1
|
Nair J, Marciante AB, Lurk C, Kelly MN, Maclain C, Mitchell GS. Daily acute intermittent hypoxia elicits age & sex-dependent changes in molecules regulating phrenic motor plasticity. Exp Neurol 2025; 389:115240. [PMID: 40204197 DOI: 10.1016/j.expneurol.2025.115240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Acute intermittent hypoxia (AIH) elicits a form of respiratory motor plasticity known as phrenic long-term facilitation (pLTF). Exposure to repetitive daily AIH (dAIH) enhances pLTF, a form of metaplasticity. Little is known concerning cellular mechanisms giving rise to dAIH-induced metaplasticity and the age-dependent sexual dimorphism of AIH associated pro-plasticity mRNA expression. To test if age, sex, and dAIH effects are associated with differential expression of molecules that regulate the Q- and S-pathways and their cross-talk interactions to phrenic motor facilitation, we analyzed key regulatory molecules in ventral spinal (C3-C5) homogenates from young (3-month) and middle-aged (12-month) male and female Sprague-Dawley rats. Since CNS estrogen levels impact molecules known to regulate the Q- and S-pathways, mRNA was correlated with serum estradiol. Rats (n = 8/group) were exposed to sham (21 % O2) or dAIH (15, 1 min episodes of 10.5 % inspired O2) per day for 14 days and sacrificed 24 h later. mRNAs for pLTF regulating molecules were assessed via RT-PCR, including: brain-derived neurotrophic factor (Bdnf); serotonin 2 A (Htr2a), 2B (Htr2b), and 7 (Htr7) receptors; adenosine 2a (Adora2a) receptors; exchange protein activated by cAMP (Epac1); p38 MAP kinase [Mapk14 (α) & Mapk11 (β)]; PKA regulatory (Prkar1a) and; catalytic subunits (Prkaa1); fractalkine (Cx3cl1), which underlies motor neuron/microglia communication; phosphodiesterase type 4b (Pde4b); NAPDH- gp91 (Cybb) and p47 (ncf1); and the PKC isoform, PKCδ (Prkcd). Here we report that age, sex, dAIH preconditioning, and estradiol influence molecules that initiate and/or regulate the Q- and S-pathways to phrenic motor facilitation.
Collapse
Affiliation(s)
- Jayakrishnan Nair
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, FL, USA; Department of Physical Therapy, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Alexandria B Marciante
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
| | - Carter Lurk
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
| | - Mia N Kelly
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
| | - Capron Maclain
- Department of Physical Therapy, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Hope SF, Willgohs KR, Dittakul S, Plotnik JM. Do elephants really never forget? What we know about elephant memory and a call for further investigation. Learn Behav 2025; 53:44-64. [PMID: 39438402 DOI: 10.3758/s13420-024-00655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Despite popular culture's promotion of the elephant's ability to "never forget," there is remarkably limited empirical research on the memory capacities of any living elephant species (Asian, Elephas maximus; African savanna, Loxodonta africana; African forest, Loxodonta cyclotis). A growing body of literature on elephant cognition and behavioral ecology has provided insight into the elephant's ability to behave flexibly in changing physical and social environments, but little direct evidence of how memory might relate to this flexibility exists. In this paper, we review and discuss the potential relationships between what we know about elephant cognition and behavior and the elephants' memory for the world around them as they navigate their physical, social, and spatial environments. We also discuss future directions for investigating elephant memory and implications for such research on elephant conservation and human-elephant conflict mitigation.
Collapse
Affiliation(s)
- Sydney F Hope
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA.
| | - Kaitlyn R Willgohs
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
- Department of Psychology, The Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Sangpa Dittakul
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
- Golden Triangle Asian Elephant Foundation, Chiang Saen, Chiang Rai, 57150, Thailand
| | - Joshua M Plotnik
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA.
- Department of Psychology, The Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Lee BH, Cevizci M, Lieblich SE, Galea LAM. Sex-specific influences of APOEε4 genotype on hippocampal neurogenesis and progenitor cells in middle-aged rats. Biol Sex Differ 2025; 16:10. [PMID: 39910616 DOI: 10.1186/s13293-025-00694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) disproportionately and uniquely affects females, and these sex differences are further exacerbated by the presence of Apolipoprotein (APOE) ε4 alleles, the top genetic risk factor for late-onset AD. To expand our understanding about how late-onset AD risk might differentially influence males and females, this study explores how APOEε4 affects hippocampal neurogenesis and microglia, key neuroplastic markers involved in AD pathogenesis, differently by sex in middle-aged rats. METHODS A rat model expressing the humanized (h) APOEε4 allele was characterized to examine markers of adult neurogenesis (neural progenitor cells and new-born neurons) and immune cells (microglia) in the dentate gyrus of the hippocampus in 13 month-old male and female rats. RESULTS We observed basal sex differences in neurogenesis at middle age, as wildtype male rats had greater densities of neural progenitor cells and new-born neurons in the dentate gyrus than wildtype female rats. Male hAPOEε4 rats exhibited fewer neural progenitor cells, fewer new-born neurons, and more microglia than male wildtype rats. On the other hand, female hAPOEε4 rats exhibited more new-born neurons than female wildtype rats. Interestingly, females had more microglia than males regardless of genotype. Correlations were conducted to further elucidate any sex differences in the relationships between these biomarkers. Notably, there was a significant positive correlation between neural progenitor cells and new-born neurons, and a significant negative correlation between new-born neurons and microglia, but only in male rats. CONCLUSION In contrast to the clear pattern of effects of the hAPOEε4 risk factor on hippocampal neurogenesis in males, females had unaltered levels of neural progenitor cells and increased density of new-born neurons. Furthermore, relationships between neurogenesis and microglia were significantly correlated within males, and not females. This suggests that females may be presenting a compensatory response to the hAPOEε4 genotype at middle age. Collectively, these results exemplify the importance of thoroughly examining influences of sex on AD endophenotypes, as it may reveal sex-specific pathways and protective mechanisms relevant to AD.
Collapse
Affiliation(s)
- Bonnie H Lee
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Melike Cevizci
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie E Lieblich
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Singh P, Paramanik V. DNA methylation, histone acetylation in the regulation of memory and its modulation during aging. FRONTIERS IN AGING 2025; 5:1480932. [PMID: 39835300 PMCID: PMC11743476 DOI: 10.3389/fragi.2024.1480932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025]
Abstract
Memory formation is associated with constant modifications of neuronal networks and synaptic plasticity gene expression in response to different environmental stimuli and experiences. Dysregulation of synaptic plasticity gene expression affects memory during aging and neurodegenerative diseases. Covalent modifications such as methylation on DNA and acetylation on histones regulate the transcription of synaptic plasticity genes. Changes in these epigenetic marks correlated with alteration of synaptic plasticity gene expression and memory formation during aging. These epigenetic modifications, in turn, are regulated by physiology and metabolism. Steroid hormone estrogen and metabolites such as S-adenosyl methionine and acetyl CoA directly impact DNA and histones' methylation and acetylation levels. Thus, the decline of estrogen levels or imbalance of these metabolites affects gene expression and underlying brain functions. In the present review, we discussed the importance of DNA methylation and histone acetylation on chromatin modifications, regulation of synaptic plasticity gene expression and memory consolidation, and modulation of these epigenetic marks by epigenetic modifiers such as phytochemicals and vitamins. Further, understanding the molecular mechanisms that modulate these epigenetic modifications will help develop recovery approaches.
Collapse
Affiliation(s)
| | - Vijay Paramanik
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| |
Collapse
|
5
|
Bardhi O, Dubey P, Palmer BF, Clegg DJ. Oestrogens, adipose tissues and environmental exposures influence obesity and diabetes across the lifecycle. Proc Nutr Soc 2024; 83:263-270. [PMID: 38305136 DOI: 10.1017/s0029665124000119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Endogenous oestrogens regulate essential functions to include menstrual cycles, energy balance, adipose tissue distribution, pancreatic β-cell function, insulin sensitivity and lipid homeostasis. Oestrogens are a family of hormones which include oestradiol (E2), oestrone (E1) and oestriol (E3). Oestrogens function by binding and activating oestrogen receptors (ERs). Phytoestrogens are plant-derived compounds which exhibit oestrogenic-like activity and can bind to ERs. Phytoestrogens exert potential oestrogenic-like benefits; however, their effects are context-dependent and require cautious consideration regarding generalised health benefits. Xenoestrogens are synthetic compounds which have been determined to disrupt endocrine function through binding to ERs. Xenoestrogens enter the body through various routes and given their chemical structure they can accumulate, posing long-term health risks. Xenoestrogens interfere with endogenous oestrogens and their functions contributing to conditions like cancer, infertility, and metabolic disorders. Understanding the interplay between endogenous and exogenous oestrogens is critical in order to determine their potential health consequences and requires further investigation. This manuscript provides a summary of the role endogenous oestrogens have in regulating metabolic functions. Additionally, we discuss the impact phytoestrogens and synthetic xenoestrogens have on biological systems across various life stages. We highlight their mechanisms of action, potential benefits, risks and discuss the need for further research to bridge gaps in understanding and mitigate exposure-related health risks.
Collapse
Affiliation(s)
- Olgert Bardhi
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pallavi Dubey
- Department of Obstetrics and Gynecology, Paul L Foster School of Medicine, El Paso, TX, USA
| | - Biff Franklin Palmer
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical, Center, Dallas, TX, USA
| | - Deborah J Clegg
- Vice President for Research, Texas Tech Health Sciences Center, El Paso, TX, USA
| |
Collapse
|
6
|
Maroteaux MJ, Noccioli CT, Daniel JM, Schrader LA. Rapid and local neuroestrogen synthesis supports long-term potentiation of hippocampal Schaffer collaterals-cornu ammonis 1 synapse in ovariectomized mice. J Neuroendocrinol 2024; 36:e13450. [PMID: 39351868 DOI: 10.1111/jne.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024]
Abstract
In aging women, cognitive decline and increased risk of dementia have been associated with the cessation of ovarian hormones production at menopause. In the brain, presence of the key enzyme aromatase required for the synthesis of 17-β-estradiol (E2) allows for local production of E2 in absence of functional ovaries. Understanding how aromatase activity is regulated could help alleviate the cognitive symptoms. In female rodents, genetic or pharmacological reduction of aromatase activity over extended periods of time impair memory formation, decreases spine density, and hinders long-term potentiation (LTP) in the hippocampus. Conversely, increased excitatory neurotransmission resulting in rapid N-methyl-d-aspartic acid (NMDA) receptor activation rapidly promotes neuroestrogen synthesis. This rapid modulation of aromatase activity led us to address the hypothesis that acute neuroestrogens synthesis is necessary for LTP at the Schaffer collateral-cornu ammonis 1 (CA1) synapse in absence of circulating ovarian estrogens. To test this hypothesis, we did electrophysiological recordings of field excitatory postsynaptic potential (fEPSPs) in hippocampal slices obtained from ovariectomized mice. To assess the impact of neuroestrogens synthesis on LTP, we applied the specific aromatase inhibitor, letrozole, before the induction of LTP with a theta burst stimulation protocol. We found that blocking aromatase activity prevented LTP. Interestingly, exogenous E2 application, while blocking aromatase activity, was not sufficient to recover LTP in our model. Our results indicate the critical importance of rapid, activity-dependent local neuroestrogens synthesis, independent of circulating hormones for hippocampal synaptic plasticity in female rodents.
Collapse
Affiliation(s)
- Matthieu J Maroteaux
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Claire T Noccioli
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Jill M Daniel
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Laura A Schrader
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
7
|
Geraci F, Passiatore R, Penzel N, Laudani S, Bertolino A, Blasi G, Graziano ACE, Kikidis GC, Mazza C, Parihar M, Rampino A, Sportelli L, Trevisan N, Drago F, Papaleo F, Sambataro F, Pergola G, Leggio GM. Sex dimorphism controls dysbindin-related cognitive dysfunctions in mice and humans with the contribution of COMT. Mol Psychiatry 2024; 29:2666-2677. [PMID: 38532008 PMCID: PMC11420087 DOI: 10.1038/s41380-024-02527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Cognitive dysfunctions are core-enduring symptoms of schizophrenia, with important sex-related differences. Genetic variants of the DTBPN1 gene associated with reduced dysbindin-1 protein (Dys) expression negatively impact cognitive functions in schizophrenia through a functional epistatic interaction with Catechol-O-methyltransferase (COMT). Dys is involved in the trafficking of dopaminergic receptors, crucial for prefrontal cortex (PFC) signaling regulation. Moreover, dopamine signaling is modulated by estrogens via inhibition of COMT expression. We hypothesized a sex dimorphism in Dys-related cognitive functions dependent on COMT and estrogen levels. Our multidisciplinary approach combined behavioral-molecular findings on genetically modified mice, human postmortem Dys expression data, and in vivo fMRI during a working memory task performance. We found cognitive impairments in male mice related to genetic variants characterized by reduced Dys protein expression (pBonferroni = 0.0001), as well as in male humans through a COMT/Dys functional epistatic interaction involving PFC brain activity during working memory (t(23) = -3.21; pFDR = 0.004). Dorsolateral PFC activity was associated with lower working memory performance in males only (p = 0.04). Also, male humans showed decreased Dys expression in dorsolateral PFC during adulthood (pFDR = 0.05). Female Dys mice showed preserved cognitive performances with deficits only with a lack of estrogen tested in an ovariectomy model (pBonferroni = 0.0001), suggesting that genetic variants reducing Dys protein expression could probably become functional in females when the protective effect of estrogens is attenuated, i.e., during menopause. Overall, our results show the differential impact of functional variants of the DTBPN1 gene interacting with COMT on cognitive functions across sexes in mice and humans, underlying the importance of considering sex as a target for patient stratification and precision medicine in schizophrenia.
Collapse
Affiliation(s)
- Federica Geraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Roberta Passiatore
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205, Baltimore, MD, USA
| | - Nora Penzel
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Alessandro Bertolino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
- Psychiatric Unit - University Hospital, 70124, Bari, Italy
| | - Giuseppe Blasi
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
- Psychiatric Unit - University Hospital, 70124, Bari, Italy
| | - Adriana C E Graziano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Gianluca C Kikidis
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205, Baltimore, MD, USA
| | - Ciro Mazza
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Madhur Parihar
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205, Baltimore, MD, USA
| | - Antonio Rampino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
- Psychiatric Unit - University Hospital, 70124, Bari, Italy
| | - Leonardo Sportelli
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205, Baltimore, MD, USA
- Department of Human Genetics, Radboud University Nijmegen, 6525 GD, Nijmegen, The Netherlands
| | - Nicolò Trevisan
- Department of Neuroscience (DNS), University of Padova, 35121, Padova, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, 35121, Padova, Italy
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| |
Collapse
|
8
|
Lymer J, Bergman H, Yang S, Mallick R, Galea LAM, Choleris E, Fergusson D. The effects of estrogens on spatial learning and memory in female rodents - A systematic review and meta-analysis. Horm Behav 2024; 164:105598. [PMID: 38968677 DOI: 10.1016/j.yhbeh.2024.105598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024]
Abstract
Estrogens have inconsistent effects on learning and memory in both the clinical and preclinical literature. Preclinical literature has the advantage of investigating an array of potentially important factors contributing to the varied effects of estrogens on learning and memory, with stringently controlled studies. This study set out to identify specific factors in the animal literature that influence the effects of estrogens on cognition, for possible translation back to clinical practice. The literature was screened and studies meeting strict inclusion criteria were included in the analysis. Eligible studies included female ovariectomized rodents with an adequate vehicle for the estrogen treatment, with an outcome of spatial learning and memory in the Morris water maze. Training days of the Morris water maze were used to assess acquisition of spatial learning, and the probe trial was used to evaluate spatial memory recall. Continuous outcomes were pooled using a random effects inverse variance method and reported as standardized mean differences with 95 % confidence intervals. Subgroup analyses were developed a priori to assess important factors. The overall analysis favoured treatment for the later stages of training and for the probe trial. Factors including the type of estrogen, route, schedule of administration, age of animals, timing relative to ovariectomy, and duration of treatment were all found to be important. The subgroup analyses showed that chronic treatment with 17β-estradiol, either cyclically or continuously, to young animals improved spatial recall. These results, observed in animals, can inform and guide further clinical research on hormone replacement therapy for cognitive benefits.
Collapse
Affiliation(s)
- Jennifer Lymer
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
| | - Hailey Bergman
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Sabrina Yang
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | | | - Liisa A M Galea
- Department of Psychiatry, University of Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| | - Dean Fergusson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
9
|
Gemikonakli G, Mach J, Tran T, Wu H, Hilmer SN. Probing polypharmacy, ageing and sex effects on physical function using different tests. Fundam Clin Pharmacol 2024; 38:561-574. [PMID: 38247119 DOI: 10.1111/fcp.12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Ageing, sex and polypharmacy affect physical function. OBJECTIVES This mouse study investigates how ageing, sex and polypharmacy interact and affect grip strength, balance beam and wire hang, correlating and comparing the different test results between and within subgroups. METHODS Young (2.5 months) and old (21.5 months) C57BL/6 J male and female mice (n = 10-6/group) were assessed for physical function at baseline on grip strength, balance beam and wire hang with three trials of 60 s (WH60s) and one trial of 300 s (WH300s). Mice were randomised to control or diet containing a high Drug Burden Index (DBI, total anticholinergic and sedative drug exposure) polypharmacy regimen (metoprolol, simvastatin, citalopram, oxycodone and oxybutynin at therapeutic oral doses). Following 6-8 weeks of treatment, mice were reassessed. RESULTS High DBI polypharmacy and control mice both showed age group differences on all tests (p < 0.05). Only control mice showed sex differences, with females outperforming males on the WH60s and balance beam for old mice, WH300s for young mice (p < 0.05). Polypharmacy reduced grip strength in all subgroups (p < 0.05) and only in old females reduced wire hang time and cumulative behaviour and balance beam time and %walked (p < 0.05). Physical function assessments were all correlated with each other, with differences between subgroups (p < 0.05), and mice within subgroups showed interindividual variability in performance. CONCLUSION Age, sex and polypharmacy have variable effects on different tests, and behavioural measures are useful adjuvants to assessing performance. There was considerable within-group variability in change in measures over time. These findings can inform design and sample size of future studies.
Collapse
Affiliation(s)
- Gizem Gemikonakli
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, New South Wales, Australia
| | - John Mach
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, New South Wales, Australia
| | - Trang Tran
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, New South Wales, Australia
| | - Harry Wu
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, New South Wales, Australia
| | - Sarah N Hilmer
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Pereira AAR, Pinto AM, Malerba HN, Toricelli M, Buck HS, Viel TA. Microdose lithium improves behavioral deficits and modulates molecular mechanisms of memory formation in female SAMP-8, a mouse model of accelerated aging. PLoS One 2024; 19:e0299534. [PMID: 38574297 PMCID: PMC10994667 DOI: 10.1371/journal.pone.0299534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neuronal disorder that leads to the development of dementia. Until nowadays, some therapies may alleviate the symptoms, but there is no pharmacological treatment. Microdosing lithium has been used to modify the pathological characteristics of the disease, with effects in both experimental and clinical conditions. The present work aimed to analyze the effects of this treatment on spatial memory, anxiety, and molecular mechanisms related to long-term memory formation during the aging process of a mouse model of accelerated aging (SAMP-8). Female SAMP-8 showed learning and memory impairments together with disruption of memory mechanisms, neuronal loss, and increased density of senile plaques compared to their natural control strain, the senescence-accelerated mouse resistant (SAMR-1). Chronic treatment with lithium promoted memory maintenance, reduction in anxiety, and maintenance of proteins related to memory formation and neuronal density. The density of senile plaques was also reduced. An increase in the density of gamma-aminobutyric acid A (GABAA) and α7 nicotinic cholinergic receptors was also observed and related to neuroprotection and anxiety reduction. In addition, this microdose of lithium inhibited the activation of glycogen synthase kinase-3beta (GSK-3β), the classical mechanism of lithium cell effects, which could contribute to the preservation of the memory mechanism and reduction in senile plaque formation. This work shows that lithium effects in neuroprotection along the aging process are not related to a unique cellular mechanism but produce multiple effects that slowly protect the brain along the aging process.
Collapse
Affiliation(s)
- Arthur Antonio Ruiz Pereira
- Department of Pharmacology, Institute of Biomedical Sciences, Graduate Course on Pharmacology, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Laboratory of Neuropharmacology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Alessandra Macedo Pinto
- Graduate Course on Gerontology, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Helena Nascimento Malerba
- Department of Pharmacology, Institute of Biomedical Sciences, Graduate Course on Pharmacology, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Laboratory of Neuropharmacology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Mariana Toricelli
- Laboratory of Neuropharmacology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Hudson Sousa Buck
- Laboratory of Neuropharmacology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Sao Paulo, Brazil
- Department of Physiology, University of Mogi das Cruzes, Mogi das Cruzes, Sao Paulo, Brazil
| | - Tania Araujo Viel
- Department of Pharmacology, Institute of Biomedical Sciences, Graduate Course on Pharmacology, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Laboratory of Neuropharmacology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Sao Paulo, Brazil
- Graduate Course on Gerontology, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
11
|
DSouza AA, Kulkarni P, Ferris CF, Amiji MM, Bleier BS. Mild repetitive TBI reduces brain-derived neurotrophic factor (BDNF) in the substantia nigra and hippocampus: A preclinical model for testing BDNF-targeted therapeutics. Exp Neurol 2024; 374:114696. [PMID: 38244886 PMCID: PMC10922982 DOI: 10.1016/j.expneurol.2024.114696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Clinical studies have consistently shown that neurodegenerative diseases (NDs) such as Parkinson's disease, Alzheimer's disease, Amyotrophic Lateral Sclerosis, and Huntington's disease show absent or low levels of brain-derived neurotrophic factor (BDNF). Despite this relationship between BDNF and ND, only a few ND animal models have been able to recapitulate the low BDNF state, thereby hindering research into the therapeutic targeting of this important neurotrophic factor. In order to address this unmet need, we sought to develop a reproducible model of BDNF reduction by inducing traumatic brain injury (TBI) using a closed head momentum exchange injury model in mature 9-month-old male and female rats. Head impacts were repetitive and varied in intensity from mild to severe. BDNF levels, as assessed by ELISA, were significantly reduced in the hippocampus of both males and females as well as in the substantia nigra of males 12 days after mild TBI. However, we observed significant sexual dimorphism in multiple sequelae, including magnetic resonance imaging-determined vasogenic edema, astrogliosis (GFAP-activation), and microgliosis (Iba1 activation). This study provides an opportunity to investigate the mechanism of BDNF reduction in rodent models and provides a reliable paradigm to test BDNF-targeted therapeutics for the treatment of ND.
Collapse
Affiliation(s)
- Anisha A DSouza
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA 02115, USA
| | - Craig F Ferris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Center for Translational NeuroImaging, Northeastern University, Boston, MA 02115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
12
|
Holter KM, Lekander AD, Pierce BE, Sands LP, Gould RW. Use of Quantitative Electroencephalography to Inform Age- and Sex-Related Differences in NMDA Receptor Function Following MK-801 Administration. Pharmaceuticals (Basel) 2024; 17:237. [PMID: 38399452 PMCID: PMC10892193 DOI: 10.3390/ph17020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Sex- and age-related differences in symptom prevalence and severity have been widely reported in patients with schizophrenia, yet the underlying mechanisms contributing to these differences are not well understood. N-methyl-D-aspartate (NMDA) receptor hypofunction contributes to schizophrenia pathology, and preclinical models often use NMDA receptor antagonists, including MK-801, to model all symptom clusters. Quantitative electroencephalography (qEEG) represents a translational approach to measure neuronal activity, identify targetable biomarkers in neuropsychiatric disorders and evaluate possible treatments. Abnormalities in gamma power have been reported in patients with schizophrenia and correspond to psychosis and cognitive impairment. Further, as gamma power reflects cortical glutamate and GABA signaling, it is highly sensitive to changes in NMDA receptor function, and NMDA receptor antagonists aberrantly increase gamma power in rodents and humans. To evaluate the role of sex and age on NMDA receptor function, MK-801 (0.03-0.3 mg/kg, SC) was administered to 3- and 9-month-old male and female Sprague-Dawley rats that were implanted with wireless EEG transmitters to measure cortical brain function. MK-801-induced elevations in gamma power were observed in 3-month-old male and female and 9-month-old male rats. In contrast, 9-month-old female rats demonstrated blunted maximal elevations across a wide dose range. Importantly, MK-801-induced hyperlocomotor effects, a common behavioral screen used to examine antipsychotic-like activity, were similar across all groups. Overall, sex-by-age-related differences in gamma power support using qEEG as a translational tool to evaluate pathological progression and predict treatment response across a heterogeneous population.
Collapse
Affiliation(s)
| | | | | | | | - Robert W. Gould
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (K.M.H.)
| |
Collapse
|
13
|
Johnson CE, Duncan MJ, Murphy MP. Sex and Sleep Disruption as Contributing Factors in Alzheimer's Disease. J Alzheimers Dis 2024; 97:31-74. [PMID: 38007653 PMCID: PMC10842753 DOI: 10.3233/jad-230527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Alzheimer's disease (AD) affects more women than men, with women throughout the menopausal transition potentially being the most under researched and at-risk group. Sleep disruptions, which are an established risk factor for AD, increase in prevalence with normal aging and are exacerbated in women during menopause. Sex differences showing more disrupted sleep patterns and increased AD pathology in women and female animal models have been established in literature, with much emphasis placed on loss of circulating gonadal hormones with age. Interestingly, increases in gonadotropins such as follicle stimulating hormone are emerging to be a major contributor to AD pathogenesis and may also play a role in sleep disruption, perhaps in combination with other lesser studied hormones. Several sleep influencing regions of the brain appear to be affected early in AD progression and some may exhibit sexual dimorphisms that may contribute to increased sleep disruptions in women with age. Additionally, some of the most common sleep disorders, as well as multiple health conditions that impair sleep quality, are more prevalent and more severe in women. These conditions are often comorbid with AD and have bi-directional relationships that contribute synergistically to cognitive decline and neuropathology. The association during aging of increased sleep disruption and sleep disorders, dramatic hormonal changes during and after menopause, and increased AD pathology may be interacting and contributing factors that lead to the increased number of women living with AD.
Collapse
Affiliation(s)
- Carrie E. Johnson
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
| | - Marilyn J. Duncan
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY, USA
| | - M. Paul Murphy
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY, USA
| |
Collapse
|
14
|
Li J, Chongpison Y, Amornvit J, Chaikittisilpa S, Santibenchakul S, Jaisamrarn U. Association of reproductive factors and exogenous hormone use with distal sensory polyneuropathy among postmenopausal women in the United States: results from 1999 to 2004 NHANES. Sci Rep 2023; 13:9274. [PMID: 37286578 DOI: 10.1038/s41598-023-35934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/25/2023] [Indexed: 06/09/2023] Open
Abstract
Postmenopausal status is a risk factor for distal sensory polyneuropathy-the most common type of peripheral neuropathy. We aimed to investigate associations between reproductive factors and history of exogenous hormone use with distal sensory polyneuropathy among postmenopausal women in the United States using data from the National Health and Nutrition Examination Survey 1999-2004, and to explore the modifying effects of ethnicity on these associations. We conducted a cross-sectional study among postmenopausal women aged ≥ 40 years. Women with a history of diabetes, stroke, cancer, cardiovascular disease, thyroid disease, liver disease, weak or failing kidneys, or amputation were excluded. Distal sensory polyneuropathy was measured using a 10-g monofilament test, and a questionnaire was used to collect data on reproductive history. Multivariable survey logistic regression was used to test the association between reproductive history variables and distal sensory polyneuropathy. In total, 1144 postmenopausal women aged ≥ 40 years were included. The adjusted odds ratios were 8.13 [95% confidence interval (CI) 1.24-53.28] and 3.18 (95% CI 1.32-7.68) for age at menarche < 11 years and time since menopause > 20 years, respectively, which were positively associated with distal sensory polyneuropathy; adjusted odds ratios were 0.45 for the history of breastfeeding (95% CI 0.21-0.99) and 0.41 for exogenous hormone use (95% CI 0.19-0.87) were negatively associated. Subgroup analysis revealed ethnicity-based heterogeneity in these associations. Age at menarche, time since menopause, breastfeeding, and exogenous hormone use were associated with distal sensory polyneuropathy. Ethnicity significantly modified these associations.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yuda Chongpison
- Center of Excellence in Biostatistics, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- The Skin and Allergy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Jakkrit Amornvit
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Sukanya Chaikittisilpa
- Menopause Research Group, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somsook Santibenchakul
- Family Planning and Reproductive Health Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Rama 4 Road, Bangkok, 10330, Thailand.
| | - Unnop Jaisamrarn
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Kommaddi RP, Verma A, Muniz-Terrera G, Tiwari V, Chithanathan K, Diwakar L, Gowaikar R, Karunakaran S, Malo PK, Graff-Radford NR, Day GS, Laske C, Vöglein J, Nübling G, Ikeuchi T, Kasuga K, Ravindranath V. Sex difference in evolution of cognitive decline: studies on mouse model and the Dominantly Inherited Alzheimer Network cohort. Transl Psychiatry 2023; 13:123. [PMID: 37045867 PMCID: PMC10097702 DOI: 10.1038/s41398-023-02411-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Women carry a higher burden of Alzheimer's disease (AD) compared to men, which is not accounted entirely by differences in lifespan. To identify the mechanisms underlying this effect, we investigated sex-specific differences in the progression of familial AD in humans and in APPswe/PS1ΔE9 mice. Activity dependent protein translation and associative learning and memory deficits were examined in APPswe/PS1ΔE9 mice and wild-type mice. As a human comparator group, progression of cognitive dysfunction was assessed in mutation carriers and non-carriers from DIAN (Dominantly Inherited Alzheimer Network) cohort. Female APPswe/PS1ΔE9 mice did not show recall deficits after contextual fear conditioning until 8 months of age. Further, activity dependent protein translation and Akt1-mTOR signaling at the synapse were impaired in male but not in female mice until 8 months of age. Ovariectomized APPswe/PS1ΔE9 mice displayed recall deficits at 4 months of age and these were sustained until 8 months of age. Moreover, activity dependent protein translation was also impaired in 4 months old ovariectomized APPswe/PS1ΔE9 mice compared with sham female APPswe/PS1ΔE9 mice. Progression of memory impairment differed between men and women in the DIAN cohort as analyzed using linear mixed effects model, wherein men showed steeper cognitive decline irrespective of the age of entry in the study, while women showed significantly greater performance and slower decline in immediate recall (LOGIMEM) and delayed recall (MEMUNITS) than men. However, when the performance of men and women in several cognitive tasks (such as Wechsler's logical memory) are compared with the estimated year from expected symptom onset (EYO) we found no significant differences between men and women. We conclude that in familial AD patients and mouse models, females are protected, and the onset of disease is delayed as long as estrogen levels are intact.
Collapse
Affiliation(s)
- Reddy Peera Kommaddi
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India.
| | - Aditi Verma
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Graciela Muniz-Terrera
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- The Department of Social Medicine, Ohio University, Athens, OH, 45701, USA
| | - Vivek Tiwari
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | | | - Latha Diwakar
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | - Ruturaj Gowaikar
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Smitha Karunakaran
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Palash Kumar Malo
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | - Neill R Graff-Radford
- Department of Neurology, Mayo Clinic Florida, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - Christoph Laske
- German Center for Neurodegenerative Diseases, Munich, Germany
- Section for Dementia Research, Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Jonathan Vöglein
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Georg Nübling
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Center for Bioresources, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8585, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Center for Bioresources, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8585, Japan
| | - Vijayalakshmi Ravindranath
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
16
|
Circle(s) of Life: The Circadian Clock from Birth to Death. BIOLOGY 2023; 12:biology12030383. [PMID: 36979075 PMCID: PMC10045474 DOI: 10.3390/biology12030383] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
Most lifeforms on earth use endogenous, so-called circadian clocks to adapt to 24-h cycles in environmental demands driven by the planet’s rotation around its axis. Interactions with the environment change over the course of a lifetime, and so does regulation of the circadian clock system. In this review, we summarize how circadian clocks develop in humans and experimental rodents during embryonic development, how they mature after birth and what changes occur during puberty, adolescence and with increasing age. Special emphasis is laid on the circadian regulation of reproductive systems as major organizers of life segments and life span. We discuss differences in sexes and outline potential areas for future research. Finally, potential options for medical applications of lifespan chronobiology are discussed.
Collapse
|
17
|
Paramanik V, Kurrey K, Singh P, Tiwari S. Roles of genistein in learning and memory during aging and neurological disorders. Biogerontology 2023; 24:329-346. [PMID: 36828983 DOI: 10.1007/s10522-023-10020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/23/2023] [Indexed: 02/26/2023]
Abstract
Genistein (GEN) is a non-steroidal phytoestrogen that belongs to the isoflavone class. It is abundantly found in soy. Soy and its products are used as food components in many countries including India. The present review is focused to address roles of GEN in brain functions in the context of learning and memory as a function of aging and neurological disorders. Memory decline is one of the most disabling features observed during normal aging and age-associated neurodegenerative disorders namely Alzheimer's disease (AD) and Parkinson's disease (PD), etc. Anatomical, physiological, biochemical and molecular changes in the brain with advancement of age and pathological conditions lead to decline of cognitive functions. GEN is chemically comparable to estradiol and binds to estrogen receptors (ERs). GEN acts through ERs and mimics estrogen action. After binding to ERs, GEN regulates a plethora of brain functions including learning and memory; however detailed study still remains elusive. Due to the neuroprotective, anti-oxidative and anti-inflammatory properties, GEN is used to restore or improve memory functions in different animal models and humans. The present review may be helpful to understand roles of GEN in learning and memory during aging and neurological disorders, its direction of research and therapeutic perspectives.
Collapse
Affiliation(s)
- Vijay Paramanik
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484 887, MP, India.
| | - Khuleshwari Kurrey
- Department of Psychiatry and Behavioral Sciences, Neurobiology Division, John Hopkins University, School of Medicine, Baltimore, MD, 21287, USA
| | - Padmanabh Singh
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484 887, MP, India
| | - Sneha Tiwari
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484 887, MP, India
| |
Collapse
|
18
|
Välimäki NN, Bakreen A, Häkli S, Dhungana H, Keuters MH, Dunlop Y, Koskuvi M, Keksa-Goldsteine V, Oksanen M, Jäntti H, Lehtonen Š, Malm T, Koistinaho J, Jolkkonen J. Astrocyte Progenitors Derived From Patients With Alzheimer Disease Do Not Impair Stroke Recovery in Mice. Stroke 2022; 53:3192-3201. [DOI: 10.1161/strokeaha.122.039700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND:
Species-specific differences in astrocytes and their Alzheimer disease-associated pathology may influence cellular responses to other insults. Herein, human glial chimeric mice were generated to evaluate how Alzheimer disease predisposing genetic background in human astrocytes contributes to behavioral outcome and brain pathology after cortical photothrombotic ischemia.
METHODS:
Neonatal (P0) immunodeficient mice of both sexes were transplanted with induced pluripotent stem cell–derived astrocyte progenitors from Alzheimer disease patients carrying
PSEN1
exon 9 deletion (
P
SEN1
Δ
E
9), with isogenic controls, with cells from a healthy donor, or with mouse astrocytes or vehicle. After 14 months, a photothrombotic lesion was produced with Rose Bengal in the motor cortex. Behavior was assessed before ischemia and 1 and 4 weeks after the induction of stroke, followed by tissue perfusion for histology.
RESULTS:
Open field, cylinder, and grid-walking tests showed a persistent locomotor and sensorimotor impairment after ischemia and female mice had larger infarct sizes; yet, these were not affected by astrocytes with
P
SEN1
Δ
E
9 background. Staining for human nuclear antigen confirmed that human cells successfully engrafted throughout the mouse brain. However, only a small number of human cells were positive for astrocytic marker GFAP (glial fibrillary acidic protein), mostly located in the corpus callosum and retaining complex human-specific morphology with longer processes compared with host counterparts. While host astrocytes formed the glial scar, human astrocytes were scattered in small numbers close to the lesion boundary. Aβ (beta-amyloid) deposits were not present in
P
SEN1
ΔE
9 astrocyte-transplanted mice.
CONCLUSIONS:
Transplanted human cells survived and distributed widely in the host brain but had no impact on severity of ischemic damage after cortical photothrombosis in chimeric mice. Only a small number of transplanted human astrocytes acquired GFAP-positive glial phenotype or migrated toward the ischemic lesion forming glial scar.
P
SEN1
ΔE
9 astrocytes did not impair behavioral recovery after experimental stroke.
Collapse
Affiliation(s)
- Nelli-Noora Välimäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (N.-N.V., A.B., S.H., H.D., M.H.K., Y.D., M.K., V.K.-G., M.O., H.J., Š.L., T.M., J.K., J.J.)
| | - Abdulhameed Bakreen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (N.-N.V., A.B., S.H., H.D., M.H.K., Y.D., M.K., V.K.-G., M.O., H.J., Š.L., T.M., J.K., J.J.)
| | - Sara Häkli
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (N.-N.V., A.B., S.H., H.D., M.H.K., Y.D., M.K., V.K.-G., M.O., H.J., Š.L., T.M., J.K., J.J.)
| | - Hiramani Dhungana
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (N.-N.V., A.B., S.H., H.D., M.H.K., Y.D., M.K., V.K.-G., M.O., H.J., Š.L., T.M., J.K., J.J.)
- Neuroscience Center, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Finland (H.D., M.H.K., M.K., Š.L., J.K.)
| | - Meike H. Keuters
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (N.-N.V., A.B., S.H., H.D., M.H.K., Y.D., M.K., V.K.-G., M.O., H.J., Š.L., T.M., J.K., J.J.)
- Neuroscience Center, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Finland (H.D., M.H.K., M.K., Š.L., J.K.)
| | - Yannick Dunlop
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (N.-N.V., A.B., S.H., H.D., M.H.K., Y.D., M.K., V.K.-G., M.O., H.J., Š.L., T.M., J.K., J.J.)
| | - Marja Koskuvi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (N.-N.V., A.B., S.H., H.D., M.H.K., Y.D., M.K., V.K.-G., M.O., H.J., Š.L., T.M., J.K., J.J.)
- Neuroscience Center, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Finland (H.D., M.H.K., M.K., Š.L., J.K.)
| | - Velta Keksa-Goldsteine
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (N.-N.V., A.B., S.H., H.D., M.H.K., Y.D., M.K., V.K.-G., M.O., H.J., Š.L., T.M., J.K., J.J.)
| | - Minna Oksanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (N.-N.V., A.B., S.H., H.D., M.H.K., Y.D., M.K., V.K.-G., M.O., H.J., Š.L., T.M., J.K., J.J.)
| | - Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (N.-N.V., A.B., S.H., H.D., M.H.K., Y.D., M.K., V.K.-G., M.O., H.J., Š.L., T.M., J.K., J.J.)
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (N.-N.V., A.B., S.H., H.D., M.H.K., Y.D., M.K., V.K.-G., M.O., H.J., Š.L., T.M., J.K., J.J.)
- Neuroscience Center, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Finland (H.D., M.H.K., M.K., Š.L., J.K.)
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (N.-N.V., A.B., S.H., H.D., M.H.K., Y.D., M.K., V.K.-G., M.O., H.J., Š.L., T.M., J.K., J.J.)
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (N.-N.V., A.B., S.H., H.D., M.H.K., Y.D., M.K., V.K.-G., M.O., H.J., Š.L., T.M., J.K., J.J.)
- Neuroscience Center, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Finland (H.D., M.H.K., M.K., Š.L., J.K.)
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (N.-N.V., A.B., S.H., H.D., M.H.K., Y.D., M.K., V.K.-G., M.O., H.J., Š.L., T.M., J.K., J.J.)
| |
Collapse
|
19
|
Kaya D, Micili SC, Kizmazoglu C, Mucuoglu AO, Buyukcoban S, Ersoy N, Yilmaz O, Isik AT. Allopurinol attenuates repeated traumatic brain injury in old rats: A preliminary report. Exp Neurol 2022; 357:114196. [PMID: 35931122 DOI: 10.1016/j.expneurol.2022.114196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/13/2022] [Accepted: 07/31/2022] [Indexed: 12/01/2022]
Abstract
Traumatic brain injury (TBI) is an overlooked cause of morbidity, which was shown to accelerate inflammation, oxidative stress, and neuronal cell loss and is associated with spatial learning and memory impairments and some psychiatric disturbances in older adults. However, there is no effective treatment in order to offer a favorable outcome encompassing a good recovery after TBI in older adults. Hence, the present study aimed to investigate the histological and neurobehavioral effects of Allopurinol (ALL) in older rats that received repeated TBI (rTBI). For this purpose, a weight-drop rTBI model was used on old male Wistar rats. Rats received 5 repeated TBI/sham injuries 24 h apart and were treated with saline or Allopurinol 100 mg/kg, i.p. each time. They were randomly assigned to three groups: control group (no injury); rTBI group (received 5 rTBI and treated with saline); rTBI+ALL group (received 5 rTBI and treated with Allopurinol). Then, half of the animals from each group were sacrificed on day 6 and the remaining animals were assessed with Open field, Elevated plus maze and Morris Water Maze test. Basic neurological tasks were evaluated with neurological assessment protocol every other day until after the 19th day from the last injury. Brain sections were processed for neuronal cell count in the hippocampus (CA1), dentate gyrus (DG), and prefrontal cortex (PC). Also, an immunohistochemical assay was performed to determine NeuN, iNOS, and TNFα levels in the brain regions. The number of neurons was markedly reduced in CA1, GD, and PC in rats receiving saline compared to those receiving allopurinol treatment. Immunohistochemical analysis showed marked induction of iNOS and TNFα expression in the brain tissues which were reduced after allopurinol at 6 and 19 days post-injury. Also, ALL-treated rats demonstrated a remarkable induce in NeuN expression, indicating a reduction in rTBI-induced neuronal cell death. In neurobehavioral analyses, time spent in closed arms, in the corner of the open field, swimming latency, and distance were impaired in injured rats; however, all of them were significantly improved by allopurinol therapy. To sum up, this study demonstrated that ALL may mitigate rTBI-induced damage in aged rats, which suggests ALL as a potential therapeutic strategy for the treatment of recurrent TBI.
Collapse
Affiliation(s)
- Derya Kaya
- Dokuz Eylul University Faculty of Medicine, Department of Geriatric Medicine, Unit for Brain Aging and Dementia, Izmir, Turkey; Geriatric Science Association, Izmir, Turkey.
| | - Serap Cilaker Micili
- Dokuz Eylul University Faculty of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Ceren Kizmazoglu
- Dokuz Eylul University Faculty of Medicine, Department of Neurosurgery, Izmir, Turkey
| | - Ali Osman Mucuoglu
- Dokuz Eylul University Faculty of Medicine, Department of Neurosurgery, Izmir, Turkey
| | - Sibel Buyukcoban
- Dokuz Eylul University Faculty of Medicine, Department of Anaesthesiology and Reanimation, İzmir, Turkey
| | - Nevin Ersoy
- Dokuz Eylul University Faculty of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Osman Yilmaz
- Dokuz Eylul University Health Sciences Institute, Department of Laboratory Animal Science, Izmir, Turkey
| | - Ahmet Turan Isik
- Dokuz Eylul University Faculty of Medicine, Department of Geriatric Medicine, Unit for Brain Aging and Dementia, Izmir, Turkey; Geriatric Science Association, Izmir, Turkey
| |
Collapse
|
20
|
High stability of blood parameters during mouse lifespan: sex-specific effects of every-other-day fasting. Biogerontology 2022; 23:559-570. [PMID: 35915171 DOI: 10.1007/s10522-022-09982-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022]
Abstract
Every-other-day fasting (EODF) is one type of caloric restriction that is proposed to have significant health benefits, including slowing aging-related processes. The present study evaluated multiple parameters of blood homeostasis comparing mice of different ages and mice on different diet regimes: ad libitum (AL) versus EODF. Hematological and classical biochemical parameters of blood were measured in young (6-month), middle-aged (12-month) and old (18-month) C57BL/6J mice of both sexes subjected either to EODF, or AL feeding. Middle-aged AL males showed a decrease in erythrocyte and total leucocyte counts and an increase in plasma alkaline phosphatase activity, whereas old animals showed a decrease in relative levels of lymphocytes and an increase in relative levels of neutrophils, a decrease in plasma lactate and an increase in total cholesterol levels, compared to young mice. AL-fed females demonstrated higher stability of blood parameters during aging than males did. The EODF regimen did not significantly affect hematological parameters in females but prevented a decline in total leukocyte count with age in males. In both sexes, EODF partially prevented age-associated changes in levels of plasma lactate and cholesterol and activity of alkaline phosphatase. Thus, during normal aging, mice showed a sex-dependent maintenance of blood homeostasis which was not significantly affected by EODF.
Collapse
|
21
|
Shi JJ, Liu HF, Hu T, Gao X, Zhang YB, Li WR, Wang Q, Zhang SJ, Tang D, Chen YB. Danggui-Shaoyao-San improves cognitive impairment through inhibiting O-GlcNAc-modification of estrogen α receptor in female db/db mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114562. [PMID: 34438027 DOI: 10.1016/j.jep.2021.114562] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/29/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine formula Danggui-Shaoyao-San (DSS) has been reported to show therapeutic effect on dementia. AIM OF THE STUDY The present study aims to investigate whether DSS treatment could alleviate diabetes-induced cognitive dysfunction, and explores its neuroprotective mechanism on db/db mice. MATERIALS AND METHODS The female db/db mice were randomly divided into model group, DSS low-dose group and DSS high-dose group. Homologous female db/m mice were used as the control group. DSS was intragastric administrated for 15 weeks. Glucose tolerance, insulin tolerance, blood glucose and blood lipid levels were measured. Morris water maze was used to measure spatial learning and memory ability in mice. Nissl staining and Tunel staining were used to measure the changes of brain neurons, and ELISA kits were used to measure levels of inflammatory mediators (PGE2, TXB2 and LTB4). The kits detected oxidative stress (MDA, SOD, CAT, GSH-PX), nitrosative stress (NO, iNOS, TNOS) and glucose metabolism (LDH, PK, HK) levels. Western blot and immunofluorescence detected neurotrophic factors (PSD95, BDNF, NGF and SYN), apoptosis (Bcl-2, Bax, Bcl-xl, Caspase-3) and changes of ERα, O-GlcNAc, OGT, OGA levels. RESULTS Morris water maze results showed that DSS could improve the learning and memory abilities of female db/db mice. Nissl staining showed that DSS could relieve hippocampal neurons damage of db/db mice. In addition, the serological tests showed that DSS could improve the impaired glucose tolerance and insulin resistance, while reduce hyperlipemia in db/db mice. Besides, DSS treatment increased the activities of SOD, GSH-PX, and CAT, and reduced MDA, NO, iNOs, tNOS, PGE2, TXB2 and LTB4 levels. Western blot and immunofluorescence results of PSD95, BDNF, NGF, and SYN showed that DSS could improve the expressions of neurotrophic factors. Meanwhile, Tunel staning and Western blot (Bcl-2, Bax, Bcl-xl, Caspase-3) results indicated that DSS could reduce neuronal apoptosis. Finally, Western blot (ERα, O-GlcNAc, OGA, and OGT) and immunofluorescence (ERα and O-GlcNAc) results indicated that DSS could increase the levels of ERα and OGA, decrease the levels of O-GlcNAc and OGT. CONCLUSION DSS alleviate DE might be related to improve the abnormal O-GlcNAc-modification of ERα.
Collapse
Affiliation(s)
- Jing-Jing Shi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao-Fei Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tian Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Gao
- Laboratory of Experimental Animal, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong-Bin Zhang
- Laboratory of Experimental Animal, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-Rong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Postdoctoral Research Station of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yun-Bo Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
22
|
Udeh-Momoh C, Watermeyer T. Female specific risk factors for the development of Alzheimer's disease neuropathology and cognitive impairment: Call for a precision medicine approach. Ageing Res Rev 2021; 71:101459. [PMID: 34508876 DOI: 10.1016/j.arr.2021.101459] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) includes a long asymptomatic stage, which precedes the formal diagnosis of dementia. AD biomarker models provide a framework for precision medicine approaches during this stage. However, such approaches have ignored the possible influence of sex on cognition and brain health, despite female sex noted as a major risk factor. Since AD-related changes may emerge in midlife, intervention efforts are being redirected around this period. Midlife coincides with several endocrinological changes, such as the menopausal transition experienced by women. In this narrative review, we discuss evidence for sex-differences in AD neuropathological burden and outline key endocrinological mechanisms for both sexes, focussing on hormonal events throughout the lifespan that may influence female susceptibility to AD neuropathology and dementia onset. We further consider common non-modifiable (genetic) and modifiable (lifestyle and health) risk factors, highlighting possible sex-dependent differential effects for the AD disease course. Finally, we evaluate the studies selected for this review demonstrating sex-differences in cognitive, pathological and health factors, summarising the state of sex differences in AD risk factors. We further provide recommendations for targeted research on female-specific risk factors, to inform personalised strategies for AD-prevention and the promotion of female brain health.
Collapse
|
23
|
Yang M, Gao S, Xiong W, Zhang XY. Sex-differential associations between cognitive impairments and white matter abnormalities in first episode and drug-naïve schizophrenia. Early Interv Psychiatry 2021; 15:1179-1187. [PMID: 33058544 DOI: 10.1111/eip.13059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/24/2020] [Accepted: 09/26/2020] [Indexed: 11/30/2022]
Abstract
AIM Previous evidence has suggested that schizophrenia patients may display sex differences in cognitive impairments and cognitive impairments are related to disrupted white matter (WM) microstructure. The current research aims to address the intriguing possibility for the sex-specific association between cognitive deficits and WM abnormalities in first-episode and drug-naïve schizophrenia. METHODS Cognitive performance on the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB) was measured in 39 FEND patients (females:males = 23:16) and 30 healthy controls (females:males = 17:13), together with whole-brain WM fractional anisotropy (FA) values determined using voxel-based diffusion tensor imaging. Correlations between cognitive performance and FA values were assessed. RESULTS Patients performed significantly worse than healthy controls in the total score and most of the subscores of MCCB. Female patients displayed better cognitive performance than male patients on the Trail Making A Test, the Hopkins Verbal Learning Test and the Spatial Span Test in the Wechsler Memory Scale. More importantly, sex-differential association between cognitive performance and FA values was found in patients, but not in healthy controls. In particular, FA values in the cerebellum were negatively correlated with the continuous performance and digital sequence scores in male patients but positively correlated with the performance on the Spatial Span Test in the Wechsler Memory Scale in female patients. CONCLUSIONS These findings suggest sex-specific neurobiological substrates involved in cognitive deficits in early-onset schizophrenia and have important implications for differentially targeted interventions between males and females.
Collapse
Affiliation(s)
- Mi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Shan Gao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Weisen Xiong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Porcher L, Bruckmeier S, Burbano SD, Finnell JE, Gorny N, Klett J, Wood SK, Kelly MP. Aging triggers an upregulation of a multitude of cytokines in the male and especially the female rodent hippocampus but more discrete changes in other brain regions. J Neuroinflammation 2021; 18:219. [PMID: 34551810 PMCID: PMC8459490 DOI: 10.1186/s12974-021-02252-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/25/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Despite widespread acceptance that neuroinflammation contributes to age-related cognitive decline, studies comparing protein expression of cytokines in the young versus old brains are surprisingly limited in terms of the number of cytokines and brain regions studied. Complicating matters, discrepancies abound-particularly for interleukin 6 (IL-6)-possibly due to differences in sex, species/strain, and/or the brain regions studied. METHODS As such, we clarified how cytokine expression changes with age by using a Bioplex and Western blot to measure multiple cytokines across several brain regions of both sexes, using 2 mouse strains bred in-house as well as rats obtained from NIA. Parametric and nonparametric statistical tests were used as appropriate. RESULTS In the ventral hippocampus of C57BL/6J mice, we found age-related increases in IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-6, IL-9, IL-10, IL-12p40, IL-12p70, IL-13, IL-17, eotaxin, G-CSF, interfeuron δ, KC, MIP-1a, MIP-1b, rantes, and TNFα that are generally more pronounced in females, but no age-related change in IL-5, MCP-1, or GM-CSF. We also find aging is uniquely associated with the emergence of a module (a.k.a. network) of 11 strongly intercorrelated cytokines, as well as an age-related shift from glycosylated to unglycosylated isoforms of IL-10 and IL-1β in the ventral hippocampus. Interestingly, age-related increases in extra-hippocampal cytokine expression are more discreet, with the prefrontal cortex, striatum, and cerebellum of male and female C57BL/6J mice demonstrating robust age-related increase in IL-6 expression but not IL-1β. Importantly, we found this widespread age-related increase in IL-6 also occurs in BALB/cJ mice and Brown Norway rats, demonstrating conservation across species and rearing environments. CONCLUSIONS Thus, age-related increases in cytokines are more pronounced in the hippocampus compared to other brain regions and can be more pronounced in females versus males depending on the brain region, genetic background, and cytokine examined.
Collapse
Affiliation(s)
- Latarsha Porcher
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Sophie Bruckmeier
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA
| | - Steven D Burbano
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Julie E Finnell
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Nicole Gorny
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA
| | - Jennifer Klett
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Susan K Wood
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Michy P Kelly
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA. .,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA. .,Center for Research on Aging, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA.
| |
Collapse
|
25
|
Rivera DS, Lindsay CB, Oliva CA, Bozinovic F, Inestrosa NC. A Multivariate Assessment of Age-Related Cognitive Impairment in Octodon degus. Front Integr Neurosci 2021; 15:719076. [PMID: 34526882 PMCID: PMC8437396 DOI: 10.3389/fnint.2021.719076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/23/2021] [Indexed: 01/27/2023] Open
Abstract
Aging is a progressive functional decline characterized by a gradual deterioration in physiological function and behavior. The most important age-related change in cognitive function is decline in cognitive performance (i.e., the processing or transformation of information to make decisions that includes speed of processing, working memory, and learning). The purpose of this study is to outline the changes in age-related cognitive performance (i.e., short-term recognition memory and long-term learning and memory) in long-lived Octodon degus. The strong similarity between degus and humans in social, metabolic, biochemical, and cognitive aspects makes it a unique animal model for exploring the mechanisms underlying the behavioral and cognitive deficits related to natural aging. In this study, we examined young adult female degus (12- and 24-months-old) and aged female degus (38-, 56-, and 75-months-old) that were exposed to a battery of cognitive-behavioral tests. Multivariate analyses of data from the Social Interaction test or Novel Object/Local Recognition (to measure short-term recognition memory), and the Barnes maze test (to measure long-term learning and memory) revealed a consistent pattern. Young animals formed a separate group of aged degus for both short- and long-term memories. The association between the first component of the principal component analysis (PCA) from short-term memory with the first component of the PCA from long-term memory showed a significant negative correlation. This suggests age-dependent differences in both memories, with the aged degus having higher values of long-term memory ability but poor short-term recognition memory, whereas in the young degus an opposite pattern was found. Approximately 5% of the young and 80% of the aged degus showed an impaired short-term recognition memory; whereas for long-term memory about 32% of the young degus and 57% of the aged degus showed decreased performance on the Barnes maze test. Throughout this study, we outlined age-dependent cognitive performance decline during natural aging in degus. Moreover, we also demonstrated that the use of a multivariate approach let us explore and visualize complex behavioral variables, and identified specific behavioral patterns that allowed us to make powerful conclusions that will facilitate further the study on the biology of aging. In addition, this study could help predict the onset of the aging process based on behavioral performance.
Collapse
Affiliation(s)
- Daniela S Rivera
- GEMA Center for Genomics, Ecology and Environment, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Carolina B Lindsay
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina A Oliva
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center for Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
26
|
Busmann EF, Kollan J, Mäder K, Lucas H. Ovarian Accumulation of Nanoemulsions: Impact of Mice Age and Particle Size. Int J Mol Sci 2021; 22:ijms22158283. [PMID: 34361049 PMCID: PMC8347032 DOI: 10.3390/ijms22158283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Nanotechnology in the field of drug delivery comes with great benefits due to the unique physicochemical properties of newly developed nanocarriers. However, they may come as well with severe toxicological side effects because of unwanted accumulation in organs outside of their targeted site of actions. Several studies showed an unintended accumulation of various nanocarriers in female sex organs, especially in the ovaries. Some led to inflammation, fibrosis, or decreasing follicle numbers. However, none of these studies investigated ovarian accumulation in context to both reproductive aging and particle size. Besides the influences of particle size, the biodistribution profile may be altered as well by reproductive aging because of reduced capacities of the reticuloendothelial system (RES), changes in sex steroid hormone levels as well as altering ovarian stromal blood flow. This systematic investigation of the biodistribution of intravenously (i.v) injected nanoemulsions revealed significant dependencies on the two parameters particle size and age starting from juvenile prepubescent to senescent mice. Using fluorescent in vivo and ex vivo imaging, prepubescent mice showed nearly no accumulation of nanoemulsion in their uteri and ovaries, but high accumulations in the organs of the RES liver and spleen independently of the particle size. In fertile adult mice, the accumulation increased significantly in the ovaries with an increased particle size of the nanoemulsions by nearly doubling the portion of the average radiant efficiency (PARE) to ~10% of the total measured signal of all excised organs. With reproductive aging and hence loss of fertility in senescent mice, the accumulation decreased again to moderate levels, again independently of the particle size. In conclusion, the ovarian accumulation of these nanocarriers depended on both the age plus the particle size during maturity.
Collapse
|
27
|
Barok R, Grittner JML, Dougherty BJ. The long-term impact of ovariectomy on ventilation and expression of phrenic long-term facilitation in female rats. Exp Physiol 2021; 106:2002-2012. [PMID: 34180081 PMCID: PMC8410681 DOI: 10.1113/ep089546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023]
Abstract
NEW FINDINGS What is the central question of this study? Would ovariectomy cause prolonged changes in ventilation and sustained loss of acute, intermittent hypoxia-induced neuroplasticity or would these outcomes be restored with time? What is the main finding and its importance? Our main findings demonstrate that ovariectomy elicits minimal alteration in overall breathing function but impairs acute, intermittent hypoxia-induced plasticity for ≤ 12 weeks. ABSTRACT Sex hormones are necessary to enable respiratory neuroplasticity, including phrenic long-term facilitation (pLTF), a form of respiratory motor plasticity elicited by acute, intermittent hypoxia (AIH). Female rats exhibit a progressive increase in phrenic nerve amplitude after AIH characteristic of pLTF only during pro-oestrus, the stage of the oestrous cycle notable for elevated circulating oestradiol levels. Removal of the ovaries [ovariectomy (OVX)], the primary source of circulating oestradiol, also eliminates AIH-induced pLTF after 1 week. Ovariectomy is used routinely as a model to examine the impact of sex hormones on CNS structure and function, but the long-term impact of OVX is rarely examined. Extra-ovarian sites of oestradiol synthesis, including multiple CNS sites, have been identified and might possess the capacity to restore oestradiol levels, in part, over time, impacting respiratory function and the expression of respiratory neuroplasticity. We examined both ventilation in awake, freely behaving female rats, using barometric plethysmography, and the expression of AIH-induced pLTF in anaesthetized, ventilated female rats 2 and 12 weeks after OVX and compared them with age-matched ovarian-intact female rats. Our findings indicate that chronic OVX had little impact on baseline breathing or in the response to respiratory challenge (10% O2 , 5% CO2 , balance N2 ) during plethysmography. However, OVX rats at both 2 and 12 weeks demonstrated a persistent loss of AIH-induced pLTF relative to control animals (P < 0.01), suggesting that other sources of oestradiol synthesis were insufficient to restore pLTF. These data are consistent with our previous work indicating that oestradiol plays a key role in expression of AIH-induced respiratory neuroplasticity.
Collapse
Affiliation(s)
- Rebecca Barok
- Rehabilitation Science Graduate Program, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jessica M L Grittner
- Rehabilitation Science Graduate Program, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Brendan J Dougherty
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
28
|
Echeverria V, Echeverria F, Barreto GE, Echeverría J, Mendoza C. Estrogenic Plants: to Prevent Neurodegeneration and Memory Loss and Other Symptoms in Women After Menopause. Front Pharmacol 2021; 12:644103. [PMID: 34093183 PMCID: PMC8172769 DOI: 10.3389/fphar.2021.644103] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In mammals, sexual hormones such as estrogens play an essential role in maintaining brain homeostasis and function. Estrogen deficit in the brain induces many undesirable symptoms such as learning and memory impairment, sleep and mood disorders, hot flushes, and fatigue. These symptoms are frequent in women who reached menopausal age or have had ovariectomy and in men and women subjected to anti-estrogen therapy. Hormone replacement therapy alleviates menopause symptoms; however, it can increase cardiovascular and cancer diseases. In the search for therapeutic alternatives, medicinal plants and specific synthetic and natural molecules with estrogenic effects have attracted widespread attention between the public and the scientific community. Various plants have been used for centuries to alleviate menstrual and menopause symptoms, such as Cranberry, Ginger, Hops, Milk Thistle, Red clover, Salvia officinalis, Soy, Black cohosh, Turnera diffusa, Ushuva, and Vitex. This review aims to highlight current evidence about estrogenic medicinal plants and their pharmacological effects on cognitive deficits induced by estrogen deficiency during menopause and aging.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, Unites States
| | | | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristhian Mendoza
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
| |
Collapse
|
29
|
Garland DL, Pierce EA, Fernandez-Godino R. Complement C5 is not critical for the formation of sub-RPE deposits in Efemp1 mutant mice. Sci Rep 2021; 11:10416. [PMID: 34001980 PMCID: PMC8128922 DOI: 10.1038/s41598-021-89978-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022] Open
Abstract
The complement system plays a role in the formation of sub-retinal pigment epithelial (RPE) deposits in early stages of age-related macular degeneration (AMD). But the specific mechanisms that connect complement activation and deposit formation in AMD patients are unknown, which limits the development of efficient therapies to reduce or stop disease progression. We have previously demonstrated that C3 blockage prevents the formation of sub-RPE deposits in a mouse model of EFEMP1-associated macular degeneration. In this study, we have used double mutant Efemp1R345W/R345W:C5-/- mice to investigate the role of C5 in the formation of sub-RPE deposits in vivo and in vitro. The data revealed that the genetic ablation of C5 does not eliminate the formation of sub-RPE deposits. Contrarily, the absence of C5 in RPE cultures promotes complement dysregulation that results in increased activation of C3, which likely contributes to deposit formation even in the absence of EFEMP1-R345W mutant protein. The results also suggest that genetic ablation of C5 alters the extracellular matrix turnover through an effect on matrix metalloproteinases in RPE cell cultures. These results confirm that C3 rather than C5 could be an effective therapeutic target to treat early AMD.
Collapse
Affiliation(s)
- Donita L Garland
- Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Eric A Pierce
- Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | | |
Collapse
|
30
|
Dulka BN, Trask S, Helmstetter FJ. Age-Related Memory Impairment and Sex-Specific Alterations in Phosphorylation of the Rpt6 Proteasome Subunit and Polyubiquitination in the Basolateral Amygdala and Medial Prefrontal Cortex. Front Aging Neurosci 2021; 13:656944. [PMID: 33897408 PMCID: PMC8062735 DOI: 10.3389/fnagi.2021.656944] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
Aging is marked by an accumulation of damaged and modified brain proteins, and the ubiquitin-proteasome system (UPS) is important for cellular protein degradation. Recent work has established a critical role for the UPS in memory and synaptic plasticity, but the role of the UPS in age-related cognitive decline remains poorly understood. We trained young, middle-aged, and aged male and female rats using trace fear conditioning (TFC) to investigate the effects of age and sex on memory. We then measured markers of UPS-related protein degradation (phosphorylation of the Rpt6 proteasome regulatory subunit and K48-linked polyubiquitination) using western blots. We found that aged males, but not aged females, showed behavioral deficits at memory retrieval. Aged males also displayed reduced phosphorylation of the Rpt6 proteasome subunit and accumulation of K48 in the basolateral amygdala, while aged females displayed a similar pattern in the medial prefrontal cortex. These findings suggest that markers of UPS function are differentially affected by age and sex in a brain region-dependent manner. Together these results provide an important step toward understanding the UPS and circuit-level differences in aging males and females.
Collapse
Affiliation(s)
- Brooke N Dulka
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Sydney Trask
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
31
|
Pilorz V, Kolms B, Oster H. Rapid Jetlag Resetting of Behavioral, Physiological, and Molecular Rhythms in Proestrous Female Mice. J Biol Rhythms 2020; 35:612-627. [PMID: 33140660 DOI: 10.1177/0748730420965291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A gradual adaptation to a shifted light-dark (LD) cycle is a key element of the circadian clock system and believed to be controlled by the central circadian pacemaker, the suprachiasmatic nucleus (SCN). Endocrine factors have a strong influence on the regulation of the circadian clock network and alter acute photic responses of the SCN clock. In females, endocrine function depends on the stage of the ovarian cycle. So far, however, little is known about the effect of the estrous cycle on behavioral and molecular responses to shifts in the LD rhythm. Based on this, we investigated whether estrous state affects the kinetics of phase shift during jetlag in behavior, physiology, and molecular clock rhythms in the SCN and in peripheral tissues. Female mice exposed to an advanced LD phase at proestrous or metestrous showed different phase-shift kinetics, with proestrous females displaying accelerated adaptation in behavior and physiology. Constant darkness release experiments suggest that these fast phase shifts do not reflect resetting of the SCN pacemaker. Explant experiments on SCN, adrenal gland, and uterus confirmed this finding with proestrous females showing significantly faster clock phase shifts in peripheral tissues compared with the SCN. Together, these findings provide strong evidence for an accelerated adaptation of proestrous compared with metestrous females to new LD conditions that is accompanied by rapid behavioral, physiological, and molecular rhythm resetting. Not only do these findings open up a new avenue to understand the effect of estrous cycle on the clock network under changing environmental conditions but also imply a greater susceptibility in proestrous females.
Collapse
Affiliation(s)
- Violetta Pilorz
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Luebeck, Germany
| | - Beke Kolms
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Luebeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Luebeck, Germany
| |
Collapse
|
32
|
Prolonged Social Isolation, Started Early in Life, Impairs Cognitive Abilities in Rats Depending on Sex. Brain Sci 2020; 10:brainsci10110799. [PMID: 33143056 PMCID: PMC7692092 DOI: 10.3390/brainsci10110799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 11/23/2022] Open
Abstract
Background: The chronic stress of social isolation is a valid predictor of cognitive pathology. This study aimed to compare the effects of long-term social isolation on female versus male Wistar rats’ learning and memory. We hypothesized that prolonged social isolation stress, which starts early in life, would affect learning in a sex-dependent manner. Methods: Social isolation started at the edge of early to mid-adolescence and lasted 9 months. The rat’s cognitive abilities were assessed by habituation and reactivity to novelty in the open field (OF) test, spatial memory in the Morris water maze (MWM), and the conditioned passive avoidance (PA) reflex. Basal serum corticosterone levels were assessed using an enzyme-linked immunosorbent assay. Results: Regardless of the housing conditions, females habituated to the OF under low illumination slower than males. Under bright light, the single-housed rats showed hyporeactivity to novelty. In the MWM, all the rats learned to locate the platform; however, on the first training day, the single-housed females’ speed was lower relative to other groups. Four months later, in the post-reminder probe trial, the single-housed rats reached the area around the platform site later, and only males, regardless of housing conditions, preferred the target quadrant. Single-housed rats, irrespective of sex, showed a PA deficit. There was a more pronounced conditioned fear in the single-housed males than in females. In both male and female rats, basal corticosterone levels in rat blood serum after 9 months of social isolation did not differ from that in the group-housed rats of the corresponding sex. Meanwhile, females’ basal corticosterone level was higher than in males, regardless of the housing conditions. The relative weight of the adrenal glands was increased only in single-housed females. Conclusions: Under long-term social isolation, started early in life, single-housed females compared with males showed more pronounced cognitive impairments in the MWM and PA paradigm, findings that specify their greater vulnerability to the stress of prolonged social isolation.
Collapse
|
33
|
Taxier LR, Gross KS, Frick KM. Oestradiol as a neuromodulator of learning and memory. Nat Rev Neurosci 2020; 21:535-550. [PMID: 32879508 PMCID: PMC8302223 DOI: 10.1038/s41583-020-0362-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 12/24/2022]
Abstract
Although hormones such as glucocorticoids have been broadly accepted in recent decades as general neuromodulators of memory processes, sex steroid hormones such as the potent oestrogen 17β-oestradiol have been less well recognized by the scientific community in this capacity. The predominance of females in studies of oestradiol and memory and the general (but erroneous) perception that oestrogens are 'female' hormones have probably prevented oestradiol from being more widely considered as a key memory modulator in both sexes. Indeed, although considerable evidence supports a crucial role for oestradiol in regulating learning and memory in females, a growing body of literature indicates a similar role in males. This Review discusses the mechanisms of oestradiol signalling and provides an overview of the effects of oestradiol on spatial, object recognition, social and fear memories. Although the primary focus is on data collected in females, effects of oestradiol on memory in males will be discussed, as will sex differences in the molecular mechanisms that regulate oestrogenic modulation of memory, which may have important implications for the development of future cognitive therapeutics.
Collapse
Affiliation(s)
- Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kellie S Gross
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
34
|
Schwabe MR, Taxier LR, Frick KM. It takes a neural village: Circuit-based approaches for estrogenic regulation of episodic memory. Front Neuroendocrinol 2020; 59:100860. [PMID: 32781195 PMCID: PMC7669700 DOI: 10.1016/j.yfrne.2020.100860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Cognitive behaviors, such as episodic memory formation, are complex processes involving coordinated activity in multiple brain regions. However, much of the research on hormonal regulation of cognition focuses on manipulation of one region at a time or provides a single snapshot of how a systemic treatment affects multiple brain regions without investigating how these regions might interact to mediate hormone effects. Here, we use estrogenic regulation of episodic memory as an example of how circuit-based approaches may be incorporated into future studies of hormones and cognition. We first review basic episodic memory circuitry, rapid mechanisms by which 17β-estradiol can alter circuit activity, and current knowledge about 17β-estradiol's effects on episodic memory. Next, we outline approaches that researchers can employ to consider circuit effects in their estrogen research and provide examples of how these methods have been used to examine hormonal regulation of memory and other behaviors.
Collapse
Affiliation(s)
- Miranda R Schwabe
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States.
| |
Collapse
|
35
|
Kirshner ZZ, Yao JK, Li J, Long T, Nelson D, Gibbs RB. Impact of estrogen receptor agonists and model of menopause on enzymes involved in brain metabolism, acetyl-CoA production and cholinergic function. Life Sci 2020; 256:117975. [PMID: 32565251 PMCID: PMC7448522 DOI: 10.1016/j.lfs.2020.117975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022]
Abstract
Our goal is to understand how loss of circulating estrogens and estrogen replacement affect brain physiology and function, particularly in brain regions involved in cognitive processes. We recently conducted a large metabolomics study characterizing the effects of rodent models of menopause and treatment with estrogen receptor (ER) agonists on neurochemical targets in hippocampus, frontal cortex, and striatum. Here we characterize effects on levels of several key enzymes involved in glucose utilization and energy production, specifically phosphofructokinase, glyceraldehyde 3-phosphate dehydrogenase, and pyruvate dehydrogenase. We also evaluated effects on levels of β-actin and α-tubulin, choline acetyltransferase (ChAT) activity, and levels of ATP citrate lyase. All experiments were conducted in young adult rats. Experiment 1 compared the effects of ovariectomy (OVX), a model of surgical menopause, and 4-vinylcyclohexene diepoxide (VCD)-treatments, a model of transitional menopause, with tissues collected at proestrus and at diestrus. Experiment 2 used a separate cohort of rats to evaluate the same targets in OVX and VCD-treated rats treated with estradiol or with selective ER agonists. Differences in the expression of metabolic enzymes between cycling animals and models of surgical and transitional menopause were detected. These differences were model-, region- and time- dependent, and were modulated by selective ER agonists. Collectively, the findings demonstrate that loss of ovarian function and ER agonist treatments have differing effects in OVX vs. VCD-treated rats. Differences may help to explain differences in the effects of estrogen treatments on brain function and cognition in women who have experienced surgical vs. transitional menopause.
Collapse
Affiliation(s)
- Z Z Kirshner
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Jeffrey K Yao
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Junyi Li
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Tao Long
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Doug Nelson
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - R B Gibbs
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| |
Collapse
|
36
|
Chari T, Griswold S, Andrews NA, Fagiolini M. The Stage of the Estrus Cycle Is Critical for Interpretation of Female Mouse Social Interaction Behavior. Front Behav Neurosci 2020; 14:113. [PMID: 32714163 PMCID: PMC7340104 DOI: 10.3389/fnbeh.2020.00113] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
Female animals in biomedical research have traditionally been excluded from research studies due to the perceived added complexity caused by the estrus cycle. However, given the importance of sex differences in a variety of neurological disorders, testing female mice is critical to identifying sex-linked effects in diseases. To determine the susceptibility of simple behaviors to hormonal fluctuations in the estrus cycle, we studied the effects of sex and the estrus cycle on a variety of behavioral tasks commonly used in mouse phenotyping laboratories. Male and female C57BL/6J mice were tested in a small battery of short duration tests and, immediately on completion of each test, females were classified using cytology of vaginal lavages as sexually-receptive (proestrus and estrus) or non-receptive (NR; metestrus and diestrus). We showed that there was a significant difference in 3-chamber social interaction (SI) between female mice at different stages of their estrus cycle, with sexually-receptive mice showing no preferential interest in a novel female mouse compared with an empty chamber. NR female mice showed the same level of preference for a novel female mouse as male mice did for a novel male mouse. No differences between or within sexes were found for tests of anxiety elevated plus maze (EPM; Hole board), working memory [Novel object recognition (NOR)], and motor learning (repeated tests on rotarod). We conclude that the stage of the estrus cycle may impact SI between same-sex conspecifics, and does not impact performance in the elevated plus-maze, hole board, NOR, and rotarod.
Collapse
Affiliation(s)
- Trishala Chari
- Neurodevelopmental Behavior Core, Boston Children's Hospital, Boston, MA, United States
| | - Sophie Griswold
- Neurodevelopmental Behavior Core, Boston Children's Hospital, Boston, MA, United States
| | - Nick A Andrews
- Neurodevelopmental Behavior Core, Boston Children's Hospital, Boston, MA, United States
| | - Michela Fagiolini
- Neurodevelopmental Behavior Core, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
37
|
Williams ES, Manning CE, Eagle AL, Swift-Gallant A, Duque-Wilckens N, Chinnusamy S, Moeser A, Jordan C, Leinninger G, Robison A. Androgen-Dependent Excitability of Mouse Ventral Hippocampal Afferents to Nucleus Accumbens Underlies Sex-Specific Susceptibility to Stress. Biol Psychiatry 2020; 87:492-501. [PMID: 31601425 PMCID: PMC7035179 DOI: 10.1016/j.biopsych.2019.08.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Depression affects women nearly twice as often as men, but the neurobiological underpinnings of this discrepancy are unclear. Preclinical studies in male mice suggest that activity of ventral hippocampus (vHPC) neurons projecting to the nucleus accumbens (NAc) regulates mood-related behavioral responses to stress. We sought to characterize this circuit in both sexes and to investigate its role in potential sex differences in models of depression. METHODS We used male and female adult C57BL/6J mice in the subchronic variable stress model to precipitate female-specific reduction in sucrose preference and performed gonadectomies to test the contributions of gonadal hormones to this stress response. In addition, ex vivo slice electrophysiology of transgenic Cre-inducible Rosa-eGFP-L10a mice in combination with retrograde viral tracing to identify circuits was used to test contributions of gonadal hormones to sex differences in vHPC afferents. Finally, we used an intersecting viral DREADD (designer receptor exclusively activated by designer drugs) strategy to manipulate vHPC-NAc excitability directly in awake behaving mice. RESULTS We show a testosterone-dependent lower excitability in male versus female vHPC-NAc neurons and corresponding testosterone-dependent male resilience to reduced sucrose preference after subchronic variable stress. Importantly, we show that long-term DREADD stimulation of vHPC-NAc neurons causes decreased sucrose preference in male mice after subchronic variable stress, whereas DREADD inhibition of this circuit prevents this effect in female mice. CONCLUSIONS We demonstrate a circuit-specific sex difference in vHPC-NAc neurons that is dependent on testosterone and causes susceptibility to stress in female mice. These data provide a substantive mechanism linking gonadal hormones to cellular excitability and anhedonia-a key feature in depressive states.
Collapse
Affiliation(s)
| | - Claire E. Manning
- Department of Physiology, Michigan State University, East Lansing, MI, USA,Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Andrew L. Eagle
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Ashlyn Swift-Gallant
- Neuroscience Program, Michigan State University, East Lansing, MI, USA,Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Natalia Duque-Wilckens
- Department of Physiology, Michigan State University, East Lansing, MI, USA,Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Sadhana Chinnusamy
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Adam Moeser
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Cynthia Jordan
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Gina Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - A.J. Robison
- Department of Physiology, Michigan State University, East Lansing, MI, USA,Neuroscience Program, Michigan State University, East Lansing, MI, USA,Corresponding author: A.J. Robison, Associate Professor, Department of Physiology, Michigan State University, 567 Wilson Road East Lansing, MI, 48824, USA; phone 517-884-5003;
| |
Collapse
|
38
|
Mariani MM, Mojziszek K, Curley E, Thornton JE. Lowering luteinizing hormone (LH) reverses spatial memory deficits associated with neurotoxin infusion into the hippocampus of ovx rats. Horm Behav 2020; 119:104631. [PMID: 31759942 DOI: 10.1016/j.yhbeh.2019.104631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Monica M Mariani
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA.
| | - Kirsten Mojziszek
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Emily Curley
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Janice E Thornton
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| |
Collapse
|
39
|
Bohm-Levine N, Goldberg AR, Mariani M, Frankfurt M, Thornton J. Reducing luteinizing hormone levels after ovariectomy improves spatial memory: Possible role of brain-derived neurotrophic factor. Horm Behav 2020; 118:104590. [PMID: 31593698 DOI: 10.1016/j.yhbeh.2019.104590] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/25/2019] [Accepted: 09/13/2019] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease and other forms of cognitive decline are significantly more prevalent in post-menopausal women. Decreased estrogen levels, due to menopause or ovariectomy, may contribute to memory impairments and neurodegeneration. Another result of decreased estrogen levels is elevated luteinizing hormone (LH). Elevated LH after menopause/ovariectomy has been shown to impair cognition in both human and animal studies. Lowering LH levels rescues spatial memory in ovariectomized (ovx) rodents, yet the mechanisms of these effects are still unclear. Estrogens appear to exert some of their effects on memory by increasing levels of brain-derived neurotrophic factor (BDNF) in the hippocampus. In these studies, we explored whether lowering LH may act by increasing BDNF. Ovx rats were treated with Antide, a gonadotropin releasing hormone receptor antagonist that lowers LH levels, or with estradiol. Both Antide and estradiol treatment enhanced spatial memory in ovx females. Both were found to be ineffective when a BDNF receptor antagonist was administered. Immunohistochemical analysis revealed that both Antide and estradiol increased BDNF expression in the hippocampus. Dendritic spine density on pyramidal cells in CA1 was unchanged by any treatment. These results provide evidence for a relationship between LH and BDNF in the hippocampus and demonstrate that estrogen-increasing and LH-lowering treatments may both require BDNF signaling in order to improve spatial memory.
Collapse
Affiliation(s)
- Nathaniel Bohm-Levine
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| | - Alexander R Goldberg
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| | - Monica Mariani
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| | - Maya Frankfurt
- Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Janice Thornton
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA.
| |
Collapse
|
40
|
Zhao X, Fan Y, Vann PH, Wong JM, Sumien N, He JJ. Long-term HIV-1 Tat Expression in the Brain Led to Neurobehavioral, Pathological, and Epigenetic Changes Reminiscent of Accelerated Aging. Aging Dis 2020; 11:93-107. [PMID: 32010484 PMCID: PMC6961778 DOI: 10.14336/ad.2019.0323] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022] Open
Abstract
HIV infects the central nervous system and causes HIV/neuroAIDS, which is predominantly manifested in the form of mild cognitive and motor disorder in the era of combination antiretroviral therapy. HIV Tat protein is known to be a major pathogenic factor for HIV/neuroAIDS through a myriad of direct and indirect mechanisms. However, most, if not all of studies involve short-time exposure of recombinant Tat protein in vitro or short-term Tat expression in vivo. In this study, we took advantage of the doxycycline-inducible brain-specific HIV-1 Tat transgenic mouse model, fed the animals for 12 months, and assessed behavioral, pathological, and epigenetic changes in these mice. Long-term Tat expression led to poorer short-and long-term memory, lower locomotor activity and impaired coordination and balance ability, increased astrocyte activation and compromised neuronal integrity, and decreased global genomic DNA methylation. There were sex- and brain region-dependent differences in behaviors, pathologies, and epigenetic changes resulting from long-term Tat expression. All these changes are reminiscent of accelerated aging, raising the possibility that HIV Tat contributes, at least in part, to HIV infection-associated accelerated aging in HIV-infected individuals. These findings also suggest another utility of this model for HIV infection-associated accelerated aging studies.
Collapse
Affiliation(s)
- Xiaojie Zhao
- 1Department of Microbiology, Immunology & Genetics and
| | - Yan Fan
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Philip H Vann
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Jessica M Wong
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Nathalie Sumien
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Johnny J He
- 1Department of Microbiology, Immunology & Genetics and
| |
Collapse
|
41
|
Luo J, Liu D. Does GPER Really Function as a G Protein-Coupled Estrogen Receptor in vivo? Front Endocrinol (Lausanne) 2020; 11:148. [PMID: 32296387 PMCID: PMC7137379 DOI: 10.3389/fendo.2020.00148] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
Estrogen can elicit pleiotropic cellular responses via a diversity of estrogen receptors (ERs)-mediated genomic and rapid non-genomic mechanisms. Unlike the genomic responses, where the classical nuclear ERα and ERβ act as transcriptional factors following estrogen binding to regulate gene transcription in estrogen target tissues, the non-genomic cellular responses to estrogen are believed to start at the plasma membrane, leading to rapid activation of second messengers-triggered cytoplasmic signal transduction cascades. The recently acknowledged ER, GPR30 or GPER, was discovered in human breast cancer cells two decades ago and subsequently in many other cells. Since its discovery, it has been claimed that estrogen, ER antagonist fulvestrant, as well as some estrogenic compounds can directly bind to GPER, and therefore initiate the non-genomic cellular responses. Various recently developed genetic tools as well as chemical ligands greatly facilitated research aimed at determining the physiological roles of GPER in different tissues. However, there is still lack of evidence that GPER plays a significant role in mediating endogenous estrogen action in vivo. This review summarizes current knowledge about GPER, including its tissue expression and cellular localization, with emphasis on the research findings elucidating its role in health and disease. Understanding the role of GPER in estrogen signaling will provide opportunities for the development of new therapeutic strategies to strengthen the benefits of estrogen while limiting the potential side effects.
Collapse
Affiliation(s)
- Jing Luo
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
- *Correspondence: Dongmin Liu
| |
Collapse
|
42
|
Rashidy-Pour A, Bavarsad K, Miladi-Gorji H, Seraj Z, Vafaei AA. Voluntary exercise and estradiol reverse ovariectomy-induced spatial learning and memory deficits and reduction in hippocampal brain-derived neurotrophic factor in rats. Pharmacol Biochem Behav 2019; 187:172819. [PMID: 31697961 DOI: 10.1016/j.pbb.2019.172819] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/28/2019] [Accepted: 11/03/2019] [Indexed: 11/19/2022]
Abstract
Ample evidences have demonstrated the beneficial effects of physical exercise on cognitive functions such as learning and memory. It is well established that female sex hormones have an important role in regulating learning and memory. This study was designed to investigate the effects of voluntary exercise and estrogen replacement on learning and memory deficits and reduction in hippocampal brain derived neurotrophic factor (BDNF) levels induced by ovariectomy. Ovariectomized rats were given daily vehicle or 17 β-estradiol (20 μg/kg) and allowed to freely exercise in a running wheel over the course of 2 weeks. After this period, they were trained and tested on a water-maze spatial task for 5 consecutive days, followed by a probe test one day later. At the end of the behavioral tests, all animals were decapitated and their hippocampal levels of BDNF were measured. Ovariectomy impaired spatial learning and memory and reduced hippocampal BDNF levels. Exercise significantly improved performance during both training and the retention of the water-maze task and increased hippocampal BDNF. Exercise, 17 β-estradiol and their combination recovered the impairing effects of ovariectomy on learning and memory performance. The combined treatment did not produce stronger effect than either exercise or 17 β-estradiol alone. Our findings provide an important evidence about positive influences of regular exercise and estrogen treatment against cognitive and BDNF deficits induced in ovariectomized rats, an experimental model of menopause.
Collapse
Affiliation(s)
- Ali Rashidy-Pour
- Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Kowsar Bavarsad
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Miladi-Gorji
- Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Seraj
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
43
|
Tiyasatkulkovit W, Promruk W, Rojviriya C, Pakawanit P, Chaimongkolnukul K, Kengkoom K, Teerapornpuntakit J, Panupinthu N, Charoenphandhu N. Impairment of bone microstructure and upregulation of osteoclastogenic markers in spontaneously hypertensive rats. Sci Rep 2019; 9:12293. [PMID: 31444374 PMCID: PMC6707260 DOI: 10.1038/s41598-019-48797-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Hypertension and osteoporosis are the major non-communicable diseases in the elderly worldwide. Although clinical studies reported that hypertensive patients experienced significant bone loss and likelihood of fracture, the causal relationship between hypertension and osteoporosis has been elusive due to other confounding factors associated with these diseases. In this study, spontaneously hypertensive rats (SHR) were used to address this relationship and further explored the biophysical properties and the underlying mechanisms. Long bones of the hind limbs from 18-week-old female SHR were subjected to determination of bone mineral density (BMD) and their mechanical properties. Using synchrotron radiation X-ray tomographic microscopy (SRXTM), femoral heads of SHR displayed marked increase in porosity within trabecular area together with decrease in cortical thickness. The volumetric micro-computed tomography also demonstrated significant decreases in trabecular BMD, cortical thickness and total cross-sectional area of the long bones. These changes also led to susceptibility of the long bones to fracture indicated by marked decreases in yield load, stiffness and maximum load using three-point bending tests. At the cellular mechanism, an increase in the expression of osteoclastogenic markers with decrease in the expression of alkaline phosphatase was found in primary osteoblast-enriched cultures isolated from long bones of these SHR suggesting an imbalance in bone remodeling. Taken together, defective bone mass and strength in hypertensive rats were likely due to excessive bone resorption. Development of novel therapeutic interventions that concomitantly target hypertension and osteoporosis should be helpful in reduction of unwanted outcomes, such as bone fractures, in elderly patients.
Collapse
Affiliation(s)
- Wacharaporn Tiyasatkulkovit
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Worachet Promruk
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Catleya Rojviriya
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Phakkhananan Pakawanit
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | | | - Kanchana Kengkoom
- National Laboratory Animal Center, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Nattapon Panupinthu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. .,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. .,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand. .,The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10300, Thailand.
| |
Collapse
|
44
|
Sex Differences in Age-Associated Type 2 Diabetes in Rats-Role of Estrogens and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6734836. [PMID: 31089412 PMCID: PMC6476064 DOI: 10.1155/2019/6734836] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/14/2018] [Accepted: 02/13/2019] [Indexed: 12/27/2022]
Abstract
Females live longer than males, and the estrogens are one of the reasons for this difference. We reported some years ago that estrogens are able to protect rats against oxidative stress, by inducing antioxidant genes. Type 2 diabetes is an age-associated disease in which oxidative stress is involved, and moreover, some studies show that the prevalence is higher in men than in women, and therefore there are sex-associated differences. Thus, the aim of this study was to evaluate the role of estrogens in protecting against oxidative stress in type 2 diabetic males and females. For this purpose, we used Goto-Kakizaki rats, which develop type 2 diabetes with age. We found that female diabetic rats showed lower glycaemia levels with age than did diabetic males and that estrogens enhanced insulin sensitivity in diabetic females. Moreover, glucose uptake, measured by positron emission tomography, was higher in the female brain, cerebellum, and heart than in those from male diabetic rats. There were also sex-associated differences in the plasma metabolic profile as determined by metabolomics. The metabolic profile was similar between estrogen-replaced and control diabetic rats and different from ovariectomized diabetic rats. Oxidative stress is involved in these differences. We showed that hepatic mitochondria from females produced less hydrogen peroxide levels and exhibited lower xanthine oxidase activity. We also found that hepatic mitochondrial glutathione oxidation and lipid oxidation levels were lower in diabetic females when compared with diabetic males. Ovariectomy induced oxidative stress, and estrogen replacement therapy prevented it. These findings provide evidence for estrogen beneficial effects in type 2 diabetes and should be considered when prescribing estrogen replacement therapy to menopausal women.
Collapse
|
45
|
González-Torres ML, Calderón-Vallejo D, Quintanar JL. Chronic administration of gonadotropin releasing-hormone improves learning in old gonadectomized rats. Neurobiol Learn Mem 2019; 157:35-40. [DOI: 10.1016/j.nlm.2018.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/09/2018] [Accepted: 11/16/2018] [Indexed: 11/16/2022]
|
46
|
Baxter MG, Santistevan AC, Bliss-Moreau E, Morrison JH. Timing of cyclic estradiol treatment differentially affects cognition in aged female rhesus monkeys. Behav Neurosci 2018; 132:213-223. [PMID: 29952604 PMCID: PMC6062474 DOI: 10.1037/bne0000259] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Some evidence suggests that there may be a limited "window of opportunity" for beneficial effects of hormone therapy after menopause in women. We tested whether the timing of cyclic estradiol (E2) treatment impacted its effect on cognitive function in aged, surgically menopausal (ovariectomized) rhesus monkeys. Monkeys were assigned to one of four treatment conditions after ovariectomy: either vehicle or E2 treatment for the duration of the protocol, vehicle for the first 2 years of the protocol followed by E2 for the remainder (delayed treatment), or E2 for the first 11 months of the protocol followed by vehicle for the remainder (withdrawn treatment). Delayed treatment addressed the hypothesis that E2 treatment initiated more than 2 years postovariectomy would have a reduced effect on cognitive function. Withdrawn treatment mirrored current clinical advice to women to use hormone therapy in the initial postmenopausal period then discontinue it. Two periods of cognitive testing assessed treatment effects on cognition over time. E2 treatment predominantly affected a prefrontal cortex-dependent test of spatiotemporal working memory (delayed response). Monkeys with delayed E2 treatment modestly improved in delayed response performance over time, whereas vehicle-treated monkeys declined. Monkeys with withdrawn E2 treatment maintained their performance across assessments, as did monkeys treated with E2 across the entire protocol. These findings suggest that a "window of opportunity" for hormone treatment after cessation of ovarian function, if present in nonhuman primates, lasts longer than 2 years. They also support the notion that beneficial effects of hormone therapy may persist after discontinuation of treatment. (PsycINFO Database Record
Collapse
Affiliation(s)
- Mark G Baxter
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| | - Anthony C Santistevan
- Department of Psychology, University of California, Davis, and California National Primate Research Center, Davis
| | - Eliza Bliss-Moreau
- Department of Psychology, University of California, Davis, and California National Primate Research Center, Davis
| | - John H Morrison
- Department of Psychology, University of California, Davis, and California National Primate Research Center, Davis
| |
Collapse
|
47
|
Teixeira RKC, Feijó DH, Valente AL, Carvalho LTFD, Granhen HD, Petroianu A, Botelho NM. Influence of oophorectomy on glycemia and lipidogram. Acta Cir Bras 2018; 33:415-419. [PMID: 29924212 DOI: 10.1590/s0102-865020180050000003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/25/2018] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To verify the influence of oophorectomy on lipidogram and glycemia. METHODS Fifty six female rats were divided into the following 7 groups (n = 8): group 1 - sham group, group 2 - oophorectomy 30 days, group 3 - oophorectomy 35 days, group 4 - oophorectomy 40 days, group 5 - oophorectomy 45 days, group 6 - oophorectomy 70 days, group 7 - oophorectomy 55 days. Animals were following by number of days according the group. Was evaluated the serum levels of glucose and lipid profile. RESULTS The oophorectomized rats presented higher glycemia. Groups 3, 4, 6 and 7 had a higher glycemia and LDL levels (except for group 6) and groups 6 and 7 had lowest levels of HDL. Group 7 had highest level of VLDL than oophorectomy groups. There was no difference in triglycerides levels. CONCLUSION Oophorectomy was related to dyslipidemia and insulin resistance, mainly after 50th days.
Collapse
Affiliation(s)
- Renan Kleber Costa Teixeira
- Postgraduate Program in Surgery and Experimental Research, Universidade do Estado do Pará, Belem, PA, Brazil
| | - Daniel Haber Feijó
- Department of Experimental Surgery, School of Medicine, UEPA, Belem, PA, Brazil
| | | | | | | | - Andy Petroianu
- Department of Surgery, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
48
|
Alexander BH, Barnes HM, Trimmer E, Davidson AM, Ogola BO, Lindsey SH, Mostany R. Stable Density and Dynamics of Dendritic Spines of Cortical Neurons Across the Estrous Cycle While Expressing Differential Levels of Sensory-Evoked Plasticity. Front Mol Neurosci 2018; 11:83. [PMID: 29615867 PMCID: PMC5864847 DOI: 10.3389/fnmol.2018.00083] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/01/2018] [Indexed: 12/11/2022] Open
Abstract
Periodic oscillations of gonadal hormone levels during the estrous cycle exert effects on the female brain, impacting cognition and behavior. While previous research suggests that changes in hormone levels across the cycle affect dendritic spine dynamics in the hippocampus, little is known about the effects on cortical dendritic spines and previous studies showed contradictory results. In this in vivo imaging study, we investigated the impact of the estrous cycle on the density and dynamics of dendritic spines of pyramidal neurons in the primary somatosensory cortex of mice. We also examined if the induction of synaptic plasticity during proestrus, estrus, and metestrus/diestrus had differential effects on the degree of remodeling of synapses in this brain area. We used chronic two-photon excitation (2PE) microscopy during steady-state conditions and after evoking synaptic plasticity by whisker stimulation at the different stages of the cycle. We imaged apical dendritic tufts of layer 5 pyramidal neurons of naturally cycling virgin young female mice. Spine density, turnover rate (TOR), survival fraction, morphology, and volume of mushroom spines remained unaltered across the estrous cycle, and the values of these parameters were comparable with those of young male mice. However, while whisker stimulation of female mice during proestrus and estrus resulted in increases in the TOR of spines (74.2 ± 14.9% and 75.1 ± 12.7% vs. baseline, respectively), sensory-evoked plasticity was significantly lower during metestrus/diestrus (32.3 ± 12.8%). In males, whisker stimulation produced 46.5 ± 20% increase in TOR compared with baseline—not significantly different from female mice at any stage of the cycle. These results indicate that, while steady-state density and dynamics of dendritic spines of layer 5 pyramidal neurons in the primary somatosensory cortex of female mice are constant during the estrous cycle, the susceptibility of these neurons to sensory-evoked structural plasticity may be dependent on the stage of the cycle. Since dendritic spines are more plastic during proestrus and estrus than during metestrus/diestrus, certain stages of the cycle could be more suitable for forms of memory requiring de novo formation and elimination of spines and other stages for forms of memory where retention and/or repurposing of already existing synaptic connections is more pertinent.
Collapse
Affiliation(s)
- Bailin H Alexander
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Heather M Barnes
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States.,Neuroscience Program, Brain Institute, Tulane University, New Orleans, LA, United States
| | - Emma Trimmer
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Andrew M Davidson
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States.,Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Benard O Ogola
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States.,Brain Institute, Tulane University, New Orleans, LA, United States
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States.,Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
49
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2018. [PMID: 29311911 DOI: 10.3389/fnagi.2017.00430/xml/nlm] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
50
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2017; 9:430. [PMID: 29311911 PMCID: PMC5743731 DOI: 10.3389/fnagi.2017.00430] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|