1
|
Yoldaş Çelik M, Canda E, Yazıcı H, Erdem F, Yüksel Yanbolu A, Aykut A, Durmaz A, Kalkan Uçar S, Yıldırım Sözmen E, Çoker M. Insights into skeletal involvement in adult Gaucher disease: a single-center experience. J Bone Miner Metab 2025; 43:166-173. [PMID: 39827430 DOI: 10.1007/s00774-024-01573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Gaucher disease (GD) is a lysosomal storage disorder causing systemic and skeletal complications. This study evaluates bone health in adult GD type 1 patients, focusing on skeletal complications, bone mineral density (BMD), and biochemical markers. MATERIAL AND METHODS A cohort of adult GD type 1 patients followed up at Ege University Pediatric Metabolism Department were retrospectively examined. RESULTS This study included 32 patients with GD type 1, comprising 11 males (34.4%) and 21 females (65.6%). The median age at diagnosis was 20.5 years (min: 3-max:65), and at enrolment, it was 35 years (min:18-max:71). Most patients (93.8%) had organomegaly, and 93.8% had cytopenia. Common genetic variants were p.Asn409Ser (60.9%), p.Leu483Pro (7.8%), and p.Asp448His(4.7%). All patients were on enzyme replacement therapy (ERT) for a median of 11 years (min:2-max:18). Bone complications included pathologic fractures in six patients (19%) and avascular necrosis in 12 patients (37.5%). Bone pain was reported by 93.7% of patients at admission and persisted in 59.4% during follow-up. DXA scans showed abnormal bone mineral density (BMD) in 62.5% of patients initially, with a significantly low bone density in 3.1% and reduced bone density in 59.3%. BMD improved with treatment, as evidenced by a significant increase in Z scores (p < 0.05). Elevated chitotriosidase (75%), ferritin (50%), and immunoglobulin G (21.9%) levels were noted but did not correlate with BMD. Seven patients (22%) were splenectomized, all with bone issues. DISCUSSION Bone health in GD involves multiple factors beyond biochemical markers. While ERT improves BMD, bone pain and fractures remain significant issues. Comprehensive management, including regular BMD monitoring and better vitamin D supplementation adherence, is crucial. Further research is needed to improve treatments for bone complications in GD.
Collapse
Affiliation(s)
- Merve Yoldaş Çelik
- Medical Faculty, Department of Pediatric Metabolism and Nutrition, Ege University, Izmir, 35040, Turkey.
| | - Ebru Canda
- Medical Faculty, Department of Pediatric Metabolism and Nutrition, Ege University, Izmir, 35040, Turkey
| | - Havva Yazıcı
- Medical Faculty, Department of Pediatric Metabolism and Nutrition, Ege University, Izmir, 35040, Turkey
| | - Fehime Erdem
- Medical Faculty, Department of Pediatric Metabolism and Nutrition, Ege University, Izmir, 35040, Turkey
| | - Ayşe Yüksel Yanbolu
- Medical Faculty, Department of Pediatric Metabolism and Nutrition, Ege University, Izmir, 35040, Turkey
| | - Ayca Aykut
- Medical Faculty, Department of Medical Genetics, Ege University, Izmir, Turkey
| | - Asude Durmaz
- Medical Faculty, Department of Medical Genetics, Ege University, Izmir, Turkey
| | - Sema Kalkan Uçar
- Medical Faculty, Department of Pediatric Metabolism and Nutrition, Ege University, Izmir, 35040, Turkey
| | - Eser Yıldırım Sözmen
- Medical Faculty, Department of Medical Biochemistry, Ege University, Izmir, Turkey
| | - Mahmut Çoker
- Medical Faculty, Department of Pediatric Metabolism and Nutrition, Ege University, Izmir, 35040, Turkey
| |
Collapse
|
2
|
D’Amore S, Poole KE, Ramaswami U, Hughes D, Page K, Solimando AG, Vacca A, Cox TM, Deegan P. Changes in Angiogenesis and Bone Turnover Markers in Patients with Gaucher Disease Developing Osteonecrosis. Metabolites 2024; 14:601. [PMID: 39590837 PMCID: PMC11596658 DOI: 10.3390/metabo14110601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Patients with Gaucher disease have a high risk of bone disease, with osteonecrosis representing the most debilitating complication. The pathogenesis of osteonecrosis has not been fully elucidated yet, and there is an unmet need for predictive biomarkers of bone complications. We aimed to assess the utility of angiogenesis and bone turnover biomarkers as predictors of osteonecrosis in Gaucher disease. Methods: Angiogenesis and bone turnover biomarkers were measured in 146 Gaucher disease patients (70M:76F, median age 49.5 [IQR 36.7 to 61]) with/without osteonecrosis enrolled in the UK-based registry GAUCHERITE [enrolment 2015-2017]. Receiver-operating characteristic curve analysis was used to compare the osteonecrosis predictive value of angiogenesis and bone turnover biomarkers and determine the optimal cut-off values for each biomarker. Results: Sixty-two patients had osteonecrosis before study enrolment, 11 had osteonecrosis during follow-up, and 73 remained osteonecrosis-free. Patients with osteonecrosis showed increased osteopontin and matrix metalloproteinase (MMP)-2 levels and decreased MMP-9 and vascular endothelial growth factor (VEGF)-C compared with those free from osteonecrosis. MMP-9 predicted future osteonecrosis with higher sensitivity and specificity (area under the receiver operating characteristic curve [AUC] 0.84 [95% CI 0.84-0.99]; sensitivity/specificity 82%/75%; cutoff value ≤ 72,420 pg/mL) than osteopontin, MMP-2 and VEGF-C when taken alone. The combination of MMP-9 and VEGF-C further increased the discriminating accuracy. Conclusions: The osteopontin-MMPs-VEGF axis is dysregulated in Gaucher disease patients with osteonecrosis. The combination of MMP-9 and VEGF-C circulating levels may serve to identify Gaucher disease patients at risk of osteonecrosis.
Collapse
Affiliation(s)
- Simona D’Amore
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; (K.E.P.); (T.M.C.); (P.D.)
- Department of Precision and Regenerative Medicine—Ionian Pole, School of Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy; (A.G.S.); (A.V.)
| | - Kenneth Eric Poole
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; (K.E.P.); (T.M.C.); (P.D.)
| | - Uma Ramaswami
- Lysosomal Storage Disorders Unit, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK; (U.R.); (D.H.)
| | - Derralynn Hughes
- Lysosomal Storage Disorders Unit, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK; (U.R.); (D.H.)
| | - Kathleen Page
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; (K.E.P.); (T.M.C.); (P.D.)
| | - Antonio Giovanni Solimando
- Department of Precision and Regenerative Medicine—Ionian Pole, School of Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy; (A.G.S.); (A.V.)
| | - Angelo Vacca
- Department of Precision and Regenerative Medicine—Ionian Pole, School of Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy; (A.G.S.); (A.V.)
| | - Timothy Martin Cox
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; (K.E.P.); (T.M.C.); (P.D.)
| | - Patrick Deegan
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; (K.E.P.); (T.M.C.); (P.D.)
| |
Collapse
|
3
|
Ivanova MM, Dao J, Loynab N, Noor S, Kasaci N, Friedman A, Goker-Alpan O. The Expression and Secretion Profile of TRAP5 Isoforms in Gaucher Disease. Cells 2024; 13:716. [PMID: 38667330 PMCID: PMC11049511 DOI: 10.3390/cells13080716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Gaucher disease (GD) is caused by glucocerebrosidase (GCase) enzyme deficiency, leading to glycosylceramide (Gb-1) and glucosylsphingosine (Lyso-Gb-1) accumulation. The pathological hallmark for GD is an accumulation of large macrophages called Gaucher cells (GCs) in the liver, spleen, and bone marrow, which are associated with chronic organ enlargement, bone manifestations, and inflammation. Tartrate-resistant acid phosphatase type 5 (TRAP5 protein, ACP5 gene) has long been a nonspecific biomarker of macrophage/GCs activation; however, the discovery of two isoforms of TRAP5 has expanded its significance. The discovery of TRAP5's two isoforms revealed that it is more than just a biomarker of macrophage activity. While TRAP5a is highly expressed in macrophages, TRAP5b is secreted by osteoclasts. Recently, we have shown that the elevation of TRAP5b in plasma is associated with osteoporosis in GD. However, the role of TRAP isoforms in GD and how the accumulation of Gb-1 and Lyso-Gb-1 affects TRAP expression is unknown. METHODS 39 patients with GD were categorized into cohorts based on bone mineral density (BMD). TRAP5a and TRAP5b plasma levels were quantified by ELISA. ACP5 mRNA was estimated using RT-PCR. RESULTS An increase in TRAP5b was associated with reduced BMD and correlated with Lyso-Gb-1 and immune activator chemokine ligand 18 (CCL18). In contrast, the elevation of TRAP5a correlated with chitotriosidase activity in GD. Lyso-Gb-1 and plasma seemed to influence the expression of ACP5 in macrophages. CONCLUSIONS As an early indicator of BMD alteration, measurement of circulating TRAP5b is a valuable tool for assessing osteopenia-osteoporosis in GD, while TRAP5a serves as a biomarker of macrophage activation in GD. Understanding the distinct expression pattern of TRAP5 isoforms offers valuable insight into both bone disease and the broader implications for immune system activation in GD.
Collapse
Affiliation(s)
- Margarita M. Ivanova
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA 22030, USA; (J.D.); (N.K.); (O.G.-A.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Banerjee D, Ivanova MM, Celik N, Kim MH, Derman ID, Limgala RP, Ozbolat IT, Goker-Alpan O. Biofabrication of an in-vitrobone model for Gaucher disease. Biofabrication 2023; 15:045023. [PMID: 37703870 PMCID: PMC10515412 DOI: 10.1088/1758-5090/acf95a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Gaucher disease (GD), the most prevalent lysosomal disorder, is caused byGBA1gene mutations, leading to deficiency of glucocerebrosidase, and accumulation of glycosphingolipids in cells of the mononuclear phagocyte system. While skeletal diseases are the leading cause of morbidity and reduced quality of life in GD, the pathophysiology of bone involvement is not yet fully understood, partly due to lack of relevant human model systems. In this work, we present the first 3D human model of GD using aspiration-assisted freeform bioprinting, which enables a platform tool with a potential for decoding the cellular basis of the developmental bone abnormalities in GD. In this regard, human bone marrow-derived mesenchymal stem cells (obtained commercially) and peripheral blood mononuclear cells derived from a cohort of GD patients, at different severities, were co-cultured to form spheroids and differentiated into osteoblast and osteoclast lineages, respectively. Co-differentiated spheroids were then 3D bioprinted into rectangular tissue patches as a bone tissue model for GD. The results revealed positive alkaline phosphatase (ALP) and tartrate-resistant ALP activities, with multi-nucleated cells demonstrating the efficacy of the model, corroborating with gene expression studies. There were no significant changes in differentiation to osteogenic cells but pronounced morphological deformities in spheroid formation, more evident in the 'severe' cohort, were observed. Overall, the presented GD model has the potential to be adapted to personalized medicine not only for understanding the GD pathophysiology but also for personalized drug screening and development.
Collapse
Affiliation(s)
- Dishary Banerjee
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA, United States of America
| | - Margarita M Ivanova
- Lysosomal & Rare Disorders Research & Treatment Center—LDRTC, Fairfax, VA, United States of America
| | - Nazmiye Celik
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
| | - Myoung Hwan Kim
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States of America
| | - Irem Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
| | - Renuka Pudi Limgala
- Lysosomal & Rare Disorders Research & Treatment Center—LDRTC, Fairfax, VA, United States of America
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States of America
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States of America
- Materials Research Institute, Pennsylvania State University, University Park, PA, United States of America
- Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, United States of America
- Medical Oncology, Cukurova University, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkey
| | - Ozlem Goker-Alpan
- Lysosomal & Rare Disorders Research & Treatment Center—LDRTC, Fairfax, VA, United States of America
| |
Collapse
|
5
|
Lu WL, Chien YH, Tsai FJ, Hwu WL, Chou YY, Chu SY, Li MJ, Lee AJ, Liao CC, Wang CH, Lee NC. Changing clinical manifestations of Gaucher disease in Taiwan. Orphanet J Rare Dis 2023; 18:293. [PMID: 37715271 PMCID: PMC10502973 DOI: 10.1186/s13023-023-02895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Gaucher disease (GD) is a lysosomal storage disorder characterized by deficient glucocerebrosidase activity that results from biallelic mutations in the GBA1 gene. Its phenotypic variability allows GD to be classified into 3 subtypes based on the presence and extent of neurological manifestations. Enzyme replacement therapy (ERT) has been available for all patients with GD in Taiwan since 1998. Newborn screening (NBS) for GD has been available since 2015. This study attempted to unveil the clinical features of patients diagnosed with GD during different eras in Taiwan. MATERIALS AND METHODS Data from the health records of two tertiary hospitals responsible for two-thirds of the patients with GD in Taiwan were used. The study population included all patients identified as having GD between 1998, and April 2022, in these two hospitals for review. A total of 42 individuals were included, six of whom were diagnosed by NBS. RESULTS Our cohort presented a higher proportion of GD3 individuals, both by clinical suspicion and by NBS diagnosis, than that reported worldwide. The major subtypes that were recognized following NBS diagnosis were GD2 and GD3. The majority of GD patients carry at least one p.Leu483Pro variant. The 5-year survival rates were 0% for GD2 patients and 100% for patients with other subtypes. Patients diagnosed during the post-NBS era were free of symptoms on initial presentation, except for those with the GD2 subtype. For those diagnosed earlier, ERT was shown to be effective in terms of improved hemograms and prevented bone crises. However, the neurological symptoms in GD3 patients progressed despite ERT intervention. CONCLUSION ERT is essential in reversing the hematological presentations and preventing the skeletal complications of GD. Timely diagnosis of GD with NBS allows for early intervention with ERT to prevent disease progression and complications. However, the need for effective intervention for neurological dysfunction remains unmet.
Collapse
Affiliation(s)
- Wen-Li Lu
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Fuu-Jen Tsai
- Division of Medical Genetics, Pediatric Endocrinology and Metabolism, China Medical University Children's Hospital, 2, Yude Road, North District, Taichung City, 40447, Taiwan
- School of Chinese Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yen-Yin Chou
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shao-Yin Chu
- Department of Pediatrics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Meng-Ju Li
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu City, Taiwan
| | - An-Ju Lee
- Department of Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan
| | - Chao-Chuan Liao
- Department of Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan
| | - Chung-Hsing Wang
- Division of Medical Genetics, Pediatric Endocrinology and Metabolism, China Medical University Children's Hospital, 2, Yude Road, North District, Taichung City, 40447, Taiwan.
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan.
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
6
|
Basiri M, Ghaffari ME, Ruan J, Murugesan V, Kleytman N, Belinsky G, Akhavan A, Lischuk A, Guo L, Klinger K, Mistry PK. Osteonecrosis in Gaucher disease in the era of multiple therapies: Biomarker set for risk stratification from a tertiary referral center. eLife 2023; 12:e87537. [PMID: 37249220 PMCID: PMC10317498 DOI: 10.7554/elife.87537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023] Open
Abstract
Background A salutary effect of treatments for Gaucher disease (GD) has been a reduction in the incidence of avascular osteonecrosis (AVN). However, there are reports of AVN in patients receiving enzyme replacement therapy (ERT) , and it is not known whether it is related to individual treatments, GBA genotypes, phenotypes, biomarkers of residual disease activity, or anti-drug antibodies. Prompted by development of AVN in several patients receiving ERT, we aimed to delineate the determinants of AVN in patients receiving ERT or eliglustat substrate reduction therapy (SRT) during 20 years in a tertiary referral center. Methods Longitudinal follow-ups of 155 GD patients between 2001 and 2021 were analyzed for episodes of AVN on therapy, type of therapy, GBA1 genotype, spleen status, biomarkers, and other disease indicators. We applied mixed-effects logistic model to delineate the independent correlates of AVN while receiving treatment. Results The patients received cumulative 1382 years of treatment. There were 16 episodes of AVN in 14 patients, with two episodes, each occurring in two patients. Heteroallelic p.Asn409Ser GD1 patients were 10 times (95% CI, 1.5-67.2) more likely than p.Asn409Ser homozygous patients to develop osteonecrosis during treatment. History of AVN prior to treatment initiation was associated with 4.8-fold increased risk of AVN on treatment (95% CI, 1.5-15.2). The risk of AVN among patients receiving velaglucerase ERT was 4.68 times higher compared to patients receiving imiglucerase ERT (95% CI, 1.67-13). No patient receiving eliglustat SRT suffered AVN. There was a significant correlation between GlcSph levels and AVN. Together, these biomarkers reliably predicted risk of AVN during therapy (ROC AUC 0.894, p<0.001). Conclusions There is a low, but significant risk of AVN in GD in the era of ERT/SRT. We found that increased risk of AVN was related to GBA genotype, history of AVN prior to treatment initiation, residual serum GlcSph level, and the type of ERT. No patient receiving SRT developed AVN. These findings exemplify a new approach to biomarker applications in a rare inborn error of metabolism to evaluate clinical outcomes in comprehensively followed patients and will aid identification of GD patients at higher risk of AVN who will benefit from closer monitoring and treatment optimization. Funding LSD Training Fellowship from Sanofi to MB.
Collapse
Affiliation(s)
- Mohsen Basiri
- Department of Internal Medicine, Yale UniversityNew HavenUnited States
| | - Mohammad E Ghaffari
- Department of ENT, Head and Neck Surgery, Guilan University of Medical SciencesRashtIslamic Republic of Iran
| | - Jiapeng Ruan
- Department of Internal Medicine, Yale UniversityNew HavenUnited States
| | | | | | - Glenn Belinsky
- Department of Internal Medicine, Yale UniversityNew HavenUnited States
| | - Amir Akhavan
- Department of Computer and Information Science, University of Massachusetts DartmouthDartmoutUnited States
| | - Andrew Lischuk
- Department of Radiology and Biomedical Imaging, Yale UniversityNew HavenUnited States
| | - Lilu Guo
- Translational Sciences, SanofiFraminghamUnited States
| | | | - Pramod K Mistry
- Department of Internal Medicine, Yale UniversityNew HavenUnited States
| |
Collapse
|
7
|
Long-term effects of eliglustat on skeletal manifestations in clinical trials of patients with Gaucher disease type 1. Genet Med 2023; 25:100329. [PMID: 36469032 DOI: 10.1016/j.gim.2022.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Most patients with Gaucher disease have progressive and often disabling skeletal manifestations. We examined the long-term effect of eliglustat treatment on bone outcomes in clinical trials in adults with Gaucher disease type 1. METHODS Data from 4 completed phase 2 and 3 trials were evaluated in treatment-naïve patients or patients switching to eliglustat from enzyme replacement therapy (ERT). RESULTS Overall, 319 of 393 (81%) eliglustat-treated patients remained in their trials until completion or commercial eliglustat became available. Mean eliglustat treatment duration ranged from 3.3 to 6.5 years. In treatment-naïve patients and ERT-switch patients, frequency and severity of bone pain decreased during eliglustat treatment. Mean lumbar spine T-scores shifted from abnormal to normal in treatment-naïve patients and remained in the healthy reference range or improved modestly in ERT-switch patients. Mean total bone marrow burden score shifted from marked-to-severe to moderate in treatment-naïve patients and remained moderate in ERT-switch patients. MIP-1β (marker of active bone disease) was elevated at baseline and decreased to the healthy reference range in treatment-naïve patients and remained in the healthy reference range among ERT-switch patients. CONCLUSION These findings confirm the long-term efficacy of eliglustat on skeletal complications of Gaucher disease in treatment-naïve and ERT-switch patients.
Collapse
|
8
|
Ivanova MM, Dao J, Kasaci N, Friedman A, Noll L, Goker-Alpan O. Wnt signaling pathway inhibitors, sclerostin and DKK-1, correlate with pain and bone pathology in patients with Gaucher disease. Front Endocrinol (Lausanne) 2022; 13:1029130. [PMID: 36506070 PMCID: PMC9730525 DOI: 10.3389/fendo.2022.1029130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
Patients with Gaucher disease (GD) have progressive bone involvement that clinically presents with debilitating bone pain, structural bone changes, bone marrow infiltration (BMI), Erlenmeyer (EM) flask deformity, and osteoporosis. Pain is referred by the majority of GD patients and continues to persist despite the type of therapy. The pain in GD is described as chronic deep penetrating pain; however, sometimes, patients experience severe acute pain. The source of bone pain is mainly debated as nociceptive pain secondary to bone pathology or neuropathic or inflammatory origins. Osteocytes constitute a significant source of secreted molecules that coordinate bone remodeling. Osteocyte markers, sclerostin (SOST) and Dickkopf-1 (DKK-1), inactivate the canonical Wnt signaling pathway and lead to the inhibition of bone formation. Thus, circulated sclerostin and DKK-1 are potential biomarkers of skeletal abnormalities. This study aimed to assess the circulating levels of sclerostin and DKK-1 in patients with GD and their correlation with clinical bone pathology parameters: pain, bone mineral density (BMD), and EM deformity. Thirty-nine patients with GD were classified into cohorts based on the presence and severity of bone manifestations. The serum levels of sclerostin and DKK-1 were quantified by enzyme-linked immunosorbent assays. The highest level of sclerostin was measured in GD patients with pain, BMI, and EM deformity. The multiparameter analysis demonstrated that 95% of GD patients with pain, BMI, and EM deformity had increased levels of sclerostin. The majority of patients with elevated sclerostin also have osteopenia or osteoporosis. Moreover, circulating sclerostin level increase with age, and GD patients have elevated sclerostin levels when compared with healthy control from the same age group. Pearson's linear correlation analysis showed a positive correlation between serum DKK-1 and sclerostin in healthy controls and GD patients with normal bone mineral density. However, the balance between sclerostin and DKK-1 waned in GD patients with osteopenia or osteoporosis. In conclusion, the osteocyte marker, sclerostin, when elevated, is associated with bone pain, BMI, and EM flask deformity in GD patients. The altered sclerostin/DKK-1 ratio correlates with the reduction of bone mineral density. These data confirm that the Wnt signaling pathway plays a role in GD-associated bone disease. Sclerostin and bone pain could be used as biomarkers to assess patients with a high risk of BMI and EM flask deformities.
Collapse
|
9
|
TRAP5b and RANKL/OPG Predict Bone Pathology in Patients with Gaucher Disease. J Clin Med 2021; 10:jcm10102217. [PMID: 34065531 PMCID: PMC8160801 DOI: 10.3390/jcm10102217] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 01/18/2023] Open
Abstract
Background and objective: Bone involvement occurs in 75% of patients with Gaucher disease (GD), and comprises structural changes, debilitating pain, and bone density abnormalities. Osteoporosis is a silent manifestation of GD until a pathologic fracture occurs. Thus, early diagnosis is crucial for identifying high-risk patients in order to prevent irreversible complications. Methods: Thirty-three patients with GD were assessed prospectively to identify predictive markers associated with bone density abnormalities, osteopenia (OSN), and osteoporosis (OSR). Subjects were categorized into three cohorts based on T- or Z-scores of bone mineral density (BMD). The first GD cohort consisted of those with no bone complications (Z-score ≥ −0.9; T-scores ≥ −1), the second was the OSN group (−1.8 ≥ Z-score ≥ −1; −2.5 ≥ T-score ≥ −1), and the third was the OSR group (Z-score ≤ −1.9; T-scores ≤ −2.5). Serum levels of TRAP5b, RANKL, OPG, and RANK were quantified by enzyme-linked immunosorbent assays. Results: TRAP5b levels were increased in GD patients, and showed a positive correlation with GD biomarkers, including plasma glucosylsphingosine (lyso-Gb1) and macrophage activation markers CCL18 and chitotriosidase. The highest level of TRAP5b was measured in patients with osteoporosis. The elevation of RANKL and RANKL/OPG ratio correlated with osteopenia in GD. Conclusion: TRAP5b, RANKL, and RANKL/OPG elevation indicate osteoclast activation in GD. TRAP5b is a potential bone biomarker for GD with the ability to predict the progression of bone density abnormalities.
Collapse
|
10
|
Niu Y, Wang Z, Shi Y, Dong L, Wang C. Modulating macrophage activities to promote endogenous bone regeneration: Biological mechanisms and engineering approaches. Bioact Mater 2021; 6:244-261. [PMID: 32913932 PMCID: PMC7451865 DOI: 10.1016/j.bioactmat.2020.08.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023] Open
Abstract
A coordinated interaction between osteogenesis and osteoimmune microenvironment is essential for successful bone healing. In particular, macrophages play a central regulatory role in all stages of bone repair. Depending on the signals they sense, these highly plastic cells can mediate the host immune response against the exterior signals of molecular stimuli and implanted scaffolds, to exert regenerative potency to a varying extent. In this article, we first encapsulate the immunomodulatory functions of macrophages during bone regeneration into three aspects, as sweeper, mediator and instructor. We introduce the phagocytic role of macrophages in different bone healing periods ('sweeper') and overview a variety of paracrine cytokines released by macrophages either mediating cell mobilisation, vascularisation and matrix remodelling ('mediator'), or directly driving the osteogenic differentiation of bone progenitors and bone repair ('instructor'). Then, we systematically classify and discuss the emerging engineering strategies to recruit, activate and modulate the phenotype transition of macrophages, to exploit the power of endogenous macrophages to enhance the performance of engineered bone tissue.
Collapse
Affiliation(s)
- Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Zhenzhen Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Yuchen Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| |
Collapse
|
11
|
Crivaro A, Bondar C, Mucci JM, Ormazabal M, Feldman RA, Delpino MV, Rozenfeld PA. Gaucher disease-associated alterations in mesenchymal stem cells reduce osteogenesis and favour adipogenesis processes with concomitant increased osteoclastogenesis. Mol Genet Metab 2020; 130:274-282. [PMID: 32536424 DOI: 10.1016/j.ymgme.2020.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 01/18/2023]
Abstract
Gaucher disease (GD) is caused by pathogenic mutations in GBA1, the gene that encodes the lysosomal enzyme β-glucocerebrosidase. Until now, treatments for GD cannot completely reverse bone problems. The aim of this work was to evaluate the potential of MSCs from GD patients (GD MSCs) to differentiate towards the osteoblast (GD Ob) and adipocyte (GD Ad) lineages, and their role in osteoclastogenesis. We observed that GD Ob exhibited reduced mineralization, collagen deposition and alkaline phosphatase activity (ALP), as well as decreased gene expression of RUNX2, COLA1 and ALP. We also evaluated the process of osteoclastogenesis and observed that conditioned media from GD MSCs supernatants induced an increase in the number of osteoclasts. In this model, osteoclastogenesis was induced by RANKL and IL-1β. Furthermore, results showed that in GD MSCs there was a promotion in NLRP3 and PPAR-γ gene expression. Adipogenic differentiation revealed that GD Ad had an increase in PPAR-γ and a reduced RUNX2 gene expression, promoting adipocyte differentiation. In conclusion, our results show that GD MSCs exhibited deficient GD Ob differentiation and increased adipogenesis. In addition, we show that GD MSCs promoted increased osteoclastogenesis through RANKL and IL-1β. These changes in GD MSCs are likely to contribute to skeletal imbalance observed in GD patients.
Collapse
Affiliation(s)
- A Crivaro
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - C Bondar
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - J M Mucci
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - M Ormazabal
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - R A Feldman
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Hospital de Clínicas "José de San Martín", Facultad de Medicina, CONICET-Universidad de Buenos Aires, Paraguay 2155, (C1121ABG), Buenos Aires, Argentina
| | - M V Delpino
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - P A Rozenfeld
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina.
| |
Collapse
|
12
|
Marchi G, Nascimbeni F, Motta I, Busti F, Carubbi F, Cappellini MD, Pietrangelo A, Corradini E, Piperno A, Girelli D. Hyperferritinemia and diagnosis of type 1 Gaucher disease. Am J Hematol 2020; 95:570-576. [PMID: 32031266 DOI: 10.1002/ajh.25752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Giacomo Marchi
- EuroBloodNet Referral Center for Iron Disorders and Gruppo Interdisciplinare Malattie del Ferro, Internal Medicine Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Fabio Nascimbeni
- Regional Referral Center for Lysosomal Storage Diseases, Division of Internal Medicine and Metabolism, Azienda Ospedaliero-Universitaria di Modena - Ospedale Civile, University of Modena and Reggio Emilia, Modena, Italy
| | - Irene Motta
- Department of Medicine and Medical Specialities, Fondazione IRCSS Cà Granda, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Fabiana Busti
- EuroBloodNet Referral Center for Iron Disorders and Gruppo Interdisciplinare Malattie del Ferro, Internal Medicine Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Francesca Carubbi
- Regional Referral Center for Lysosomal Storage Diseases, Division of Internal Medicine and Metabolism, Azienda Ospedaliero-Universitaria di Modena - Ospedale Civile, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Domenica Cappellini
- Department of Medicine and Medical Specialities, Fondazione IRCSS Cà Granda, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Antonello Pietrangelo
- Division of Internal Medicine and Center for Hemochromatosis and Heredometabolic Liver Diseases, EuroBloodNet Referral Center for Iron Disorders, Azienda Ospedaliero-Universitaria di Modena - Policlinico, Modena, Italy
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Corradini
- Division of Internal Medicine and Center for Hemochromatosis and Heredometabolic Liver Diseases, EuroBloodNet Referral Center for Iron Disorders, Azienda Ospedaliero-Universitaria di Modena - Policlinico, Modena, Italy
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Piperno
- EuroBloodNet and MetabERN Referral Center, Department of Medicine and Surgery, University of Milano-Bicocca, Medical Genetics, ASST Monza - S. Gerardo Hospital, Monza, Italy
| | - Domenico Girelli
- EuroBloodNet Referral Center for Iron Disorders and Gruppo Interdisciplinare Malattie del Ferro, Internal Medicine Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
13
|
Altered Sphingolipids Metabolism Damaged Mitochondrial Functions: Lessons Learned From Gaucher and Fabry Diseases. J Clin Med 2020; 9:jcm9041116. [PMID: 32295103 PMCID: PMC7230936 DOI: 10.3390/jcm9041116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
Sphingolipids represent a class of bioactive lipids that modulate the biophysical properties of biological membranes and play a critical role in cell signal transduction. Multiple studies have demonstrated that sphingolipids control crucial cellular functions such as the cell cycle, senescence, autophagy, apoptosis, cell migration, and inflammation. Sphingolipid metabolism is highly compartmentalized within the subcellular locations. However, the majority of steps of sphingolipids metabolism occur in lysosomes. Altered sphingolipid metabolism with an accumulation of undigested substrates in lysosomes due to lysosomal enzyme deficiency is linked to lysosomal storage disorders (LSD). Trapping of sphingolipids and their metabolites in the lysosomes inhibits lipid recycling, which has a direct effect on the lipid composition of cellular membranes, including the inner mitochondrial membrane. Additionally, lysosomes are not only the house of digestive enzymes, but are also responsible for trafficking organelles, sensing nutrients, and repairing mitochondria. However, lysosomal abnormalities lead to alteration of autophagy and disturb the energy balance and mitochondrial function. In this review, an overview of mitochondrial function in cells with altered sphingolipid metabolism will be discussed focusing on the two most common sphingolipid disorders, Gaucher and Fabry diseases. The review highlights the status of mitochondrial energy metabolism and the regulation of mitochondria-autophagy-lysosome crosstalk.
Collapse
|
14
|
Effect of Substrate Reduction Therapy in Comparison to Enzyme Replacement Therapy on Immune Aspects and Bone Involvement in Gaucher Disease. Biomolecules 2020; 10:biom10040526. [PMID: 32244296 PMCID: PMC7226435 DOI: 10.3390/biom10040526] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Gaucher disease (GD) is caused by mutations in the GBA gene, leading to deficient activity of the lysosomal enzyme glucocerebrosidase. Among all the symptoms across various organ systems, bone disease is a major concern as it causes high morbidity and reduces quality of life. Enzyme replacement therapy (ERT) is the most accepted treatment; however, there are still unmet needs. As an alternative, substrate reduction therapy (SRT) was developed using glucosylceramide synthase inhibitors. In the current study, the effects of ERT vs. SRT were compared, particularly the immunological and bone remodeling aspects. GD subjects were divided into three cohorts based on their treatment at initial visit: ERT, SRT, and untreated (UT). Immunophenotyping showed no significant immune cell alterations between the cohorts. Expression of RANK/RANKL/Osteoprotegerin pathway components on immune cells and the secreted markers of bone turnover were analyzed. In the ERT cohort, no significant changes were observed in RANK, RANKL or serum biomarkers. RANKL on T lymphocytes, Osteopontin and MIP-1β decreased with SRT treatment indicating probable reduction in osteoclast activity. Other secreted factors, Osteocalcin and RANKL/Osteoprotegerin did not change with the treatment status. Insights from the study highlight personalized differences between subjects and possible use of RANK pathway components as markers for bone disease progression.
Collapse
|
15
|
|
16
|
Jang H, Lim S, Kim J, Yoon S, Lee CY, Hwang H, Shin JW, Shin KJ, Kim HY, Park KI, Nam D, Lee JY, Yea K, Hirabayashi Y, Lee YJ, Chae YC, Suh P, Choi JH. Glucosylceramide synthase regulates adipo‐osteogenic differentiation through synergistic activation of PPARγ with GlcCer. FASEB J 2019; 34:1270-1287. [DOI: 10.1096/fj.201901437r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Hyun‐Jun Jang
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Seyoung Lim
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Jung‐Min Kim
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Sora Yoon
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Chae Young Lee
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Hyeon‐Jeong Hwang
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Jeong Woo Shin
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Kyeong Jin Shin
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Hye Yun Kim
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Kwang Il Park
- Korean Medicine (KM) Application Center Korea Institute of Oriental Medicine Daegu Republic of Korea
| | - Dougu Nam
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Ja Yil Lee
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Kyungmoo Yea
- Department of New Biology DGIST Daegu Republic of Korea
| | | | - Yu Jin Lee
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Young Chan Chae
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Pann‐Ghill Suh
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Jang Hyun Choi
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| |
Collapse
|
17
|
Potnis KC, Flueckinger LB, Ha CI, Upadia J, Frush DP, Kishnani PS. Bone manifestations in neuronopathic Gaucher disease while receiving high-dose enzyme replacement therapy. Mol Genet Metab 2019; 126:157-161. [PMID: 30448006 DOI: 10.1016/j.ymgme.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 01/15/2023]
Abstract
Avascular necrosis (AVN), one type of bone infarction, is a major irreversible complication of Gaucher disease (GD). In this report, two pediatric patients with GD type 3, homozygous for the L483P pathogenic variant (formerly L444P), developed AVN despite treatment on long-term, high-dose enzyme replacement therapy (ERT). ERT was initiated in both patients, who had intact spleens, shortly after diagnosis with an initial dramatic response. However, both patients exhibited AVN after 5.5 and 11 years on high-dose ERT, respectively, despite good compliance and normalized hematological findings and visceral symptoms. This report demonstrates the importance of careful, regular surveillance of the musculoskeletal system in addition to monitoring the neurological symptoms associated with neuronopathic GD. Additionally, it highlights the limitations of ERT in terms of targeting certain sanctuary sites such as bone marrow and suggests the need for new treatment modalities other than ERT monotherapy to address these limitations.
Collapse
Affiliation(s)
- Kunal C Potnis
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Lauren B Flueckinger
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Christine I Ha
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Jariya Upadia
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Donald P Frush
- Division of Pediatric Radiology, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
18
|
Ivanova MM, Changsila E, Iaonou C, Goker-Alpan O. Impaired autophagic and mitochondrial functions are partially restored by ERT in Gaucher and Fabry diseases. PLoS One 2019; 14:e0210617. [PMID: 30633777 PMCID: PMC6329517 DOI: 10.1371/journal.pone.0210617] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 12/30/2018] [Indexed: 12/20/2022] Open
Abstract
The major cellular clearance pathway for organelle and unwanted proteins is the autophagy-lysosome pathway (ALP). Lysosomes not only house proteolytic enzymes, but also traffic organelles, sense nutrients, and repair mitochondria. Mitophagy is initiated by damaged mitochondria, which is ultimately degraded by the ALP to compensate for ATP loss. While both systems are dynamic and respond to continuous cellular stressors, most studies are derived from animal models or cell based systems, which do not provide complete real time data about cellular processes involved in the progression of lysosomal storage diseases in patients. Gaucher and Fabry diseases are rare sphingolipid disorders due to the deficiency of the lysosomal enzymes; glucocerebrosidase and α-galactosidase A with resultant lysosomal dysfunction. Little is known about ALP pathology and mitochondrial function in patients with Gaucher and Fabry diseases, and the effects of enzyme replacement therapy (ERT). Studying blood mononuclear cells (PBMCs) from patients, we provide in vivo evidence, that regulation of ALP is defective. In PBMCs derived from Gaucher patients, we report a decreased number of autophagic vacuoles with increased cytoplasmic localization of LC3A/B, accompanied by lysosome accumulation. For both Gaucher and Fabry diseases, the level of the autophagy marker, Beclin1, was elevated and ubiquitin binding protein, SQSTM1/p62, was decreased. mTOR inhibition did not activate autophagy and led to ATP inhibition in PBMCs. Lysosomal abnormalities, independent of the type of the accumulated substrate suppress not only autophagy, but also mitochondrial function and mTOR signaling pathways. ERT partially restored ALP function, LC3-II accumulation and decreased LC3-I/LC3-II ratios. Levels of lysosomal (LAMP1), autophagy (LC3), and mitochondrial markers, (Tfam), normalized after ERT infusion. In conclusion, there is mTOR pathway dysfunction in sphingolipidoses, as observed in both PBMCs derived from patients with Gaucher and Fabry diseases, which leads to impaired autophagy and mitochondrial stress. ERT partially improves ALP function.
Collapse
Affiliation(s)
- Margarita M. Ivanova
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
- * E-mail: (MMI); (OGA)
| | - Erk Changsila
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Chidima Iaonou
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
- * E-mail: (MMI); (OGA)
| |
Collapse
|
19
|
Panicker LM, Srikanth MP, Castro-Gomes T, Miller D, Andrews NW, Feldman RA. Gaucher disease iPSC-derived osteoblasts have developmental and lysosomal defects that impair bone matrix deposition. Hum Mol Genet 2019; 27:811-822. [PMID: 29301038 DOI: 10.1093/hmg/ddx442] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/27/2017] [Indexed: 01/18/2023] Open
Abstract
Gaucher disease (GD) is caused by bi-allelic mutations in GBA1, the gene that encodes acid β-glucocerebrosidase (GCase). Individuals affected by GD have hematologic, visceral and bone abnormalities, and in severe cases there is also neurodegeneration. To shed light on the mechanisms by which mutant GBA1 causes bone disease, we examined the ability of human induced pluripotent stem cells (iPSC) derived from patients with Types 1, 2 and 3 GD, to differentiate to osteoblasts and carry out bone deposition. Differentiation of GD iPSC to osteoblasts revealed that these cells had developmental defects and lysosomal abnormalities that interfered with bone matrix deposition. Compared with controls, GD iPSC-derived osteoblasts exhibited reduced expression of osteoblast differentiation markers, and bone matrix protein and mineral deposition were defective. Concomitantly, canonical Wnt/β catenin signaling in the mutant osteoblasts was downregulated, whereas pharmacological Wnt activation with the GSK3β inhibitor CHIR99021 rescued GD osteoblast differentiation and bone matrix deposition. Importantly, incubation with recombinant GCase (rGCase) rescued the differentiation and bone-forming ability of GD osteoblasts, demonstrating that the abnormal GD phenotype was caused by GCase deficiency. GD osteoblasts were also defective in their ability to carry out Ca2+-dependent exocytosis, a lysosomal function that is necessary for bone matrix deposition. We conclude that normal GCase enzymatic activity is required for the differentiation and bone-forming activity of osteoblasts. Furthermore, the rescue of bone matrix deposition by pharmacological activation of Wnt/β catenin in GD osteoblasts uncovers a new therapeutic target for the treatment of bone abnormalities in GD.
Collapse
Affiliation(s)
- Leelamma M Panicker
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Manasa P Srikanth
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thiago Castro-Gomes
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742, USA
| | - Diana Miller
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742, USA
| | - Ricardo A Feldman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
20
|
Naphatsamon U, Ohashi T, Misaki R, Fujiyama K. The Production of Human β-Glucocerebrosidase in Nicotiana benthamiana Root Culture. Int J Mol Sci 2018; 19:E1972. [PMID: 29986415 PMCID: PMC6073899 DOI: 10.3390/ijms19071972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/25/2018] [Accepted: 07/01/2018] [Indexed: 01/05/2023] Open
Abstract
Gaucher disease is caused by a deficiency of the enzyme glucocerebrosidase (GCase). Currently, enzyme-replacement therapy using recombinant GCase produced in mammalian cells is considered the most effective treatment. Plants are an attractive alternative host for recombinant protein production due to the low cost of large-scale production and lack of risk of contamination by human pathogens. Compared to whole plants, root cultures can grow faster. Therefore, this study aimed to produce recombinant GCase in a Nicotiana benthamiana root culture. Root culture of a GCase-producing transgenic plant was induced by indole-3-acetic acid at the concentration of 1 mg/L. Recombinant GCase was successfully produced in roots as a functional protein with an enzyme activity equal to 81.40 ± 17.99 units/mg total protein. Crude proteins were extracted from the roots. Recombinant GCase could be purified by concanavalin A and phenyl 650C chromatography. The productivity of GCase was approximately 1 µg/g of the root. A N-glycan analysis of purified GCase was performed using nano LC/MS. The Man₃XylFucGlcNAc₂ structure was predominant in purified GCase with two plant-specific glycan residues. This study presents evidence for a new, safe and efficient system of recombinant GCase production that might be applied to other recombinant proteins.
Collapse
Affiliation(s)
- Uthailak Naphatsamon
- International Center for Biotechnology, Osaka University, Suita-shi, Osaka 565-0871, Japan.
| | - Takao Ohashi
- International Center for Biotechnology, Osaka University, Suita-shi, Osaka 565-0871, Japan.
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, Suita-shi, Osaka 565-0871, Japan.
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Suita-shi, Osaka 565-0871, Japan.
| |
Collapse
|
21
|
Peterschmitt MJ, Cox GF, Ibrahim J, MacDougall J, Underhill LH, Patel P, Gaemers SJM. A pooled analysis of adverse events in 393 adults with Gaucher disease type 1 from four clinical trials of oral eliglustat: Evaluation of frequency, timing, and duration. Blood Cells Mol Dis 2018; 68:185-191. [PMID: 28126395 DOI: 10.1016/j.bcmd.2017.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 11/16/2022]
Abstract
Eliglustat, an oral substrate reduction therapy, is a first-line therapy for adults with Gaucher disease type 1 and a compatible CYP2D6 metabolizer phenotype. Clinicians have requested more information about frequency, timing, and duration of adverse events associated with eliglustat. Adverse event data as of January 31, 2013 for all patients who received at least one dose of eliglustat were pooled from four eliglustat clinical trials (393 patients representing 535 patient-years of exposure). The following 10 adverse events noted in the eliglustat US Prescribing Information (USPI) and EU Summary of Product Characteristics (SmPC) were evaluated with regard to frequency, drug-relatedness, severity, seriousness, duration, and timing of onset: headache, arthralgia, diarrhea, nausea, fatigue, flatulence, abdominal pain, upper abdominal pain, back pain, and extremity pain. Of 393 patients, 334 experienced one or more adverse events. Most patients (92%) continued taking eliglustat; 3% withdrew from a trial due to an adverse event. Among the 10 adverse events evaluated, none was reported as serious and none resulted in discontinuing treatment; most were mild or moderate, reported only once, and not considered eliglustat-related. The majority of adverse events noted in the eliglustat USPI and SmPC were non-serious, occasional, non-severe, and did not lead to drug discontinuation.
Collapse
Affiliation(s)
| | - Gerald F Cox
- Sanofi Genzyme, 500 Kendall Street, Cambridge, MA 02142, USA
| | | | - James MacDougall
- Prometrika, LLC, 100 CambridgePark Drive, Second Floor, Cambridge, MA 02140, USA
| | | | - Palni Patel
- Sanofi Genzyme, 500 Kendall Street, Cambridge, MA 02142, USA
| | | |
Collapse
|
22
|
Herrera S, Pérez-López J, Moltó-Abad M, Güerri-Fernández R, Cabezudo E, Novelli S, Esteve J, Hernández A, Roig I, Solanich X, Prieto-Alhambra D, Nogués X, Díez-Pérez A. Assessment of Bone Health in Patients With Type 1 Gaucher Disease Using Impact Microindentation. J Bone Miner Res 2017; 32:1575-1581. [PMID: 28263001 DOI: 10.1002/jbmr.3121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/12/2017] [Accepted: 02/23/2017] [Indexed: 11/09/2022]
Abstract
Gaucher disease (GD), one of the most common lysosomal disorders (a global population incidence of 1:50,000), is characterized by beta-glucocerebrosidase deficiency. Some studies have demonstrated bone infiltration in up to 80% of patients, even if asymptomatic. Bone disorder remains the main cause of morbidity in these patients, along with osteoporosis, avascular necrosis, and bone infarcts. Enzyme replacement therapy (ERT) has been shown to improve these symptoms. This cross-sectional study included patients with type 1 Gaucher disease (GD1) selected from the Catalan Study Group on GD. Clinical data were collected and a general laboratory workup was performed. Bone mineral density (BMD) was measured at the lumbar spine and hip using dual-energy X-ray absorptiometry (DXA). Patients with bone infarcts or any other focal lesion in the area of indentation visible on imaging were excluded. Bone Material Strength index (BMSi) was measured by bone impact microindentation using an Osteoprobe instrument. Analysis of covariance (ANCOVA) models were fitted to adjust for age, sex, weight, and height. Sixteen patients with GD1 and 29 age- and sex-matched controls were included. GD1 was associated with significantly lower BMSi (adjusted beta -9.30; 95% CI, -15.18 to -3.42; p = 0.004) and reduced lumbar BMD (adjusted beta -0.14; 95% CI, -0.22 to -0.06; p = 0.002) and total hip BMD (adjusted beta -0.09; 95% CI, -0.15 to -0.03; p = 0.006), compared to GD1-free controls. Chitotriosidase levels were negatively correlated with BMSi (linear R2 = 51.6%, p = 0.004). Bone tissue mechanical characteristics were deteriorated in patients with GD1. BMSi was correlated with chitotriosidase, the marker of GD activity. Bone disorder requires special consideration in this group of patients, and microindentation could be an appropriate tool for assessing and managing their bone health. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sabina Herrera
- Internal Medicine Department, Hospital del Mar Medical Research Institute (IMIM), Universitat Autònoma de Barcelona and CIBERFES, Barcelona, Spain
| | - Jordi Pérez-López
- Inborn Errors of Metabolism in Adults, Unit of Rare Diseases, Hospital Valle de Hebron, Barcelona, Spain
| | - Marc Moltó-Abad
- Inborn Errors of Metabolism in Adults, Unit of Rare Diseases, Hospital Valle de Hebron, Barcelona, Spain
| | - Roberto Güerri-Fernández
- Internal Medicine Department, Hospital del Mar Medical Research Institute (IMIM), Universitat Autònoma de Barcelona and CIBERFES, Barcelona, Spain
| | - Elena Cabezudo
- Hematology Department, Sant Joan de Deu, Barcelona, Spain
| | - Silvana Novelli
- Haematology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jordi Esteve
- Haematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Albert Hernández
- Internal Medicine, Hospital Comarcal Sant Jaume de Calella, Barcelona, Spain
| | - Inmaculada Roig
- Department of Hematology and Hemotherapy, Corporació Sanitària Parc Taulí, Barcelona, Spain
| | - Xavier Solanich
- Internal Medicine, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Daniel Prieto-Alhambra
- National Institute for Health Research (NIHR) Biomedical Research Unit, University of Oxford, Oxford, UK.,GREMPAL, CIBERFES, Barcelona, Spain
| | - Xavier Nogués
- Internal Medicine Department, Hospital del Mar Medical Research Institute (IMIM), Universitat Autònoma de Barcelona and CIBERFES, Barcelona, Spain
| | - Adolfo Díez-Pérez
- Internal Medicine Department, Hospital del Mar Medical Research Institute (IMIM), Universitat Autònoma de Barcelona and CIBERFES, Barcelona, Spain
| |
Collapse
|
23
|
Baldini M, Casirati G, Ulivieri FM, Cassinerio E, Khouri Chalouhi K, Poggiali E, Borin L, Burghignoli V, Cesana BM, Cappellini MD. Skeletal involvement in type 1 Gaucher disease: Not just bone mineral density. Blood Cells Mol Dis 2017; 68:148-152. [PMID: 28693786 DOI: 10.1016/j.bcmd.2017.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/14/2017] [Accepted: 06/14/2017] [Indexed: 11/28/2022]
Abstract
Gaucher disease is characterized by multi-organ infiltration of phospholipid-laden macrophages. Bone involvement is characterized by typical deformities, osteopenia/osteoporosis, pathological fractures, and bone marrow infiltration (avascular osteonecrosis, infarction). Estimation of skeletal disease includes bone quality that contributes substantially to bone strength. We studied 23 type 1 Gaucher patients (median age 22years, range 3-73) on Enzyme Replacement Therapy from 2months to 26years (median 7years); 4 patients had pathological fractures, 10 bone infarctions, 6 avascular osteonecrosis. We noninvasively assessed bone quality by trabecular microarchitecture and macroscopic geometry, using two innovative dual-energy X-ray absorptiometry tools: Trabecular Bone Score (TBS) and Hip Structural Analysis (HSA). Bone quality parameters distinguished the patients with skeletal complications. TBS was significantly lower in patients with avascular osteonecrosis (p=0.049) and pathological fractures (p=0.024), while it could not identify those with bone infarctions. Among HSA parameters, the Cross Sectional Area of the intertrochanteric region and the Buckling Ratio of the narrow neck allowed the distinction of patients with avascular osteonecrosis. BMD was low in 11 patients (50%); neither BMD nor HSA were associated with pathological fractures. The combined evaluation of bone quality and bone quantity is useful to identify GD patients with more severe skeletal involvement.
Collapse
Affiliation(s)
- M Baldini
- UOC Medicina Interna, Foundation IRCCS "Ca' Granda" Ospedale Maggiore Policlinico, Milan, Italy.
| | - G Casirati
- UOC Medicina Interna, Foundation IRCCS "Ca' Granda" Ospedale Maggiore Policlinico, Milan, Italy; Hematology and Bone Marrow Transplantation Unit, Vita-Salute San Raffaele University, Milan, Italy
| | - F M Ulivieri
- Bone Metabolic Unit, Department of Nuclear Medicine, Foundation IRCCS "Ca' Granda" Ospedale Maggiore Policlinico, Milan, Italy
| | - E Cassinerio
- UOC Medicina Interna, Foundation IRCCS "Ca' Granda" Ospedale Maggiore Policlinico, Milan, Italy
| | - K Khouri Chalouhi
- Scuola di Specializzazione in Radiodiagnostica, University of Milan, Milan, Italy
| | - E Poggiali
- UOC Medicina Interna, Foundation IRCCS "Ca' Granda" Ospedale Maggiore Policlinico, Milan, Italy
| | - L Borin
- Department of Hematology, Ospedale San Gerardo, Monza, Italy
| | - V Burghignoli
- Radiology Unit, Foundation IRCCS "Ca' Granda" Ospedale Maggiore Policlinico, Milan, Italy
| | - B M Cesana
- University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - M D Cappellini
- UOC Medicina Interna, Foundation IRCCS "Ca' Granda" Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
24
|
Stirnemann J, Belmatoug N, Camou F, Serratrice C, Froissart R, Caillaud C, Levade T, Astudillo L, Serratrice J, Brassier A, Rose C, Billette de Villemeur T, Berger MG. A Review of Gaucher Disease Pathophysiology, Clinical Presentation and Treatments. Int J Mol Sci 2017; 18:ijms18020441. [PMID: 28218669 PMCID: PMC5343975 DOI: 10.3390/ijms18020441] [Citation(s) in RCA: 498] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 01/18/2023] Open
Abstract
Gaucher disease (GD, ORPHA355) is a rare, autosomal recessive genetic disorder. It is caused by a deficiency of the lysosomal enzyme, glucocerebrosidase, which leads to an accumulation of its substrate, glucosylceramide, in macrophages. In the general population, its incidence is approximately 1/40,000 to 1/60,000 births, rising to 1/800 in Ashkenazi Jews. The main cause of the cytopenia, splenomegaly, hepatomegaly, and bone lesions associated with the disease is considered to be the infiltration of the bone marrow, spleen, and liver by Gaucher cells. Type-1 Gaucher disease, which affects the majority of patients (90% in Europe and USA, but less in other regions), is characterized by effects on the viscera, whereas types 2 and 3 are also associated with neurological impairment, either severe in type 2 or variable in type 3. A diagnosis of GD can be confirmed by demonstrating the deficiency of acid glucocerebrosidase activity in leukocytes. Mutations in the GBA1 gene should be identified as they may be of prognostic value in some cases. Patients with type-1 GD-but also carriers of GBA1 mutation-have been found to be predisposed to developing Parkinson's disease, and the risk of neoplasia associated with the disease is still subject to discussion. Disease-specific treatment consists of intravenous enzyme replacement therapy (ERT) using one of the currently available molecules (imiglucerase, velaglucerase, or taliglucerase). Orally administered inhibitors of glucosylceramide biosynthesis can also be used (miglustat or eliglustat).
Collapse
Affiliation(s)
- Jérôme Stirnemann
- Department of Internal Medicine, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH-1211 Genève, Switzerland.
| | - Nadia Belmatoug
- Department of Internal Medicine, Reference Center for Lysosomal Storage Diseases, Hôpitaux Universitaires Paris Nord Val de Seine, site Beaujon, Assistance Publique-Hôpitaux de Paris, 100 boulevard du Général Leclerc, F-92110 Clichy la Garenne, France.
| | - Fabrice Camou
- Réanimation Médicale, Hôpital Saint André, CHU de Bordeaux, 1 rue Jean Burguet, F-33075 Bordeaux, France.
| | - Christine Serratrice
- Department of Internal Medicine, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH-1211 Genève, Switzerland.
| | - Roseline Froissart
- Service de Biochimie et Biologie Moléculaire Grand Est, unité des Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, F-69677 Bron, France.
| | - Catherine Caillaud
- Inserm U1151, Institut Necker Enfants Malades, Université Paris Descartes, Laboratoire de Biochimie, Métabolomique et Protéomique, Hôpital Universitaire Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, 149 rue de Sèvres, F-75005 Paris, France.
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, F-31059 Toulouse, France.
| | - Leonardo Astudillo
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Equipe Labellisée Ligue Contre le Cancer 2013, Centre de Recherches en Cancerologie de Toulouse (CRCT), Université de Toulouse, Service de Médecine Interne, CHU Purpan, F-31059 Toulouse, France.
| | - Jacques Serratrice
- Department of Internal Medicine, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH-1211 Genève, Switzerland.
| | - Anaïs Brassier
- Centre de Référence des Maladies Héréditaires du Métabolisme de l'Enfant et de l'Adulte (MaMEA), Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, Institut Imagine, F-75012 Paris, France.
| | - Christian Rose
- Service d'onco-hématologie, Saint-Vincent de Paul Hospital, Boulevard de Belfort, Université Catholique de Lille, Univ. Nord de France, F-59000 Lille, France.
| | - Thierry Billette de Villemeur
- Service de Neuropédiatrie, Pathologie du développement, Sorbonne Université, Reference Center for Lysosomal Diseases, Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, 24 Avenue du docteur Arnold Netter, F-75012 Paris, France.
| | - Marc G Berger
- CHU Estaing et Université Clermont Auvergne, Hematology (Biology) et EA 7453 CHELTER, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
25
|
Cravo R, Rotman V, Oliveira PMN, Defendi HGT, Conceição DA, Xavier JR, Chertkoff R, Noronha TG, Maia MLS. Taliglucerase alfa in Gaucher disease: Description of a Brazilian experience. Blood Cells Mol Dis 2017; 68:160-162. [PMID: 28131618 DOI: 10.1016/j.bcmd.2017.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/29/2016] [Accepted: 01/12/2017] [Indexed: 11/18/2022]
Abstract
We evaluated retrospectively, efficacy and safety of taliglucerase alfa for Gaucher disease in a Brazilian population. Thirteen patients were included for efficacy analysis only one of them naïve to enzyme replacement therapy. All the parameters evaluated remained stable throughout treatment (mean duration 3,5years). Only three patients (out of 35) had to discontinue treatment due to a serious adverse event. In conclusion, treatment with taliglucerase alfa was found to be safe and efficient.
Collapse
Affiliation(s)
- R Cravo
- Hemorio Hospital, Rio de Janeiro, Brazil.
| | - V Rotman
- BIO-Manguinhos/Oswaldo Cruz Institute, Rio de Janeiro, Brazil.
| | - P M N Oliveira
- BIO-Manguinhos/Oswaldo Cruz Institute, Rio de Janeiro, Brazil.
| | - H G T Defendi
- BIO-Manguinhos/Oswaldo Cruz Institute, Rio de Janeiro, Brazil.
| | - D A Conceição
- BIO-Manguinhos/Oswaldo Cruz Institute, Rio de Janeiro, Brazil.
| | - J R Xavier
- BIO-Manguinhos/Oswaldo Cruz Institute, Rio de Janeiro, Brazil.
| | | | - T G Noronha
- BIO-Manguinhos/Oswaldo Cruz Institute, Rio de Janeiro, Brazil.
| | - M L S Maia
- BIO-Manguinhos/Oswaldo Cruz Institute, Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Belmatoug N, Di Rocco M, Fraga C, Giraldo P, Hughes D, Lukina E, Maison-Blanche P, Merkel M, Niederau C, Plӧckinger U, Richter J, Stulnig TM, Vom Dahl S, Cox TM. Management and monitoring recommendations for the use of eliglustat in adults with type 1 Gaucher disease in Europe. Eur J Intern Med 2017; 37:25-32. [PMID: 27522145 DOI: 10.1016/j.ejim.2016.07.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE In Gaucher disease, diminished activity of the lysosomal enzyme, acid β-glucosidase, leads to accumulation of glucosylceramides and related substrates, primarily in the spleen, liver, and bone marrow. Eliglustat is an oral substrate reduction therapy approved in the European Union and the United States as a first-line treatment for adults with type 1 Gaucher disease who have compatible CYP2D6 metabolism phenotypes. A European Advisory Council of experts in Gaucher disease describes the characteristics of eliglustat that are distinct from enzyme augmentation therapy (the standard of care) and miglustat (the other approved substrate reduction therapy) and recommends investigations and monitoring for patients on eliglustat therapy within the context of current recommendations for Gaucher disease management. RESULTS Eliglustat is a selective, potent inhibitor of glucosylceramide synthase, the enzyme responsible for biosynthesis of glucosylceramides which accumulate in Gaucher disease. Extensive metabolism of eliglustat by CYP2D6, and, to a lesser extent, CYP3A of the cytochrome P450 pathway, necessitates careful consideration of the patient's CYP2D6 metaboliser status and use of concomitant medications which share metabolism by these pathways. Guidance on specific assessments and monitoring required for eliglustat therapy, including an algorithm to determine eligibility for eliglustat, are provided. CONCLUSIONS As a first-line therapy for type 1 Gaucher disease, eliglustat offers eligible patients a daily oral therapy alternative to biweekly infusions of enzyme therapy. Physicians will need to carefully assess individual Gaucher patients to determine their appropriateness for eliglustat therapy. The therapeutic response to eliglustat and use of concomitant medications will require long-term monitoring.
Collapse
Affiliation(s)
- Nadia Belmatoug
- Referral Center for Lysosomal Diseases, University Beaujon Hospital Paris Nord Val de Seine, Assistance-Publique Hôpitaux de Paris, Department of Internal Medicine, 100 Boulevard du Général Leclerc, 92110 Clichy, France.
| | - Maja Di Rocco
- Unit of Rare Diseases, Department Pediatrics, Gaslini Institute, Largo Gaslini 3, 16147 Genoa, Italy.
| | - Cristina Fraga
- Department of Haematology, HDES Hospital, Ponta Delgada, Av. D. Manuel I, PDL, Açores, Portugal.
| | - Pilar Giraldo
- Translational Research Unit, Instituto Investigación Sanitaria Aragon, CIBER Enfermedades Raras (CIBERER), Zaragoza, Spain.
| | - Derralynn Hughes
- Royal Free London NHS Foundation Trust, University College London, Department of Haematology, Pond St., London NW1 2QG, United Kingdom
| | - Elena Lukina
- Department of Orphan Diseases, Hematology Research Center, 4 Novy Zykovsky Lane, 125167 Moscow, Russia.
| | - Pierre Maison-Blanche
- Bichat University Hospital, Cardiology Unit, 46 Rue Henri Huchard, 75018 Paris, France.
| | - Martin Merkel
- Department of Internal Medicine, Asklepios Klinik St. Georg, Lohmühlenstr. 5, 20099 Hamburg, Germany.
| | - Claus Niederau
- Katholisches Klinikum Oberhausen GmbH, St. Josef Hospital, Department of Medicine, Academic Teaching Hospital, Universität Duisburg-Essen, Mülheimer Str. 83, 46045 Oberhausen, Germany.
| | - Ursula Plӧckinger
- Interdisziplinares Stoffwechsel-Centrum: Diabetes, Endokrinologie und Stoffwechsel, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13352 Berlin, Germany.
| | - Johan Richter
- Department of Hematology and Vascular Diseases, Skåne University Hospital, 221 85 Lund, Sweden.
| | - Thomas M Stulnig
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Stephan Vom Dahl
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, University of Duesseldorf, Moorenstrasse 5, D-40225, Germany.
| | - Timothy M Cox
- Department of Medicine, University of Cambridge, Box 157, Level 5, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
27
|
Drelichman G, Fernández Escobar N, Basack N, Aversa L, Larroude MS, Aguilar G, Szlago M, Schenone A, Fynn A, Cuello MF, Aznar M, Fernández R, Ruiz A, Reichel P, Guelbert N, Robledo H, Watman N, Bolesina M, Elena G, Veber SE, Pujal G, Galván G, Chain JJ, Arizo A, Bietti J, Bar D, Dragosky M, Marquez M, Feldman L, Muller K, Zirone S, Buchovsky G, Lanza V, Sanabria A, Fernández I, Jaureguiberry R, Contte M, Barbieri María A, Maro A, Zárate G, Fernández G, Rapetti MC, Donato H, Degano A, Kantor G, Albina R, Álvarez Bollea M, Brun M, Bacciedoni V, Del Río F, Soberón B, Boido N, Schweri M, Borchichi S, Welsh V, Corrales M, Cedola A, Carvani A, Diez B, Richard L, Baduel C, Nuñez G, Colimodio R, Barazzutti L, Medici H, Meschengieser S, Damiani G, Nucifora M, Girardi B, Gómez S, Papucci M, Verón D, Quiroga L, Carro G, De Ambrosio P, Ferro J, Pujol M, Castella CC, Franco L, Nisnovich G, Veloso M, Pacheco I, Savarino M, Marino A, Saavedra JL. Skeletal involvement in Gaucher disease: An observational multicenter study of prognostic factors in the Argentine Gaucher disease patients. Am J Hematol 2016; 91:E448-53. [PMID: 27420181 DOI: 10.1002/ajh.24486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/21/2022]
Abstract
Patients with Gaucher type 1 (GD1) throughout Argentina were enrolled in the Argentine bone project to evaluate bone disease and its determinants. We focused on presence and predictors of bone lesions (BL) and their relationship to therapeutic goals (TG) with timing and dose of enzyme replacement therapy (ERT). A total of 124 patients on ERT were enrolled in a multi-center study. All six TG were achieved by 82% of patients: 70.1% for bone pain and 91.1% for bone crisis. However, despite the fact that bone TGs were achieved, residual bone disease was present in 108 patients on ERT (87%) at time 0. 16% of patients showed new irreversible BL (bone infarcts and avascular osteonecrosis) despite ERT, suggesting that they appeared during ERT or were not detected at the moment of diagnosis. We observed 5 prognostic factors that predicted a higher probability of being free of bone disease: optimal ERT compliance; early diagnosis; timely initiation of therapy; ERT initiation dose ≥45 UI/kg/EOW; and the absence of history of splenectomy. Skeletal involvement was classified into 4 major phenotypic groups according to BL: group 1 (12.9%) without BL; group 2 (28.2%) with reversible BL; group 3 (41.9%) with reversible BL and irreversible chronic BL; and group 4 (16.9%) with acute irreversible BL. Our study identifies prognostic factors for achieving best therapeutic outcomes, introduces new risk stratification for patients and suggests the need for a redefinition of bone TG. Am. J. Hematol. 91:E448-E453, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marina Szlago
- Laboratorio de Neuroquímica “Dr. N.A Chamoles”, CABA
| | | | - Alcyra Fynn
- Hospital de Niños “Sor María Ludovica”, La Plata; Prov. Buenos Aires
| | | | - Marcela Aznar
- Hospital de Niños “Sor María Ludovica”, La Plata; Prov. Buenos Aires
- Hospital CEPSI Eva Perón; Santiago del Estero
- Hospital Provincial de Niños “Santa Trinidad”; Córdoba
- Hospital Ramos Mejía, CABA
- Hospital de Niños “Pedro de Elizalde”, CABA. Hospital “Dr. Julio C. Perrando”; Chaco. Hospital del Niño Jesús; Tucumán. Hospital Iturraspe; Santa Fe. Instituto Médico Platense; La Plata
| | - Ramiro Fernández
- Hospital de Niños “Sor María Ludovica”, La Plata; Prov. Buenos Aires
| | - Alba Ruiz
- Hospital CEPSI Eva Perón; Santiago del Estero
| | | | | | - Hugo Robledo
- Hospital Provincial de Niños “Santa Trinidad”; Córdoba
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Victoria Lanza
- Hospital Materno Infantil de Mar del Plata, Pcia. Buenos Aires
| | - Alba Sanabria
- Hospital Materno Infantil de Mar del Plata, Pcia. Buenos Aires
| | | | | | | | | | | | | | | | | | - Hugo Donato
- Hospital de Niños de San Justo, Pcia. Buenos Aires
| | | | | | - Roberto Albina
- Consultorio Particular, Mar del Plata; Prov. Buenos Aires
| | | | - María Brun
- Hospital Centenario, Gualeguaychu, Entre Ríos
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David Verón
- Hospital Nacional “Profesor Alejandro Posadas”, L
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Balwani M, Burrow TA, Charrow J, Goker-Alpan O, Kaplan P, Kishnani PS, Mistry P, Ruskin J, Weinreb N. Recommendations for the use of eliglustat in the treatment of adults with Gaucher disease type 1 in the United States. Mol Genet Metab 2016; 117:95-103. [PMID: 26387627 DOI: 10.1016/j.ymgme.2015.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/01/2015] [Accepted: 09/01/2015] [Indexed: 12/30/2022]
Abstract
In Gaucher disease, deficient activity of acid β-glucosidase results in accumulation of its substrates, glucosylceramide and glucosylsphingosine, within the lysosomes of cells primarily in the spleen, liver, bone marrow, and occasionally the lung. The multisystem disease is predominantly characterized by hepatosplenomegaly, anemia, thrombocytopenia, and skeletal disease. Enzyme replacement therapy with recombinant human acid β-glucosidase has been the first-line therapy for Gaucher disease type 1 for more than two decades. Eliglustat, a novel oral substrate reduction therapy, was recently approved in the United States and the European Union as a first-line treatment for adults with Gaucher disease type 1. Eliglustat inhibits glucosylceramide synthase, thereby decreasing production of the substrate glucosylceramide and reducing its accumulation. Although existing recommendations for the care of patients with Gaucher disease remain in effect, unique characteristics of eliglustat require additional investigation and monitoring. A panel of physicians with expertise in Gaucher disease and experience with eliglustat in the clinical trials provide guidance regarding the use of eliglustat, including considerations before starting therapy and monitoring of patients on eliglustat therapy.
Collapse
Affiliation(s)
- Manisha Balwani
- Department of Genetics and Genomic Sciences, One Gustave L. Levy Place, Box 1497, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Thomas Andrew Burrow
- Cincinnati Children's Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, MLC 4006, Cincinnati, OH 45229, USA.
| | - Joel Charrow
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Division of Genetics, Birth Defects and Metabolism, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Chicago, IL 60611, USA.
| | - Ozlem Goker-Alpan
- Lysosomal Disorders Unit, O&O Alpan, LLC, 11212 Waples Mill Road, Fairfax, VA 22030, USA.
| | - Paige Kaplan
- Lysosomal Center, Division of Genetics, Children's Hospital of Philadelphia, Civic Center Blvd, Philadelphia, PA 19104, USA.
| | - Priya S Kishnani
- Duke University School of Medicine, Department of Pediatrics, DUMC 103856, 595 Lasalle Street, GSRB 1, 4th Floor, Room 4010, Durham, NC 27710, USA.
| | - Pramod Mistry
- Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | - Jeremy Ruskin
- Massachusetts General Hospital, Electrophysiology Lab/Arrhythmia Service, 55 Fruit Street, Boston, MA 02114-2696, USA.
| | - Neal Weinreb
- University Research Foundation for Lysosomal Storage Diseases, Inc., 7367 Wexford Terrace, Boca Raton, FL 33433, USA.
| |
Collapse
|
29
|
Giraldo P, Pérez-López J, Núñez R, de la Puebla RF, Luño E, Saura-Grau S, Bureo JC, Plaza S, de la Serna J. Patients with type 1 Gaucher disease in Spain: A cross-sectional evaluation of health status. Blood Cells Mol Dis 2015; 56:23-30. [PMID: 26603719 DOI: 10.1016/j.bcmd.2015.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 11/18/2022]
Abstract
A multicentre, cross-sectional epidemiological survey was conducted to describe the health status of patients with type 1 Gaucher disease (GD1) in Spain. Patient data were collected retrospectively from clinical records. Therapeutic goals for seven clinical parameters were chosen as primary outcome measures. 108 GD1 patients (mean age 44.8 years; 53% male) were recruited from 28 hospitals. Ninety-five patients (88%) were receiving treatment for GD1. Hemoglobin concentration was the therapeutic goal with the highest level of achievement, being met by 105 of 108 patients (97%), followed by the goals for liver volume (86/98 patients; 88%), spleen volume (67/77 patients; 87%) and platelet count (81/108 patients; 75%). The goal for bone mineral density (BMD) was met by 48 of 75 patients (64%), and the goal for quality of life was met by 65 of 103 patients (63%). Bone pain was the parameter with the lowest level of achievement (goal met by 50/94 patients; 53%). The clinical information most often missing from patient records was the BMD Z-score (missing for 31% of patients). These data suggest that most Spanish GD1 patients have good control over hematological and visceral parameters, but there is a need to improve monitoring and treatment of GD-related bone disease.
Collapse
Affiliation(s)
- Pilar Giraldo
- Translational Research Unit, Miguel Servet University Hospital, IIS Aragón, CIBER de Enfermedades Raras (CIBERER), Aragon Institute of Health Sciences (IACS), Zaragoza, Spain; Spanish Foundation for the Study and Therapy of Gaucher Disease (FEETEG), Spain.
| | - Jordi Pérez-López
- Department of Internal Medicine, Vall d'Hebron Hospital, Barcelona, Spain.
| | - Ramiro Núñez
- Department of Hematology, Virgen del Rocío Hospital, Sevilla, Spain.
| | | | - Elisa Luño
- Department of Hematology, Central de Asturias Hospital, Oviedo, Spain.
| | | | - Juan Carlos Bureo
- Department of Internal Medicine, Infanta Cristina Hospital, Badajoz, Spain
| | - Sylvia Plaza
- Medical Affairs, Shire Pharmaceuticals Ibérica, Madrid, Spain.
| | | |
Collapse
|
30
|
Gray-Edwards HL, Brunson BL, Holland M, Hespel AM, Bradbury AM, McCurdy VJ, Beadlescomb PM, Randle AN, Salibi N, Denney TS, Beyers RJ, Johnson AK, Voyles ML, Montgomery RD, Wilson DU, Hudson JA, Cox NR, Baker HJ, Sena-Esteves M, Martin DR. Mucopolysaccharidosis-like phenotype in feline Sandhoff disease and partial correction after AAV gene therapy. Mol Genet Metab 2015; 116:80-7. [PMID: 25971245 DOI: 10.1016/j.ymgme.2015.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022]
Abstract
Sandhoff disease (SD) is a fatal neurodegenerative disease caused by a mutation in the enzyme β-N-acetylhexosaminidase. Children with infantile onset SD develop seizures, loss of motor tone and swallowing problems, eventually reaching a vegetative state with death typically by 4years of age. Other symptoms include vertebral gibbus and cardiac abnormalities strikingly similar to those of the mucopolysaccharidoses. Isolated fibroblasts from SD patients have impaired catabolism of glycosaminoglycans (GAGs). To evaluate mucopolysaccharidosis-like features of the feline SD model, we utilized radiography, MRI, echocardiography, histopathology and GAG quantification of both central nervous system and peripheral tissues/fluids. The feline SD model exhibits cardiac valvular and structural abnormalities, skeletal changes and spinal cord compression that are consistent with accumulation of GAGs, but are much less prominent than the severe neurologic disease that defines the humane endpoint (4.5±0.5months). Sixteen weeks after intracranial AAV gene therapy, GAG storage was cleared in the SD cat cerebral cortex and liver, but not in the heart, lung, skeletal muscle, kidney, spleen, pancreas, small intestine, skin, or urine. GAG storage worsens with time and therefore may become a significant source of pathology in humans whose lives are substantially lengthened by gene therapy or other novel treatments for the primary, neurologic disease.
Collapse
Affiliation(s)
- Heather L Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| | - Brandon L Brunson
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Merrilee Holland
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Adrien-Maxence Hespel
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Allison M Bradbury
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Victoria J McCurdy
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Patricia M Beadlescomb
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ashley N Randle
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Nouha Salibi
- MR R&D Siemens Healthcare, Malvern, PA, USA; Auburn University MRI Research Center, Auburn, AL, USA
| | - Thomas S Denney
- Auburn University MRI Research Center, Auburn, AL, USA; Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | | | - Aime K Johnson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Meredith L Voyles
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ronald D Montgomery
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Diane U Wilson
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Judith A Hudson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Nancy R Cox
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Henry J Baker
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Miguel Sena-Esteves
- Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
31
|
Bennett LL, Turcotte K. Eliglustat tartrate for the treatment of adults with type 1 Gaucher disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4639-47. [PMID: 26345314 PMCID: PMC4554398 DOI: 10.2147/dddt.s77760] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of this article is to review eliglustat tartrate, a substrate reduction therapy, for the treatment of Gaucher disease type 1 (GD1). GD is an rare inborn error of metabolism caused by accumulation of lipid substrates such as glucosylceramide within the monocyte-macrophage system that affects the body by causing enlargement of the spleen and liver, destruction of bone, and abnormalities of the lungs and blood, such as anemia, thrombocytopenia, and leukopenia. GD is classified into three types: GD1, a chronic and non-neuronopathic disease accounting for 95% of GD cases; and types 2 and 3 (GD2 GD3) which are more progressive diseases with no approved drugs available at this time. Treatment options for GD1 include enzyme replacement therapy and substrate reduction therapy. Eliglustat works by inhibiting UDP-glucosylceramide synthase, the first enzyme that catalyzes the biosynthesis of glycosphingolipids, thus reducing the load of glucosylceramide influx into the lysosome. Eliglustat was approved by the US Food and Drug Administration after three Phase I, two Phase II, and two Phase III clinical trials. The dose of eliglustat is 84 mg twice a day or once daily depending on the cytochrome P450 2D6 genotype of the patient.
Collapse
|
32
|
Mucci JM, Cuello MF, Kisinovsky I, Larroude M, Delpino MV, Rozenfeld PA. Proinflammatory and proosteoclastogenic potential of peripheral blood mononuclear cells from Gaucher patients: Implication for bone pathology. Blood Cells Mol Dis 2015; 55:134-143. [PMID: 26142329 DOI: 10.1016/j.bcmd.2015.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/04/2015] [Accepted: 05/26/2015] [Indexed: 01/18/2023]
Abstract
Gaucher disease (GD) is caused by mutations in the GBA gene that confer a deficient level of activity of glucocerebrosidase (GCase). This deficiency leads to the accumulation of the glycolipid glucocerebroside in the lysosomes of cells of monocyte/macrophage system. Bone compromise in Gaucher disease patients is the most disabling aspect of the disease. However, pathophysiological aspects of skeletal alterations are still poorly understood. On the other hand it is well known that inflammation is a key player in GD pathology. In this work, we revealed increased levels of the proinflammatory CD14(+)CD16(+) monocyte subset and increased inflammatory cytokine production by monocytes and T cells in the circulation of GD patients. We showed increased levels of osteoclast precursors in PBMC from patients and a higher expression of RANKL in the surface of T cells. PBMC from patients presented higher osteoclast differentiation compared to healthy controls when cultured in the presence of M-CSF alone or in combination with RANKL. In vitro treatment with Velaglucerase reduced osteoclast levels to control levels. On the other hand THP-1 derived osteoclast precursors cultured in the presence of conditioned media from PBMC of GD patients presented higher differentiation to active osteoclasts. This induction involved TNF-α and RANKL.
Collapse
Affiliation(s)
- J M Mucci
- IIFP, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, La Plata 1900, Argentina
| | - M F Cuello
- Servicio de Hematología, Hospital de Niños "Sor María Ludovica", La Plata, Argentina
| | | | - M Larroude
- Consultorio Larrea N° 1106 3°E, Buenos Aires, Argentina
| | - M V Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Hospital de Clínicas "José de San Martín", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - P A Rozenfeld
- IIFP, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, La Plata 1900, Argentina.
| |
Collapse
|
33
|
Tantawy AA. Cytokines in Gaucher disease: Role in the pathogenesis of bone and pulmonary disease. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2015. [DOI: 10.1016/j.ejmhg.2015.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
34
|
Mattar CN, Wong AMS, Hoefer K, Alonso-Ferrero ME, Buckley SMK, Howe SJ, Cooper JD, Waddington SN, Chan JKY, Rahim AA. Systemic gene delivery following intravenous administration of AAV9 to fetal and neonatal mice and late-gestation nonhuman primates. FASEB J 2015; 29:3876-88. [PMID: 26062602 PMCID: PMC4560173 DOI: 10.1096/fj.14-269092] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/26/2015] [Indexed: 12/31/2022]
Abstract
Several acute monogenic diseases affect multiple body systems, causing death in childhood. The development of novel therapies for such conditions is challenging. However, improvements in gene delivery technology mean that gene therapy has the potential to treat such disorders. We evaluated the ability of the AAV9 vector to mediate systemic gene delivery after intravenous administration to perinatal mice and late-gestation nonhuman primates (NHPs). Titer-matched single-stranded (ss) and self-complementary (sc) AAV9 carrying the green fluorescent protein (GFP) reporter gene were intravenously administered to fetal and neonatal mice, with noninjected age-matched mice used as the control. Extensive GFP expression was observed in organs throughout the body, with the epithelial and muscle cells being particularly well transduced. ssAAV9 carrying the WPRE sequence mediated significantly more gene expression than its sc counterpart, which lacked the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) sequence. To examine a realistic scale-up to larger models or potentially patients for such an approach, AAV9 was intravenously administered to late-gestation NHPs by using a clinically relevant protocol. Widespread systemic gene expression was measured throughout the body, with cellular tropisms similar to those observed in the mouse studies and no observable adverse events. This study confirms that AAV9 can safely mediate systemic gene delivery in small and large animal models and supports its potential use in clinical systemic gene therapy protocols.—Mattar, C. N., Wong, A. M. S., Hoefer, K., Alonso-Ferrero, M. E., Buckley, S. M. K., Howe, S. J., Cooper, J. D., Waddington, S. N., Chan, J. K. Y., Rahim, A. A. Systemic gene delivery following intravenous administration of AAV9 to fetal and neonatal mice and late-gestation nonhuman primates.
Collapse
Affiliation(s)
- Citra N Mattar
- *Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, National University of Singapore, Singapore; Pediatric Storage Disorders Laboratory, Institute of Psychiatry, King's College London, London, United Kingdom; University College London (UCL) Institute for Child Health, Gene Transfer Technology Group, Institute for Women's Health, and **Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom; Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa; Department of Reproductive Medicine, KK Women's and Children's Tower, Singapore; and Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Andrew M S Wong
- *Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, National University of Singapore, Singapore; Pediatric Storage Disorders Laboratory, Institute of Psychiatry, King's College London, London, United Kingdom; University College London (UCL) Institute for Child Health, Gene Transfer Technology Group, Institute for Women's Health, and **Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom; Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa; Department of Reproductive Medicine, KK Women's and Children's Tower, Singapore; and Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Klemens Hoefer
- *Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, National University of Singapore, Singapore; Pediatric Storage Disorders Laboratory, Institute of Psychiatry, King's College London, London, United Kingdom; University College London (UCL) Institute for Child Health, Gene Transfer Technology Group, Institute for Women's Health, and **Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom; Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa; Department of Reproductive Medicine, KK Women's and Children's Tower, Singapore; and Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Maria E Alonso-Ferrero
- *Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, National University of Singapore, Singapore; Pediatric Storage Disorders Laboratory, Institute of Psychiatry, King's College London, London, United Kingdom; University College London (UCL) Institute for Child Health, Gene Transfer Technology Group, Institute for Women's Health, and **Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom; Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa; Department of Reproductive Medicine, KK Women's and Children's Tower, Singapore; and Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Suzanne M K Buckley
- *Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, National University of Singapore, Singapore; Pediatric Storage Disorders Laboratory, Institute of Psychiatry, King's College London, London, United Kingdom; University College London (UCL) Institute for Child Health, Gene Transfer Technology Group, Institute for Women's Health, and **Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom; Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa; Department of Reproductive Medicine, KK Women's and Children's Tower, Singapore; and Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Steven J Howe
- *Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, National University of Singapore, Singapore; Pediatric Storage Disorders Laboratory, Institute of Psychiatry, King's College London, London, United Kingdom; University College London (UCL) Institute for Child Health, Gene Transfer Technology Group, Institute for Women's Health, and **Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom; Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa; Department of Reproductive Medicine, KK Women's and Children's Tower, Singapore; and Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Jonathan D Cooper
- *Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, National University of Singapore, Singapore; Pediatric Storage Disorders Laboratory, Institute of Psychiatry, King's College London, London, United Kingdom; University College London (UCL) Institute for Child Health, Gene Transfer Technology Group, Institute for Women's Health, and **Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom; Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa; Department of Reproductive Medicine, KK Women's and Children's Tower, Singapore; and Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Simon N Waddington
- *Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, National University of Singapore, Singapore; Pediatric Storage Disorders Laboratory, Institute of Psychiatry, King's College London, London, United Kingdom; University College London (UCL) Institute for Child Health, Gene Transfer Technology Group, Institute for Women's Health, and **Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom; Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa; Department of Reproductive Medicine, KK Women's and Children's Tower, Singapore; and Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Jerry K Y Chan
- *Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, National University of Singapore, Singapore; Pediatric Storage Disorders Laboratory, Institute of Psychiatry, King's College London, London, United Kingdom; University College London (UCL) Institute for Child Health, Gene Transfer Technology Group, Institute for Women's Health, and **Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom; Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa; Department of Reproductive Medicine, KK Women's and Children's Tower, Singapore; and Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Ahad A Rahim
- *Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, National University of Singapore, Singapore; Pediatric Storage Disorders Laboratory, Institute of Psychiatry, King's College London, London, United Kingdom; University College London (UCL) Institute for Child Health, Gene Transfer Technology Group, Institute for Women's Health, and **Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom; Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa; Department of Reproductive Medicine, KK Women's and Children's Tower, Singapore; and Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
35
|
Vi L, Baht GS, Whetstone H, Ng A, Wei Q, Poon R, Mylvaganam S, Grynpas M, Alman BA. Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J Bone Miner Res 2015; 30:1090-102. [PMID: 25487241 DOI: 10.1002/jbmr.2422] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 11/21/2014] [Accepted: 12/02/2014] [Indexed: 01/18/2023]
Abstract
Macrophages are activated in inflammation and during early phases of repair processes. Interestingly, they are also present in bone during development, but their function during this process is unclear. Here, we explore the function of macrophages in bone development, growth, and repair using transgenic mice to constitutively or conditionally deplete macrophages. Depletion of macrophages led to early skeletal growth retardation and progressive osteoporosis. By 3 months of age, macrophage-deficient mice displayed a 25% reduction in bone mineral density and a 70% reduction in the number of trabecular bone compared to control littermates. Despite depletion of macrophages, functional osteoclasts were still present in bones, lining trabecular bone and the endosteal surface of the cortical bone. Furthermore, ablation of macrophages led to a 60% reduction in the number of bone marrow mesenchymal progenitor cells and a decrease in the ability of these cells to differentiate to osteoblasts. When macrophages were depleted during fracture repair, bone union was impaired. Calluses from macrophage-deficient animals were smaller, and contained less bone and more fibrotic tissue deposition. Taken together, this shows that macrophages are crucial for maintaining bone homeostasis and promoting fracture repair by enhancing the differentiation of mesenchymal progenitors.
Collapse
Affiliation(s)
- Linda Vi
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| | - Gurpreet S Baht
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Heather Whetstone
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adeline Ng
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Qingxia Wei
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Raymond Poon
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sivakami Mylvaganam
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marc Grynpas
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Benjamin A Alman
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Complexity of Genotype-Phenotype Correlations in Mendelian Disorders: Lessons from Gaucher Disease. Rare Dis 2015. [DOI: 10.1007/978-94-017-9214-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
37
|
Marcucci G, Zimran A, Bembi B, Kanis J, Reginster JY, Rizzoli R, Cooper C, Brandi ML. Gaucher disease and bone manifestations. Calcif Tissue Int 2014; 95:477-94. [PMID: 25377906 DOI: 10.1007/s00223-014-9923-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/17/2014] [Indexed: 01/25/2023]
Abstract
Gaucher disease is a relatively rare metabolic disease caused by the inherited deficiency of the lysosomal enzyme glucocerebrosidase. Gaucher disease affects multiple organs, among which is the skeleton. Bone involvement occurs frequently in Gaucher disease, and is one of its most debilitating features, reducing the quality of life of patients. Bone status is an important consideration for treatment to ameliorate symptoms and reduce the risk of irreversible complications. We have conducted a systematic review of all the various aspects of Gaucher disease, focusing on different skeletal manifestations, pathophysiology of bone alterations, clinical symptoms, and current diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Gemma Marcucci
- Head, Bone Metabolic Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Skeletal improvement in patients with Gaucher disease type 1: a phase 2 trial of oral eliglustat. Skeletal Radiol 2014; 43:1353-60. [PMID: 24816856 PMCID: PMC4141971 DOI: 10.1007/s00256-014-1891-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Eliglustat is an investigational oral substrate reduction therapy for Gaucher disease type 1 (GD1). Its skeletal effects were evaluated by prospective monitoring of bone mineral density (BMD), fractures, marrow infiltration by Gaucher cells, focal bone lesions, and infarcts during an open-label, multi-site, single-arm phase 2 trial (NCT00358150). MATERIALS AND METHODS Institutional review board approval and patient informed consent were obtained. Eliglustat (50 or 100 mg) was self-administered by mouth twice daily; 19 patients completed 4 years of treatment. All were skeletally mature (age range, 18-55 years). DXA and MRI assessments were conducted at baseline and annually thereafter. X-rays were obtained annually until month 24, and then every other year. RESULTS Lumbar spine BMD increased significantly (p = 0.02; n = 15) by a mean (SD) of 9.9% (14.2%) from baseline to year 4; corresponding T-scores increased significantly (p = 0.01) from a mean (SD) of -1.6 (1.1) to -0.9 (1.3). Mean femur T-score remained normal through 4 years. Femur MRI showed that 10/18 (56%) patients had decreased Gaucher cell infiltration compared to baseline; one patient with early improvement had transient worsening at year 4. There were no lumbar spine or femoral fractures and no reported bone crises during the study. At baseline, 8/19 (42%) patients had focal bone lesions, which remained stable, and 7/19 (37%) patients had bone infarctions, which improved in one patient by year 2. At year 4, one new asymptomatic, indeterminate bone lesion was discovered that subsequently resolved. CONCLUSIONS Eliglustat may be a therapeutic option for treating the skeletal manifestations of GD1.
Collapse
|
39
|
Žnidar I, Collin-Histed T, Niemeyer P, Parkkinen J, Lauridsen AG, Zariņa S, Cohen Y, Manuel J. The European Gaucher Alliance: a survey of member patient organisations' activities, healthcare environments and concerns. Orphanet J Rare Dis 2014; 9:134. [PMID: 25178161 PMCID: PMC4158124 DOI: 10.1186/s13023-014-0134-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/18/2014] [Indexed: 11/10/2022] Open
Abstract
Background The European Gaucher Alliance (EGA) was established in 1994 and constituted in 2008 as an umbrella group supporting patient organisations for Gaucher disease. Every two years, the EGA conducts a questionnaire survey of member associations to help develop its priorities and annual work programme. Results of the latest survey are presented. Methods Between June 2012 and April 2013, the 36 members and associate members of the EGA were asked to complete a questionnaire detailing membership numbers, disease specific treatments used by patients, means of access to treatment, availability of treatment centres and home infusions, sources of support for patients with Gaucher disease, patient organisations’ activities, collaborations, funding sources and any issues of concern. Questionnaires completed in 2012 were revised in January 2013 and responses analysed between July and September 2013. Results Thirty three members returned data on one or more questions. Findings identified inequalities in access to treatment both within and between members’ countries. Three of 27 countries, for which data were available, relied totally on humanitarian aid for treatment and 6% of untreated patients in 20 countries were untreated because of funding issues, a situation many feared would worsen with deteriorating economic climates. Access to treatment and reimbursement represented 45% of members’ concerns, while 35% related to access to specialist treatment centres, home infusions and doctors with expertise in Gaucher disease. Member associations’ main activities centred on patient support (59% of responses) and raising awareness of Gaucher disease and patients’ needs amongst the medical community, government and healthcare decision makers and the general public (34% of responses). Twenty one (78% of respondents) indicated they were the only source of help for Gaucher disease patients in their country. For many, activities were constrained by funds; two members had no external funding source. Activities were maximised through collaboration with other patient organisations and umbrella organisations for rare diseases. Conclusion The survey provided a ‘snapshot’ of the situation for patients and families affected by Gaucher disease, helping the EGA direct its activities into areas of greatest need.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jeremy Manuel
- European Gaucher Alliance, Evesham House Business Centre, 48-52 Silver Street, Dursley GL11 4ND, Gloucestershire, UK.
| |
Collapse
|
40
|
Abstract
OBJECTIVE To review the epidemiology, pathophysiology, and treatments of Gaucher disease (GD), focusing on the role of enzyme replacement therapy (ERT), andsubstrate reduction therapy (SRT). DATA SOURCES A literature search through PubMed (1984-May 2013) of English language articles was performed with terms: Gaucher's disease, lysosomal storage disease. Secondary and tertiary references were obtained by reviewing related articles. STUDY SELECTION AND DATA EXTRACTION All articles in English identified from the data sources, clinical studies using ERT, SRT and articles containing other interesting aspects were included. DATA SYNTHESIS GD is the most common inherited LSD, characterized by a deficiency in the activity of the enzyme acid β-glucosidase, which leads to accumulation of glucocerebroside within lysosomes of macrophages, leading to hepatosplenomegaly, bone marrow suppression, and bone lesions. GD is classified into 3 types: type 1 GD (GD1) is chronic and non-neuronopathic, accounting for 95% of GDs, and types 2 and 3 (GD2, GD3) cause nerve cell destruction. Regular monitoring of enzyme chitotriosidase and pulmonary and activation-regulated chemokines are useful to confirm the diagnosis and effectiveness of GD treatment. CONCLUSIONS There are 4 treatments available for GD1: 3 ERTs and 1 SRT. Miglustat, an SRT, is approved for mild to moderate GD1. ERTs are available for moderate to severe GD1 and can improve quality of life within the first year of treatment. The newest ERT, taliglucerase alfa, is plant-cell derived that can be produced on a large scale at lower cost. Eliglustat tartrate, another SRT, is under phase 3 clinical trials. No drugs have been approved for GD2 or GD3.
Collapse
|
41
|
Lin HY, Shih SC, Chuang CK, Chen MR, Niu DM, Lin SP. Assessment of bone mineral density by dual energy x-ray absorptiometry in patients with mucopolysaccharidoses. Orphanet J Rare Dis 2013; 8:71. [PMID: 23663302 PMCID: PMC3698009 DOI: 10.1186/1750-1172-8-71] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 05/09/2013] [Indexed: 01/14/2023] Open
Abstract
Background Patients with mucopolysaccharidoses (MPS) are associated with poor bone growth and mineralization, however, information regarding the assessment of bone mineral density (BMD) in relation to age and treatment in this disorder is limited. Methods Dual energy x-ray absorptiometry (DXA) was performed in 30 patients with MPS (21 males and 9 females; 2 with MPS I, 12 with MPS II, 2 with MPS IIIB, 9 with MPS IVA, and 5 with MPS VI; median age, 10.8 years; age range, 5.0 years to 23.7 years; 26 patients were under 19 and 4 were above 19 years of age) to assess BMD of the lumbar spine (L1-L4), using the Hologic QDR 4500 system (Bedford, MA, USA). Results For 26 patients under 19 years of age, standard deviation scores (z scores) for height, weight, body mass index (BMI), and BMD were −4.53 ± 2.66, -1.15 ± 1.55, 0.74 ± 1.23, and −3.03 ± 1.62, respectively, and they were all negatively correlated with age (p < 0.05). However, after correction for height-for-age z score (HAZ), HAZ adjusted BMD z score was −0.7 ± 1.24. Eight patients (31%) had osteopenia (HAZ adjusted BMD z score < −1 and ≥ −2), and 4 patients (15%) had osteoporosis (HAZ adjusted BMD z score < −2). Of 8 patients with MPS I, II or VI who underwent follow-up DXA after receiving enzyme replacement therapy for 1.0 to 7.4 years, all showed increase in absolute BMD values. Conclusions These findings and the follow-up data can be used to develop quality of care strategies for patients with MPS.
Collapse
Affiliation(s)
- Hsiang-Yu Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Hematopoietic stem cell transplantation (HSCT), first performed in 1984, was the first treatment approach for Gaucher's disease (GD) which had curative intent. The early successes in HSCT were soon eclipsed by the introduction of a highly effective enzyme replacement therapy (ERT), which has remained the single most widely used treatment. Experience with HSCT is limited to about 50 reported cases, mainly performed in the last century, with an overall survival around 85%. HSCT typically achieves complete correction of visceral and bony changes and can fully stabilize neurological features in otherwise progressive type II and III GD. ERT, in contrast, is completely safe and effective, but is limited by cost, incomplete resolution of visceral, hematological, and bony features in some patients, and lack of neurological correction in type II and III disease. In this review, we summarize and compare HSCT and ERT. With 20 years of experience of ERT, its limitations as well as its advantages are now well delineated. Meanwhile progress in HSCT over the last decade suggests that transplantation would today represent a very safe curative approach for GD offering one time complete correction of the disease, contrasting with the lifelong need for ERT with its associated expense and dependence on sophisticated drug manufacture. Additionally, unlike ERT, HSCT can be beneficial for neurological forms of GD. We conclude that the time has come to re-evaluate HSCT in selected patients with GD where ERT is less likely to fully eradicate symptoms of the disease.
Collapse
Affiliation(s)
- Sawa Ito
- Hematology Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
43
|
Schuchman EH, Simonaro CM. The genetics of sphingolipid hydrolases and sphingolipid storage diseases. Handb Exp Pharmacol 2013:3-32. [PMID: 23579447 DOI: 10.1007/978-3-7091-1368-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The relationship of sphingolipids with human disease first arose from the study of sphingolipid storage diseases over 50 years ago. Most of these disorders are due to inherited deficiencies of specific sphingolipid hydrolases, although a small number also result from defects in sphingolipid transport or activator proteins. Due to the primary protein deficiencies sphingolipids and other macromolecules accumulate in cells and tissues of affected patients, leading to a diverse presentation of clinical abnormalities. Over 25 sphingolipid storage diseases have been described to date. Most of the genes have been isolated, disease-causing mutations have been identified, the recombinant proteins have been produced and characterized, and animal models exist for most of the human diseases. Since most sphingolipid hydrolases are enriched within the endosomal/lysosomal system, macromolecules first accumulate within these compartments. However, these abnormalities rapidly spread to other compartments and cause a wide range of cellular dysfunction. This review focuses on the genetics of sphingolipid storage diseases and related hydrolytic enzymes with an emphasis on the relationship between genetic mutations and human disease.
Collapse
Affiliation(s)
- Edward H Schuchman
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
44
|
Wasserstein M, Godbold J, McGovern MM. Skeletal manifestations in pediatric and adult patients with Niemann Pick disease type B. J Inherit Metab Dis 2013; 36:123-7. [PMID: 22718274 DOI: 10.1007/s10545-012-9503-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/11/2012] [Accepted: 05/16/2012] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Niemann-Pick disease (NPD) due to acid sphingomyelinase deficiency is a lipid storage disease resulting from the accumulation of sphingomyelin, predominantly within cells of the monocyte-macrophage system. In contrast to other lysosomal storage disorders, skeletal involvement in NPD has not been systematically studied. METHODS Pediatric and adult NPD-B patients underwent medical histories and physical examinations, DEXA scans to measure bone mineral content (BMC), and bone mineral density (BMD) and computed tomography scan or MRI of the abdomen for spleen volume. Z and/or T scores were calculated for the DEXA results. For the pediatric patients adjusted mean BMC (g) and BMD (g/cm(2)) of the lumbar spine, hip, and femoral neck was compared to control subjects. For determination of the relationship between spleen volume and lumbar spine BMD Z score, linear correlation analyses were performed. RESULTS Lumbar spine Z scores for pediatric patients ranged from 0.061 to -4.879. Statistically significant decreases were observed for the adjusted mean BMC and BMD at the lumbar spine, hip, and femoral neck between the pediatric NPD-B cohort and control subjects. Most NPD-B adults were osteopenic or osteoporotic at one or more sites according the WHO classification of BMD. In NPD-B patients, the degree of splenomegaly was inversely correlated with lumbar spine BMD Z scores. CONCLUSION Skeletal involvement is a common and previously unrecognized manifestation of NPD-B. The association between splenomegaly and BMD lends further support to spleen size as an indicator of disease severity.
Collapse
Affiliation(s)
- Melissa Wasserstein
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | |
Collapse
|
45
|
Mucci JM, Scian R, De Francesco PN, García FS, Ceci R, Fossati CA, Delpino MV, Rozenfeld PA. Induction of osteoclastogenesis in an in vitro model of Gaucher disease is mediated by T cells via TNF-α. Gene 2012; 509:51-59. [PMID: 23010424 DOI: 10.1016/j.gene.2012.07.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 07/30/2012] [Indexed: 01/18/2023]
Abstract
Gaucher disease is a lysosomal storage disorder caused by deficiency of glucocerebrosidase enzymatic activity leading to accumulation of its substrate glucocerebrosidase mainly in macrophages. Skeletal disorder of Gaucher disease is the major cause of morbidity and is highly refractory to enzyme replacement therapy. However, pathological mechanisms of bone alterations in Gaucher disease are still poorly understood. We hypothesized that cellular alteration in Gaucher disease produces a proinflammatory milieu leading to bone destruction through enhancement of monocyte differentiation to osteoclasts and osteoclasts resorption activity. Against this background we decided to investigate in an in vitro chemical model of Gaucher disease, the capacity of secreted soluble mediators to induce osteoclastogenesis, and the mechanism responsible for this phenomena. We demonstrated that soluble factors produced by CBE-treated PBMC induced differentiation of osteoclasts precursors into mature and active osteoclasts that express chitotriosidase and secrete proinflammatory cytokines. We also showed a role of TNF-α in promoting osteoclastogenesis in Gaucher disease chemical model. To analyze the biological relevance of T cells in osteoclastogenesis of Gaucher disease, we investigated this process in T cell-depleted PBMC cultures. The findings suggest that T cells play a role in osteoclast formation in Gaucher disease. In conclusion, our data suggests that in vitro GCASE deficiency, along with concomitant glucosylceramide accumulation, generates a state of osteoclastogenesis mediated in part by pro-resorptive cytokines, especially TNF-α. Moreover, T cells are involved in osteoclastogenesis in Gaucher disease chemical model.
Collapse
Affiliation(s)
- Juan M Mucci
- LISIN, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata (1900) Argentina
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Induced pluripotent stem cell model recapitulates pathologic hallmarks of Gaucher disease. Proc Natl Acad Sci U S A 2012; 109:18054-9. [PMID: 23071332 DOI: 10.1073/pnas.1207889109] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gaucher disease (GD) is an autosomal recessive disorder caused by mutations in the acid β-glucocerebrosidase gene. To model GD, we generated human induced pluripotent stem cells (hiPSC), by reprogramming skin fibroblasts from patients with type 1 (N370S/N370S), type 2 (L444P/RecNciI), and type 3 (L444P/L444P) GD. Pluripotency was demonstrated by the ability of GD hiPSC to differentiate to all three germ layers and to form teratomas in vivo. GD hiPSC differentiated efficiently to the cell types most affected in GD, i.e., macrophages and neuronal cells. GD hiPSC-macrophages expressed macrophage-specific markers, were phagocytic, and were capable of releasing inflammatory mediators in response to LPS. Moreover, GD hiPSC-macrophages recapitulated the phenotypic hallmarks of the disease. They exhibited low glucocerebrosidase (GC) enzymatic activity and accumulated sphingolipids, and their lysosomal functions were severely compromised. GD hiPSC-macrophages had a defect in their ability to clear phagocytosed RBC, a phenotype of tissue-infiltrating GD macrophages. The kinetics of RBC clearance by types 1, 2, and 3 GD hiPSC-macrophages correlated with the severity of the mutations. Incubation with recombinant GC completely reversed the delay in RBC clearance from all three types of GD hiPSC-macrophages, indicating that their functional defects were indeed caused by GC deficiency. However, treatment of induced macrophages with the chaperone isofagomine restored phagocytosed RBC clearance only partially, regardless of genotype. These findings are consistent with the known clinical efficacies of recombinant GC and isofagomine. We conclude that cell types derived from GD hiPSC can effectively recapitulate pathologic hallmarks of the disease.
Collapse
|
47
|
Abstract
Gaucher disease is a systemic lysosomal storage disorder with a high prevalence among Ashkenazi Jews. It is caused by an inherited deficiency of the lysosomal enzyme glucocerebrosidase. Common signs and symptoms include hepatosplenomegaly, anemia, thrombocytopenia, and skeletal involvement. Oral and dental manifestations are less commonly seen. These manifestations are often asymptomatic, although they may be detected by routine dental x-rays. There are several case reports and a few larger series published describing patients with Gaucher disease who have mandibulo-maxillofacial involvement. This review aims to examine the oral manifestations observed in Gaucher disease and to suggest practical guidelines for dealing with these often worrisome signs. Among the critical issues are the benign nature of Gaucher cell infiltration of the mandible and the critical importance of being prepared for postprocedure bleeding and/or infections. Therefore, it is essential that dental practitioners be aware of the possible oral and dental complications of Gaucher disease, as well as the available treatment modalities.
Collapse
Affiliation(s)
- Hamid R. Saranjam
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Ari Zimran
- Gaucher Clinic, Shaare Zedek Medical Center, affiliated with the Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Deborah Elstein
- Gaucher Clinic, Shaare Zedek Medical Center, affiliated with the Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|