.V.-C.); (D.V.-T.)
| | - Lezmes Dionicio Valdés-Chapa
- Departamento de Ginecología y Obstetricia, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (A.B.-G.); (M.A.-M.); (L.D.V.-C.); (D.V.-T.)
| | - Diego Vidal-Torres
- Departamento de Ginecología y Obstetricia, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (A.B.-G.); (M.A.-M.); (L.D.V.-C.); (D.V.-T.)
| | - Oscar Vidal-Gutiérrez
- Hospital Universitario “Dr. José Eleuterio González”, Centro Universitario Contra el Cáncer, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (M.L.G.-R.); (D.C.P.-I.); (O.V.-G.)
| | - Diana Cristina Pérez-Ibave
- Hospital Universitario “Dr. José Eleuterio González”, Centro Universitario Contra el Cáncer, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (M.L.G.-R.); (D.C.P.-I.); (O.V.-G.)
| | - Víctor Treviño
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. Morones Prieto 3000, Colonia Los Doctores, Nuevo León 64710, Mexico
- Correspondence:
| |
Collapse
|
43
|
Pischedda E, Crava C, Carlassara M, Zucca S, Gasmi L, Bonizzoni M. ViR: a tool to solve intrasample variability in the prediction of viral integration sites using whole genome sequencing data. BMC Bioinformatics 2021; 22:45. [PMID: 33541262 PMCID: PMC7863434 DOI: 10.1186/s12859-021-03980-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
Background Several bioinformatics pipelines have been developed to detect sequences from viruses that integrate into the human genome because of the health relevance of these integrations, such as in the persistence of viral infection and/or in generating genotoxic effects, often progressing into cancer. Recent genomics and metagenomics analyses have shown that viruses also integrate into the genome of non-model organisms (i.e., arthropods, fish, plants, vertebrates). However, rarely studies of endogenous viral elements (EVEs) in non-model organisms have gone beyond their characterization from reference genome assemblies. In non-model organisms, we lack a thorough understanding of the widespread occurrence of EVEs and their biological relevance, apart from sporadic cases which nevertheless point to significant roles of EVEs in immunity and regulation of expression. The concomitance of repetitive DNA, duplications and/or assembly fragmentations in a genome sequence and intrasample variability in whole-genome sequencing (WGS) data could determine misalignments when mapping data to a genome assembly. This phenomenon hinders our ability to properly identify integration sites. Results To fill this gap, we developed ViR, a pipeline which solves the dispersion of reads due to intrasample variability in sequencing data from both single and pooled DNA samples thus ameliorating the detection of integration sites. We tested ViR to work with both in silico and real sequencing data from a non-model organism, the arboviral vector Aedes albopictus. Potential viral integrations predicted by ViR were molecularly validated supporting the accuracy of ViR results. Conclusion ViR will open new venues to explore the biology of EVEs, especially in non-model organisms. Importantly, while we generated ViR with the identification of EVEs in mind, its application can be extended to detect any lateral transfer event providing an ad-hoc sequence to interrogate.
Collapse
Affiliation(s)
- Elisa Pischedda
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Cristina Crava
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy.,ERI BIOTECMED, Universitat de Valencia, 46010, Valencia, Spain
| | - Martina Carlassara
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | | | - Leila Gasmi
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Mariangela Bonizzoni
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|
44
|
Hu G, Huang MX, Li WY, Gan CJ, Dong WX, Peng XM. Liver damage favors the eliminations of HBV integration and clonal hepatocytes in chronic hepatitis B. Hepatol Int 2021; 15:60-70. [PMID: 33534083 PMCID: PMC7886763 DOI: 10.1007/s12072-020-10125-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Background HBV integration is suspected to be an obstinate risk factor for hepatocellular carcinoma (HCC) in the era of antiviral therapy. Integration events start to occur in the immunotolerance phase, but their fates in the immune clearance phase have not yet been clarified. Here, we report the influences of liver damage on HBV integration and clonal hepatocyte expansion in patients with chronic hepatitis B (CHB). Methods HBV integration breakpoints in liver biopsy samples from 54 CHB patients were detected using a modified next-generation sequencing assay. Results A total of 3729 (69 per sample) integration breakpoints were found in the human genome, including some hotspot genes and KEGG pathways, especially in patients with abnormal transaminases. The number of breakpoint types, an integration risk parameter, was negatively correlated with HBV DNA load and transaminase levels. The average, maximum and total frequencies of given breakpoint types, parameters of clonal hepatocyte expansion, were negatively correlated with HBV DNA load, transaminase levels and liver inflammation activity grade score. The HBV DNA load and inflammation activity grade score were further found to be positively correlated with transaminase levels. Moreover, nucleos(t)ide analog (NUC) treatment that normalized transaminases nonsignificantly reduced the types, but significantly increased the average frequency and negated the enrichments of integration breakpoints. Conclusion Liver damage mainly removed the inventories of viral integration and clonal hepatocytes in CHB. NUC treatment may have reduced HBV integration but clearly increased clonal hepatocyte expansion, which may explain why HCC risk cannot be ruled out by NUC treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s12072-020-10125-y.
Collapse
Affiliation(s)
- Gang Hu
- Center of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-Sen University, 52 Meihua East Road, Zhuhai, 519000 Guangdong China
| | - Ming X. Huang
- Center of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-Sen University, 52 Meihua East Road, Zhuhai, 519000 Guangdong China
| | - Wei Y. Li
- Jining Medical University, Jining, 272057 Shandong China
| | - Chong J. Gan
- Center of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-Sen University, 52 Meihua East Road, Zhuhai, 519000 Guangdong China
| | - Wen X. Dong
- Center of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-Sen University, 52 Meihua East Road, Zhuhai, 519000 Guangdong China
| | - Xiao M. Peng
- Center of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-Sen University, 52 Meihua East Road, Zhuhai, 519000 Guangdong China
| |
Collapse
|
45
|
Zeng X, Zhao L, Shen C, Zhou Y, Li G, Sung WK. HIVID2: an accurate tool to detect virus integrations in the host genome. Bioinformatics 2021; 37:1821-1827. [PMID: 33453108 DOI: 10.1093/bioinformatics/btab031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
MOTIVATION Virus integration in the host genome is frequently reported to be closely associated with many human diseases, and the detection of virus integration is a critically challenging task. However, most existing tools show limited specificity and sensitivity. Therefore, the objective of this study is to develop a method for accurate detection of virus integration into host genomes. RESULTS Herein, we report a novel method termed HIVID2 that is a significant upgrade of HIVID. HIVID2 performs a paired-end combination (PE-combination) for potentially integrated reads. The resulting sequences are then remapped onto the reference genomes, and both split and discordant chimeric reads are used to identify accurate integration breakpoints with high confidence. HIVID2 represents a great improvement in specificity and sensitivity, and predicts breakpoints closer to the real integrations, compared with existing methods. The advantage of our method was demonstrated using both simulated and real data sets. HIVID2 uncovered novel integration breakpoints in well-known cervical cancer-related genes, including FHIT and LRP1B, which was verified using protein expression data. In addition, HIVID2 allows the user to decide whether to automatically perform advanced analysis using the identified virus integrations. By analyzing the simulated data and real data tests, we demonstrated that HIVID2 is not only more accurate than HIVID but also better than other existing programs with respect to both sensitivity and specificity. We believe that HIVID2 will help in enhancing future research associated with virus integration. AVAILABILITY HIVID2 can be accessed at https://github.com/zengxi-hada/HIVID2/. CONTACT Xi Zeng (zengxi@mail.hzau.edu.cn), Linghao Zhao (michael_yifan@126.com). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xi Zeng
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Linghao Zhao
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Chenhang Shen
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Zhou
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Wing-Kin Sung
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.,Department of Computer Science, National University of Singapore, Singapore, 117417, Singapore.,Department of Computational and Systems Biology, Genome Institute of Singapore, Singapore, 138672, Singapore
| |
Collapse
|
46
|
Abstract
Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). There are approximately 250 million people in the world that are chronically infected by this virus, resulting in nearly 1 million deaths every year. Many of these patients die from severe liver diseases, including HCC. HBV may induce HCC through the induction of chronic liver inflammation, which can cause oxidative stress and DNA damage. However, many studies also indicated that HBV could induce HCC via the alteration of hepatocellular physiology that may involve genetic and epigenetic changes of the host DNA, the alteration of cellular signaling pathways, and the inhibition of DNA repair mechanisms. This alteration of cellular physiology can lead to the accumulation of DNA damages and the promotion of cell cycles and predispose hepatocytes to oncogenic transformation.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA.
| |
Collapse
|
47
|
Jang JW, Kim JS, Kim HS, Tak KY, Nam H, Sung PS, Bae SH, Choi JY, Yoon SK, Roberts LR. Persistence of intrahepatic hepatitis B virus DNA integration in patients developing hepatocellular carcinoma after hepatitis B surface antigen seroclearance. Clin Mol Hepatol 2021; 27:207-218. [PMID: 33317255 PMCID: PMC7820213 DOI: 10.3350/cmh.2020.0115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS The role of hepatitis B virus (HBV) integration into the host genome in hepatocarcinogenesis following hepatitis B surface antigen (HBsAg) seroclearance remains unknown. Our study aimed to investigate and characterize HBV integration events in chronic hepatitis B (CHB) patients who developed hepatocellular carcinoma (HCC) after HBsAg seroclearance. METHODS Using probe-based HBV capturing followed by next-generation sequencing technology, HBV integration was examined in 10 samples (seven tumors and three non-tumor tissues) from seven chronic carriers who developed HCC after HBsAg loss. Genomic locations and patterns of HBV integration were investigated. RESULTS HBV integration was observed in six patients (85.7%) and eight (80.0%) of 10 tested samples. HBV integration breakpoints were detected in all of the non-tumor (3/3, 100%) and five of the seven (71.4%) tumor samples, with an average number of breakpoints of 4.00 and 2.43, respectively. Despite the lower total number of tumoral integration breakpoints, HBV integration sites in the tumors were more enriched within the genic area. In contrast, non-tumor tissues more often showed intergenic integration. Regarding functions of the affected genes, tumoral genes with HBV integration were mostly associated with carcinogenesis. At enrollment, patients who did not remain under regular HCC surveillance after HBsAg seroclearance had a large HCC, while those on regular surveillance had a small HCC. CONCLUSION The biological functions of HBV integration are almost comparable between HBsAg-positive and HBsAgserocleared HCCs, with continuing pro-oncogenic effects of HBV integration. Thus, ongoing HCC surveillance and clinical management should continue even after HBsAg seroclearance in patients with CHB.
Collapse
Affiliation(s)
- Jeong Won Jang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center, Seoul, Korea
| | - Jin Seoub Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center, Seoul, Korea
| | - Hye Seon Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center, Seoul, Korea
| | - Kwon Yong Tak
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center, Seoul, Korea
| | - Heechul Nam
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center, Seoul, Korea
| | - Pil Soo Sung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center, Seoul, Korea
| | - Si Hyun Bae
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center, Seoul, Korea
| | - Jong Young Choi
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center, Seoul, Korea
| | - Seung Kew Yoon
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center, Seoul, Korea
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
48
|
Li M, Du M, Cong H, Gu Y, Fang Y, Li J, Gan Y, Tu H, Gu J, Xia Q. Characterization of hepatitis B virus DNA integration patterns in intrahepatic cholangiocarcinoma. Hepatol Res 2021; 51:102-115. [PMID: 33037855 DOI: 10.1111/hepr.13580] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022]
Abstract
AIM Hepatitis B virus (HBV) integration is one of the mechanisms contributing to hepatocellular carcinoma (HCC) development. However, the status of HBV integration in intrahepatic cholangiocarcinoma (ICC) is poorly understood. This study aims to characterize the viral integration in HBV-related ICC. METHODS The presence of HBV S and C gene in ICCs and the paratumor tissue was determined by polymerase chain reaction direct sequencing. Hepatitis B virus integration was detected by a high-throughput capture sequencing method. The expression analysis of the genes targeted by HBV in ICC was undertaken in The Cancer Genome Atlas dataset. RESULTS Hepatitis B virus S and/or C gene fragments were detected in 71.43% (10/14) ICCs and 57.14% (8/14) paratumor tissues. Using the high-throughput capture sequencing approach, 139 and 183 HBV integration breakpoints were identified from seven ICC and seven paired paratumor tissues, respectively. Seven genes (TERT, CEACAM20, SPATA18, TRERF1, ZNF23, LINC01449, and LINC00486) were recurrently targeted by HBV-DNA in different ICC tissues or different cell populations of the same tissue. TERT, which is the most preferential HBV target gene in HCC, was found to be repeatedly interrupted by HBV-DNA in three different ICC tissues. Based on The Cancer Genome Atlas dataset, TERT, as well as three other HBV recurrently targeted genes (SPATA18, TRERF1, and ZNF23), showed differential expression levels between ICC and para-ICC tissues. CONCLUSIONS Taken together, HBV integration is a common event in HBV-related ICC. The HBV recurrent integration genes identified from this study, such as TERT, provide new clues for further research on the causative link between HBV infection and ICC.
Collapse
Affiliation(s)
- Mengge Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Du
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Cong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Emergency, Nanjing First Hospital, Nanjing, China
| | - Yuan Fang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Sze KM, Ho DW, Chiu Y, Tsui Y, Chan L, Lee JM, Chok KS, Chan AC, Tang C, Tang VW, Lo IL, Yau DT, Cheung T, Ng IO. Hepatitis B Virus-Telomerase Reverse Transcriptase Promoter Integration Harnesses Host ELF4, Resulting in Telomerase Reverse Transcriptase Gene Transcription in Hepatocellular Carcinoma. Hepatology 2021; 73:23-40. [PMID: 32170761 PMCID: PMC7898544 DOI: 10.1002/hep.31231] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/17/2020] [Accepted: 02/27/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) integrations are common in hepatocellular carcinoma (HCC). In particular, alterations of the telomerase reverse transcriptase (TERT) gene by HBV integrations are frequent; however, the molecular mechanism and functional consequence underlying TERT HBV integration are unclear. APPROACH AND RESULTS We adopted a targeted sequencing strategy to survey HBV integrations in human HBV-associated HCCs (n = 95). HBV integration at the TERT promoter was frequent (35.8%, n = 34/95) in HCC tumors and was associated with increased TERT mRNA expression and more aggressive tumor behavior. To investigate the functional importance of various integrated HBV components, we employed different luciferase reporter constructs and found that HBV enhancer I (EnhI) was the key viral component leading to TERT activation on integration at the TERT promoter. In addition, the orientation of the HBV integration at the TERT promoter further modulated the degree of TERT transcription activation in HCC cell lines and patients' HCCs. Furthermore, we performed array-based small interfering RNA library functional screening to interrogate the potential major transcription factors that physically interacted with HBV and investigated the cis-activation of host TERT gene transcription on viral integration. We identified a molecular mechanism of TERT activation through the E74 like ETS transcription factor 4 (ELF4), which normally could drive HBV gene transcription. ELF4 bound to the chimeric HBV EnhI at the TERT promoter, resulting in telomerase activation. Stable knockdown of ELF4 significantly reduced the TERT expression and sphere-forming ability in HCC cells. CONCLUSIONS Our results reveal a cis-activating mechanism harnessing host ELF4 and HBV integrated at the TERT promoter and uncover how TERT HBV-integrated HCCs may achieve TERT activation in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Karen Man‐Fong Sze
- Department of PathologyThe University of Hong KongHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Daniel Wai‐Hung Ho
- Department of PathologyThe University of Hong KongHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Yung‐Tuen Chiu
- Department of PathologyThe University of Hong KongHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Yu‐Man Tsui
- Department of PathologyThe University of Hong KongHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Lo‐Kong Chan
- Department of PathologyThe University of Hong KongHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Joyce Man‐Fong Lee
- Department of PathologyThe University of Hong KongHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Kenneth Siu‐Ho Chok
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
- Department of SurgeryThe University of Hong KongHong KongChina
| | - Albert Chi‐Yan Chan
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
- Department of SurgeryThe University of Hong KongHong KongChina
| | | | | | | | | | - Tan‐To Cheung
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
- Department of SurgeryThe University of Hong KongHong KongChina
| | - Irene Oi‐Lin Ng
- Department of PathologyThe University of Hong KongHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| |
Collapse
|
50
|
Yang M, Yang G, Li F, Ou M, Li C, Chen J, Lin H, Zhang Y, Xue W, Wu Y, Xu Y, Sui W, Dai Y. HBV integrated genomic characterization revealed hepatocyte genomic alterations in HBV-related hepatocellular carcinomas. Mol Clin Oncol 2020; 13:79. [PMID: 33062269 PMCID: PMC7549396 DOI: 10.3892/mco.2020.2149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 08/28/2020] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies that is closely associated with the Hepatitis B virus (HBV). HBV integration into host genomes can induce instability and the aberrant expression of human genomic DNA. To directly assess HBV integration breakpoints at whole genome level, four small sequencing libraries were constructed and the HBV integration profiles of four patients with HCC were characterized. In total, the current study identified 11,800,974, 11,216,998, 11,026,546 and 11,607,842 clean reads for patients 1-3 and 4, respectively, of which 92.82, 95.95, 97.21 and 97.29% were properly aligned to the hybrid reference genome. In addition, 220 HBV integration events were detected from the tumor tissues of four patients with HCC and an average of 55 breakpoints per sample was calculated. The results indicated that HBV integration events may be implicated in HCC physiologies and diseases. The results acquired may also provide insight into the pathogenesis of HCC, which may be valuable for future HCC therapy.
Collapse
Affiliation(s)
- Ming Yang
- Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory, Nephrology Department of Guilin No. 924 Hospital, Guilin, Guangxi 541002, P.R. China
| | - Guiqi Yang
- Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory, Nephrology Department of Guilin No. 924 Hospital, Guilin, Guangxi 541002, P.R. China
| | - Fengyan Li
- Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory, Nephrology Department of Guilin No. 924 Hospital, Guilin, Guangxi 541002, P.R. China
| | - Minglin Ou
- Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory, Nephrology Department of Guilin No. 924 Hospital, Guilin, Guangxi 541002, P.R. China.,Clinical Medical Research Center of The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Chunhong Li
- Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory, Nephrology Department of Guilin No. 924 Hospital, Guilin, Guangxi 541002, P.R. China.,College of Life Science, Guangxi Normal University, Guilin, Guangxi 541004, P.R. China
| | - Jiejing Chen
- Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory, Nephrology Department of Guilin No. 924 Hospital, Guilin, Guangxi 541002, P.R. China
| | - Hua Lin
- Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory, Nephrology Department of Guilin No. 924 Hospital, Guilin, Guangxi 541002, P.R. China
| | - Yue Zhang
- Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory, Nephrology Department of Guilin No. 924 Hospital, Guilin, Guangxi 541002, P.R. China
| | - Wen Xue
- Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory, Nephrology Department of Guilin No. 924 Hospital, Guilin, Guangxi 541002, P.R. China
| | - Yan Wu
- Clinical Medical Research Center of The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Yong Xu
- Clinical Medical Research Center of The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Weiguo Sui
- Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory, Nephrology Department of Guilin No. 924 Hospital, Guilin, Guangxi 541002, P.R. China
| | - Yong Dai
- Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory, Nephrology Department of Guilin No. 924 Hospital, Guilin, Guangxi 541002, P.R. China.,Clinical Medical Research Center of The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|