1
|
Van de Vyver T, Muntean C, Efimova I, Krysko DV, De Backer L, De Smedt SC, Raemdonck K. The alpha-adrenergic antagonist prazosin promotes cytosolic siRNA delivery from lysosomal compartments. J Control Release 2023; 364:142-158. [PMID: 37816483 DOI: 10.1016/j.jconrel.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/26/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
The widespread use of small interfering RNA (siRNA) is limited by the multiple extra- and intracellular barriers upon in vivo administration. Hence, suitable delivery systems, based on siRNA encapsulation in nanoparticles or its conjugation to targeting ligands, have been developed. Nevertheless, at the intracellular level, these state-of-the-art delivery systems still suffer from a low endosomal escape efficiency. Consequently, the bulk of the endocytosed siRNA drug rapidly accumulates in the lysosomal compartment. We recently reported that a wide variety of cationic amphiphilic drugs (CADs) can promote small nucleic acid delivery from the endolysosomal compartment into the cytosol via transient induction of lysosomal membrane permeabilization. Here, we describe the identification of alternate siRNA delivery enhancers from the NIH Clinical Compound Collection that do not have the typical physicochemical properties of CADs. Additionally, we demonstrate improved endolysosomal escape of siRNA via a cholesterol conjugate and polymeric carriers with the α1-adrenergic antagonist prazosin, which was identified as the best performing delivery enhancer from the compound screen. A more detailed assessment of the mode-of-action of prazosin suggests that a different cellular phenotype compared to typical CAD adjuvants drives cytosolic siRNA delivery. As it has been described in the literature that prazosin also induces cancer cell apoptosis and promotes antigen cross-presentation in dendritic cells, the proof-of-concept data in this work provides opportunities for the repurposing of prazosin in an anti-cancer combination strategy with siRNA.
Collapse
Affiliation(s)
- Thijs Van de Vyver
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Cristina Muntean
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent, 9000 Ghent, Belgium.
| | - Iuliia Efimova
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent, 9000 Ghent, Belgium.
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent, 9000 Ghent, Belgium; Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia.
| | - Lynn De Backer
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Popović DJ, Popović KJ, Miljković D, Popović JK, Lalošević D, Poša M, Dolićanin Z, Čapo I. Diclofenac and metformin synergistic dose dependent inhibition of hamster fibrosarcoma, rescued with mebendazole. Biomed Pharmacother 2023; 167:115528. [PMID: 37738800 DOI: 10.1016/j.biopha.2023.115528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023] Open
Abstract
We examined whether combinig diclofenac and metformin in doses equivalent to human doses would synergize their anticancer activity on fibrosarcoma inoculated to hamsters and in vitro. Rescue experiment was performed to examine whether the prosurvival NF-κB stimulation by mebendazole can reverse anticancer effects of the treatment. BHK-21/C13 cell culture was subcutaneously inoculated to Syrian golden hamsters randomly divided into groups (6 animals per group): 1) untreated control; treated daily with 2) diclofenac; 3) metformin; 4) combinations of diclofenac and metformin at various doses; 5) combination of diclofenac, metformin and mebendazole; 6) mebendazole. Dose response curves were made for diclofenac and metformin combination. Tumor growth kinetics, biophysical, pathological, histological and immunohistochemical characteristics of excised tumors and hamster organs as well as biochemical and hematological blood tests were compared among the groups. Single treatments had no anticancer effects. Diclofenac (60 mg/kg/day) exhibited significant (P < 0.05) synergistic inhibitory effect with metformin (500 mg/kg/day) on all tumor growth parameters, without toxicity and influence on biochemical and hematological blood tests. The same results were obtained with double doses of diclofenac and metformin combination. The addition of mebendazole to the diclofenac and metformin combination rescued tumor expansion. Furthermore, diclofenac with metformin demonstrated antiproliferative effects in hamster fibrosarcoma BHK-21/C13, human lung carcinoma A549 (CCL-185), colon carcinoma HT-29 (HTB-38) and cervical carcinoma HeLa (CCL-2) cell cultures, with markedly lower cytotoxicity in the normal fetal lung MRC-5 cells. In conclusion, diclofenac and metformin combination may be recommended for potential use in oncology, due to synergistic anticancer effect in doses achievable in humans.
Collapse
Affiliation(s)
- Dušica J Popović
- Department of Biomedical Sciences, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia
| | - Kosta J Popović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Dejan Miljković
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Jovan K Popović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; Academy of Medical Sciences of the Serbian Medical Society, 19 George Washington str.,11000 Belgrade, Serbia.
| | - Dušan Lalošević
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Mihalj Poša
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Zana Dolićanin
- Department of Biomedical Sciences, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia
| | - Ivan Čapo
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
3
|
Santo D, Cordeiro RA, Mendonça P, Serra A, Coelho JFJ, Faneca H. Glycopolymers Mediate Suicide Gene Therapy in ASGPR-Expressing Hepatocellular Carcinoma Cells in Tandem with Docetaxel. Biomacromolecules 2023; 24:1274-1286. [PMID: 36780314 PMCID: PMC10015461 DOI: 10.1021/acs.biomac.2c01329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Cationic glycopolymers stand out as gene delivery nanosystems due to their inherent biocompatibility and high binding affinity to the asialoglycoprotein receptor (ASGPR), a target receptor overexpressed in hepatocellular carcinoma (HCC) cells. However, their synthesis procedure remains laborious and complex, with problems of solubilization and the need for protection/deprotection steps. Here, a mini-library of well-defined poly(2-aminoethyl methacrylate hydrochloride-co-poly(2-lactobionamidoethyl methacrylate) (PAMA-co-PLAMA) glycopolymers was synthesized by activators regenerated by electron transfer (ARGET) ATRP to develop an efficient gene delivery nanosystem. The glycoplexes generated had suitable physicochemical properties and showed high ASGPR specificity and high transfection efficiency. Moreover, the HSV-TK/GCV suicide gene therapy strategy, mediated by PAMA144-co-PLAMA19-based nanocarriers, resulted in high antitumor activity in 2D and 3D culture models of HCC, which was significantly enhanced by the combination with small amounts of docetaxel. Overall, our results demonstrated the potential of primary-amine polymethacrylate-containing-glycopolymers as HCC-targeted suicide gene delivery nanosystems and highlight the importance of combined strategies for HCC treatment.
Collapse
Affiliation(s)
- Daniela Santo
- Center
for Neuroscience and Cell Biology, University
of Coimbra, Coimbra 3004-504, Portugal
- Institute
for Interdisciplinary Research, University
of Coimbra, Coimbra 3030-789, Portugal
| | - Rosemeyre A. Cordeiro
- Center
for Neuroscience and Cell Biology, University
of Coimbra, Coimbra 3004-504, Portugal
- Institute
for Interdisciplinary Research, University
of Coimbra, Coimbra 3030-789, Portugal
| | - Patrícia
V. Mendonça
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
| | - Arménio
C. Serra
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
| | - Jorge F. J. Coelho
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
- Associação
para a Inovação e Desenvolvimento Em Ciência
e Tecnologia, IPN—Instituto Pedro
Nunes, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Henrique Faneca
- Center
for Neuroscience and Cell Biology, University
of Coimbra, Coimbra 3004-504, Portugal
- Institute
for Interdisciplinary Research, University
of Coimbra, Coimbra 3030-789, Portugal
- . Phone: +351-239-820-190. Fax: +351- 239-853-607
| |
Collapse
|
4
|
Apolipoprotein C3 facilitates internalization of cationic lipid nanoparticles into bone marrow-derived mouse mast cells. Sci Rep 2023; 13:431. [PMID: 36624108 PMCID: PMC9828384 DOI: 10.1038/s41598-022-25737-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Mast cells (MCs), are hematopoetically-derived secretory immune cells that release preformed as well as de novo synthesized inflammatory mediators in response to activation by several stimuli. Based on their role in inflammatory responses, particularly in the lung and skin, MCs provide an effective target for anti-inflammatory therapeutic strategies. Drug-delivery of lipophilic payloads to MCs can be challenging due to their functionally distinct intracellular structures. In the present study, pH-sensitive cationic lipid-based nanoparticles (LNPs) composed of DODMA, DODAP or DOTAP lipids that encapsulated a GFP or eGFP plasmid were constructed using non-turbulent microfluidic mixing. This approach achieved up to 75-92% encapsulation efficiency. Dynamic light scattering revealed a uniformly sized and homogeneous dispersion of LNPs. To promote cellular internalization, LNPs were complexed with apolipoproteins, amphipathic proteins capable of binding lipids and facilitating their transport into cells. Cryo-TEM analysis showed that LNP structure was differentially modified when associated with different types of apolipoproteins. LNP preparations made up of DODMA or DODMA, DODAP and DOTAP lipids were coated with seven apolipoproteins (Apo A1, B, C3, D, E2, E4 and H). Differentiated bone-marrow derived mouse mast cells (BMMCs) were exposed to apolipoprotein-LNP and internalization was measured using flow cytometry. Out of all the apolipoproteins tested, ApoC3 most efficiently facilitated cellular internalization of the LNP into BMMCs as determined by GFP fluorescence using flow cytometry. These effects were confirmed in a less differentiated but also interleukin-3-dependent model of mouse mast cells, MC/9. ApoC3-LNP enhanced internalization by BMMC in a concentration-dependent manner and this was significantly increased when BMMC were pre-treated with inhibitors of actin polymerization, suggesting a dependence on intracellular shuttling. Activation of peroxisome proliferator-activated receptor gamma (PPARγ) decreased ApoC3-LNP internalization and reduced the expression of apolipoprotein E receptor 2 (ApoER2), suggesting that ApoC3-LNP binding to ApoER2 may be responsible for its enhanced internalization. Furthermore, ApoC3 fails to facilitate internalization of LNPs in Lrp8-/- KO BMMC that do not express ApoER2 on their cell surface. Altogether, our studies reveal an important role of ApoC3 in facilitating internalization of cationic LNPs into MCs.
Collapse
|
5
|
Tsuchiya M, Kong W, Hiraoka Y, Haraguchi T, Ogawa H. TBK1 inhibitors enhance transfection efficiency by suppressing p62/SQSTM1 phosphorylation. Genes Cells 2023; 28:68-77. [PMID: 36284367 DOI: 10.1111/gtc.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 01/19/2023]
Abstract
DNA transfection is an essential technique in the life sciences. Non-viral transfection reagents are widely used for transfection in basic science. However, low transfection efficiency is a problem in some cell types. This low efficiency can be primarily attributed to the intracellular degradation of transfected DNA by p62-dependent selective autophagy, specifically by p62 phosphorylated at the S403 residue (p62-S403-P). To achieve efficient DNA transfection, we focused on a phosphorylation process that generates p62-S403-P and investigated whether inhibition of this process affects transfection efficiency. One of the kinases that phosphorylate p62 is TBK1. The TBK1 gene depletion in murine embryonic fibroblast cells by genome editing caused a significant reduction or loss of p62-S405-P (equivalent to human S403-P) and enhanced transfection efficiency, suggesting that TBK1 is a major kinase that phosphorylates p62 at S403. Therefore, TBK1 is a viable target for drug treatment to increase transfection efficiency. Transfection efficiency was enhanced when cells were treated with one of the following TBK1 inhibitors BX795, MRT67307, or amlexanox. This effect was synergistically improved when the two inhibitors were used in combination. Our results indicate that TBK1 inhibitors enhanced transfection efficiency by suppressing p62 phosphorylation.
Collapse
Affiliation(s)
- Megumi Tsuchiya
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Weixia Kong
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
6
|
Van de Vyver T, De Smedt SC, Raemdonck K. Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Adv Drug Deliv Rev 2022; 181:114041. [PMID: 34763002 DOI: 10.1016/j.addr.2021.114041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
RNA therapeutics (e.g. siRNA, oligonucleotides, mRNA, etc.) show great potential for the treatment of a myriad of diseases. However, to reach their site of action in the cytosol or nucleus of target cells, multiple intra- and extracellular barriers have to be surmounted. Several non-viral delivery systems, such as nanoparticles and conjugates, have been successfully developed to meet this requirement. Unfortunately, despite these clear advances, state-of-the-art delivery agents still suffer from relatively low intracellular delivery efficiencies. Notably, our current understanding of the intracellular delivery process is largely oversimplified. Gaining mechanistic insight into how RNA formulations are processed by cells will fuel rational design of the next generation of delivery carriers. In addition, identifying which intracellular pathways contribute to productive RNA delivery could provide opportunities to boost the delivery performance of existing nanoformulations. In this review, we discuss both established as well as emerging techniques that can be used to assess the impact of different intracellular barriers on RNA transfection performance. Next, we highlight how several modulators, including small molecules but also genetic perturbation technologies, can boost RNA delivery by intervening at differing stages of the intracellular delivery process, such as cellular uptake, intracellular trafficking, endosomal escape, autophagy and exocytosis.
Collapse
Affiliation(s)
- Thijs Van de Vyver
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
7
|
Alam SB, Kulka M. Internalization of benzylisoquinoline alkaloids by resting and activated bone marrow-derived mast cells utilizes energy-dependent mechanisms. Inflamm Res 2022; 71:343-356. [PMID: 35076750 PMCID: PMC8897387 DOI: 10.1007/s00011-021-01526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Objective and design Drug delivery to inflammatory cells is dependent upon poorly understood, complex endocytic processes. Berberine (BBR), a benzylisoquinoline alkaloid, binds to heparin and targets glycosaminoglycan-rich granules in mast cells (MC), but the mechanism of BBR internalization is unknown. Methods BMMC were treated with various concentrations of BBR for different amounts of time and BBR internalization was assessed by flow cytometry and fluorescence microscopy. BMMC were pretreated with endocytic inhibitors or a growth factor (IL-3) prior to BBR exposure to access mechanisms of its internalization. Results After 24 h, 48 ± 0.8% of BMMC internalized BBR and this process was dependent upon temperature and the presence of glucose in the medium. Methanol fixation reduced BBR internalization, suggesting the involvement of an energy-dependent active transport mechanism. To determine mode of internalization, BBR was encapsulated into Lipofectamine TM lipoplexes since these are known to circumvent classical endocytic pathways. Incorporating BBR into lipoplexes decreased BBR internalization by 26% and 10% (10 μg/ml and 100 μg/ml Lipo-BBR respectively) by BMMC. BBR endocytosis was significantly reduced by Latrunculin B (88%), Cytochalasin B (87%), Chloroquine (86.5%) and 3-methyladenine (91%), indicating that actin polymerization, lysosomal pH and lysosomal self-degradation via the autophagy pathway was involved. In contrast, IL-3 treatment significantly enhanced BBR endocytosis (54% by 40 ng/ml IL-3) suggesting that IL-3 signaling pathways play a role in internalization. Conclusions Our data suggests that internalization of BBR by resting and IL-3-activated BMMC utilizes an energy-dependent pathway that is dependent upon glucose metabolism and temperature. Furthermore, this process requires actin polymerization and lysosomal trafficking. These data suggest internalization of benzylisoquinoline compounds is an active and complex process. Supplementary Information The online version contains supplementary material available at 10.1007/s00011-021-01526-2.
Collapse
Affiliation(s)
- Syed Benazir Alam
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Dr NW, Edmonton, AB, T6G 2M9, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Dr NW, Edmonton, AB, T6G 2M9, Canada.
- Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Popović KJ, Popović DJ, Miljković D, Popović JK, Lalošević D, Poša M, Čapo I. Disulfiram and metformin combination anticancer effect reversible partly by antioxidant nitroglycerin and completely by NF-κB activator mebendazole in hamster fibrosarcoma. Biomed Pharmacother 2021; 143:112168. [PMID: 34536762 DOI: 10.1016/j.biopha.2021.112168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
We investigated the anticancer effect of disulfiram and metformin combination on fibrosarcoma in hamsters. Hamsters of both sexes (~ 70 g) were randomly allocated to control and experimental groups (8 animals per group). In all 10 groups, 2 × 106 BHK-21/C13 cells in 1 ml were injected subcutaneously into the animals' backs. Peroral treatments were carried out with disulfiram 50 mg/kg daily, or with metformin 500 mg/kg daily, or with their combination. Validation and rescue grups were treated by double doses of the single therapy and by the combination with addition of rescue daily doses of ROS inhibitor nitroglycerin 25 mg/kg or NF-κB stimulator mebendazole 460 mg/kg, via a gastric probe after tumor inoculation. After 19 days all animals were sacrificed. Blood samples were collected for hematological and biochemical analyses, the tumors were excised and weighed, and their diameters and volumes were measured. The tumor samples were pathohistologically and immunohistochemically assessed (Ki-67, PCNA, CD34, CD31, COX4, Cytochrome C, GLUT1, iNOS), and the main organs were toxicologically tested. The combination of disulfiram and metformin significantly inhibited fibrosarcoma growth in hamsters without toxicity, compared to monotherapy or control. The single treatments did not show significant antisarcoma effect. Co-treatment with nitroglycerin partly rescued tumor progression, probably by ROS inhibition, while mebendazole completely blocked anticancer activity of the disulfiram and metformin combination, most likely by NF-κB stimulation. Combination of disulfiram with metformin may be used as an effective and safe candidate for novel nontoxic adjuvant and relapse prevention anticancer therapy.
Collapse
Affiliation(s)
- Kosta J Popović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia.
| | - Dušica J Popović
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dejan Miljković
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Jovan K Popović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dušan Lalošević
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Mihalj Poša
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ivan Čapo
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
9
|
Tsuchiya M, Ogawa H, Watanabe K, Koujin T, Mori C, Nunomura K, Lin B, Tani A, Hiraoka Y, Haraguchi T. Microtubule inhibitors identified through nonbiased screening enhance DNA transfection efficiency by delaying p62-dependent ubiquitin recruitment. Genes Cells 2021; 26:739-751. [PMID: 34212463 DOI: 10.1111/gtc.12881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 11/26/2022]
Abstract
Ectopic gene expression is an indispensable tool in biology and medicine, but is often limited by the low efficiency of DNA transfection. We previously reported that depletion of the autophagy receptor p62/SQSTM1 enhances DNA transfection efficiency by preventing the degradation of transfected DNA. Therefore, p62 is a potential target for drugs to increase transfection efficiency. To identify such drugs, a nonbiased high-throughput screening was applied to over 4,000 compounds from the Osaka University compound library, and their p62 dependency was evaluated. The top-scoring drugs were mostly microtubule inhibitors, such as colchicine and vinblastine, and all of them showed positive effects only in the presence of p62. To understand the p62-dependent mechanisms, the time required for p62-dependent ubiquitination, which is required for autophagosome formation, was examined using polystyrene beads that were introduced into cells as materials that mimicked transfected DNA. Microtubule inhibitors caused a delay in ubiquitination. Furthermore, the level of phosphorylated p62 at S405 was markedly decreased in the drug-treated cells. These results suggest that microtubule inhibitors inhibit p62-dependent autophagosome formation. Our findings demonstrate for the first time that microtubule inhibitors suppress p62 activation as a mechanism for increasing DNA transfection efficiency and provide solutions to increase efficiency.
Collapse
Affiliation(s)
- Megumi Tsuchiya
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Kento Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Takako Koujin
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Chie Mori
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Kazuto Nunomura
- Graduate School of Pharmaceutical Science, Osaka University, Suita, Japan
| | - Bangzhong Lin
- Graduate School of Pharmaceutical Science, Osaka University, Suita, Japan
| | - Akiyoshi Tani
- Graduate School of Pharmaceutical Science, Osaka University, Suita, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
10
|
Co-treatment with nitroglycerin and metformin exhibits physicochemically and pathohistologically detectable anticancer effects on fibrosarcoma in hamsters. Biomed Pharmacother 2020; 130:110510. [PMID: 32707437 DOI: 10.1016/j.biopha.2020.110510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
We investigated the effect of nitroglycerin with metformin on fibrosarcoma in hamsters. Syrian golden hamsters of both sexes, weighing approximately 60 g, were randomly allocated to control and experimental groups, with 8 animals per group. In all groups, 2 × 106 BHK-21/C13 cells in 1 ml were injected subcutaneously into the animals' backs. Peroral treatment carried out with nitroglycerin 25 mg/kg daily, or with metformin 500 mg/kg daily, or with a combination of nitroglycerin 25 mg/kg and metformin 500 mg/kg daily. Later validation experiments were conducted with double doses of the single therapy and additional rescue doses of mebendazole 460 mg/kg daily, via a gastric probe after tumor inoculation. After 2 weeks, when the tumors were approximately 2-3 cm in the control group, all animals were sacrificed. Blood samples were collected for hematological and biochemical analyses, the tumors were excised and weighed, and their diameters and volumes were measured. The tumor samples were pathohistologically and immunohistochemically assessed for proliferation marker protein Ki-67, proliferating cell nuclear antigen PCNA, hematopoietic progenitor cell antigen CD34, cluster of differentiation 31 (CD31), cytochrome c oxidase subunit 4 (COX4), mitochondria marker Cytochrome C, glucose transporter 1 (GLUT1) and inducible nitric oxide synthase (iNOS), and the main organs were toxicologically tested. The Ki-67 and PCNA positivity and the cytoplasmic marker (CD34, CD31, COX4, Cytochrome C, GLUT1, iNOS) immunoexpression in the tumor samples were quantified. The combination of nitroglycerin and metformin significantly inhibited fibrosarcoma growth in hamsters without toxicity, compared to monotherapy or control. The results were validated and confirmed in the subsequently accomplished experiment with doubled doses of the single drug therapy and in the rescue experiment with addition of mebendazole. The single treatments did not show significant antisarcoma effect, regardless of the dose. Co-treatment with mebendazole inhibited anticancer activity of the nitroglycerin and metformin combination. Mebendazole rescued tumor progression suppressed by the combination of nitroglycerin and metformin. Administration of nitroglycerin with metformin might be an effective and safe approach in novel nontoxic adjuvant and relapse prevention anticancer treatment.
Collapse
|
11
|
Hamann A, Broad K, Nguyen A, Pannier AK. Mechanisms of unprimed and dexamethasone-primed nonviral gene delivery to human mesenchymal stem cells. Biotechnol Bioeng 2018; 116:427-443. [PMID: 30450542 PMCID: PMC6322959 DOI: 10.1002/bit.26870] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/10/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are under intense study for applications of cell and gene therapeutics because of their unique immunomodulatory and regenerative properties. Safe and efficient genetic modification of hMSCs could increase their clinical potential by allowing functional expression of therapeutic transgenes or control over behavior and differentiation. Viral gene delivery is efficient, but suffers from safety issues, while nonviral methods are safe, but highly inefficient, especially in hMSCs. Our lab previously demonstrated that priming cells before delivery of DNA complexes with dexamethasone (DEX), an anti‐inflammatory glucocorticoid drug, significantly increases hMSC transfection success. This work systematically investigates the mechanisms of hMSC transfection and DEX‐mediated enhancement of transfection. Our results show that hMSC transfection and its enhancement by DEX are decreased by inhibiting classical intracellular transport and nuclear import pathways, but DEX transfection priming does not increase cellular or nuclear internalization of plasmid DNA (pDNA). We also show that hMSC transgene expression is largely affected by pDNA promoter and enhancer sequence changes, but DEX‐mediated enhancement of transfection is unaffected by any pDNA sequence changes. Furthermore, DEX‐mediated transfection enhancement is not the result of increased transgene messenger RNA transcription or stability. However, DEX‐priming increases total protein synthesis by preventing hMSC apoptosis induced by transfection, resulting in increased translation of transgenic protein. DEX may also promote further enhancement of transgenic reporter enzyme activity by other downstream mechanisms. Mechanistic studies of nonviral gene delivery will inform future rationally designed technologies for safe and efficient genetic modification of clinically relevant cell types.
Collapse
Affiliation(s)
- Andrew Hamann
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Kelly Broad
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Albert Nguyen
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
12
|
Singh S, Asal R, Bhagat S. Multifunctional antioxidant nanoliposome-mediated delivery of PTEN plasmids restore the expression of tumor suppressor protein and induce apoptosis in prostate cancer cells. J Biomed Mater Res A 2018; 106:3152-3164. [PMID: 30194716 DOI: 10.1002/jbm.a.36510] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/29/2018] [Accepted: 07/12/2018] [Indexed: 11/08/2022]
Abstract
Prostate cancer is the second leading cause of cancer death in men and about one in nine will be diagnosed in his lifetime. Loss of PTEN has been considered as one of the major factors leading to the origin of prostate cancer through modulating PI3K/AKT signaling pathways. In this study, we have prepared a multifunctional antioxidant nanoliposome containing PTEN plasmid and cerium oxide nanoparticles (CeNPs). The efficient delivery of PTEN plasmid to human prostate cancer cells (PC-3) leads to restoration of the expression of lost PTEN protein in the cell cytoplasm. The delivered superoxide dismutase (SOD)-mimetic CeNPs were also found to decrease the cytoplasmic free radical levels in prostate cancer cells. The above two activities induced DNA fragmentation and micronucleus formation in prostate cancer cells. Furthermore, it was also found that these multifunctional antioxidant nanoliposomes inhibit the PI3K/AKT signaling pathway to negatively regulate the cell viability of prostate cancer cells. The mRNA expression pattern of other relevant proteins predominantly involved in cancer cell proliferation and apoptosis suggested that the high PTEN expression could control the synthesis of oncogenic proteins. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3152-3164, 2018.
Collapse
Affiliation(s)
- Sanjay Singh
- Division of Biological and Life Science, School of Arts and Science, Ahmedabad University, Ahmedabad, 380009, Gujarat, India
| | - Raghu Asal
- Division of Biological and Life Science, School of Arts and Science, Ahmedabad University, Ahmedabad, 380009, Gujarat, India
| | - Stuti Bhagat
- Division of Biological and Life Science, School of Arts and Science, Ahmedabad University, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
13
|
Ho Y, Zhou L, Tam KC, Too H. Enhanced non-viral gene delivery by coordinated endosomal release and inhibition of β-tubulin deactylase. Nucleic Acids Res 2017; 45:e38. [PMID: 27899629 PMCID: PMC5389648 DOI: 10.1093/nar/gkw1143] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/04/2016] [Accepted: 11/04/2016] [Indexed: 12/20/2022] Open
Abstract
Efficient non-viral gene delivery is highly desirable but often unattainable with some cell-types. We report here that non-viral DNA polyplexes can efficiently transfect differentiated neuronal and stem cells. Polyplex transfection centrifugation protocols was enhanced by including a simultaneous treatment with a DOPE/CHEMS lipid suspension and a microtubule inhibitor, Tubastatin A. Lipoplex transfection protocols were not improved by this treatment. This mechanism of action was unravelled by systematically identifying and rationally mitigating barriers limiting high transfection efficiency, allowing unexpected improvements in the transfection of mesenchymal stem cells (MSC), primary neuron and several hard-to-transfect cell types beyond what are currently achievable using cationic polymers. The optimized formulation and method achieved high transfection efficiency with no adverse effects on cell viability, cell proliferation or differentiation. High efficiency modification of MSC for cytokine overexpression, efficient generation of dopaminergic neuron using neural stem cells and enhanced genome editing with CRISPR-Cas9 were demonstrated. In summary, this study described a cost-effective method for efficient, rapid and scalable workflow for ex vivo gene delivery using a myriad of nucleic acids including plasmid DNA, mRNA, siRNA and shRNA.
Collapse
Affiliation(s)
- Yoon Khei Ho
- Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 138668 Singapore
| | - Li Han Zhou
- MiRXES, 10 Biopolis Road, Chromos 03-01, 138670 Singapore
| | - Kam C. Tam
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Heng Phon Too
- Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 138668 Singapore
- Department of Biochemistry, National University of Singapore, 119260 Singapore
| |
Collapse
|
14
|
Alves RF, Favaro MT, Balbino TA, de Toledo MA, de la Torre LG, Azzoni AR. Recombinant protein-based nanocarriers and their association with cationic liposomes: Characterization and in vitro evaluation. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
The intracellular trafficking mechanism of Lipofectamine-based transfection reagents and its implication for gene delivery. Sci Rep 2016; 6:25879. [PMID: 27165510 PMCID: PMC4863168 DOI: 10.1038/srep25879] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/25/2016] [Indexed: 12/23/2022] Open
Abstract
Lipofectamine reagents are widely accepted as "gold-standard" for the safe delivery of exogenous DNA or RNA into cells. Despite this, a satisfactory mechanism-based explanation of their superior efficacy has remained mostly elusive thus far. Here we apply a straightforward combination of live cell imaging, single-particle tracking microscopy, and quantitative transfection-efficiency assays on live cells to unveil the intracellular trafficking mechanism of Lipofectamine/DNA complexes. We find that Lipofectamine, contrary to alternative formulations, is able to efficiently avoid active intracellular transport along microtubules, and the subsequent entrapment and degradation of the payload within acidic/digestive lysosomal compartments. This result is achieved by random Brownian motion of Lipofectamine-containing vesicles within the cytoplasm. We demonstrate here that Brownian diffusion is an efficient route for Lipofectamine/DNA complexes to avoid metabolic degradation, thus leading to optimal transfection. By contrast, active transport along microtubules results in DNA degradation and subsequent poor transfection. Intracellular trafficking, endosomal escape and lysosomal degradation appear therefore as highly interdependent phenomena, in such a way that they should be viewed as a single barrier on the route for efficient transfection. As a matter of fact, they should be evaluated in their entirety for the development of optimized non-viral gene delivery vectors.
Collapse
|
16
|
Gu J, Hao J, Fang X, Sha X. Factors influencing the transfection efficiency and cellular uptake mechanisms of Pluronic P123-modified polypropyleneimine/pDNA polyplexes in multidrug resistant breast cancer cells. Colloids Surf B Biointerfaces 2015; 140:83-93. [PMID: 26741268 DOI: 10.1016/j.colsurfb.2015.12.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/30/2015] [Accepted: 12/14/2015] [Indexed: 11/18/2022]
Abstract
Generally, the major obstacles for efficient gene delivery are cellular internalization and endosomal escape of nucleic acid such as plasmid DNA (pDNA) or small interfering RNA (siRNA). We previously developed Pluronic P123 modified polypropyleneimine (PPI)/pDNA (P123-PPI/pDNA) polyplexes as a gene delivery system. The results showed that P123-PPI/pDNA polyplexes revealed higher transfection efficiency than PPI/pDNA polyplexes in multidrug resistant breast cancer cells. As a continued effort, the present investigation on the factors influencing the transfection efficiency, cellular uptake mechanisms, and intracellular fate of P123-PPI/pDNA polyplexes is reported. The presence of P123 was the main factor influencing the transfection efficiency of P123-PPI/pDNA polyplexes in MCF-7/ADR cells, but other parameters, such as N/P ratio, FBS concentration, incubation time and temperature were important as well. The endocytic inhibitors against clathrin-mediated endocytosis (CME), caveolae-mediated endocytosis (CvME), and macropinocytosis were involved in the internalization to investigate their effects on the cellular uptake and transfection efficiency of P123-PPI/pDNA polyplexes in vitro. The data showed that the internalization of P123-PPI/pDNA polyplexes was obtained from both CME and CvME. Colocalization experiments with TRITC-transferrin (CME indicator), Alexa Fluor 555-CTB (CvME indicator), monoclonal anti-α-tubulin (microtubule indicator), and LysoTracker Green (Endosome/lysosome indicator) were carried out to confirm the internalization routes. The results showed that both CME and CvME played vital roles in the effective transfection of P123-PPI/pDNA polyplexes. Endosome/lysosome system and skeleton, including actin filament and microtubule, were necessary for the transportation after internalization.
Collapse
Affiliation(s)
- Jijin Gu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China; Laboratory for Drug Delivery and Biomaterials, Faculty of Pharmacy, University of Manitoba, 750 McDermot Ave, Winnipeg, Manitoba R3E 0T5, Canada
| | - Junguo Hao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Xiaoling Fang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China.
| |
Collapse
|
17
|
Abstract
An understanding of parameters that modulate gene transfer in 3-D will assist in the formation of gene delivery systems and scaffolds, which can mediate efficient non-viral delivery for guiding in vivo tissue regeneration and therapy. We have previously demonstrated the cell area and length, integrin expression, and RhoGTPase mediated signalling to be pivotal parameters that guide gene transfer to mouse mesenchymal stem cells (mMSCs) cultured in 2-D and are modulated by ECM proteins. In this study, we were interested in determining if cationic polymer mediated gene transfer to cells seeded in 3-D would occur through different mechanisms as compared to those seeded in 2-D. In particular, we examined the endocytosis pathways used to internalize polyplexes, and the role of cytoskeletal dynamics and RhoGTPases in non-viral gene transfer for cells seeded in 2-D and 3-D. Inhibition of clathrin- and caveolae-mediated endocytosis resulted in a more drastic decrease in overall transgene expression for cells seeded in 3-D than for those in 2-D. In addition, polyplex internalization was only significantly decreased in 3-D when clathrin-mediated endocytosis was inhibited, while caveolae-mediated endocytosis inhibition for cells seeded in 2-D resulted in the strongest polyplex internalization inhibition. Actin and microtubule polymerization affected 2-D and 3-D transfection differently. Microtubule depolymerization enhanced transgene expression in 2-D, but inhibited transgene expression in 3-D. Lastly, inhibition of RhoGTPases also affected 2-D and 3-D transfection differently. The inhibition of ROCK effectors resulted in a decrease of transgene expression and internalization for cells seeded in 3-D, but not in 2-D, and the inhibition of the effector PAK1 resulted in an increase of transgene expression for both 2-D and 3-D. Overall, our study suggests that the process of gene transfer occurs through different mechanisms for cells seeded in 2-D compared to those seeded in 3-D.
Collapse
Affiliation(s)
- Anandika Dhaliwal
- Biomedical Engineering Interdepartmental Program, University of California at Los Angeles, Los Angeles, USA
| | | | | |
Collapse
|
18
|
New views and insights into intracellular trafficking of drug-delivery systems by fluorescence fluctuation spectroscopy. Ther Deliv 2014; 5:173-88. [DOI: 10.4155/tde.13.148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biomaterials in the nanometer size range can be engineered for site-specific delivery of drugs after injection into the blood circulation. However, translation of such nanomedicines from the bench to the bedside is still hindered by many extracellular and intracellular barriers. To realize the concept of targeted drug delivery with nanomedicines, research groups are studying intensively the extra- and intra-cellular mechanisms involved as a response to the physicochemical properties of the nanomedicines. In this review, we highlight the contributions of fluorescence fluctuations spectroscopy techniques to better understand, and in turn to bypass, the major hurdles to therapeutic delivery, focusing mostly on the intracellular dynamics of drug-delivery systems.
Collapse
|
19
|
Duvshani-Eshet M, Haber T, Machluf M. Insight concerning the mechanism of therapeutic ultrasound facilitating gene delivery: increasing cell membrane permeability or interfering with intracellular pathways? Hum Gene Ther 2014; 25:156-64. [PMID: 24251908 PMCID: PMC3922141 DOI: 10.1089/hum.2013.140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 11/15/2013] [Indexed: 11/12/2022] Open
Abstract
Nonviral gene delivery methods encounter major barriers in plasmid DNA (pDNA) trafficking toward the nucleus. The present study aims to understand the role and contribution of therapeutic ultrasound (TUS), if any, in pDNA trafficking in primary cells such as fibroblasts and cell lines (e.g., baby hamster kidney [BHK]) during the transfection process. Using compounds that alter the endocytic pathways and the cytoskeletal network, we show that after TUS application, pDNA trafficking in the cytoplasm is not mediated by endocytosis or by the cytoskeletal network. Transfection studies and confocal analyses showed that the actin fibers impeded TUS-mediated transfection in BHK cells, but not in fibroblasts. Flow cytometric analyses indicated that pDNA uptake by cells occurs primarily when the pDNA is added before and not after TUS application. Taken together, these results suggest that TUS by itself operates as a mechanical force driving the pDNA through the cell membrane, traversing the cytoplasmic network and into the nucleus.
Collapse
Affiliation(s)
- Maayan Duvshani-Eshet
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology , Haifa 32000, Israel
| | | | | |
Collapse
|
20
|
Pozzi D, Marchini C, Cardarelli F, Rossetta A, Colapicchioni V, Amici A, Montani M, Motta S, Brocca P, Cantù L, Caracciolo G. Mechanistic understanding of gene delivery mediated by highly efficient multicomponent envelope-type nanoparticle systems. Mol Pharm 2013; 10:4654-65. [PMID: 24188138 DOI: 10.1021/mp400470p] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We packaged condensed DNA/protamine particles in multicomponent envelope-type nanoparticle systems (MENS) combining different molar fractions of the cationic lipids 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 3β-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and the zwitterionic lipids dioleoylphosphocholine (DOPC) and dioleoylphosphatidylethanolamine (DOPE). Dynamic light scattering (DLS) and microelectrophoresis allowed us to identify the cationic lipid/DNA charge ratio at which MENS are small sized and positively charged, while synchrotron small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM) revealed that MENS are well-shaped DNA/protamine particles covered by a lipid monobilayer. Transfection efficiency (TE) experiments indicate that a nanoparticle formulation, termed MENS-3, was not cytotoxic and highly efficient to transfect Chinese hamster ovary (CHO) cells. To rationalize TE, we performed a quantitative investigation of cell uptake, intracellular trafficking, endosomal escape, and final fate by laser scanning confocal microscopy (LSCM). We found that fluid-phase macropinocytosis is the only endocytosis pathway used by MENS-3. Once taken up by the cell, complexes that are actively transported by microtubules frequently fuse with lysosomes, while purely diffusing systems do not. Indeed, spatiotemporal image correlation spectroscopy (STICS) clarified that MENS-3 mostly exploit diffusion to move in the cytosol of CHO cells, thus explaining the high TE levels observed. Also, MENS-3 exhibited a marked endosomal rupture ability resulting in extraordinary DNA release. The lipid-dependent and structure-dependent TE boost suggests that efficient transfection requires both the membrane-fusogenic activity of the nanocarrier envelope and the employment of lipid species with intrinsic endosomal rupture ability.
Collapse
Affiliation(s)
- D Pozzi
- Department of Molecular Medicine, "Sapienza" University of Rome , Viale Regina Elena 291, 00161, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
BACKGROUND Lipid-mediated delivery of DNA is hindered by extracellular and intracellular barriers that significantly reduce the transfection efficiency of synthetic nonviral vectors. RESULTS In this study we investigated the role of the actin and microtubule networks on the uptake and cytoplasmic transport of multicomponent cationic liposome-DNA complexes in CHO-K1 live cells by means of confocal laser scanning microscopy and 3D single particle tracking. Treatment with actin (latrunculin B)- and microtubule-disrupting (nocodazole) reagents indicated that intracellular trafficking of complexes predominantly involves microtubule-dependent active transport. We found that the actin network has a major effect on the initial uptake of complexes, while the microtubule network is mainly responsible for the subsequent active transportation to the lysosomes. CONCLUSION Collectively, a strategy to improve the efficiency of lipid gene vectors can be formulated. We could find a lipid formulation that allows the nanoparticles to avoid the microtubule pathway to lysosomes.
Collapse
|
22
|
Seo JH, Cho K, Lee SY, Joo SW. Concentration-dependent fluorescence live-cell imaging and tracking of intracellular nanoparticles. NANOTECHNOLOGY 2011; 22:235101. [PMID: 21490390 DOI: 10.1088/0957-4484/22/23/235101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Using live-cell imaging techniques we investigated concentration-dependent intracellular movements of fluorescence nanoparticles (NPs) in real-time after their entry into HeLa cells via incubation. Intracellular particle traces appeared to be a mixture of both random and fairly unidirectional movements of the particles. At rather low concentrations of NPs, a majority of the non-random intracellular particle trajectories are assumed to mostly go along microtubule networks after endocytosis, as evidenced from the inhibition test with nocodazole. On the other hand, as the concentrations of NPs increased, random motions were more frequently observed inside the cells.
Collapse
Affiliation(s)
- Ji Hye Seo
- Department of Chemistry, Soongsil University, Seoul, Korea
| | | | | | | |
Collapse
|
23
|
Sun VZ, Li Z, Deming TJ, Kamei DT. Intracellular fates of cell-penetrating block copolypeptide vesicles. Biomacromolecules 2010; 12:10-3. [PMID: 21128599 DOI: 10.1021/bm101036f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The block copolypeptide poly(l-homoarginine)(60)-b-poly(l-leucine)(20) (R(60)L(20)) was previously found to self-assemble into versatile vesicles with controllable size and encapsulate hydrophilic cargo. These R(60)L(20) vesicles also demonstrated the ability to cross the cell membrane and transport encapsulated cargo into different cell lines. To assess the potential for using the R(60)L(20) vesicles as drug delivery vehicles further, we have investigated their endocytosis and intracellular trafficking behavior. Using drugs that inhibit different endocytosis pathways, we identified macropinocytosis to be a major process by which the R(60)L(20) vesicles enter HeLa cells. Subsequent immunostaining experiments demonstrated that the vesicles entered the early endosomes but not the lysosomes, suggesting that they recycle back to the cell surface. Overall, our studies indicate that the R(60)L(20) vesicles are able to enter cells intact with their cargos, and although some manage to escape from early endosomes, most are trapped within these intracellular compartments.
Collapse
Affiliation(s)
- Victor Z Sun
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | | | | | | |
Collapse
|
24
|
Thakor DK, Teng YD, Obata H, Nagane K, Saito S, Tabata Y. Nontoxic genetic engineering of mesenchymal stem cells using serum-compatible pullulan-spermine/DNA anioplexes. Tissue Eng Part C Methods 2010; 17:131-44. [PMID: 20698746 DOI: 10.1089/ten.tec.2010.0120] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genetic modification of stem cells could be applied to initiate/enhance their secretion of therapeutic molecules, alter their biological properties, or label them for in vivo tracking. We recently developed a negatively charged gene carrier ("anioplex") based on pullulan-spermine, a conjugate prepared from a natural polysaccharide and polyamine. In rat mesenchymal stem cells (MSCs), anioplex-derived reporter gene activity was comparable to or exceeded that obtained using a commercial cationic lipid reagent. Transfection in the growth medium with 15% serum and antibiotics was approximately sevenfold more effective than in serum-free conditions. Cytotoxicity was essentially indiscernible after 24 h of anioplex transfection with 20 μg/mL DNA, in contrast to cationic lipid transfection that resulted in 40%-60% death of target MSCs. Anioplex-derived reporter gene activity persisted throughout the entire 3-week study, with post-transfection MSCs appearing to maintain osteogenic, adipogenic, and chondrogenic multipotency. In particular, chondrogenic pellet formation of differentiating human MSCs was significantly inhibited after lipofection but not after aniofection, which further indicates the biological inertness of pullulan-spermine/DNA anioplexes. Collectively, these data introduce a straightforward technology for genetic engineering of adult stem/progenitor cells under physiological niche-like conditions. Moreover, reporter gene activity was observed in rat spinal cords after minimally invasive intrathecal implantation, suggesting effective engraftment of donor MSCs. It is therefore plausible that anioplex-transfected MSCs or other stem/progenitor cells with autologous potential could be applied to disorders such as neurotrauma or neuropathic pain that involve the spinal cord and brain.
Collapse
Affiliation(s)
- Devang K Thakor
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Al-Katib A, Arnold AA, Aboukameel A, Sosin A, Smith P, Mohamed AN, Beck FW, Mohammad RM. I-kappa-kinase-2 (IKK-2) inhibition potentiates vincristine cytotoxicity in non-Hodgkin's lymphoma. Mol Cancer 2010; 9:228. [PMID: 20809973 PMCID: PMC2940845 DOI: 10.1186/1476-4598-9-228] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 09/01/2010] [Indexed: 11/29/2022] Open
Abstract
Background IKK-2 is an important regulator of the nuclear factor-κB (NF-κB) which has been implicated in survival, proliferation and apoptosis resistance of lymphoma cells. In this study, we investigated whether inhibition of IKK-2 impacts cell growth or cytotoxicity of selected conventional chemotherapeutic agents in non-Hodgkin's lymphoma. Two established model systems were used; Follicular (WSU-FSCCL) and Diffuse Large Cell (WSU-DLCL2) Lymphoma, both of which constitutively express p-IκB. A novel, selective small molecule inhibitor of IKK-2, ML120B (N-[6-chloro-7-methoxy-9H-β-carbolin-8-yl]-2-methylnicotinamide) was used to perturb NF-κB in lymphoma cells. The growth inhibitory effect of ML120B (M) alone and in combination with cyclophosphamide monohydrate (C), doxorubicin (H) or vincristine (V) was evaluated in vitro using short-term culture assay. We also determined efficacy of the combination in vivo using the SCID mouse xenografts. Results ML120B down-regulated p-IκBα protein expression in a concentration dependent manner, caused growth inhibition, increased G0/G1 cells, but did not induce apoptosis. There was no significant enhancement of cell kill in the M/C or M/H combination. However, there was strong synergy in the M/V combination where the vincristine concentration can be lowered by a hundred fold in the combination for comparable G2/M arrest and apoptosis. ML120B prevented vincristine-induced nuclear translocation of p65 subunit of NF-κB. In vivo, ML120B was effective by itself and enhanced CHOP anti-tumor activity significantly (P = 0.001) in the WSU-DLCL2-SCID model but did not prevent CNS lymphoma in the WSU-FSCCL-SCID model. Conclusions For the first time, this study demonstrates that perturbation of IKK-2 by ML120B leads to synergistic enhancement of vincristine cytotoxicity in lymphoma. These results suggest that disruption of the NF-κB pathway is a useful adjunct to cytotoxic chemotherapy in lymphoma.
Collapse
Affiliation(s)
- Ayad Al-Katib
- Lymphoma Research Laboratory, Wayne State University-School of Medicine, 540 E, Canfield, 8229 Scott Hall, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lam JKW, Armes SP, Stolnik S. The involvement of microtubules and actin filaments in the intracellular transport of non-viral gene delivery system. J Drug Target 2010; 19:56-66. [DOI: 10.3109/10611861003733938] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Tarahovsky YS. Cell transfection by DNA-lipid complexes — Lipoplexes. BIOCHEMISTRY (MOSCOW) 2010; 74:1293-304. [DOI: 10.1134/s0006297909120013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Abstract
The biological activity of cationic liposome/DNA complexes ("lipoplexes") is strongly dependent on their ability to protect DNA and to interact with cells, including binding to the cell surface, internalization via endocytosis and cytoplasmic delivery of the DNA. In this chapter, we describe a number of methods and procedures to study these processes, based on the use of fluorescent probes.
Collapse
|
29
|
Li D, Li P, Li G, Wang J, Wang E. The effect of nocodazole on the transfection efficiency of lipid-bilayer coated gold nanoparticles. Biomaterials 2008; 30:1382-8. [PMID: 19091395 DOI: 10.1016/j.biomaterials.2008.11.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
Abstract
Nonviral vectors are safer than viral systems for gene therapy applications. However, the limited efficacy always prevents their being widely used in clinical practice. Aside from searching new gene nonviral vectors, many researchers focus on finding out new substances to improve the transfection efficiency of existent vectors. In this work, we found a transfection enhancer, nocodazole (NCZ), for dimethyldioctadecylammonium (DODAB, a cationic lipid) bilayer coated gold nanoparticles (AuNPs) mediated gene delivery. It was found that NCZ produces 3-fold transfection enhancement to HEK 293T cells assessed by flow cytometry (FCM). The result was further confirmed by luciferase assay, in which NCZ induced more than 5 times improvement in transfection efficiency after 48 h of transfection. The results from the inductively coupled plasma mass spectrometry (ICP-MS) and FCM showed that NCZ did not affect the internalization of DODAB-AuNPs/DNA complexes. The trafficking of the complexes by transmission electron microscopy (TEM) indicated that the interrupted transportation of the complexes to the lysosomes contributed greatly to the transfection enhancement. Therefore, NCZ can be used as a transfection enhancer in DODAB-AuNPs mediated transfection system. This work also gave an insight to improving the efficiency of lipid-mediated transfection: modifying lipid on gold nanoparticles and pre-treating cells by NCZ before the transfection.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | | | | | | | | |
Collapse
|
30
|
Serikawa T, Kikuchi H, Oite T, Tanaka K. Enhancement of Gene Expression Efficiency Using Cationic Liposomes on Ovarian Cancer Cells. Drug Deliv 2008; 15:523-9. [DOI: 10.1080/10717540802329183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
31
|
Drake DM, Pack DW. Biochemical investigation of active intracellular transport of polymeric gene-delivery vectors. J Pharm Sci 2008; 97:1399-413. [PMID: 17712850 DOI: 10.1002/jps.21106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To design safe, efficient synthetic gene therapy vectors, it is desirable to understand the intracellular mechanisms that facilitate their delivery from the cell surface to the nucleus. Elements of the cytoskeleton and molecular motor proteins are known to play a pivotal role in most intracellular active transport processes. The actin depolymerizer cytochalasin D and microtubule effectors colchicine and paclitaxel were used to evaluate the function of these components of the cytoskeleton in the trafficking of polyethylenimine (PEI)-DNA complexes. In addition, ATPase inhibitors erythro-9[3-(2-hydroxynonyl)] adenine (EHNA), vanadate, adenylylimidodiphosphate (AMP-PNP), and rose bengal lactone (RBL), which have inhibitory activity against dynein and kinesin, were used to examine to the effects of these molecular motors on PEI-DNA delivery. Disruption of microfilaments decreased the delivery efficiency of PEI polyplexes 60-80%, though cytochalasin D did not significantly inhibit uptake. Depolymerization of microtubules by colchicine decreased transfection efficiency by 75%. Microtubule stabilization with paclitaxel, however, facilitated a 20-fold increase in gene expression. Treatment with EHNA and vanadate caused 50% and 80% decreases in transfection efficiency, respectively. Transfection efficiency was also decreased by RBL (80%) and AMP-PNP (98%). Our findings confirm the importance of microfilament- and microtubule-based active transport of PEI-DNA complexes. Further, the strong decrease in transfection efficiency caused by ATPase inhibitors that possess inhibitory activity against kinesin implies an unexpected role for these motors in gene delivery.
Collapse
Affiliation(s)
- David M Drake
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
32
|
Sapinoro R, Volcy K, Rodrigo WWSI, Schlesinger JJ, Dewhurst S. Fc receptor-mediated, antibody-dependent enhancement of bacteriophage lambda-mediated gene transfer in mammalian cells. Virology 2008; 373:274-86. [PMID: 18191979 DOI: 10.1016/j.virol.2007.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 09/11/2007] [Accepted: 12/03/2007] [Indexed: 12/23/2022]
Abstract
Lambda phage vectors mediate gene transfer in cultured mammalian cells and in live mice, and in vivo phage-mediated gene expression is increased when mice are pre-immunized with bacteriophage lambda. We now show that, like eukaryotic viruses, bacteriophage vectors are subject to Fc receptor-mediated, antibody-dependent enhancement of infection in mammalian cells. Antibody-dependent enhancement of phage gene transfer required FcgammaRI, but not its associated gamma-chain, and was not supported by other FcgammaR family members (FcgammaRIIA, FcgammaRIIB, and FcgammaRIII). Studies using chlorpromazine and latrunculin A revealed an important role for clathrin-mediated endocytosis (chlorpromazine) and actin filaments (latrunculin A) in antibody-enhanced phage gene transfer. This was confirmed by experiments using inhibitors of endosomal acidification (bafilomycin A1, monensin) and by immunocytochemical colocalization of internalized phage particles with early endosome-associated protein-1 (EAA1). In contrast, microtubule-targeting agents (nocodazole, taxol) increased the efficiency of antibody-enhanced phage gene transfer. These results reveal an unexpected antibody-dependent, FcgammaRI-mediated enhancement of phage transduction in mammalian cells, and suggest new approaches to improve bacteriophage-mediated gene transfer.
Collapse
Affiliation(s)
- Ramil Sapinoro
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, USA
| | | | | | | | | |
Collapse
|
33
|
Faneca H, Faustino A, Pedroso de Lima MC. Synergistic antitumoral effect of vinblastine and HSV-Tk/GCV gene therapy mediated by albumin-associated cationic liposomes. J Control Release 2007; 126:175-84. [PMID: 18201792 DOI: 10.1016/j.jconrel.2007.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/30/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
Abstract
Despite recent advances in conventional therapeutic approaches for cancer, the frequently observed acquired drug resistance and toxic side effects have limited their clinical application. The main goal of this work was to investigate the combined antitumoral effect of vinblastine with HSV-Tk/GCV "suicide" gene therapy mediated by human serum albumin (HSA)-associated lipoplexes, in mammary adenocarcinoma cells (TSA cells). Our results show that, among the different lipoplex formulations tested, HSA-associated complexes prepared from EPOPC:Chol liposomes, at the (4/1) (+/-) charge ratio, was the most efficient to mediate gene delivery, even in the presence of serum. The simultaneous addition of vinblastine and HSA-EPOPC:Chol/DNA (+/-) (4/1) lipoplexes to TSA cells improved transgene expression more than 10 times. When combined with the HSV-Tk/GCV "suicide" gene therapy mediated by HSA-EPOPC:Chol/DNA (+/-) (4/1) lipoplexes, vinblastine induced a great enhancement in the antitumoral activity in TSA cells. Most importantly, this combined strategy resulted in a significant synergistic effect, thus allowing the use of a much lower dose of the drug to achieve the same therapeutic effect. Overall, our results indicate that this approach has the potential to overcome some major limitations of conventional chemotherapy, and may therefore constitute a promising strategy for future applications in antitumoral therapy.
Collapse
Affiliation(s)
- H Faneca
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000 Coimbra, Portugal
| | | | | |
Collapse
|
34
|
Grosse S, Aron Y, Thévenot G, Monsigny M, Fajac I. Cytoskeletal involvement in the cellular trafficking of plasmid/PEI derivative complexes. J Control Release 2007; 122:111-7. [PMID: 17658650 DOI: 10.1016/j.jconrel.2007.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 06/15/2007] [Accepted: 06/18/2007] [Indexed: 11/29/2022]
Abstract
We have studied the cytoskeletal involvement in the cellular trafficking of complexes made with plasmid/PEI or plasmid/lactosylated PEI in cystic fibrosis airway epithelial cells (SigmaCFTE29o- cells). Complexes were incubated in the presence of cytoskeletal inhibitors, and the number of transfected cells was determined by flow cytometry. Complexes were also generated with fluorescein-labeled PEI derivatives and the cell fluorescence intensity was determined by flow cytometry. In the presence of cytochalasin D to depolymerize actin filaments or nocodazole to disrupt microtubules, gene transfer efficiency with both PEI derivatives was decreased by 90%. The uptake of fluoresceinylated complexes studied by flow cytometry was decreased by 50% in the presence of cytochalasin D for both types of complexes (p<0.005) and unchanged in the presence of nocodazole. When cytoskeletal inhibitors were added to the cell culture after the complex uptake had occurred, gene transfer efficiency was decreased by 75% and 50% in the presence of nocodazole and cytochalasin D, respectively. Upon nocodazole-microtubule network disruption, the lysosomal localization of complexes was reduced, as assessed by confocal microscopy. Our results show a major cytoskeletal involvement in the cellular trafficking of complexes made with both PEI derivatives: actin filaments mainly in complex uptake, and microtubules in the trafficking of complexes towards the nucleus, probably through guided transport of complex-containing endosomal vesicles.
Collapse
Affiliation(s)
- Stéphanie Grosse
- Université Paris-Descartes, Faculté de Médecine, AP-HP, Hôpital Cochin, Paris, France
| | | | | | | | | |
Collapse
|
35
|
Gourbatsi E, Al-Fageeh MB, Marchant RJ, Scott SJ, Underhill MF, Smales CM. Noncovalently linked nuclear localization peptides for enhanced calcium phosphate transfection. Mol Biotechnol 2007; 33:1-11. [PMID: 16691001 DOI: 10.1385/mb:33:1:1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
The generation of cell lines stably expressing recombinant material is a lengthy process and there has thus been much interest in the use of transient expression systems to rapidly produce recombinant material. To achieve this, the DNA of interest must be delivered into the nucleus of the target cell. The mechanisms by which this process occurs are poorly understood and the efficiency of various methods differs widely. Recently, nuclear localization signals (NLSs) have been investigated to target entry of DNA into the nucleus of mammalian cells. We have used NLSs from the SV40 and Tat antigens mixed with our model luciferase reporter gene plasmid for the transfection of Chinese hamster ovary (CHO) cells using calcium phosphate and FuGENE 6 transfection technology. The noncovalent complexation of NLSs with plasmid DNA before calcium phosphate-mediated transfection resulted in enhanced reporter gene expression with increasing ratios of NLS to plasmid until reaching a maximum. At higher ratios than maximum expression, the expression levels decreased. On the other hand, when using FuGENE 6 reagent NLSs did not enhance reporter gene expression. Cell cycle arrest in G(2)/M phase obliterated the effect of the NLS on reporter gene expression when using the calcium phosphate transfection method.
Collapse
Affiliation(s)
- Evdoxia Gourbatsi
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | | | | | | | | | | |
Collapse
|
36
|
Stebelska K, Wyrozumska P, Gubernator J, Sikorski AF. Higly fusogenic cationic liposomes transiently permeabilize the plasma membrane of HeLa cells. Cell Mol Biol Lett 2006; 12:39-50. [PMID: 17103091 PMCID: PMC6275732 DOI: 10.2478/s11658-006-0049-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 08/09/2006] [Indexed: 11/29/2022] Open
Abstract
Cationic liposomes can efficiently carry nucleic acids into mammalian cells. This property is tightly connected with their ability to fuse with negatively charged natural membranes (i.e. the plasma membrane and endosomal membrane). We used FRET to monitor and compare the efficiency of lipid mixing of two liposomal preparations — one of short-chained diC14-amidine and one of long-chained unsaturated DOTAP — with the plasma membrane of HeLa cells. The diC14-amidine liposomes displayed a much higher susceptibility to lipid mixing with the target membranes. They disrupted the membrane integrity of the HeLa cells, as detected using the propidium iodide permeabilization test. Morphological changes were transient and essentially did not affect the viability of the HeLa cells. The diC14-amidine liposomes were much more effective at either inducing lipid mixing or facilitating transfection.
Collapse
Affiliation(s)
- Katarzyna Stebelska
- Laboratory of Cytobiochemistry, Institute of Biochemistry and Molecular Biology, University of Wrocław, Wrocław, Poland
| | | | | | | |
Collapse
|
37
|
Abstract
Nonviral vectors continue to be attractive alternatives to viruses due to their low toxicity and immunogenicity, lack of pathogenicity, and ease of pharmacologic production. However, nonviral vectors also continue to suffer from relatively low levels of gene transfer compared to viruses, thus the drive to improve these vectors continues. Many studies on vector-cell interactions have reported that nonviral vectors bind and enter cells efficiently, but yield low gene expression, thus directing our attention to the intracellular trafficking of these vectors to understand where the obstacles occur. Here, we will review nonviral vector trafficking pathways, which will be considered here as the steps from cell binding to nuclear delivery. Studies on the intracellular trafficking of nonviral vectors has given us valuable insights into the barriers these vectors must overcome to mediate efficient gene transfer. Importantly, we will highlight the different approaches used by researchers to overcome certain trafficking barriers to gene transfer, many of which incorporate components from biological systems that have naturally evolved the capacity to overcome such obstacles. The tools used to study trafficking pathways will also be discussed.
Collapse
Affiliation(s)
- L K Medina-Kauwe
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
38
|
Vaughan EE, Dean DA. Intracellular trafficking of plasmids during transfection is mediated by microtubules. Mol Ther 2005; 13:422-8. [PMID: 16301002 PMCID: PMC4150869 DOI: 10.1016/j.ymthe.2005.10.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 10/12/2005] [Accepted: 10/14/2005] [Indexed: 11/19/2022] Open
Abstract
Little is known about how plasmids move through the cytoplasm to the nucleus. It has been suggested that the dense latticework of the cytoskeleton impedes free diffusion of large macromolecules, including DNA. However, since transfections do work, there must be mechanisms by which DNA circumvents cytoplasmic obstacles. One possibility is that plasmids become cargo on cytoskeletal motors, much like viruses do, and move to the nucleus in a directed fashion. Using microinjection and electroporation approaches in the presence of drugs that alter the dynamics and organization of the cytoskeleton, we show that microtubules are involved in plasmid trafficking to the nucleus. Further, by co-injecting inhibitory antibodies, we find that dynein likely facilitates this movement. These results were confirmed using an in vitro spin-down assay that demonstrated that plasmids bind to microtubules through adaptor proteins provided by cytoplasmic extracts. Taken together, these results suggest that plasmids, like most viruses, utilize the microtubule network and its associated motor proteins to traffic through the cytoplasm to the nucleus.
Collapse
Affiliation(s)
| | - David A. Dean
- Address for Correspondence: David A. Dean, Ph.D., Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E. Huron Ave., McGaw 2336, Chicago, IL 60611, tel (312) 503-3121, fax (312) 908-4650,
| |
Collapse
|
39
|
El-Andaloussi S, Johansson H, Magnusdottir A, Järver P, Lundberg P, Langel U. TP10, a delivery vector for decoy oligonucleotides targeting the Myc protein. J Control Release 2005; 110:189-201. [PMID: 16253378 DOI: 10.1016/j.jconrel.2005.09.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 09/07/2005] [Accepted: 09/13/2005] [Indexed: 11/26/2022]
Abstract
One approach to investigate gene function, by silencing the activity of certain proteins, is the usage of double stranded decoy oligodeoxynucleotides (ds decoy ODNs). Decoy, in this sense, is ds ODNs bearing the consensus binding sequence for a DNA-binding protein. This can be used in clinical settings to attenuate the effect of overexpressed transcription factors in tumor cells. We here choose to target the oncogenic protein Myc. Since oligonucleotides are poorly internalized to cells, a cell-penetrating peptide, TP10, was coupled to the Myc decoy, using two different strategies. Either TP10 was simply mixed with ds decoy ODNs forming complexes through non-covalent electrostatic interactions, or by having a nona-nucleotide overhang in one of the decoy strands, and adding a complementary PNA sequence coupled to an NLS sequence and TP10, which could hybridize to the Myc decoy. By using these strategies, uptake was significantly enhanced, especially with the co-incubation approach. Interestingly, various endocytosis inhibitors had no effect on the uptake pattern, suggesting that uptake of these complexes is not mediated via endocytosis. Finally, a decreased proliferative capacity was observed when treating the neuroblastoma cell line N2a with TP10-PNA conjugate hybridized to Myc decoy compared to naked Myc decoy and untreated cells. A dose-dependent decrease in proliferation was also observed in MCF-7 cells, when using both strategies. These results suggest an alternative way to efficiently deliver ds ODNs into cells using the cell-penetrating peptide TP10 and prevent tumor growth by targeting the oncogenic protein Myc.
Collapse
Affiliation(s)
- S El-Andaloussi
- Department of Neurotoxicology, Stockholm University, Sweden.
| | | | | | | | | | | |
Collapse
|
40
|
Prasad TK, Rangaraj N, Rao NM. Quantitative aspects of endocytic activity in lipid-mediated transfections. FEBS Lett 2005; 579:2635-42. [PMID: 15862302 DOI: 10.1016/j.febslet.2005.03.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/14/2005] [Accepted: 03/30/2005] [Indexed: 11/17/2022]
Abstract
Variation in transfection efficiency observed in different cell-types is poorly understood. To investigate the influence of endocytic activity on lipid-mediated transfections, we have monitored both the processes in 12 different cell-types. The endocytic activity shows a strong positive correlation (P < 0.01), with transfection efficiency. Treatment with wortmannin resulted in cell-type-dependent inhibition of transfection. Studies on M-phase cells by confocal microscopy show that compared to interphase cells, uptake of cationic liposomes was substantially reduced. In addition, transfection efficiency of cells in mitotic phase was inhibited by >70% compared to controls. Our study based on several cell-types demonstrates for the first time that quantitative aspects of endocytosis have decisive influence on the overall process of lipid-mediated transgene expression.
Collapse
|
41
|
Salminen M, Airenne KJ, Rinnankoski R, Reimari J, Välilehto O, Rinne J, Suikkanen S, Kukkonen S, Ylä-Herttuala S, Kulomaa MS, Vihinen-Ranta M. Improvement in nuclear entry and transgene expression of baculoviruses by disintegration of microtubules in human hepatocytes. J Virol 2005; 79:2720-8. [PMID: 15708991 PMCID: PMC548459 DOI: 10.1128/jvi.79.5.2720-2728.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 09/14/2004] [Indexed: 12/20/2022] Open
Abstract
Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), a potent virus for mammalian cell gene delivery, possesses an ability to transduce mammalian cells without viral replication. We examined the role of the cellular cytoskeleton in the cytoplasmic trafficking of viral particles toward the nucleus in human hepatic cells. Microscopic studies showed that capsids were found in the nucleus after either viral inoculation or cytoplasmic microinjection of nucleocapsids. The presence of microtubule (MT) depolymerizing agents caused the amount of nuclear capsids to increase. Overexpression of p50/dynamitin, an inhibitor of dynein-dependent endocytic trafficking from peripheral endosomes along MTs toward late endosomes, did not significantly affect the amount of nuclear accumulation of nucleocapsids in the inoculated cells, suggesting that viral nucleocapsids are released into the cytosol during the early stages of the endocytic pathway. Moreover, studies with recombinant viruses containing the nuclear-targeted expression beta-galactosidase gene (beta-gal) showed a markedly increased level in the cellular expression of beta-galactosidase in the presence of MT-disintegrating drugs. The maximal increase in expression at 10 h postinoculation was observed in the presence of 80 muM nocodazole or 10 muM vinblastine. Together, these data suggest that the intact MTs constitute a barrier to baculovirus transport toward the nucleus.
Collapse
Affiliation(s)
- Mirka Salminen
- Department of Biological and Environmental Science, P.O. Box 35 (YAB), FIN-40014 University of Jyväskylä, Jyväskylä, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|