1
|
Liu S, Zhao R, Zang Y, Huang P, Zhang Q, Fan X, Bai J, Zheng X, Zhao S, Kuai D, Gao C, Wang Y, Xue F. Interleukin-22 promotes endometrial carcinoma cell proliferation and cycle progression via ERK1/2 and p38 activation. Mol Cell Biochem 2025; 480:3147-3160. [PMID: 39690293 PMCID: PMC12048457 DOI: 10.1007/s11010-024-05179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Endometrial carcinoma (EC) is one of the most common gynecological malignant tumors, but its underlying pathogenic mechanisms are largely obscure. Interleukin-22 (IL-22), one cytokine in the tumor immune microenvironment, was reported to be associated with carcinoma progression. Here, we aimed to investigate the regulation of IL-22 in endometrial carcinoma. Enzyme-linked immunosorbent assay (ELISA) analysis of IL-22 was done in 27 controls and 51 patients with EC. We examined the proliferative potential, cycle progression, and signaling pathways modulated by IL-22 in EC cells. Western blot analysis was performed to investigate the expression of proliferative and cycle-related proteins in EC cells. The effect of IL-22 mediated by interleukin-22 receptor alpha 1 (IL-22RA1) was examined using cell transfection with small interfering RNA (siRNA). In addition, a xenograft tumor model was performed to assess the effect of IL-22 in vivo. We demonstrated significant up-regulation of serum IL-22 concentrations in EC patients (42.59 ± 23.72 pg/mL) compared to the control group (27.47 ± 8.29 pg/mL). High levels of IL-22 concentrations appear to correlate with malignant clinicopathological features of EC. Treatment with IL-22 promoted cell proliferation and G1/S phase progression in Ishikawa and HEC-1B cells. Western blot analysis revealed that c-Myc, cyclin E1, cyclin-dependent kinase (CDK)2, cyclin D1, CDK4, CDK6, p-extracellular signal-regulated kinase1/2 (p-ERK1/2), and p-p38 were highly expressed in EC cells exposed to IL-22. Moreover, in the EC mice model, we found that giving exogenous IL-22 increased tumor volume and weight. Immunohistochemistry showed that intra-tumor Ki-67 expression was up-regulated upon IL-22 treatment. The IL-22-mediated changes in cell proliferation, cycle progression, and protein expression can be effectively inhibited by the ERK1/2 inhibitor U0126 and the p38 inhibitor SB202190. In addition, the role of IL-22 in EC is receptor-dependent. Our findings suggest that IL-22 promotes endometrial carcinoma cell proliferation and G1/S phase progression by activating ERK1/2 and p38 signaling. Therefore, IL-22 may represent a potential therapeutic target for the treatment of endometrial carcinoma.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ruqian Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, 313002, Zhejiang, China
| | - Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Gynecology, Qingdao Municipal Hospital, Shandong, 266071, China
| | - Pengzhu Huang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiaoling Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiangqin Fan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junyi Bai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xingyu Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shuangshuang Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dan Kuai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
2
|
Chiang YF, Huang KC, Huang TC, Chen HY, Ali M, Al-Hendy A, Huang PS, Hsia SM. Regulatory roles of NAMPT and NAD + metabolism in uterine leiomyoma progression: Implications for ECM accumulation, stemness, and microenvironment. Redox Biol 2024; 78:103411. [PMID: 39486360 PMCID: PMC11564007 DOI: 10.1016/j.redox.2024.103411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Uterine leiomyoma (UL), commonly referred to as benign tumors, is characterized by excessive cell proliferation, extracellular matrix (ECM) accumulation, and the presence of stem cell-like properties. Nicotinamide adenine dinucleotide (NAD+) metabolism, regulated in part by nicotinamide phosphoribosyltransferase (NAMPT), plays a crucial role in these pathological processes and has emerged as a potential therapeutic target. Additionally, redox signaling pathways are integral to the pathogenesis of UL, influencing the dynamics of NAD+ metabolism. This study sought to elucidate the regulatory functions of NAMPT and NAD+ metabolism, in conjunction with redox signaling, in the progression of UL, and to explore potential therapeutic strategies targeting these pathways. Evaluation of NAMPT expression in human UL tissues revealed a positive correlation between elevated NAMPT levels and increased ECM deposition, as well as the expression of stemness markers. The use of FK866 and nicotinamide (NAM), to inhibit NAMPT significantly suppressed UL cell viability and attenuated stem cell-like characteristics. Redox signaling pathways, including those associated with DNA damage, lysosomal function homeostasis, and redox-sensitive phagophore formation, were implicated in the regulation of ECM dynamics, particularly through ECM-targeted inhibition. This study highlights the pivotal roles of NAMPT, NAD+ metabolism, and redox signaling in the pathophysiology of UL. Targeting NAMPT, particularly through the use of inhibitors FK866 and NAM, represents a promising therapeutic approach for mitigating UL progression by modulating redox and ECM dynamics. These findings offer novel insights into UL pathogenesis and establish NAMPT as a compelling target for future clinical investigation.
Collapse
Affiliation(s)
- Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsin-Yuan Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt; Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Pei-Shen Huang
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan; School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
3
|
Myong S, Nguyen AQ, Challa S. Biological Functions and Therapeutic Potential of NAD + Metabolism in Gynecological Cancers. Cancers (Basel) 2024; 16:3085. [PMID: 39272943 PMCID: PMC11394644 DOI: 10.3390/cancers16173085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an important cofactor for both metabolic and signaling pathways, with the dysregulation of NAD+ levels acting as a driver for diseases such as neurodegeneration, cancers, and metabolic diseases. NAD+ plays an essential role in regulating the growth and progression of cancers by controlling important cellular processes including metabolism, transcription, and translation. NAD+ regulates several metabolic pathways such as glycolysis, the citric acid (TCA) cycle, oxidative phosphorylation, and fatty acid oxidation by acting as a cofactor for redox reactions. Additionally, NAD+ acts as a cofactor for ADP-ribosyl transferases and sirtuins, as well as regulating cellular ADP-ribosylation and deacetylation levels, respectively. The cleavage of NAD+ by CD38-an NAD+ hydrolase expressed on immune cells-produces the immunosuppressive metabolite adenosine. As a result, metabolizing and maintaining NAD+ levels remain crucial for the function of various cells found in the tumor microenvironment, hence its critical role in tissue homeostasis. The NAD+ levels in cells are maintained by a balance between NAD+ biosynthesis and consumption, with synthesis being controlled by the Preiss-Handler, de novo, and NAD+ salvage pathways. The primary source of NAD+ synthesis in a variety of cell types is directed by the expression of the enzymes central to the three biosynthesis pathways. In this review, we describe the role of NAD+ metabolism and its synthesizing and consuming enzymes' control of cancer cell growth and immune responses in gynecologic cancers. Additionally, we review the ongoing efforts to therapeutically target the enzymes critical for NAD+ homeostasis in gynecologic cancers.
Collapse
Affiliation(s)
- Subin Myong
- The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Anh Quynh Nguyen
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Sridevi Challa
- The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Lin X, He Y, Liu Y, Zhou H, Xu X, Xu J, Zhou K. CDK1 promotes the phosphorylation of KIFC1 to regulate the tumorgenicity of endometrial carcinoma. J Gynecol Oncol 2024; 35:e68. [PMID: 38456590 PMCID: PMC11390247 DOI: 10.3802/jgo.2024.35.e68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 02/11/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVE This study aims to clarify the mechanical action of cyclin-dependent protein kinase 1 (CDK1) in the development of endometrial carcinoma (EMCA), which may be associated with the phosphorylation of kinesin family member C1 (KIFC1) and further activate the PI3K/AKT pathway. METHODS The protein and gene expression of CDK1 in EMCA tissues and tumor cell lines were evaluated by western blot, quantitative polymerase chain reaction, and immunohistochemistry staining. Next, Cell Counting Kit-8 and colony formation assay detected cell survival and proliferation. Cell migration and invasion were measured by Transwell assay. Cell apoptosis and cell cycle were tested by flow cytometry. Immunofluorescence staining of γH2AX was used to evaluate DNA damage, respectively. Subsequently, a co-immunoprecipitation assay was used to detect the interaction between CDK1 and KIFC1. The phosphorylated protein of KIFC1 and PI3K/AKT was detected by western blot. Finally, the effect of CDK1 on the tumor formation of EMCA was evaluated in a nude mouse xenograft model. RESULTS CDK1 was highly expressed in EMCA tumor cell lines and tissues, which contributed to cell survival, proliferation, invasion, and migration, inhibited cell apoptosis, and induced DNA damage of EMCA cells dependent on the phosphorylation of KIFC1. Moreover, the CDK1-KIFC1 axis further activated PI3K/AKT pathway. Finally, CDK1 knockdown repressed tumor formation of EMCA in vivo. CONCLUSION We report that increased CDK1 promotes tumor progression and identified it as a potential prognostic marker and therapeutic target of EMCA.
Collapse
Affiliation(s)
- Xi Lin
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yingying He
- Department of Pathology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yiming Liu
- Department of Pathology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Huihao Zhou
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaomin Xu
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jingui Xu
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Kening Zhou
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.
| |
Collapse
|
5
|
Rempuia V, Gurusubramanian G, Roy VK. Differential effect of visfatin inhibition on the testicular androgen and estrogen receptors expression in early pubertal mice. Endocrine 2024; 84:1216-1228. [PMID: 38273138 DOI: 10.1007/s12020-024-03692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND It is now well known that visfatin is expressed in the testis and ovary of various animals. Visfatin is known to regulate gonadal functions such as steroidogenesis, proliferation, and apoptosis in the ovary and testis of mice. Recently, we have shown that visfatin has an inhibitory role in the infantile mice testis. It has also been shown that visfatin stimulates testicular steroidogenesis in adult rats. However, the role of visfatin during puberty has not been investigated in relation to the above-mentioned process. OBJECTIVE The objective of the present study was to examine the effect of visfatin inhibition by FK866 from PND25 to PND35 (pre-pubertal to early pubertal) in male Swiss albino mice on steroidogenesis, proliferation, and apoptosis. METHODS Sixteen mice (25 days old) were divided into two groups, one group was given normal saline and the other group was administered with an inhibitor of visfatin (FK866) at the dose of 1.5 mg/kg by intraperitoneal injection for 10 days. Histopathological and immunohistochemical analysis, western blot analysis and hormonal assay were done. RESULTS Visfatin inhibition resulted in increased estrogen secretion, body weight, seminiferous tubule diameter, germinal epithelium height, and proliferation along with increased expression of BCl2, casapse3, ERs and aromatase expression in the mice testis. Visfatin inhibition down-regulated the testicular visfatin expression and also decreased abundance in the adipose tissues. CONCLUSION In conclusion, decreased AR expression and increased ERs expression by FK866, suggest that visfatin might have a stimulatory effect on AR signaling than ERs in the early pubertal stage of mice.
Collapse
Affiliation(s)
- Vanlal Rempuia
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| |
Collapse
|
6
|
Sato S. Adipo-oncology: adipocyte-derived factors govern engraftment, survival, and progression of metastatic cancers. Cell Commun Signal 2024; 22:52. [PMID: 38238841 PMCID: PMC10797898 DOI: 10.1186/s12964-024-01474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
Conventional therapies for metastatic cancers have limited efficacy. Recently, cancer therapies targeting noncancerous cells in tumor microenvironments have shown improved clinical outcomes in patients. However, further advances in our understanding of the metastatic tumor microenvironment are required to improve treatment outcomes. Adipocytes are distributed throughout the body, and as a part of the metastatic tumor microenvironment, they interact with cancer cells in almost all organs. Adipocytes secrete various factors that are reported to exert clinical effects on cancer progression, including engraftment, survival, and expansion at the metastatic sites. However, only a few studies have comprehensively examined their impact on cancer cells. In this review, we examined the impact of adipocytes on cancer by describing the adipocyte-secreted factors that are involved in controlling metastatic cancer, focusing on adipokines, such as adiponectin, leptin, visfatin, chemerin, resistin, apelin, and omentin. Adipocyte-secreted factors promote cancer metastasis and contribute to various biological functions of cancer cells, including migration, invasion, proliferation, immune evasion, and drug resistance at the metastatic sites. We propose the establishment and expansion of "adipo-oncology" as a research field to enhance the comprehensive understanding of the role of adipocytes in metastatic cancers and the development of more robust metastatic cancer treatments.
Collapse
Affiliation(s)
- Shinya Sato
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
- Department of Pathology, Kanagawa Cancer Center Hospital, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
| |
Collapse
|
7
|
Szymanska K, Rytelewska E, Zaobidna E, Kiezun M, Gudelska M, Kopij G, Dobrzyn K, Mlyczynska E, Kurowska P, Kaminska B, Nynca A, Smolinska N, Rak A, Kaminski T. The Effect of Visfatin on the Functioning of the Porcine Pituitary Gland: An In Vitro Study. Cells 2023; 12:2835. [PMID: 38132154 PMCID: PMC10742260 DOI: 10.3390/cells12242835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Visfatin (VIS), also known as nicotinamide phosphoribosyltransferase (NAMPT), is the rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD+). Recently, VIS has been also recognized as an adipokine. Our previous study revealed that VIS is produced in the anterior and posterior lobes of the porcine pituitary. Moreover, the expression and secretion of VIS are dependent on the phase of the estrous cycle and/or the stage of early pregnancy. Based on this, we hypothesized that VIS may regulate porcine pituitary function. This study was conducted on anterior pituitary (AP) glands harvested from pigs during specific phases of the estrous cycle. We have shown the modulatory effect of VIS in vitro on LH and FSH secretion by porcine AP cells (determined by ELISA). VIS was also found to stimulate cell proliferation (determined by Alamar Blue) without affecting apoptosis in these cells (determined using flow cytometry technique). Moreover, it was indicated that VIS may act in porcine AP cells through the INSR, AKT/PI3K, MAPK/ERK1/2, and AMPK signaling pathways (determined by ELISA or Western Blot). This observation was further supported by the finding that simultaneous treatment of cells with VIS and inhibitors of these pathways abolished the observed VIS impact on LH and FSH secretion (determined by ELISA). In addition, our research indicated that VIS affected the mentioned processes in a manner that was dependent on the dose of VIS and/or the phase of the estrous cycle. Thus, these findings suggest that VIS may regulate the functioning of the porcine pituitary gland during the estrous cycle.
Collapse
Affiliation(s)
- Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Marlena Gudelska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Ewa Mlyczynska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (A.R.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, 30-348 Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (A.R.)
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Anna Nynca
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (A.R.)
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| |
Collapse
|
8
|
Semerena E, Nencioni A, Masternak K. Extracellular nicotinamide phosphoribosyltransferase: role in disease pathophysiology and as a biomarker. Front Immunol 2023; 14:1268756. [PMID: 37915565 PMCID: PMC10616597 DOI: 10.3389/fimmu.2023.1268756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) plays a central role in mammalian cell metabolism by contributing to nicotinamide adenine dinucleotide biosynthesis. However, NAMPT activity is not limited to the intracellular compartment, as once secreted, the protein accomplishes diverse functions in the extracellular space. Extracellular NAMPT (eNAMPT, also called visfatin or pre-B-cell colony enhancing factor) has been shown to possess adipocytokine, pro-inflammatory, and pro-angiogenic activities. Numerous studies have reported the association between elevated levels of circulating eNAMPT and various inflammatory and metabolic disorders such as obesity, diabetes, atherosclerosis, arthritis, inflammatory bowel disease, lung injury and cancer. In this review, we summarize the current state of knowledge on eNAMPT biology, proposed roles in disease pathogenesis, and its potential as a disease biomarker. We also briefly discuss the emerging therapeutic approaches for eNAMPT inhibition.
Collapse
Affiliation(s)
- Elise Semerena
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | | |
Collapse
|
9
|
Wu Q, Jiang G, Sun Y, Li B. Reanalysis of single-cell data reveals macrophage subsets associated with the immunotherapy response and prognosis of patients with endometrial cancer. Exp Cell Res 2023; 430:113736. [PMID: 37541419 DOI: 10.1016/j.yexcr.2023.113736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Endometrial cancer (EC) is an aggressive gynecological malignancy with an increased incidence rate. The immune landscape crucially affects immunotherapy efficacy and prognosis in EC patients. Here, we characterized the distinct tumor microenvironment signatures of EC tumors by analyzing single-cell RNA sequencing data from Gene Expression Omnibus and bulk RNA sequencing data from The Cancer Genome Atlas, which were compared with normal endometrium. Three macrophage subsets were identified, and two of them showed tissue-specific distribution. One of the macrophage subsets was dominant in macrophages derived from EC and exhibited characteristic behaviors such as promoting tumor growth and metastasis. One of the other macrophage subsets was mainly found in normal endometrium and served functions related to antigen presentation. We also identified a macrophage subset that was found in both EC and normal endometrial tissue. However, the pathway and cellular cross-talk of this subset were completely different based on the respective origin, suggesting a tumor-related differentiation mechanism of macrophages. Additionally, the tumor-enriched macrophage subset was found to predict immunotherapy responses in EC. Notably, we selected six genes from macrophage subset markers that could predict the survival of EC patients, SCL8A1, TXN, ANXA5, CST3, CD74 and NANS, and constructed a prognostic signature. To verify the signature, we identified immunohistochemistry for the tumor samples of 83 EC patients based on the selected genes and further followed up with the survival of the patients. Our results provide strong evidence that the signature can effectively predict the prognosis of EC patients.
Collapse
Affiliation(s)
- Qianhua Wu
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Genyi Jiang
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yihan Sun
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bilan Li
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
10
|
Pook D, Geynisman DM, Carles J, de Braud F, Joshua AM, Pérez-Gracia JL, Llácer Pérez C, Shin SJ, Fang B, Barve M, Maruzzo M, Bracarda S, Kim M, Kerloeguen Y, Gallo JD, Maund SL, Harris A, Huang KC, Poon V, Sutaria DS, Gurney H. A Phase Ib, Open-label Study Evaluating the Safety and Efficacy of Ipatasertib plus Rucaparib in Patients with Metastatic Castration-resistant Prostate Cancer. Clin Cancer Res 2023; 29:3292-3300. [PMID: 37339186 DOI: 10.1158/1078-0432.ccr-22-2585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/29/2022] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE To report the safety and efficacy of ipatasertib (AKT inhibitor) combined with rucaparib (PARP inhibitor) in patients with metastatic castration-resistant prostate cancer (mCRPC) previously treated with second-generation androgen receptor inhibitors. PATIENTS AND METHODS In this two-part phase Ib trial (NCT03840200), patients with advanced prostate, breast, or ovarian cancer received ipatasertib (300 or 400 mg daily) plus rucaparib (400 or 600 mg twice daily) to assess safety and identify a recommended phase II dose (RP2D). A part 1 dose-escalation phase was followed by a part 2 dose-expansion phase in which only patients with mCRPC received the RP2D. The primary efficacy endpoint was prostate-specific antigen (PSA) response (≥50% reduction) in patients with mCRPC. Patients were not selected on the basis of tumor mutational status. RESULTS Fifty-one patients were enrolled (part 1 = 21; part 2 = 30). Ipatasertib 400 mg daily plus rucaparib 400 mg twice daily was the selected RP2D, received by 37 patients with mCRPC. Grade 3/4 adverse events occurred in 46% (17/37) of patients, with one grade 4 adverse event (anemia, deemed related to rucaparib) and no deaths. Adverse events leading to treatment modification occurred in 70% (26/37). The PSA response rate was 26% (9/35), and the objective response rate per Response Criteria in Solid Tumors (RECIST) 1.1 was 10% (2/21). Median radiographic progression-free survival per Prostate Cancer Working Group 3 criteria was 5.8 months [95% confidence interval (CI), 4.0-8.1], and median overall survival was 13.3 months (95% CI, 10.9-not evaluable). CONCLUSIONS Ipatasertib plus rucaparib was manageable with dose modification but did not demonstrate synergistic or additive antitumor activity in previously treated patients with mCRPC.
Collapse
Affiliation(s)
- David Pook
- Cabrini Monash University Department of Medical Oncology, Cabrini Health, Malvern, Victoria, Australia
| | - Daniel M Geynisman
- Medical Oncology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Joan Carles
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Filippo de Braud
- Oncologia Medica, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Anthony M Joshua
- Kinghorn Cancer Centre, Saint Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | | | - Casilda Llácer Pérez
- Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | - Sang Joon Shin
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Bruno Fang
- Astera Cancer Care, East Brunswick, New Jersey
| | - Minal Barve
- Mary Crowley Cancer Research Center, Dallas, Texas
| | - Marco Maruzzo
- Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Sergio Bracarda
- Medical and Translational Oncology Unit, Department of Oncology, Azienda Ospedaliera Santa Maria, Terni, Italy
| | - Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | | | | | | | - Adam Harris
- Genentech Inc, South San Francisco, California
| | | | - Victor Poon
- Genentech Inc, South San Francisco, California
| | | | - Howard Gurney
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Kim GJ, Han KD, Joo YH. Association of Metabolic Syndrome with the Risk of Head and Neck Cancer: A 10-Year Follow-Up Study of 10 Million Initially Healthy Individuals. Cancers (Basel) 2023; 15:4118. [PMID: 37627146 PMCID: PMC10452383 DOI: 10.3390/cancers15164118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this national population-based retrospective study was to analyze the relationship between MetS and the incidence of HNC. In this Korean population-based cohort study, 9,598,085 subjects above the age of 20 were monitored from 1 January 2009 to 31 December 2018. In the study population, a total of 10,732 individuals were newly diagnosed with HNC during the 10-year follow-up. The hazard ratio (HR), after adjusting for age, gender, smoking status, alcohol intake, and exercise, indicated that participants with MetS were at a 1.06-fold (95% CI: 1.01-1.10) higher risk of having HNC than those without MetS. Participants with MetS showed an increased risk of developing oral cavity cancer (HR, 1.12; 95% CI, 1.03-1.23) and laryngeal cancer (HR, 1.18; 95% CI, 1.09-1.27). Among the components of MetS, elevated fasting glucose (HR = 1.04, 95% CI: 1.00-1.08) and elevated blood pressure (HR = 1.08, 95% CI: 1.04-1.13) were significantly associated with an increased HR for HNC in an adjusted multivariable model. The association between HNC and MetS remained significant even among individuals who had never smoked or were ex-smokers (HR: 1.09; 95% CI: 1.04-1.15), as well as those who did not drink or were mild drinkers (HR: 1.07; 95% CI: 1.02-1.12). The findings of this cohort study suggest MetS was associated with an increased risk for some types of HNCs. The results of this study could assist with etiological investigations and prevention strategies.
Collapse
Affiliation(s)
- Geun-Jeon Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Kyung-Do Han
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Young-Hoon Joo
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
12
|
Stępień S, Olczyk P, Gola J, Komosińska-Vassev K, Mielczarek-Palacz A. The Role of Selected Adipocytokines in Ovarian Cancer and Endometrial Cancer. Cells 2023; 12:cells12081118. [PMID: 37190027 DOI: 10.3390/cells12081118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Due to their multidirectional influence, adipocytokines are currently the subject of numerous intensive studies. Significant impact applies to many processes, both physiological and pathological. Moreover, the role of adipocytokines in carcinogenesis seems particularly interesting and not fully understood. For this reason, ongoing research focuses on the role of these compounds in the network of interactions in the tumor microenvironment. Particular attention should be drawn to cancers that remain challenging for modern gynecological oncology-ovarian and endometrial cancer. This paper presents the role of selected adipocytokines, including leptin, adiponectin, visfatin, resistin, apelin, chemerin, omentin and vaspin in cancer, with a particular focus on ovarian and endometrial cancer, and their potential clinical relevance.
Collapse
Affiliation(s)
- Sebastian Stępień
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
13
|
Rempuia V, Gurusubramanian G, Roy VK. Evidence of the inhibitory role of visfatin in the testicular activity of mice during the infantile stage. J Steroid Biochem Mol Biol 2023; 231:106306. [PMID: 37024018 DOI: 10.1016/j.jsbmb.2023.106306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 02/07/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Adipokines have emerged as regulators of gonadal function in many mammalian and non-mammalian species. In the present study, we have investigated the developmental expression of testicular and ovarian visfatin along with its possible role in the testicular activity infantile stages. Previously, our group has the extensive role of ovarian visfatin in relation to steroidogenesis, proliferation, and apoptosis in female mice. To the best of our knowledge, no study has shown the role of visfatin in mice testis. Our results from the previous study and present study showed that visfatin in the testis and ovaries are developmentally regulated. To unravel the role of visfatin, we have used FK866, as visfatin inhibitor. FK866 was used as a visfatin inhibitor, to decipher the role of visfatin in the testis of mice. Our results showed that visfatin expression in the testis was developmentally regulated in the testis. Leydig cells as well as germ have shown the presence of visfatin in mice testis, which suggest its role in testicular steroidogenesis and spermatogenesis. Furthermore, visfatin inhibition by FK866 significantly increased the testosterone secretion, and expression of AR, Bcl2, and ERα. The expression of GCNA was upregulated by FK866 treatment. These results suggest that visfatin has an inhibitory role in testicular steroidogenesis and germ cell proliferation in the infantile stage. Further research is required to define the precise role of visfatin in infantile mice testis.
Collapse
Affiliation(s)
- Vanlal Rempuia
- Department of Zoology, Mizoram University, Aizawl-796004, Mizoram, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl-796004, Mizoram, India.
| |
Collapse
|
14
|
Huang P, Fan X, Yu H, Zhang K, Li H, Wang Y, Xue F. Glucose metabolic reprogramming and its therapeutic potential in obesity-associated endometrial cancer. J Transl Med 2023; 21:94. [PMID: 36750868 PMCID: PMC9906873 DOI: 10.1186/s12967-022-03851-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/24/2022] [Indexed: 02/09/2023] Open
Abstract
Endometrial cancer (EC) is a common gynecological cancer that endangers women health. Although substantial progresses of EC management have been achieved in recent years, the incidence of EC still remains high. Obesity has been a common phenomenon worldwide that increases the risk of EC. However, the mechanism associating obesity and EC has not been fully understood. Metabolic reprogramming as a remarkable characteristic of EC is currently emerging. As the primary factor of metabolic syndrome, obesity promotes insulin resistance, hyperinsulinemia and hyperglycaemia. This metabolic disorder remodels systemic status, which increases EC risk and is related with poor prognosis. Glucose metabolism in EC cells is complex and mediated by glycolysis and mitochondria to ensure energy requirement. Factors that affect glucose metabolism may have an impact on EC initiation and progression. In this study, we review the glucose metabolic reprogramming of EC not only systemic metabolism but also inherent tumor cell metabolism. In particular, the role of glucose metabolic regulation in malignant properties of EC will be focused. Understanding of metabolic profile and glucose metabolism-associated regulation mechanism in EC may provide novel perspective for treatment.
Collapse
Affiliation(s)
- Pengzhu Huang
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiangqin Fan
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongfei Yu
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaiwen Zhang
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huanrong Li
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China.
| | - Fengxia Xue
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
15
|
Gogola-Mruk J, Tworzydło W, Krawczyk K, Marynowicz W, Ptak A. Visfatin induces ovarian cancer resistance to anoikis by regulating mitochondrial activity. Endocrine 2023; 80:448-458. [PMID: 36658296 PMCID: PMC10140008 DOI: 10.1007/s12020-023-03305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
PURPOSE Ovarian cancer is characterized by recurrent peritoneal and distant metastasis. To survive in a non-adherent state, floating ovarian cancer spheroids develop mechanisms to resist anoikis. Moreover, ascitic fluid from ovarian cancer patients contains high levels of visfatin with anti-apoptotic properties. However, the mechanism by which visfatin induces anoikis resistance in ovarian cancer spheroids remains unknown. Here, we aimed to assess wheather visfatin which possess anti-apoptotic properties can induce resistance of anoikis in ovarian cancer spheroids. METHODS Visfatin synthesis were examined using a commercial human visfatin ELISA Kit. Spheroid were exposed to visfatin and cell viability and caspase 3/7 activity were measured using CellTiter-Glo 3D cell viability assay and Caspase-Glo® 3/7 Assay System. mRNA and protein expression were analyzed by Real-time PCR and Western Blot analysis, respectively. Analysis of mitochondrial activity was estimated by JC-1 staining. RESULTS First, our results suggested higher expression and secretion of visfatin by epithelial than by granulosa ovarian cells, and in non-cancer tissues versus cancer tissues. Interestingly, visfatin increased the proliferation/apoptosis ratio in ovarian cancer spheroids. Specifically, both the intrinsic and extrinsic pathways of anoikis were regulated by visfatin. Moreover, the effect of the visfatin inhibitor (FK866) was opposite to that of visfatin. Furthermore, both NAMPT and FK866 affected mitochondrial activity in ovarian cancer cells. CONCLUSION In conclusion, visfatin acts as an anti-apoptotic factor by regulating mitochondrial activity, leading to anoikis resistance in ovarian cancer spheroids. The finding suggest visfatin as a potential novel therapeutic target for the treatment of ovarian carcinoma with peritoneal dissemination.
Collapse
Affiliation(s)
- Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| | - Wacław Tworzydło
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Kinga Krawczyk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Weronika Marynowicz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
16
|
Zeng Q, Zhu Q, Wen S, Wang M, Lv Y. Bone Marrow Mesenchymal Stem Cells (BMSCs) Enhance the In Vitro Activities of Endometrial Cells via Strengthening the Phosphorylation and Activation of Phosphoinositide 3-Kinase (PI3K). J BIOMATER TISS ENG 2023. [DOI: 10.1166/jbt.2022.3243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mancozeb (ethylene bis-dithiocarbamate) is an organometallic fungicide and is widely used in agriculture and is related to women’s spontaneous abortion and menstrual abnormalities. Bone marrow mesenchymal stem cells (BMSCs) can impede endometrial fibrosis via suppressing PI3K
pathway, but its effect on the activity of endometrial cells induced by mancozeb/EDU is unclear. This study intends to explore the protective effects of co-culture with BMSCs on endometrial cells after mancozeb/EDU treatment. Endometrial cells were randomized into control group, mancozeb/EDU
group (mancozeb/EDU treatment), BMSCs group (cells were co-cultured with BMSCs after mancozeb/EDU treatment), and inhibitor group (treated with PI3K-Akt-mTOR inhibitor) followed by analysis of the expression of PI3K-Akt-mTOR pathway-related proteins, cell viability by MTT and cell invasion
and migration by Transwell and scratch test. Mancozeb/EDU treatment significantly inhibited PI3K-Akt-mTOR signals and cell proliferation, increased apoptosis and decreased cell invasion and migration, which were all reversed by co-culture with BMSCs. Additionally, the co-culture with BMSCs
modulated the In Vitro viability of endometrial cells by influencing PI3K-Akt-mTOR signal transduction pathway, which can be inverted by PI3K-Akt-mTOR pathway-specific antagonists. In conclusion, BMSCs exerted a protective effect on the In Vitro viability of endometrial cells
by manipulating the PI3K/Akt/mTOR signal transduction, which helped to protect endometrial cells from damage caused by mancozeb/ETU treatment.
Collapse
Affiliation(s)
- Qingyuan Zeng
- Department of Gynecology and Obstetrics, General Hospital of Western Theater Command of the Chinese People’s Liberation Army, Chengdu, Sichuan, 610083, China
| | - Qiao Zhu
- Department of Gynecology and Obstetrics, General Hospital of Western Theater Command of the Chinese People’s Liberation Army, Chengdu, Sichuan, 610083, China
| | - Shu Wen
- Department of Gynecology and Obstetrics, General Hospital of Western Theater Command of the Chinese People’s Liberation Army, Chengdu, Sichuan, 610083, China
| | - Mingyi Wang
- Department of Gynecology and Obstetrics, General Hospital of Western Theater Command of the Chinese People’s Liberation Army, Chengdu, Sichuan, 610083, China
| | - Yumei Lv
- Department of Gynecology and Obstetrics, General Hospital of Western Theater Command of the Chinese People’s Liberation Army, Chengdu, Sichuan, 610083, China
| |
Collapse
|
17
|
Li R, Dong F, Zhang L, Ni X, Lin G. Role of adipocytokines in endometrial cancer progression. Front Pharmacol 2022; 13:1090227. [PMID: 36578551 PMCID: PMC9791063 DOI: 10.3389/fphar.2022.1090227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer is considered a significant barrier to increasing life expectancy and remains one of the most common malignant cancers among women in many countries worldwide. The increasing mortality rates are potentially proportional to the increasing obesity incidence. Adipose tissue secretes numerous adipocytokines, which may play important roles in endometrial cancer progression. In this scenario, we describe the role of adipocytokines in cell proliferation, cell invasion, cell adhesion, inflammation, angiogenesis, and anti-apoptotic action. A better understanding of the mechanisms of these adipocytokines may open up new therapeutic avenues for women with endometrial cancer. In the future, larger prospective studies focusing on adipocytokines and specific inhibitors should be directed at preventing the rapidly increasing prevalence of gynecological malignancies.
Collapse
Affiliation(s)
- Ran Li
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Fang Dong
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Ling Zhang
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Xiuqin Ni
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Guozhi Lin
- Department of Obstetrics and Gynecology, Second Affiliated Hospital to Shandong First Medical University, Taian, China,*Correspondence: Guozhi Lin,
| |
Collapse
|
18
|
Tewari S, Vargas R, Reizes O. The impact of obesity and adipokines on breast and gynecologic malignancies. Ann N Y Acad Sci 2022; 1518:131-150. [PMID: 36302117 PMCID: PMC10092047 DOI: 10.1111/nyas.14916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The link between obesity and multiple disease comorbidities is well established. In 2003, Calle and colleagues presented the relationship between obesity and several cancer types, including breast, ovarian, and endometrial malignancies. Nearly, 20% of cancer-related deaths in females can be accounted for by obesity. Identifying obesity as a risk factor for cancer led to a focus on the role of fat-secreted cytokines, known as adipokines, on carcinogenesis and tumor progression. Early studies indicated that the adipokine leptin increases cell proliferation, invasion, and inhibition of apoptosis in multiple cancer types. As a greater appreciation of the obesity-cancer link has amassed, we now know that additional adipokines can impact tumorigenesis. A deeper understanding of the adipokine-activated signaling in cancer may identify new treatment strategies irrespective of obesity. Moreover, adipokines may serve as disease biomarkers, harnessing the potential of obesity-associated factors to serve as indicators of treatment response and disease prognosis. As studies investigating obesity and women's cancers continue to expand, it has become evident that breast, ovarian, and uterine cancers are distinctly impacted by adipokines. While complex, these distinct interactions may provide insight into cancer progression in these organs and new opportunities for targeted therapies. This review aims to organize and present the literature from the last 5 years investigating the mechanisms and implications of adipokine signaling in breast, endometrial, and ovarian cancers with a special focus on leptin and adiponectin.
Collapse
Affiliation(s)
- Surabhi Tewari
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Roberto Vargas
- Department of Gynecologic Oncology, Women's Health Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Ofer Reizes
- Department of Gynecologic Oncology, Women's Health Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Cleveland, Ohio, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
19
|
Zhang Z, Xiao K, Wang S, Ansari AR, Niu X, Yang W, Lu M, Yang Z, Rehman ZU, Zou W, Bei W, Song H. Visfatin is a multifaceted molecule that exerts regulation effects on inflammation and apoptosis in RAW264.7 cells and mice immune organs. Front Immunol 2022; 13:1018973. [PMID: 36532047 PMCID: PMC9753570 DOI: 10.3389/fimmu.2022.1018973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Visfatin, a multifunctional adipocytokine, is particularly important in the regulation of apoptosis and inflammation through an unidentified mechanism. Clarifying the control mechanisms of visfatin on inflammation and apoptosis in RAW264.7 cells and mice immunological organs was the goal of the current investigation. In order to create a pathophysiological model, the RAW264.7 cells were stimulated with 200 ng/mL visfatin and 20 μg/mL lipopolysaccharide (LPS), either separately or combined. The effects of exogenous visfatin on inflammation and apoptosis in RAW264.7 cells were investigated by flow cytometry assay, RNA-seq analysis and fluorescence quantitative PCR. According to the findings, exogenous visfatin exhibits dual effects on inflammation by modulating the expression of IL-1α, TNFRSF1B, and LIF as well as taking part in various signaling pathways, including the MAPK and Rap1 signaling pathways. By controlling the expression levels of Bcl2l1, Bcl2a1a, and Fas and primarily participating in the PI3K/AKT signaling pathway and Hippo signaling pathway, exogenous visfatin can inhibit apoptosis in RAW264.7 cells. The visfatin inhibitor FK866 was used to further confirm the effects of visfatin on inflammation and apoptosis in mice immune organs. Subsequently, mice spleen and thymus were collected. It is interesting to note that in LPS-treated mice, suppression of endogenous visfatin might worsen the immune system's inflammatory response and even result in rapid mortality. Additionally, endogenous visfatin promotes the apoptosis in mice immune organs by regulating the expression levels of Bcl2l1, Fas, Caspase 3, Bcl2a1a, and Bax. Together, these results imply that visfatin is a multifaceted molecule that regulates inflammation and apoptosis in RAW264.7 cells and mice immunological organs by taking part in a variety of biological processes and regulating the amounts of associated cytokines expression. Our findings offer additional understandings of how visfatin affects apoptosis and inflammation.
Collapse
Affiliation(s)
- Zhewei Zhang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ke Xiao
- The Brain Cognition and Brain Disease Institute of Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sheng Wang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Abdur Rahman Ansari
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary & Animal Sciences, Jhang University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Xiaoyu Niu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenjie Yang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mengqi Lu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhi Yang
- Animal Health Supervision Institute of Taihe County, Fuyang, China
| | - Zia ur Rehman
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, University of Agriculture, Peshawar, Pakistan
| | - Weihua Zou
- Wuhan Keqian Biology Company Limited, Wuhan, China
| | - Weicheng Bei
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Song
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,*Correspondence: Hui Song,
| |
Collapse
|
20
|
Park JH, Cho HS, Yoon JH. Thyroid Cancer in Patients with Metabolic Syndrome or Its Components: A Nationwide Population-Based Cohort Study. Cancers (Basel) 2022; 14:cancers14174106. [PMID: 36077642 PMCID: PMC9454651 DOI: 10.3390/cancers14174106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
The rapidly increasing coincidence of thyroid cancer and metabolic syndrome (MS) in recent decades suggests an association between the two disorders. To investigate this association, we conducted a nationwide study of a large-scale patient cohort. Between 2009 and 2011, data were collected by the Korean National Health Insurance Service for 4,658,473 persons aged 40−70 years without thyroid cancer. During the six-year follow-up period, participants were monitored for the development of thyroid cancer. The relative risks and incidences of thyroid cancer were calculated using multivariate Cox proportional hazards regression analyses after adjusting for age and body mass index. The risk of thyroid cancer was significantly elevated in men and women with MS or MS components, except for hyperglycaemia (p = 0.723) or hypertriglyceridemia (p = 0.211) in men. The incidence of thyroid cancer per 10,000 person-years in individuals with MS was significantly higher in men (6.2, p < 0.001) and women (21.3, p < 0.001) compared to those without MS. Additionally, the risk of thyroid cancer increased significantly with an increasing number of MS components even in individuals with only one or two MS components. MS and its components were significantly associated with increased risk of developing thyroid cancer.
Collapse
Affiliation(s)
- Jae Hyun Park
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26493, Korea
| | - Hyun Seok Cho
- Department of Radiology, Yonsei University Wonju College of Medicine, Wonju 26493, Korea
| | - Jong Ho Yoon
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26493, Korea
- Correspondence: ; Tel.: +82-33-741-0576
| |
Collapse
|
21
|
Rajput PK, Sharma JR, Yadav UCS. Cellular and molecular insights into the roles of visfatin in breast cancer cells plasticity programs. Life Sci 2022; 304:120706. [PMID: 35691376 DOI: 10.1016/j.lfs.2022.120706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 11/15/2022]
Abstract
Obesity has reached a pandemic proportion and is responsible for the augmentation of multimorbidity including certain cancers. With the rise in obesity amongst the female population globally, a concomitant increase in breast cancer (BC) incidence and related mortality has been observed. In the present review, we have elucidated the cellular and molecular insight into the visfatin-mediated cellular plasticity programs such as Epithelial to mesenchymal transition (EMT) and Endothelial to mesenchymal transition (EndoMT), and stemness-associated changes in BC cells. EMT and EndoMT are responsible for inducing metastasis in cancer cells and conferring chemotherapy resistance, immune escape, and infinite growth potential. Visfatin, an obesity-associated adipokine implicated in metabolic syndrome, has emerged as a central player in BC pathogenesis. Several studies have indicated the presence of visfatin in the tumor microenvironment (TME) where it augments EMT and EndoMT of BC cells. Further, Visfatin also modulates the TME by acting on the tumor stroma cells such as adipocytes, infiltrated immune cells, and adipose-associated stem cells that secrete factors such as cytokines, and extracellular vesicles responsible for augmenting cellular plasticity program. Visfatin induced altered metabolism of the cancer cells and molecular determinants such as non-coding RNAs involved in EMT and EndoMT have been discussed. We have also highlighted specific therapeutic targets that can be exploited for the development of effective BC treatment. Taken together, these advanced understandings of cellular and molecular insight into the visfatin-mediated cellular plasticity programs may stimulate the development of better approaches for the prevention and therapy of BC, especially in obese patients.
Collapse
Affiliation(s)
- Pradeep Kumar Rajput
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Jiten R Sharma
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Umesh C S Yadav
- Special Center for Molecular medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
22
|
Updated Functional Roles of NAMPT in Carcinogenesis and Therapeutic Niches. Cancers (Basel) 2022; 14:cancers14092059. [PMID: 35565188 PMCID: PMC9103253 DOI: 10.3390/cancers14092059] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The advantages and applications of using the non-invasive way to detect serum biomarkers for assessing cancer diagnosis and prognosis have been explored. Nicotinamide phosphoribosyltransferase (NAMPT), also designated as pre-B-cell colony-enhancing factor (PBEF) or visfatin, is a secreted adipokine known to modulate tumor malignancies. Its significance in predicting cancer patient’s survival outcome further renders the implementation of NAMPT in clinical practice. In this review, recent discoveries of NAMPT in cancer studies were focused and integrated. We aim to provide updates for researchers who are proposing relevant objectives. Abstract Nicotinamide phosphoribosyltransferase (NAMPT) is notable for its regulatory roles in tumor development and progression. Emerging evidence regarding NAMPT somatic mutations in cancer patients, NAMPT expressional signatures in normal tissues and cancers, and the prognostic significance of NAMPT in many cancer types has attracted attention, and NAMPT is considered a potential biomarker of cancer. Recent discoveries have demonstrated the indirect association and direct biological functions of NAMPT in modulating cancer metastasis, proliferation, angiogenesis, cancer stemness, and chemoresistance to anticancer drugs. These findings warrant further investigation of the underlying mechanisms to provide knowledge for developing novel cancer therapeutics. In this review article, we explore recent research developments involving the oncogenic activities of NAMPT by summarizing current knowledge regarding NAMPT somatic mutations, clinical trials, transcriptome data, and clinical information and discoveries related to the NAMPT-induced signaling pathway in modulating hallmarks of cancer. Furthermore, the comprehensive representation of NAMPT RNA expression in a pancancer panel as well as in specific normal cell types at single-cell level are demonstrated. The results suggest potential sites and cell types that could facilitate NAMPT-related tumorigenesis. With this review, we aim to shed light on the regulatory roles of NAMPT in tumor development and progression, and provide information to guide future research directions in this field.
Collapse
|
23
|
Ray I, Meira LB, Michael A, Ellis PE. Adipocytokines and disease progression in endometrial cancer: a systematic review. Cancer Metastasis Rev 2022; 41:211-242. [PMID: 34951691 PMCID: PMC8924097 DOI: 10.1007/s10555-021-10002-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
The objective of the study was to document the effect of adipocytokines on endometrial cancer progression. A search of the databases CINAHL, Medline, PubMed, Cochrane, Web of Science, Embase and Google Scholar was performed for English language articles from January 2000 to December 2020 using the keywords: (Endometrial cancer) AND (progression OR metastasis) AND (adipocytokine OR adiponectin OR leptin OR visfatin OR IL-6 OR TNF-α OR adipokine OR cytokine). Forty-nine studies on adipocytokines have been included in this review. Adiponectin has been linked with anti-proliferative and anti-metastatic effects on endometrial cancer cells and is associated with a better prognosis. Leptin, visfatin and resistin are linked to the stimulation of endometrial cancer growth, proliferation, invasion and metastasis and are associated with worse prognosis or with a higher grade/stage of endometrial cancer. IL-6, Il-11, IL-31, IL-33, TNF-α, TGF-β1, SDF-1 and CXCR are involved in endometrial cancer cell growth and metastasis or involved in epithelial mesenchymal transformation (EMT) or associated with advanced disease. Adipocytokines have been found to directly impact endometrial cancer cell proliferation, invasion and migration. These molecules and their signalling pathways may be used to determine prognosis and course of the disease and may also be exploited as potential targets for cancer treatment and prevention of progression.
Collapse
Affiliation(s)
- Irene Ray
- University of Surrey, Daphne Jackson Road, Guildford, GU2 7WG, UK.
- Royal Surrey NHS Foundation Trust, Egerton Road, Guildford, GU2 7XX, UK.
| | - Lisiane B Meira
- University of Surrey, Daphne Jackson Road, Guildford, GU2 7WG, UK
| | - Agnieszka Michael
- University of Surrey, Daphne Jackson Road, Guildford, GU2 7WG, UK
- Royal Surrey NHS Foundation Trust, Egerton Road, Guildford, GU2 7XX, UK
| | - Patricia E Ellis
- University of Surrey, Daphne Jackson Road, Guildford, GU2 7WG, UK
- Royal Surrey NHS Foundation Trust, Egerton Road, Guildford, GU2 7XX, UK
| |
Collapse
|
24
|
Therapeutic effect of neohesperidin on TNF-α-stimulated human rheumatoid arthritis fibroblast-like synoviocytes. Chin J Nat Med 2021; 19:741-749. [PMID: 34688464 DOI: 10.1016/s1875-5364(21)60107-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 12/13/2022]
Abstract
During the pathogensis of rheumatoid arthritis (RA), activated RA fibroblast-like synoviocytes (RA-FLSs) combines similar proliferative features as tumor and inflammatory features as osteoarthritis, which eventually leads to joint erosion. Therefore, it is imperative to research and develop new compounds, which can effectively inhibit abnormal activation of RA-FLSs and retard RA progression. Neohesperidin (Neo) is a major active component of flavonoid compounds with anti-inflammation and anti-oxidant properties. In this study, the anti-inflammation, anti-migration, anti-invasion, anti-oxidant and apoptosis-induced effects of Neo on RA-FLSs were explored to investigate the underlying mechanism. The results suggested that Neo decreased the levels of interleukin IL-1β, IL-6, IL-8, TNF-α, MMP-3, MMP-9 and MMP-13 in FLSs. Moreover, Neo blocked the activation of the MAPK signaling pathway. Furthermore, treatment with Neo induced the apoptosis of FLSs, and inhibited the migration of FLSs. It was also found that Neo reduced the accumulation of reactive oxygen species (ROS) induced by TNF-α. Taken together, our results highlighted that Neo may act as a potential and promising therapeutic drug for the management of RA.
Collapse
|
25
|
Miethe C, Torres L, Zamora M, Price RS. Inhibition of PI3K/Akt and ERK signaling decreases visfatin-induced invasion in liver cancer cells. Horm Mol Biol Clin Investig 2021; 42:357-366. [PMID: 34449178 DOI: 10.1515/hmbci-2021-0011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/13/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Visfatin is found in adipose tissue and is referred to as nicotinamide phosphoribosyltransferase (Nampt). Visfatin has anti-apoptotic, proliferative, and metastatic properties and may mediate its effects via ERK and PI3K/Akt signaling. Studies have yet to determine whether inhibition of kinase signaling will suppress visfatin-induced liver cancer. The purpose of this study was to determine which signaling pathways visfatin may promote liver cancer progression. METHODS HepG2 and SNU-449 liver cancer cells were exposed to visfatin with or without ERK or PI3K/Akt inhibitor, or both inhibitors combined. These processes that were assessed: proliferation, reactive oxygen species (ROS), lipogenesis, invasion, and matrix metalloproteinase (MMP). RESULTS Inhibition of PI3K/Akt and combination of inhibitors suppressed visfatin-induced viability. ERK inhibition in HepG2 cells decreased visfatin-induced proliferation. ERK inhibitor alone or in combination with PI3K inhibitors effectively suppressed MMP-9 secretion and invasion in liver cancer cells. PI3K and ERK inhibition and PI3K inhibition alone blocked visfatin's ROS production in SNU-449 cells. These results corresponded with a decrease in phosphorylated Akt and ERK, β-catenin, and fatty acid synthase. CONCLUSIONS Akt and ERK inhibition differentially regulated physiological changes in liver cancer cells. Inhibition of Akt and ERK signaling pathways suppressed visfatin-induced invasion, viability, MMP-9 activation, and ROS production.
Collapse
Affiliation(s)
- Candace Miethe
- Nutrition and Foods, Texas State University, San Marcos, TX, USA
| | - Linda Torres
- Psychology, Texas State University, San Marcos, TX, USA
| | - Megan Zamora
- Nutrition and Foods, Texas State University, San Marcos, TX, USA
| | - Ramona S Price
- Nutrition and Foods, Texas State University, San Marcos, TX, USA
| |
Collapse
|
26
|
Jiang H, Zhou L, He Q, Jiang K, Yuan J, Huang X. The effect of metabolic syndrome on head and neck cancer incidence risk: a population-based prospective cohort study. Cancer Metab 2021; 9:25. [PMID: 34082811 PMCID: PMC8173864 DOI: 10.1186/s40170-021-00261-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND There are limited evidences clarifying the impact of metabolic syndrome (MS) and its components on head and neck cancer (HNC) incidence risk. We explored the correlation between MS, MS components, and the combined effects of MS and C-reactive protein (CRP) and HNC risk. METHODS This is a prospective analysis of 474,929 participants from the UK Biobank cohort. Cox proportional hazard regression was utilized to assess the hazard ratio (HR) and 95% confidence interval (CI) and to explore the non-linear correlation between an individual MS component and HNC risk. RESULTS Individuals with MS (HR, 1.05; 95%CI, 0.90-1.22) had no higher HNC risk than those without MS. More MS components showed no higher HNC risk. Nevertheless, hyperglycemia (HR, 1.22; 95%CI, 1.02-1.45) was independently correlated with elevated HNC risk. In a non-linear manner, waist circumference and high-density lipoprotein cholesterol (HDL-C) showed a U-shaped association with HNC risk. Further, piecewise linear model analysis indicated that higher male waist circumference, female waist circumference (≥93.16 cm), blood glucose (≥4.70 mmol/L) and male HDL-C (≥1.26mmo/L), and lower male HDL-C (<1.26mmo/L) were correlated with higher HNC risk. Increased CRP (≥1.00mg/dL) elevated HNC risk and individuals with MS and CRP≥1.00mg/dL had the highest HNC risk (HR, 1.29; 95%CI, 1.05-1.58). But no joint effect between MS and CRP was detected (p-interaction=0.501). CONCLUSIONS MS are not correlated with elevated HNC risk. High waist circumference and blood glucose are independent risk factor of HNC incidence. Controlling HDL-C in an appropriate range can get the lowest risk of male HNC. No joint effect of MS and CRP exists in HNC tumorigenesis.
Collapse
Affiliation(s)
- Huaili Jiang
- Department of Otolaryngology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Otolaryngology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiangsheng He
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
- Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Kanglun Jiang
- Department of Otolaryngology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinqiu Yuan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China.
- Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Xinsheng Huang
- Department of Otolaryngology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
27
|
Lina S. Identification of hub lncRNAs in head and neck cancer based on weighted gene co-expression network analysis and experiments. FEBS Open Bio 2021; 11:2060-2073. [PMID: 33660438 PMCID: PMC8406479 DOI: 10.1002/2211-5463.13134] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/09/2021] [Accepted: 03/01/2021] [Indexed: 01/20/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) ranks as the sixth most common cancer among systemic malignant tumors, with 600 000 new cases occurring every year worldwide. Since HNSCC has high heterogeneity and complex pathogenesis, no effective prognostic indicator has yet been identified. Here, we aimed to identify a lncRNA signature associated with the prognosis of HNSCC as a potential new biomarker. LncRNA expression data were downloaded from The Cancer Genome Atlas database. A polygenic risk score model was constructed by using Lasso-Cox regression analysis. Weighted gene co-expression network analysis (WGCNA) was applied to analyze the co-expression modules of lncRNAs associated with the prognosis of HNSCC. The robustness of the signature was validated in testing and external cohorts. Polymerase chain reaction was performed to detect the expression levels of identified lncRNAs in cancer and adjacent tissues. We constructed an 8-lncRNA signature (LINC00567, LINC00996, MTOR-AS1, PRKG1-AS1, RAB11B-AS1, RPS6KA2-AS1, SH3BP5-AS1, ZNF451-AS1) that could be used as an independent prognostic factor of HNSCC. The signature showed strong robustness and had stable prediction performance in different cohorts. WGCNA results showed that modules related to risk score mainly participated in biological processes such as blood vessel development, positive regulation of catabolic processes, and regulation of growth. The prognostic risk score model based on lncRNA for HNSCC may help clinicians conduct individualized treatment plans.
Collapse
Affiliation(s)
- Shao Lina
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
28
|
Chen S, Yang W, Zhang X, Jin J, Liang C, Wang J, Zhang J. Melamine induces reproductive dysfunction via down-regulated the phosphorylation of p38 and downstream transcription factors Max and Sap1a in mice testes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144727. [PMID: 33736362 DOI: 10.1016/j.scitotenv.2020.144727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Melamine poisoning incidents and potential health risks raise global attention. Recent studies imply that melamine exposure is related to male reproductive dysfunction, however, the underlying mechanisms are unclear. In this study, 32 male Kunming mice were administered with 0, 12.5, 25, and 50 mg/L melamine via drinking water for 13 weeks, respectively. Sperm quality, testicular morphology, and the mRNA expression levels of MAPK family members p38, ERK5, ERK1/2, JNK1/2/3 and their downstream transcription factors GADD153, MAX, MEF2C, CREB, c-Myc, JunD, c-JUN, Sap1a, p53, ATF-2, Elk1, and Nur77 in testes were investigated. The results revealed that low-dose melamine exposure reduced sperm quality, altered the testicular histological structure, and reduced the mRNA expression levels of p38, ERK1/2, MAX and Sap1a in the testes. The p38 and phosphorylated-p38 expressions analysis further suggested that the down-regulated phosphorylation of p38 and downstream transcription factors MAX and Sap1a play key roles in male reproductive dysfunction caused by melamine. Altogether, our study provides a new insight to elucidate the underlying mechanisms by which melamine induces male reproductive toxicity, and to evaluate the health risks of melamine.
Collapse
Affiliation(s)
- Shuming Chen
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Wei Yang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Xiaoyan Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jiyin Jin
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
29
|
The Influence of Biologically Active Substances Secreted by the Adipose Tissue on Endometrial Cancer. Diagnostics (Basel) 2021; 11:diagnostics11030494. [PMID: 33799622 PMCID: PMC8000529 DOI: 10.3390/diagnostics11030494] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Endometrial cancer is one of the most frequently diagnosed gynecological neoplasms in developed countries and its incidence is rising. Usually, it is diagnosed in the early stages of the disease and has a good prognosis; however, in later stages, the rate of recurrence reaches up to 60%. The discrepancy in relapse rates is due to the heterogeneity of the group related to the presence of prognostic factors affecting survival parameters. Increased body weight, diabetes, metabolic disturbances and estrogen imbalance are important factors for the pathogenesis of endometrial cancer. Even though prognostic factors such as histopathological grade, clinical stage, histological type and the presence of estrogen and progesterone receptors are well known in endometrial cancer, the search for novel prognostic biomarkers continues. Adipose tissue is an endocrine organ involved in metabolism, immune response and the production of biologically active substances participating in cell growth and differentiation, angiogenesis, apoptosis and carcinogenesis. In this manuscript, we review the impact of factors secreted by the adipose tissue involved in the regulation of glucose and lipid metabolism (leptin, adiponectin, omentin, vaspin, galectins) and factors responsible for homeostasis maintenance, inflammatory processes, angiogenesis and oxidative stress (IL-1β, 6, 8, TNFα, Vascular endothelial growth factor (VEGF), Fibroblast growth factors (FGFs)) in the diagnosis and prognosis of endometrial cancer.
Collapse
|
30
|
Exploring the Crosstalk between Hydrostatic Pressure and Adipokines: An In Vitro Study on Human Osteoarthritic Chondrocytes. Int J Mol Sci 2021; 22:ijms22052745. [PMID: 33803113 PMCID: PMC7963177 DOI: 10.3390/ijms22052745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is a risk factor for osteoarthritis (OA) development and progression due to an altered biomechanical stress on cartilage and an increased release of inflammatory adipokines from adipose tissue. Evidence suggests an interplay between loading and adipokines in chondrocytes metabolism modulation. We investigated the role of loading, as hydrostatic pressure (HP), in regulating visfatin-induced effects in human OA chondrocytes. Chondrocytes were stimulated with visfatin (24 h) and exposed to high continuous HP (24 MPa, 3 h) in the presence of visfatin inhibitor (FK866, 4 h pre-incubation). Apoptosis and oxidative stress were detected by cytometry, B-cell lymphoma (BCL)2, metalloproteinases (MMPs), type II collagen (Col2a1), antioxidant enzymes, miRNA, cyclin D1 expressions by real-time PCR, and β-catenin protein by western blot. HP exposure or visfatin stimulus significantly induced apoptosis, superoxide anion production, and MMP-3, -13, antioxidant enzymes, and miRNA gene expression, while reducing Col2a1 and BCL2 mRNA. Both stimuli significantly reduced β-catenin protein and increased cyclin D1 gene expression. HP exposure exacerbated visfatin-induced effects, which were counteracted by FK866 pre-treatment. Our data underline the complex interplay between loading and visfatin in controlling chondrocytes' metabolism, contributing to explaining the role of obesity in OA etiopathogenesis, and confirming the importance of controlling body weight for disease treatment.
Collapse
|
31
|
Aparecida Silveira E, Vaseghi G, de Carvalho Santos AS, Kliemann N, Masoudkabir F, Noll M, Mohammadifard N, Sarrafzadegan N, de Oliveira C. Visceral Obesity and Its Shared Role in Cancer and Cardiovascular Disease: A Scoping Review of the Pathophysiology and Pharmacological Treatments. Int J Mol Sci 2020; 21:E9042. [PMID: 33261185 PMCID: PMC7730690 DOI: 10.3390/ijms21239042] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The association between obesity, cancer and cardiovascular disease (CVD) has been demonstrated in animal and epidemiological studies. However, the specific role of visceral obesity on cancer and CVD remains unclear. Visceral adipose tissue (VAT) is a complex and metabolically active tissue, that can produce different adipokines and hormones, responsible for endocrine-metabolic comorbidities. This review explores the potential mechanisms related to VAT that may also be involved in cancer and CVD. In addition, we discuss the shared pharmacological treatments which may reduce the risk of both diseases. This review highlights that chronic inflammation, molecular aspects, metabolic syndrome, secretion of hormones and adiponectin associated to VAT may have synergistic effects and should be further studied in relation to cancer and CVD. Reductions in abdominal and visceral adiposity improve insulin sensitivity, lipid profile and cytokines, which consequently reduce the risk of CVD and some cancers. Several medications have shown to reduce visceral and/or subcutaneous fat. Further research is needed to investigate the pathophysiological mechanisms by which visceral obesity may cause both cancer and CVD. The role of visceral fat in cancer and CVD is an important area to advance. Public health policies to increase public awareness about VAT's role and ways to manage or prevent it are needed.
Collapse
Affiliation(s)
- Erika Aparecida Silveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College London, London WC1E 6BT, UK;
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Goiás, Brazil; (A.S.d.C.S.); (M.N.)
| | - Golnaz Vaseghi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Annelisa Silva de Carvalho Santos
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Goiás, Brazil; (A.S.d.C.S.); (M.N.)
- United Faculty of Campinas, Goiânia 74525-020, Goiás, Brazil
| | - Nathalie Kliemann
- Nutritional Epidemiology Group, Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France;
| | - Farzad Masoudkabir
- Cardiac Primary Prevention Research Center, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1416753955, Iran;
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1411713138, Iran
| | - Matias Noll
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Goiás, Brazil; (A.S.d.C.S.); (M.N.)
- Instituto Federal Goiano, Ceres 76300-000, Goiás, Brazil
| | - Noushin Mohammadifard
- Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cesar de Oliveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College London, London WC1E 6BT, UK;
| |
Collapse
|
32
|
Tian W, Li Z, Bai L, Chen L, Yan Y, Li H, Han Y, Teng F, Gao C, Xue F, Wang Y. The oncogenic role of SOX8 in endometrial carcinoma. Cancer Biol Ther 2020; 21:1136-1144. [PMID: 33190587 DOI: 10.1080/15384047.2020.1840318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Endometrial carcinoma (EC) remains one of the most prevalent forms of cancer to impact the female reproductive system, yet the mechanisms governing its development and progression are incompletely understood. We, therefore, sought to assess the relevance of SOX8 to EC progression and patient prognosis. Array comparative genomic hybridization (aCGH) was performed using samples from 50 patients with EC. Samples were separated based upon whether patients were positive for lymph node metastasis (LN+ and LN-, respectively). Based on our initial results, the SOX8 gene was selected for further analysis. Immunohistochemical staining of 630 endometrial tissue samples was conducted to understand how SOX8 expression relates to specific EC clinicopathological characteristics. In addition, we explored the impact of SOX8 expression on the growth, invasion, and migration of EC cells through knockdown and overexpression experiments. In our initial aCGH analysis, SOX family proteins and the Wnt and Notch signaling pathways were significantly associated with EC LN metastasis. SOX8 expression was markedly increased in EC tumor samples relative to normal endometrial tissue (P= .003), and higher SOX8 expression was linked to a high tumor histological grade (P= .032), LN metastasis (P= .027), and shorter patient overall survival (P= .031). When SOX8 was knocked down, this further impaired the proliferative, invasive, and migratory activity of EC cells, whereas overexpressing this gene had the opposite effect. SOX8 may function in an oncogenic manner to drive EC development and progression, and higher SOX8 expression is associated with a poor EC patient prognosis.
Collapse
Affiliation(s)
- Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China
| | - Zhanghuan Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China
| | - Lu Bai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China.,Department of Gynecology and Obstetrics, Nankai University Affiliated Hospital (Tianjin No.4 Hospital) , Tianjin, China
| | - Lingli Chen
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China
| | - Ye Yan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China
| | - Huihui Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China
| | - Yanyan Han
- Department of Pathology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin, China
| | - Fei Teng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China
| | - Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China
| |
Collapse
|
33
|
Liu C, Zhao Q, Yu X. Bone Marrow Adipocytes, Adipocytokines, and Breast Cancer Cells: Novel Implications in Bone Metastasis of Breast Cancer. Front Oncol 2020; 10:561595. [PMID: 33123472 PMCID: PMC7566900 DOI: 10.3389/fonc.2020.561595] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Accumulating discoveries highlight the importance of interaction between marrow stromal cells and cancer cells for bone metastasis. Bone is the most common metastatic site of breast cancer and bone marrow adipocytes (BMAs) are the most abundant component of the bone marrow microenvironment. BMAs are unique in their origin and location, and recently they are found to serve as an endocrine organ that secretes adipokines, cytokines, chemokines, and growth factors. It is reasonable to speculate that BMAs contribute to the modification of bone metastatic microenvironment and affecting metastatic breast cancer cells in the bone marrow. Indeed, BMAs may participate in bone metastasis of breast cancer through regulation of recruitment, invasion, survival, colonization, proliferation, angiogenesis, and immune modulation by their production of various adipocytokines. In this review, we provide an overview of research progress, focusing on adipocytokines secreted by BMAs and their potential roles for bone metastasis of breast cancer, and investigating the mechanisms mediating the interaction between BMAs and metastatic breast cancer cells. Based on current findings, BMAs may function as a pivotal modulator of bone metastasis of breast cancer, therefore targeting BMAs combined with conventional treatment programs might present a promising therapeutic option.
Collapse
Affiliation(s)
- Chang Liu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zhao
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Ezzati-Mobaser S, Malekpour-Dehkordi Z, Nourbakhsh M, Tavakoli-Yaraki M, Ahmadpour F, Golpour P, Nourbakhsh M. The up-regulation of markers of adipose tissue fibrosis by visfatin in pre-adipocytes as well as obese children and adolescents. Cytokine 2020; 134:155193. [PMID: 32707422 DOI: 10.1016/j.cyto.2020.155193] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 01/01/2023]
Abstract
Adipocytes are surrounded by a three-dimensional network of extracellular matrix (ECM) proteins. Aberrant ECM accumulation and remodeling leads to adipose tissue fibrosis. Visfatin is one of the adipocytokines that is increased in obesity and is implicated in insulin resistance. The objective of this study was to investigate the effect of visfatin on major components of ECM remodeling. In this study, plasma levels of both endotrophin and visfatin in obese children and adolescents were significantly higher than those in control subjects and they showed a positive correlation with each other. Treatment of 3T3-L1 pre-adipocytes with visfatin caused significant up-regulation of Osteopontin (Opn), Collagen type VI (Col6), matrix metalloproteinases MMP-2 and MMP-9. By using inhibitors of major signaling pathways it was shown that visfatin exerted its effect on Col6a3 gene expression through PI3K, JNK, and NF-кB pathways, while induced Opn gene expression via PI3K, JNK, MAPK/ERK, and NOTCH1. Our conclusion is that, the relationship between visfatin, endotrophin and insulin resistance parameters in obesity as well as increased expression of ECM proteins by visfatin suggests adipose tissue fibrosis as a mechanism for devastating effects of visfatin in obesity.
Collapse
Affiliation(s)
- Samira Ezzati-Mobaser
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Malekpour-Dehkordi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Nourbakhsh
- Hazrat Aliasghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahmadpour
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pegah Golpour
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Park JH, Choi M, Kim JH, Kim J, Han K, Kim B, Kim DH, Park YG. Metabolic Syndrome and the Risk of Thyroid Cancer: A Nationwide Population-Based Cohort Study. Thyroid 2020; 30:1496-1504. [PMID: 32524894 DOI: 10.1089/thy.2019.0699] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: The association of metabolic syndrome and its components with the risk of thyroid cancer is unclear. Thus, we conducted a large-scale, nationwide, population-based, cohort study to investigate this relationship. Methods: We studied 9,890,917 adults without thyroid cancer from the Korean National Health Insurance health checkup database from January 1 to December 31, 2009. Individuals with at least three of the following five components were diagnosed with metabolic syndrome: abdominal obesity, hypertriglyceridemia, low high-density lipoprotein-cholesterol levels, elevated blood pressure, and hyperglycemia. Multivariate Cox proportional hazards models were used to estimate thyroid cancer risk. Results: During the average 7.2 years of follow-up, 77,133 thyroid cancer cases were newly identified. The thyroid cancer risk was higher in the metabolic syndrome group than in the nonmetabolic syndrome group (hazard ratio [HR] 1.15 [95% confidence interval, CI 1.13-1.17]). The association between metabolic syndrome and thyroid cancer risk was significant in the obese group (HR 1.10 [CI 1.07-1.13]) and not in the nonobese group (HR 1.002 [CI 0.98-1.03]). The effect of metabolic syndrome on the risk of thyroid cancer differs according to obesity (p for interaction = 0.017). People with all five components of metabolic syndrome had a 39% higher risk than those without any components (HR 1.39 [CI 1.33-1.44]). The higher risk of thyroid cancer in people with all five components was significant in the obese group (HR 1.29 [CI 1.21-1.38]), but not in the nonobese group (HR 1.06 [CI 0.98-1.14]). There was a significant interaction between the number of metabolic syndrome components and obesity (p for interaction <0.0001). For the combined effect of obesity and metabolic syndrome on the risk of thyroid cancer, obese men with metabolic syndrome had the highest risk of thyroid cancer compared with those without (HR 1.58 [CI 1.52-1.64]), but obese women with metabolic syndrome did not. Conclusions: Metabolic syndrome was associated with an increased risk of thyroid cancer in the Korean general population. Metabolic syndrome had a more significant risk of thyroid cancer in the obese group. Metabolic syndrome and obesity were associated with a higher risk of thyroid cancer in men but not in women.
Collapse
Affiliation(s)
- Joo-Hyun Park
- Department of Family Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan-si, Republic of Korea
| | - Moonyoung Choi
- Department of Family Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan-si, Republic of Korea
| | - Jung-Hun Kim
- Department of Family Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan-si, Republic of Korea
| | - Jaemin Kim
- Department of Family Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan-si, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Bongsung Kim
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Do-Hoon Kim
- Department of Family Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan-si, Republic of Korea
| | - Yong-Gyu Park
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
36
|
Han DF, Li Y, Xu HY, Li RH, Zhao D. An Update on the Emerging Role of Visfatin in the Pathogenesis of Osteoarthritis and Pharmacological Intervention. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8303570. [PMID: 32831881 PMCID: PMC7429770 DOI: 10.1155/2020/8303570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023]
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases that affects millions of people worldwide, mainly the aging population. Despite numerous published reports, little is known about the pathology of this disease, and no feasible treatment plan exists to stop OA progression. Recently, extensive basic and clinical studies have shown that adipokines play a key role in OA development. Moreover, some drugs associated with adipokines have shown chondroprotective and anti-inflammatory effects on OA. Visfatin has been shown to play a detrimental role in the progression of OA. It increases the production of matrix metalloproteinases and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), induces the production of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, affects the differentiation of mesenchymal stem cells to adipocytes, and induces osteophyte formation by inhibiting osteoclastogenesis. Although some side effects of chemical visfatin inhibitors have been reported, they were shown to be successful in the treatment of diabetes, cancer, and other diseases that can utilize Chinese herbs, further suggesting that similar therapeutic strategies could be used in OA prevention and treatment. Here, we describe the pathophysiological mechanism of visfatin in OA and discuss some potential pharmacological interventions using Chinese herbs.
Collapse
Affiliation(s)
- Dong-Feng Han
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Hui-Ying Xu
- Department of Ultrasound, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Rong-Hang Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ding Zhao
- Department of Orthopedic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
37
|
Ding S, Madu CO, Lu Y. The Impact of Hormonal Imbalances Associated with Obesity on the Incidence of Endometrial Cancer in Postmenopausal Women. J Cancer 2020; 11:5456-5465. [PMID: 32742493 PMCID: PMC7391192 DOI: 10.7150/jca.47580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/21/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity has long been associated with endometrial cancer amongst postmenopausal women; in fact, obese women are more than twice as likely to develop endometrial cancer as women of normal weight. The risk of developing this type of cancer increases with weight gains in adulthood, especially among women who did not use hormonal therapy for menopause. Thus, with an association between menopause, obesity, and endometrial cancer established, it prompts the following question: what specific factors could cause higher risk levels for endometrial cancer in this cohort of women? In this paper, the factor of hormonal changes and imbalances associated with both obesity and menopause will be examined. The hormones that will be discussed are insulin and insulin-like factors, estrogen, and adipokines (specifically adiponectin, visfatin, and leptin).
Collapse
Affiliation(s)
- Sarah Ding
- Departments of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chikezie O Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Yi Lu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
38
|
Tian W, Zhang H, Zhang Y, Wang Y, Zhang Y, Xue F, Song X, Zhang H. High level of visfatin and the activation of Akt and ERK1/2 signaling pathways are associated with endometrium malignant transformation in polycystic ovary syndrome. Gynecol Endocrinol 2020; 36:156-161. [PMID: 31452406 DOI: 10.1080/09513590.2019.1650340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study aimed to assess the clinicopathological significance of serum levels and endometrium tissue expression of visfatin in polycystic ovary syndrome (PCOS) patients. A total of 80 PCOS patients and 80 matching controls were included in this study. We analyzed the relationship between the expression of visfatin in endometrium and clinicopathological characteristics in PCOS patients. The correlation between the expression of visfatin and p-Akt, Akt, p-ERK1/2, and ERK1/2 in PCOS tissues was evaluated as well. Visfatin expression in PCOS endometrial tissues were significantly higher than those in controls (p = .001). The expression of phosphorylation of Akt and ERK1/2 were significantly higher in PCOS endometrium tissues compared to controls (p < .05). Moreover, a high expression of tissue visfatin in PCOS tissues was positively correlated with the expression of p-Akt (p = .015), and p-ERK1/2 (p = .013). Western blotting revealed that protein expression of visfatin in PCOS patients with endometrial hyperplasia and cancer was higher than that in patients with normal endometrium tissues, and the difference was statistically significant (p = .027). The expression of p-Akt (p = .018) and p-ERK1/2 (p = .035) in PCOS patients with endometrial hyperplasia and cancer was significantly higher than that in patients with normal endometrium tissues. Visfatin may be a potential biomarker for endometrial malignant transformation in PCOS patients.
Collapse
Affiliation(s)
- Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Huixia Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yan Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yanfang Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Xueru Song
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Huiying Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
39
|
Mohammadi M, Moradi A, Farhadi J, Akbari A, Pourmandi S, Mehrad-Majd H. Prognostic value of visfatin in various human malignancies: A systematic review and meta-analysis. Cytokine 2020; 127:154964. [PMID: 31901760 DOI: 10.1016/j.cyto.2019.154964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/24/2019] [Accepted: 12/25/2019] [Indexed: 12/16/2022]
Abstract
Although numerous studies have shown that visfatin is linked to several cancers, its prognostic value is still unclear. This first comprehensive meta-analysis was performed to evaluate the prognostic effect of visfatin in cancer patients. A systematic search was conducted for relevant studies in health-related electronic databases up to May 2019. The pooled hazard ratios (HRs) and ORs with 95% confidence intervals (CIs) for total and stratified analyses were calculated to demonstrate the prognostic value of visfatin expression level in cancer patients. Heterogeneity and publication bias were also investigated. A total of 14 eligible studies with 1616 patients were included in the current meta-analysis. Pooling results revealed that, high visfatin expression was significantly associated with poorer overall survival (OS) (HR = 2.43, 95% CI 1.64-3.62, P < 0.001). Elevated visfatin level was also correlated with positive lymph node metastasis (OR = 2.45, 95% CI 1.43-4.17, P ≤ 0.001), positive distance metastasis (OR = 2014, 95% CI 1.25-3.69, P ≤ 0.001), advanced tumor stage (OR = 3.01, 95% CI 1.91-7.72, P ≤ 0.001), and larger tumor size (OR = 1.99, 95% CI 1.49-2.69, P ≤ 0.001). Our meta-results indicates that altered visfatin expression is a potential indicator of poor clinical outcomes in tumor patients, suggesting that high visfatin expression may serve as a potential biomarker of poor prognosis and metastasis in cancers.
Collapse
Affiliation(s)
- Masoumeh Mohammadi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Moradi
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Farhadi
- Department of Biochemistry and Molecular Biology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Pourmandi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Mehrad-Majd
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
40
|
Chiang YF, Chen HY, Huang KC, Lin PH, Hsia SM. Dietary Antioxidant Trans-Cinnamaldehyde Reduced Visfatin-Induced Breast Cancer Progression: In Vivo and In Vitro Study. Antioxidants (Basel) 2019; 8:antiox8120625. [PMID: 31817697 PMCID: PMC6943554 DOI: 10.3390/antiox8120625] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
Excessive growth of cancer cells is the main cause of cancer mortality. Therefore, discovering how to inhibit cancer growth is an important research topic. Recently, the newly discovered adipokine, known as nicotinamide phosphoribosyl transferase (NAMPT, visfatin), which has been associated with metabolic syndrome and obesity, has also been found to be a major cause of cancer proliferation. Therefore, inhibition of NAMPT and reduction of Nicotinamide adenine dinucleotide (NAD) synthesis is one strategy for cancer therapy. Cinnamaldehyde (CA), as an antioxidant and anticancer natural compound, may have the ability to inhibit visfatin. The breast cancer cell line and xenograft animal models were treated under different dosages of visfatin combined with CA and FK866 (a visfatin inhibitor) to test for cell toxicity, as well as inhibition of tumor-related proliferation of protein expression. In the breast cancer cell and the xenograft animal model, visfatin significantly increased proliferation-related protein expression, but combination with CA or FK866 significantly reduced visfatin-induced carcinogenic effects. For the first time, a natural compound inhibiting extracellular and intracellular NAMPT has been demonstrated. We hope that, in the future, this can be used as a potential anticancer compound and provide further directions for research.
Collapse
Affiliation(s)
- Yi-Fen Chiang
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan;
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.C.); (K.-C.H.); (P.-H.L.)
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.C.); (K.-C.H.); (P.-H.L.)
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.C.); (K.-C.H.); (P.-H.L.)
| | - Po-Han Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.C.); (K.-C.H.); (P.-H.L.)
| | - Shih-Min Hsia
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan;
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.C.); (K.-C.H.); (P.-H.L.)
- School of Food and Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 6558)
| |
Collapse
|
41
|
Yang X, Wang J. The Role of Metabolic Syndrome in Endometrial Cancer: A Review. Front Oncol 2019; 9:744. [PMID: 31440472 PMCID: PMC6694738 DOI: 10.3389/fonc.2019.00744] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Endometrial cancer is one of the most common cancers of the female reproductive system. Although surgery, radiotherapy, chemotherapy, and hormone therapy can significantly improve the survival of patients, the treatment of patients with very early lesions and a strong desire to retain reproductive function or late recurrence is still in the early stages. Metabolic syndrome (MS) is a clustering of at least three of the five following medical conditions: central obesity, high blood pressure, high blood sugar, high serum triglycerides, and low serum high-density lipoprotein (HDL). Obesity, diabetes and hypertension often coexist in patients with endometrial cancer, which increases the risk of endometrial cancer, also known as the "triple syndrome of endometrial cancer." In recent years, epidemiological and clinical studies have found that MS associated with metabolic diseases is closely related to the incidence of endometrial cancer. However, the key molecular mechanisms underlying the induction of endometrial cancer by MS have not been elucidated to date. Characterizing the tumor metabolism microenvironment will be advantageous for achieving a comprehensive view of the molecular mechanism of metabolic syndrome associated with endometrial cancer and for providing a new target for the treatment of endometrial cancer. This review focuses on recent advances in determining the role of metabolic syndrome-related factors and mechanisms in the pathogenesis of endometrial cancer. We suggest that interfering with the tumor metabolic microenvironment-related molecular signals may inhibit the occurrence of endometrial cancer.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
42
|
Zhang K, Li H, Yan Y, Zang Y, Li K, Wang Y, Xue F. Identification of key genes and pathways between type I and type II endometrial cancer using bioinformatics analysis. Oncol Lett 2019; 18:2464-2476. [PMID: 31452737 PMCID: PMC6676660 DOI: 10.3892/ol.2019.10550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/17/2019] [Indexed: 12/24/2022] Open
Abstract
Endometrial carcinoma (EC) is a common malignant neoplasm of the female reproductive tract. The malignant degree of type II EC is much greater than that of type I EC, usually presenting with a high recurrence rate and a poor prognosis. Therefore, the present study aimed to examine the principal genes associated with the degree of differentiation in type I and type II EC and reveal their potential mechanisms. Differentially expressed genes (DEGs) were selected from the gene expression profiles derived from The Cancer Genome Atlas. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. In the present study, the KEGG pathway enrichment analysis revealed that 5,962 upregulated DEGs were significantly enriched in the ‘p53 signaling pathway’ and involved in ‘lysine degradation’. In addition, 3,709 downregulated DEGs were enriched in ‘pathways in cancer’, as well as ‘tight junction regulation’, the ‘cell cycle’ and the ‘Wnt signaling pathway’. The 13 top hub genes MAPK1, PHLPP1, ESR1, MDM2, CDKN2A, CDKN1A, AURKA, BCL2L1, POLQ, PIK3R3, RHOQ, EIF4E and LATS2 were identified via the protein-protein interaction network. Furthermore, the OncoPrint algorithm from cBioPortal declared that 25% of EC cases carried genetic alterations. The altered DEGs (MAPK1, MDM2, AURKA, EIF4E and LATS2) may be involved in tumor differentiation and may be valuable diagnostic biomarkers. In conclusion, a number of principal genes were identified in the present study that may be determinants of poorly differentiated type II EC carcinogenesis, which may contribute to future research into potential molecular mechanisms. In addition, these genes may help identify candidate biomarkers and novel therapeutic targets for type II EC.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Huiyang Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ye Yan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ke Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
43
|
Hui Z, Liu Z, He A, Chen Y, Zhang P, Lei B, Yao H, Yu Y, Liang R, Li Z, Zhang W. Visfatin promotes the malignancy of human acute myeloid leukemia cells via regulation of IL-17. Eur J Pharmacol 2019; 853:103-110. [PMID: 30876976 DOI: 10.1016/j.ejphar.2019.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 11/29/2022]
Abstract
Understanding the mechanisms of malignancy in acute myeloid leukemia (AML) cell is important for the targeted treatment and drug development. We found that visfatin, a 52-kDa adipokine, can positively regulate the proliferation of AML cells. Targeted inhibition of visfatin via its specific siRNAs or inhibitor can suppress the proliferation of AML cells. Further, knockdown of visfatin can increase the doxorubicin (Dox) and cisplatin (CDDP) sensitivity of AML cells. Among the tested six cytokines, si-visfatin can decrease the expression of interleukin-17 (IL-17). Over expression of IL-17 can reverse si-visfatin suppressed cell proliferation and increased Dox sensitivity. The upregulation of IL-17 was also involved in visfatin induced activation of PI3K/Akt signals in AML cells. The inhibitor of PI3K/Akt can synergistically suppress the proliferation of HL60 cells which were transfected with si-visfatin. Knockdown of visfatin can increase the expression of miR-135a, which can bind to the 3'UTR of IL-17 and decrease its expression. The inhibitor of miR-135a can attenuate si-visfatin suppressed expression of IL-17 and proliferation of AML cells. Collectively, our data suggested that visfatin can increase the malignancy of AML cells via regulation of miR-135a/IL-17/PI3K/Akt signals.
Collapse
Affiliation(s)
- Zengqian Hui
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Shaanxi Provincial Corps Hospital of Chinese People's Armed Police Force, Xi'an, Shaanxi 710054, China
| | - Zhao Liu
- Department of Surgery, Xi'an Chest Hospital, Xi'an TB & Thoracic Tumor Hospital, Xi'an, Shaanxi 710100, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yinxia Chen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Pengyu Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Bo Lei
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Huan Yao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yong Yu
- Shaanxi Provincial Corps Hospital of Chinese People's Armed Police Force, Xi'an, Shaanxi 710054, China
| | - Rui Liang
- Shaanxi Provincial Corps Hospital of Chinese People's Armed Police Force, Xi'an, Shaanxi 710054, China
| | - Zhanning Li
- Shaanxi Provincial Corps Hospital of Chinese People's Armed Police Force, Xi'an, Shaanxi 710054, China
| | - Wanggang Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
44
|
Franco-Trepat E, Alonso-Pérez A, Guillán-Fresco M, Jorge-Mora A, Gualillo O, Gómez-Reino JJ, Gómez Bahamonde R. Visfatin as a therapeutic target for rheumatoid arthritis. Expert Opin Ther Targets 2019; 23:607-618. [DOI: 10.1080/14728222.2019.1617274] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Oreste Gualillo
- Research laboratory 9 (NEIRID LAB), Institute of Medical Research, SERGAS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Juan J. Gómez-Reino
- Rheumatology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Rodolfo Gómez Bahamonde
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| |
Collapse
|
45
|
Lin TC. The role of visfatin in cancer proliferation, angiogenesis, metastasis, drug resistance and clinical prognosis. Cancer Manag Res 2019; 11:3481-3491. [PMID: 31114381 PMCID: PMC6497876 DOI: 10.2147/cmar.s199597] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/11/2019] [Indexed: 12/21/2022] Open
Abstract
Visfatin, also known as nicotinamide phosphoribosyltransferase or pre-B-cell colony-enhancing factor (PBEF), is an adipocytokine secreted by adipocytes, macrophages and inflamed endothelial tissue. Related reports have indicated a positive correlation between the visfatin level and obesity and cancer risk. In addition to its original function, visfatin is multifunctional and plays critical roles in the promotion of several processes relevant to cancer progression including cancer cell proliferation, angiogenesis, metastasis and drug resistance. The relative expression of visfatin and the potential visfatin receptor on a pan-cancer scale was determined based on the transcriptome analysis data in The Cancer Genome Atlas. We further show the clinical association of its signaling axis with the survival of cancer patients, which reveals its prognostic power for specific cancer types. This review illustrates visfatin’s biological functions related to cancer progression and demonstrates its clinical significance in predicting outcomes of cancer patients.
Collapse
Affiliation(s)
- Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
46
|
Shen Z, Zhang C, Qu L, Lu C, Xiao M, Ni R, Liu J. MKP-4 suppresses hepatocarcinogenesis by targeting ERK1/2 pathway. Cancer Cell Int 2019; 19:61. [PMID: 30923463 PMCID: PMC6423746 DOI: 10.1186/s12935-019-0776-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/08/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Mitogen-activated protein kinase phosphatases-4 (MKP-4) is reported to exert a prognostic merit in hepatocarcinogenesis. However, the underlying molecular mechanisms have not been clearly defined. METHODS Immunoprecipitation-mass spectrometry (IP-MS) approach was used to identify interactive proteins with MKP-4. Western blot and immunohistochemistry were employed to detect proteins in HCC tissues. Cell counting kit-8, colony formation, Edu incorporation and sphere formation assays were performed to investigate functions of MKP-4/ERK1/2 interaction. Tumor xenografts in nude mice were used to determine effects in vivo. RESULTS Extracellular signal-regulated kinase 1 and 2 (ERK1/2) were identified as binding partners of MKP-4. Knockdown of MKP-4 increased cell proliferation and cancer stem cell (CSC) traits while upregulation of MKP-4 or pre-incubation with ERK1/2 inhibition reversed these effects. Mechanistically MKP-4 negatively regulated phosphorylation of ERK1/2 and reduced expressions of CyclinD1 and c-Myc. Both xenograft tumor models and clinical analysis of HCC patients indicated that lower expression of MKP-4 and higher expressions of ERK1/2 were associated with worse prognosis. CONCLUSIONS MKP-4-mediated dephosphorylation of ERK1/2 might serve as a novel tumor-suppressive mechanism and provide a potential therapy for HCC.
Collapse
Affiliation(s)
- Zhongyi Shen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001 Jiangsu People’s Republic of China
- Clinical Medicine Medical College, Nantong University, Nantong, Jiangsu People’s Republic of China
| | - Chengliang Zhang
- Clinical Medicine Medical College, Nantong University, Nantong, Jiangsu People’s Republic of China
| | - Lishuai Qu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001 Jiangsu People’s Republic of China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001 Jiangsu People’s Republic of China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001 Jiangsu People’s Republic of China
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001 Jiangsu People’s Republic of China
| | - Jinxia Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001 Jiangsu People’s Republic of China
| |
Collapse
|
47
|
Guo S, Yang J, Wu M, Xiao G. Clinical value screening, prognostic significance and key pathway identification of miR-204-5p in endometrial carcinoma: A study based on the Cancer Genome Atlas (TCGA), and bioinformatics analysis. Pathol Res Pract 2019; 215:1003-1011. [PMID: 30910254 DOI: 10.1016/j.prp.2019.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/26/2019] [Accepted: 02/26/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Endometrial carcinoma is one of the common carcinomas in the female reproductive system. It is reported that miR-204-5p is down-regulated in endometrial carcinoma. However, the mechanism and key pathways of miR-204-5p in endometrial carcinoma have not been clarified. MATERIAL/METHODS We evaluated the expression profiles and prognostic value of miR-204-5p expression in endometrial carcinoma by using bioinformatics analysis of a public dataset from TCGA. Drug of endometrial carcinoma from DrugBank, GO analysis, KEGG analysis, PPI network, mutation, as well as assessment of the prognostic significance were performed to the overlapping target genes of miR-204-5p in endometrial carcinoma. The relative expression levels of miR-204-5p target genes in endometrial carcinoma, including SF3B1, FBXW7, SPOP, and BRD4, were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS First, through DrugBank website, we obtained target drugs for endometrial carcinoma. MiR-204-5p expression was found to be lower in the endometrial carcinoma tissues than in adjacent normal tissues from TCGA. Next, we identified 143 genes as potential targets of miR-204-5p. Then, through GO enrichment analysis, KEGG signaling pathway and PPI analysis, we revealed the key networks in endometrial carcinoma. Next, mutation and assessment of the prognostic significance of endometrial carcinoma were obtained. At last, in endometrial carcinoma, the relative expression of SF3B1 and BRD4 increased, and the relative expression of FBXW7 decreased. CONCLUSIONS MiR-204-5p is down-regulated in endometrial carcinoma and affects the prognostic significance of endometrial carcinoma, which might play an important role in the tumorigenesis of endometrial carcinoma.
Collapse
Affiliation(s)
- Shi Guo
- Center for Reproductive Medicine, Third Affiliated Hospital of Guangzhou Medical University, People's Republic of China; Key Laboratory for Reproductive Medicine of Guangdong, People's Republic of China; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, People's Republic of China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, People's Republic of China
| | - Jie Yang
- Center for Reproductive Medicine, Third Affiliated Hospital of Guangzhou Medical University, People's Republic of China; Key Laboratory for Reproductive Medicine of Guangdong, People's Republic of China; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, People's Republic of China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, People's Republic of China
| | - Man Wu
- Center for Reproductive Medicine, Third Affiliated Hospital of Guangzhou Medical University, People's Republic of China; Key Laboratory for Reproductive Medicine of Guangdong, People's Republic of China; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, People's Republic of China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, People's Republic of China
| | - Guohong Xiao
- Center for Reproductive Medicine, Third Affiliated Hospital of Guangzhou Medical University, People's Republic of China; Key Laboratory for Reproductive Medicine of Guangdong, People's Republic of China; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, People's Republic of China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, People's Republic of China.
| |
Collapse
|
48
|
Kim SY, Han KD, Joo YH. Metabolic Syndrome and Incidence of Laryngeal Cancer: A Nationwide Cohort Study. Sci Rep 2019; 9:667. [PMID: 30679643 PMCID: PMC6345961 DOI: 10.1038/s41598-018-37061-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
It is unknown whether the presence of metabolic syndrome (MetS) affects the incidence of laryngeal cancer. The aim of this national population-based retrospective study was to analyze the relationship between MetS and the incidence of laryngeal cancer. Patients with laryngeal cancer (ICD-10: C32) between 2009 and 2010 were retrospectively identified and tracked until 2015 using the Korean Health Insurance claims database. During the seven-year follow-up period, 5,322 subjects were newly diagnosed with larynx cancer. The mean age of people with laryngeal cancer was much higher than those without (63.29 vs. 47.7 years, p < 0.0001), and the incidence of larynx cancer in men was much higher than that in women (93.16% vs. 6.84%, p < 0.0001). Age, gender, smoking status, alcohol intake, and exercise-adjusted hazard ratios indicated that participants with MetS had a 1.13-fold higher hazard of having larynx cancer than those without MetS. The number of MetS components was a strong risk factor for laryngeal cancer with a higher risk estimate of this cancer in both ex- and current smokers as well as people who have never smoked. MetS was found to be an independent risk factor for the incidence of laryngeal cancer. In Korea, MetS and its components are significantly associated with the development of laryngeal cancer.
Collapse
Affiliation(s)
- Sang-Yeon Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyung-do Han
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Hoon Joo
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
49
|
Annie L, Gurusubramanian G, Roy VK. Estrogen and progesterone dependent expression of visfatin/NAMPT regulates proliferation and apoptosis in mice uterus during estrous cycle. J Steroid Biochem Mol Biol 2019; 185:225-236. [PMID: 30227242 DOI: 10.1016/j.jsbmb.2018.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022]
Abstract
Visfatin is an adipokine which has an endocrine effect on reproductive functions and regulates ovarian steroidogenesis. There is scant information about the expression, regulation, and functions of visfatin in the mammalian uterus. The present study examined expression and localization of visfatin in the mouse uterus at various stages of the natural estrous cycle, effects of estrogen and progesterone on localization and expression of visfatin in the ovariectomised mouse uterus and effect of visfatin inhibition by a specific inhibitor, FK866 on proliferation and apoptosis in the uterus. Western blot analysis of visfatin showed high expression in proestrus and metestrus while it declined in estrus and diestrus. Immulocalization study also showed strong immunostaining in the cells of endometrium, myometrium, luminal and glandular epithelium during proestrus and metestrus that estrus and diestrus. The uterine visfatin expression closely related to the increased estrogen levels in proestrus and suppressed when progesterone rose to a high level in diestrus. The treatment with estrogen to ovariectomised mice up-regulates visfatin, PCNA, and active caspase3 whereas progesterone up-regulates PCNA and down-regulates visfatin and active caspase3 expression in mouse uterus. The co-treatment with estrogen and progesterone up-regulates visfatin and down-regulates PCNA and active caspase3. In vitro study showed endogenous visfatin inhibition by FK866 increased expression of PCNA and BCL2 increased catalase activity while FK866 treatment decreased expression of active caspase3 and BAX with decreased SOD and GPx activity. BrdU labeling showed that inhibition of visfatin modulates the uterine proliferation. This study showed that expression of visfatin protein is steroid dependent in mouse uterus which is involved in the regulation of proliferation and apoptosis via modulating antioxidant system in the uterus of mice during the reproductive cycle.
Collapse
Affiliation(s)
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796 004, India.
| |
Collapse
|
50
|
Yunusova NV, Kondakova IV, Kolomiets LA, Afanas'ev SG, Kishkina AY, Spirina LV. The role of metabolic syndrome variant in the malignant tumors progression. Diabetes Metab Syndr 2018; 12:807-812. [PMID: 29699953 DOI: 10.1016/j.dsx.2018.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome (MS) is one of the leading risk factors for the development of some common cancers (endometrial cancer, postmenopausal breast cancer, colorectal cancer). Currently, a drug-induced metabolic syndrome related with androgen deprivation therapy in patients with prostate cancer represents a serious medical problem. Not only MS, or its individual components, but MS variants with different levels of leptin, adiponectin, visfatin, resistin are associated with tumor invasion, metastasis and survival rates in patients with MS-associated malignancies.
Collapse
Affiliation(s)
- Natalia V Yunusova
- Laboratory of tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634009, Tomsk, Kooperativny str., 5, Russia; Biochemistry Division, Siberian State Medical University, 634050, Tоmsk, Moskovskiy str. 2., Russia
| | - Irina V Kondakova
- Laboratory of tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634009, Tomsk, Kooperativny str., 5, Russia
| | - Larisa A Kolomiets
- Department of Oncogynecology, Cancer Research Institute, Тomsk National Research Medical Center, Russian Academy of Science, 634009, Tomsk, Kooperativny str., 5, Russia; Oncology Division, Siberian State Medical University, 634050, Tоmsk, Moskovskiy str. 2., Russia
| | - Sergey G Afanas'ev
- Abdominal Oncology Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634009, Tomsk, Kooperativny str., 5, Russia; 2 - Siberian State Medical University, 634050, Tоmsk, Moskovskiy str. 2., Russia
| | - Anastasia Yu Kishkina
- Laboratory of tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634009, Tomsk, Kooperativny str., 5, Russia
| | - Liudmila V Spirina
- Laboratory of tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634009, Tomsk, Kooperativny str., 5, Russia; Biochemistry Division, Siberian State Medical University, 634050, Tоmsk, Moskovskiy str. 2., Russia.
| |
Collapse
|