1
|
Shi H, Li M, Zhou Z, Lu A, Wang Z. Synthesis and Biological Evaluation of Novel 1,2,4-Triazole Derivatives Containing Amino Acid Fragments. Molecules 2025; 30:1692. [PMID: 40333687 PMCID: PMC12029508 DOI: 10.3390/molecules30081692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Triazoles are important fragments in the development of fungicidal compounds. Fungi have gradually developed drug resistance against traditional fungicides due to long-term overuse. Therefore, there is an urgent need to discover new candidate compounds. A series of 1,2,4-triazole derivatives containing amino acid fragments were designed and synthesized based on mefentrifluconazole. All the target compounds were characterized by 1H-NMR, 13C-NMR, and HRMS techniques. Their antifungal activities against five kinds of phytopathogenic fungi were evaluated in vitro. The results revealed that most compounds had broad-spectrum fungicidal activities at 50 μg/mL and four compounds exhibited better antifungal activity than the control drug mefentrifluconazole. Interestingly, the synthesized compounds 8d and 8k exhibited exceptional antifungal activity against Physalospora piricola, with EC50 values of 10.808 µg/mL and 10.126 µg/mL, respectively. Molecular docking studies demonstrate that the 1,2,4-triazole derivatives 8d and 8k, which incorporate amino acid groups, exhibit strong binding affinity to 14α-demethylase (CYP51). These findings highlight the potential of these compounds as effective antifungal agents.
Collapse
Affiliation(s)
- Haoran Shi
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; (H.S.); (M.L.)
| | - Mingxu Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; (H.S.); (M.L.)
| | - Zhenghong Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; (H.S.); (M.L.)
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
2
|
Jeschke P. The continuing significance of chiral agrochemicals. PEST MANAGEMENT SCIENCE 2025; 81:1697-1716. [PMID: 39821341 PMCID: PMC11906909 DOI: 10.1002/ps.8655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
Chemical crop protection is one of the most cost-effective methods for agriculture, as crop failures can be prevented, and sustainable growth can be enabled regardless of the seasons. Agricultural production must be significantly increased in the future to meet the food needs of a growing world population. However, the continued loss of established active ingredients due to consumer perceptions, changing needs of farmers and ever-changing regulatory requirements is higher than annually new active ingredients introduced to the market. The development of innovative active ingredients is therefore essential to continuously improve the selectivity, efficacy and favorable environmental profile of agrochemicals. Molecules with stereogenic centers can be considered here, as they often have different properties than non-chiral molecules. Natural products and their congeners are still a valuable source of inspiration for chiral agrochemicals. However, only a few novel chiral agrochemicals are currently produced on an industrial scale as pure stereoisomers or in enriched form. As of 2018, around 43% of the 35 chiral products introduced to the market (herbicides, fungicides, insecticides, acaricides, and nematicides) contain one or more stereogenic centers in the molecule, and almost 69% of them have been marketed as racemic mixtures of enantiomers or stereoisomers. Surprisingly, the proportion of chiral agrochemicals is in the same order of magnitude as in the time frame from 2007 to 2017 with around 42%, respectively. This report therefore provides an overview of the continued importance of chiral agrochemicals brought to market in the last 6 years and describes the inherent related challenges of modern agrochemicals through the management of key aspects arising from innovative crop protection products. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Peter Jeschke
- Heinrich‐Heine‐University DüsseldorfInstitute of Organic Chemistry and Macromolecular ChemistryDuesseldorfGermany
| |
Collapse
|
3
|
Ren Y, Guo P, Pan X, Xu J, Wu X, Zheng Y, Dong F. Enantioselective Metabolism of Mefentrifluconazole by Human Liver Microsomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27265-27273. [PMID: 39608803 DOI: 10.1021/acs.jafc.4c09628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
A better understanding of the metabolic differences between chiral pesticide enantiomers in organisms is crucial for accurately assessing their risk. The enantioselective metabolism of mefentrifluconazole was investigated by the human liver microsome reaction system. The metabolic rate of S-mefentrifluconazole was found to be 4 times that of R-mefentrifluconazole. The chemical inhibitor method was used to further explore the cause of metabolic difference, and it was found that the inhibitors of CYP2C19 and CYP2C8 significantly reduced the metabolism of S-mefentrifluconazole (70.3-92.0%) and R-mefentrifluconazole (53.0-78.6%), respectively. CYP2C19 is a key metabolic enzyme of S-mefentrifluconazole. Molecular docking indicates that the internal energy of binding of R-mefentrifluconazole to CYP2C19 is too high, resulting in a positive docking fraction (0.1730 kJ/moL). Therefore, R-mefentrifluconazole cannot bind to CYP2C19 under natural conditions. CYP2C8 is the key metabolic enzyme of R-mefentrifluconazole. The lower docking energies (-37.80 kJ/moL for R-mefentrifluconazole and -35.64 kJ/moL for S-mefentrifluconazole) make CYP2C8 more capable of metabolizing R-mefentrifluconazole. This study provides essential data for exploring the toxicological assessment of mefentrifluconazole.
Collapse
Affiliation(s)
- Yuqi Ren
- College of Horticulture and Landscape, Tianjin Agriculture University, Tianjin 300384, P. R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Peilin Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Yongquan Zheng
- College of Plant Health and Medicine, and Key Lab of Integrated Crop Disease and Pest Management of Shan-dong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
4
|
Liu L, Cheng Z, Wang P, Chen X, Chen Z, Li J, Lu Y, Sun H. Insights into the Enantiomeric Uptake, Translocation, and Distribution of Triazole Chiral Pesticide Mefentrifluconazole in Wheat ( Triticum aestivum L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18401-18411. [PMID: 39092675 DOI: 10.1021/acs.jafc.4c03876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The uptake, translocation, and accumulation of mefentrifluconazole (MFZ), an innovative chiral triazole fungicide, in plants at the enantiomeric level are still unclear. Herein, we investigated the patterns and mechanisms of enantiomeric uptake, bioaccumulation, and translocation through several experiments. Rac-MFZ shows the strongest uptake and bioaccumulation capacity in wheat compared with its enantiomers, while S-(+)-MFZ has the highest translocation potential. Molecular docking provided evidence of the stronger translocation ability of S-(+)-MFZ than R-(-)-MFZ. Split-root experiments showed that MFZ and its enantiomers could undergo long-distance transport within the wheat. Active transport or facilitated and simple diffusion may be involved in the wheat uptake of MFZ. The limited acropetal translocation capability of MFZ may be attributed to the dominant uptake pathway of apoplastic. The concentrations of Rac-MFZ in different subcellular fractions varied greatly. In summary, this study provides novel insights for further understanding the behaviors of MFZ and its enantiomers in plants.
Collapse
Affiliation(s)
| | | | | | | | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | | | | |
Collapse
|
5
|
Kolić D, Šinko G. Evaluation of Anticholinesterase Activity of the Fungicides Mefentrifluconazole and Pyraclostrobin. Int J Mol Sci 2024; 25:6310. [PMID: 38928014 PMCID: PMC11204243 DOI: 10.3390/ijms25126310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Triazoles are compounds with various biological activities, including fungicidal action. They became popular through cholinesterase studies after the successful synthesis of the dual binding femtomolar triazole inhibitor of acetylcholinesterase (AChE, EC 3.1.1.7) by Sharpless et al. via in situ click chemistry. Here, we evaluate the anticholinesterase effect of the first isopropanol triazole fungicide mefentrifluconazole (Ravystar®), developed to overcome fungus resistance in plant disease management. Mefentrifluconazole is commercially available individually or in a binary fungicidal mixture, i.e., with pyraclostrobin (Ravycare®). Pyraclostrobin is a carbamate that contains a pyrazole ring. Carbamates are known inhibitors of cholinesterases and the carbamate rivastigmine is already in use for the treatment of Alzheimer's disease. We tested the type and potency of anticholinesterase activity of mefentrifluconazole and pyraclostrobin. Mefentrifluconazole reversibly inhibited human AChE and BChE with a seven-fold higher potency toward AChE (Ki = 101 ± 19 μM). Pyraclostrobin (50 μM) inhibited AChE and BChE progressively with rate constants of (t1/2 = 2.1 min; ki = 6.6 × 103 M-1 min-1) and (t1/2 = 1.5 min; ki = 9.2 × 103 M-1 min-1), respectively. A molecular docking study indicated key interactions between the tested fungicides and residues of the lipophilic active site of AChE and BChE. Additionally, the physicochemical properties of the tested fungicides were compared to values for CNS-active drugs to estimate the blood-brain barrier permeability. Our results can be applied in the design of new molecules with a lesser impact on humans and the environment.
Collapse
Affiliation(s)
| | - Goran Šinko
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia;
| |
Collapse
|
6
|
Li G, Zhang L, Wang H, Li X, Cheng F, Miao J, Peng Q, Liu X. Resistance to the DMI fungicide mefentrifluconazole in Monilinia fructicola: risk assessment and resistance basis analysis. PEST MANAGEMENT SCIENCE 2024; 80:1802-1811. [PMID: 38029343 DOI: 10.1002/ps.7909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Brown rot disease, caused by Monilinia fructicola, poses a significant challenge to peach production in China. The efficacy of mefentrifluconazole, a new triazole fungicide, in controlling brown rot in peaches has been remarkable. However, the resistance risk and mechanism associated with this fungicide remain unclear. This study was designed to assess the resistance risk of M. fructicola to mefentrifluconazole and reveal the potential resistance mechanism. RESULTS The mean median effective concentration (EC50 ) of 101 M. fructicola isolates to mefentrifluconazole was 0.003 μg mL-1 , and the sensitivity exhibited a unimodal distribution. Seven mefentrifluconazole-resistant mutants were generated from three parental isolates in the laboratory through fungicide adaption. The biological characteristics of the resistant mutants revealed that three of them exhibited enhanced survival fitness compared to the parental isolates, whereas the remaining four mutants displayed reduced survival fitness. Mefentrifluconazole showed strong positive cross-resistance with fenbuconazole, whereas no cross-resistance was observed with pyrimethanil, procymidone or pydiflumetofen. No overexpression of MfCYP51 gene was detected in the resistant mutants. Multiple sequence alignment revealed that three resistant mutants (MXSB2-2, Mf12-1 and Mf12-2) had a point mutation (G461S) in MfCYP51 protein. Molecular docking techniques confirmed the contribution of this point mutation to mefentrifluconazole resistance. CONCLUSION The risk of M. fructicola developing resistance to mefentrifluconazole is relatively low-to-medium and point mutation G461S in MfCYP51 could confer mefentrifluconazole resistance in M. fructicola. This study provided essential data for monitoring the emergence of resistance and developing resistance management strategies for mefentrifluconazole. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guixiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ling Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Huakai Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiuhuan Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Fei Cheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qin Peng
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Wang J, Shi H, Lu A. Design, Synthesis, and Antifungal/Anti-Oomycete Activities of Novel 1,2,4-Triazole Derivatives Containing Carboxamide Fragments. J Fungi (Basel) 2024; 10:160. [PMID: 38392832 PMCID: PMC10890616 DOI: 10.3390/jof10020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Plant diseases caused by pathogenic fungi or oomycetes seriously affect crop growth and the quality and yield of products. A series of novel 1,2,4-triazole derivatives containing carboxamide fragments based on amide fragments widely used in fungicides and the commercialized mefentrifluconazole were designed and synthesized. Their antifungal activities were evaluated against seven kinds of phytopathogenic fungi/oomycete. Results showed that most compounds had similar or better antifungal activities compared to mefentrifluconazole's inhibitory activity against Physalospora piricola, especially compound 6h (92%), which possessed outstanding activity. Compound 6h (EC50 = 13.095 μg/mL) showed a better effect than that of mefentrifluconazole (EC50 = 39.516 μg/mL). Compound 5j (90%) displayed outstanding anti-oomycete activity against Phytophthora capsici, with an EC50 value of 17.362 μg/mL, far superior to that of mefentrifluconazole (EC50 = 75.433 μg/mL). The result of molecular docking showed that compounds 5j and 6h possessed a stronger affinity for 14α-demethylase (CYP51). This study provides a new approach to expanding the fungicidal spectrum of 1,2,4-triazole derivatives.
Collapse
Affiliation(s)
- Jiali Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Haoran Shi
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
8
|
Kildea S, Hellin P, Heick TM, Byrne S, Hutton F. Mefentrifluconazole sensitivity amongst European Zymoseptoria tritici populations and potential implications for its field efficacy. PEST MANAGEMENT SCIENCE 2024; 80:533-543. [PMID: 37759353 DOI: 10.1002/ps.7795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Septoria tritici blotch caused by Zymoseptoria tritici continues to be one of the most economically destructive diseases of winter wheat in north-western Europe. Control is heavily reliant on the application of fungicides, in particular those belonging to the azole group. Here we describe the sensitivity of European Z. tritici populations to the novel azole mefentrifluconazole and the analysis of associated mechanisms of resistance. RESULTS A wide range of sensitivity to mefentrifluconazole was observed amongst the Z. tritici collections examined, with strong cross-resistances also observed between mefentrifluconazole, difenoconazole and tebuconazole. Overall, the Irish population displayed the lowest sensitivity to all azoles tested. Further detailed analysis of the Irish population in 2021 demonstrated differences in sensitivity occurred between sampling sites, with these differences associated with the frequencies of key resistance mechanisms (CYP51 alterations and MFS1 promoter inserts linked to overexpression). Under glasshouse conditions reductions in the efficacy of mefentrifluconazole were observed towards those strains exhibiting the lowest in vitro sensitivities. CONCLUSIONS This study demonstrates that a large range of sensitivity to mefentrifluconazole exists in European Z. tritici populations. Those strains exhibiting the lowest sensitivity to the azoles tested had the most complex CYP51 haplotypes in combination with the 519 bp insert, associated with enhanced activity of MFS1. The future use of mefentrifluconazole should take these findings into consideration to minimise the selection of these strains. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Steven Kildea
- Teagasc, The Agriculture and Food Development Authority, Carlow, Ireland
| | - Pierre Hellin
- Plant and Forest Health Unit, Walloon Agricultural Research Center, Gembloux, Belgium
| | - Thies M Heick
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Stephen Byrne
- Teagasc, The Agriculture and Food Development Authority, Carlow, Ireland
| | - Fiona Hutton
- Teagasc, The Agriculture and Food Development Authority, Carlow, Ireland
| |
Collapse
|
9
|
Zhang H, Wang J, Qian M, Jin Y. Mefentrifluconazole exposure disrupted hepatic lipid metabolism disorder tightly associated with gut barrier function abnormal in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167317. [PMID: 37742980 DOI: 10.1016/j.scitotenv.2023.167317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Mefentrifluconazole (MFZ) is an azole fungicide that is placed in agriculture for the control of fungal hazards. However, due to their non-biodegradability, azole fungicides can accumulate in plants, animals, and the environment, thus becoming a major health concern worldwide. In this study, we exposed 7-week-old C57BL/6 mice to 10, 30, and 100 mg/kg of MFZ for 28 d to assess the toxic effects of MFZ on the liver and gut tissues of the mice. Histopathological, biochemical indexes, and transcriptomic analyses revealed that MFZ exposure disrupted the liver structure and hepatic lipid metabolism as well as damaged gut barrier function and promoted inflammation in mice. Moreover, 16S rRNA sequencing demonstrated that MFZ exposure significantly increased the abundance of patescibacteria at the generic level. Also, MFZ exposure increased the abundance of bacterial genera associated with inhibition of glycolipid metabolism. These results suggested that the disruption of liver lipid metabolism caused by MFZ exposure may be caused by changes in gut microbiota function. This study provided a new disease occurrence study for risk assessment of MFZ and strengthened the focus on some novel fungicides.
Collapse
Affiliation(s)
- Hu Zhang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Juntao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
10
|
Li G, Li X, Zeng Y, Liao S, Chen Y, Miao J, Peng Q, Liu X. Three point mutations in AaCYP51 combined with induced overexpression of AaCYP51 conferred low-level resistance to mefentrifluconazole in Alternaria alternata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105677. [PMID: 38072534 DOI: 10.1016/j.pestbp.2023.105677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 12/18/2023]
Abstract
Tomato early blight is a significant disease that causes substantial losses to tomato yield and quality. Mefentrifluconazole, an isopropanol-azole subgroup of triazole fungicides, has been registered in China for controlling various plant diseases, including tomato early blight, grape anthracnose, and apple brown spot. However, limited information is available on the mefentrifluconazole resistance risk and mechanism in plant pathogens. The sensitivity to mefentrifluconazole of 122 isolates of Alternaria alternata, one of the causal agents of tomato early blight, collected from different provinces in China, was evaluated. The results showed a unimodal curve for the sensitivity frequency, with an average EC50 of 0.306 μg/mL. Through fungicide adaption, six resistant mutants (N4, N5, T4, T5, NG1, and NG10) were obtained from three parental isolates, with a mutation frequency of 3.28 × 10-4 and resistance factors ranging between 19 and 147. The survival fitness of the resistant mutants, except for NG1, was significantly lower than that of their parental isolates. Positive cross-resistance was observed between mefentrifluconazole and difenoconazole or fenbuconazole, whereas no cross-resistance was found with three non-DMI fungicides. Furthermore, three distinct point mutations were detected in the AaCYP51 protein of the resistant mutants: I300S in T4 and T5; A303T in N4, NG1, and NG10; and A303V in N5. Compared to the parental isolates, the AaCYP51 gene was overexpressed in all six resistant mutants when treated with mefentrifluconazole. In summary, the resistance risk of A. alternata to mefentrifluconazole was low, and point mutations and overexpression of the AaCYP51 gene were identified as contributing factors to mefentrifluconazole resistance in A. alternata.
Collapse
Affiliation(s)
- Guixiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Xiuhuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Yan Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Shuailin Liao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Qin Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China.
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China; Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China.
| |
Collapse
|
11
|
Han Z, Cui K, Wang M, Jiang C, Zhao T, Wang M, Du P, He L, Zhou L. Bioactivity of the DMI fungicide mefentrifluconazole against Sclerotium rolfsii, the causal agent of peanut southern blight. PEST MANAGEMENT SCIENCE 2023; 79:2126-2134. [PMID: 36710267 DOI: 10.1002/ps.7386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Sclerotium rolfsii, the causal agent of peanut southern blight, has become increasingly prevalent and harmful in China, causing serious economic losses to the peanut industry. To effectively manage peanut southern blight, this study evaluated the bioactivity of the new-generation sterol demethylation inhibitor (DMI) fungicide mefentrifluconazole against peanut S. rolfsii. RESULTS In this study, the DMI fungicide mefentrifluconazole exhibited excellent inhibitory activity against the mycelial growth of S. rolfsii, with a mean EC50 value of 0.21 ± 0.11 mg L-1 and a range of 0.02 to 0.55 mg L-1 for 261 isolates collected from Hebei, Henan and Shandong provinces. Mefentrifluconazole significantly reduced the biomass of mycelia and affected the morphology of hyphae. Although sclerotia were more tolerant to mefentrifluconazole than mycelial growth, mefentrifluconazole greatly inhibited the formation and germination of sclerotia. In addition, sclerotia produced by mefentrifluconazole-treated mycelia were deficient in nutrients (e.g., protein, carbohydrate and lipid). These results indicated that mefentrifluconazole may reduce the population of S. rolfsii in the following year. In greenhouse experiments, mefentrifluconazole showed control efficacy and good persistence against peanut S. rolfsii. The preventative and curative activities of mefentrifluconazole at 200 mg L-1 against southern blight still reached 95.36% and 60.94%, respectively, after 9 days of application. No correlation was observed for the sensitivity of S. rolfsii to mefentrifluconazole and the tested DMI, quinone outside inhibitor and succinate dehydrogenase inhibitor fungicides. CONCLUSION All data indicated that mefentrifluconazole could provide favorable control efficacy against S. rolfsii from peanuts and reduce the infection and population of S. rolfsii in the following year. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiyuan Han
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Kaidi Cui
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Mengke Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Chaofan Jiang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Te Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Meizi Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Pengqiang Du
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Leiming He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
12
|
Beckerman J, Palmer C, Tedford E, Ypema H. Fifty Years of Fungicide Development, Deployment, and Future Use. PHYTOPATHOLOGY 2023; 113:694-706. [PMID: 37137816 DOI: 10.1094/phyto-10-22-0399-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant disease management has not significantly changed significantly in the past 50 years, even as great strides have been made in the understanding of fungal biology and the etiology of plant disease. Issues of climate change, supply chain failures, war, political instability, and exotic invasives have created even more serious implications for world food and fiber security, and the stability of managed ecosystems, underscoring the urgency for reducing plant disease-related losses. Fungicides serve as the primary example of successful, widespread technology transfer, playing a central role in crop protection, reducing losses to both yield and postharvest spoilage. The crop protection industry has continued to improve upon previous fungicide chemistries, replacing active ingredients lost to resistance and newly understood environmental and human health risks, under an increasingly stricter regulatory environment. Despite decades of advances, plant disease management continues to be a constant challenge that will require an integrated approach, and fungicides will continue to be an essential part of this effort.
Collapse
Affiliation(s)
- J Beckerman
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - C Palmer
- IR-4 Project, Plant Biology and Pathology, Rutgers, The State University of New Jersey, Cream Ridge, NJ 08514-9634
| | | | - H Ypema
- UPL Services LLC, Durham, NC 27709
| |
Collapse
|
13
|
He D, Shi J, Qiu J, Hou Y, Du Y, Gao T, Huang W, Wu J, Lee YW, Mohamed SR, Liu X, Xu J. Antifungal activities of a novel triazole fungicide, mefentrifluconazole, against the major maize pathogen Fusarium verticillioides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105398. [PMID: 37105621 DOI: 10.1016/j.pestbp.2023.105398] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Fusarium ear rot (FER) is a serious fungal disease occurring the late growth stage of maize. FER not only reduces the yield of maize but also causes mycotoxin contamination, which affects the quality of maize and threatens human and animal health. Fusarium verticillioides is the predominant causative pathogen of FER worldwide. At present, there is no registered fungicide for use against maize FER in China. The novel isopropyl alcohol-triazole fungicide mefentrifluconazole (MFZ) has been shown to be effective against several Fusarium spp., but little is known about its specific activity against F. verticillioides. MFZ exhibited strong antifungal activities against 50 strains of F. verticillioides collected from the major maize-growing areas in China. MFZ inhibited mycelial growth, conidium production, germination and germ tube elongation of F. verticillioides. MFZ treatment significantly reduced fumonisin production and the expression levels of fumonisin biosynthetic genes. Genome-wide transcriptional profiling of F. verticillioides in response to MFZ indicated that the expression of genes involved in ergosterol biosynthesis, including fungicide target genes (cyp51 genes), was significantly downregulated by MFZ. MFZ treatment resulted in reduced ergosterol production and increased glycerol and malonaldehyde production as well as relative conductivity in F. verticillioides. A 2-year field experiment showed a significant reduction in FER severity in maize after spraying with MFZ at the tasseling stage. This study evaluated the potential of MFZ to control FER in maize and provides insights into its antifungal activities and mechanism of action against F. verticillioides.
Collapse
Affiliation(s)
- Dan He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Jianbo Qiu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Yuzhou Du
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Tao Gao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| | - Wenwen Huang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Jiawen Wu
- Jiangsu Plant Protection and Plant Quarantine Station, Nanjing 210036, Jiangsu, PR China
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Sherif Ramzy Mohamed
- Food Toxicology and Contaminants Department, National Research Centre, Egypt, Giza 12411, Egypt
| | - Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
14
|
Xu S, Shen J, Lang H, Zhang L, Fang H, Yu Y. Triazole resistance in Aspergillus fumigatus exposed to new chiral fungicide mefentrifluconazole. PEST MANAGEMENT SCIENCE 2023; 79:560-568. [PMID: 36205310 DOI: 10.1002/ps.7224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Triazole resistance in the human fungal pathogen Aspergillus fumigatus has been a growing challenge in clinic treatment with triazole drugs such as itraconazole. The fast evolvement of triazole resistance in A. fumigatus in the ecosystem has drawn great attention, and there has been a possible link between the application of triazole fungicides in agriculture and triazole resistance in A. fumigatus. The change in susceptibility of A. fumigatus exposed to the new chiral triazole fungicide mefentrifluconazole was investigated in this study. RESULTS The results indicated that triazole resistance in A. fumigatus was acquired with exposure to mefentrifluconazole at a level of greater than or equal to 2 mg L-1 in liquid medium and soil (not at 0.4 nor 1 mg L-1 ). Interestingly, stereoselectivity was found in the acquisition of triazole resistance in A. fumigatus when exposed to mefentrifluconazole. R-mefentrifluconazole, which is very active on plant pathogens, exhibited stronger possibility in the development of the resistance in A. fumigatus than its antipode. Overexpression of cyp51A, AtrF, AfuMDR1 and AfuMDR4 were associated with the acquired resistance in A. fumigatus with hereditary stability. CONCLUSION The results suggest that triazole resistance in A. fumigatus could be resulted from the selection of mefentrifluconazole at concentrations larger than 2 mg L-1 . Mefentrifluconazole should be applied within the dosage recommended by good agricultural practice to avoid the resistance in A. fumigatus in soil. This also may be applicable to other triazole fungicides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiji Xu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiatao Shen
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hongbin Lang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Zhang B, Pan X, Yang Y, Dong F, Xu J, Wu X, Zheng Y. Dissipation dynamics and comparative dietary exposure assessment of mefentrifluconazole in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114482. [PMID: 36586164 DOI: 10.1016/j.ecoenv.2022.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/08/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
A fast and sensitive analytical method based on UHPLC coupled with tandem mass spectrometry was established to investigate the dissipation and final residual amounts of mefentrifluconazole in rice, and dietary risk to consumers was evaluated. The method provided good linearity (R2 ≥ 0.9979), accuracy (recovery range, 79.0-101.5%), precision (relative standard deviation range, 1.3-13.9%), and sensitivity (limit of quantification, 0.005 mg/kg). The dissipation dynamics of mefentrifluconazole in rice followed first-order kinetics, with half-lives of 2.8-16.6 days. The final residues of mefentrifluconazole in various samples of harvested brown rice ranged from less than the limit of quantification to 0.092 mg/kg, the latter value being higher than the maximum residue limit recommended by the European Union. Comparative dietary exposure of mefentrifluconazole was assessed using field data and Chinese dietary patterns for different genders, regions, and age data. Although the results showed acceptable levels of risk for both acute exposure (the percentage of the acute reference dose ≤ 0.7483%) and chronic dietary intake (the percentage of acceptable daily intake ≤ 31.8516%), more studies of children are needed because they are at higher risk than other groups. This work provides the necessary data for registering and establishing the maximum residue limit for mefentrifluconazole in rice in China and reveals the potential risks to different groups of long-term application of mefentrifluconazole to rice and other crops.
Collapse
Affiliation(s)
- Binbin Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yun Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
16
|
Magnetic deep eutectic solvent-based dispersive liquid-liquid microextraction for enantioselectively determining chiral mefentrifluconazole in cereal samples via ultra-high-performance liquid chromatography. Food Chem 2022; 391:133220. [PMID: 35597037 DOI: 10.1016/j.foodchem.2022.133220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
A simple, rapid, and efficient pretreatment method of mefentrifluconazole enantiomers in cereal samples was established by dispersive liquid-liquid microextraction coupled with ultra-high-performance liquid chromatography-diode array detector (UHPLC-DAD). In this study, a novel ternary magnetic deep eutectic solvent (MDES) [octyltrimethylammonium bromide][cobalt chloride][acetic acid] was synthesized as the extractant. Acetic acid was used as the dispersant to promote the in situ dispersion of binary MDES [octyltrimethylammonium bromide][cobalt chloride]. The microdroplets of binary MDES containing mefentrifluconazole were separated by an external magnet. Device-assisted dispersion and time-consuming centrifugation steps were eliminated to ensure simplicity and rapidity of the pretreatment. Good linearity ranging from 0.01 μg g-1 to 2 μg g-1 was obtained. The extraction recovery varied from 82.9 to 95.0%. The limit of detection was 0.003 μg g-1. Finally, this established approach has been applied for the enantioselective detection of chiral mefentrifluconazole in corn, rice, wheat, millet, and sorghum samples.
Collapse
|
17
|
Li Y, Ren B, Zhao T, Chen H, Zhao Y, Liang H, Liang H. Enantioselective toxic effects of mefentrifluconazole in the early life stage of zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY 2022; 37:1662-1674. [PMID: 35297557 DOI: 10.1002/tox.23515] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The research on the enantioselective toxic effects of chiral pesticides on non-target aquatic organisms has attracted more and more attention. This study investigated the enantioselective toxic effects of mefentrifluconazole (MFZ) on acute toxicity, developmental toxicity, locomotor behaviors, and the mRNA relative expression levels of genes related to neurodevelopment and cardiac development in zebrafish embryos or larvae. The 96-h lethal concentration 50 (LC50 ) values (exposed to racemate and enantiomers of MFZ, that is, rac-MFZ/(-)-MFZ/(+)-MFZ) were 1.010, 1.552, and 0.753 mg/L for embryo, and 0.753, 1.187, and 0.553 mg/L for larvae. The rac-MFZ/(-)-MFZ/(+)-MFZ can affect the heart development of zebrafish embryos, accompanied by heart rate inhibition, yolk sac deformities, pericardial deformities, and down-regulation of genes related to cardiotoxicity in larvae in an enantioselective manner. Moreover, the rac-MFZ/(-)-MFZ/(+)-MFZ also can affect the neural development of zebrafish embryos, accompanied by autonomic movement inhibition, swimming speed and swimming distance abnormalities, and down-regulation of genes related to neurotoxicity in larvae in an enantioselective manner. For all toxicity endpoints, the effect of the (+)-MFZ to early-staged zebrafish were significantly greater than that of (-)-MFZ. These results will help distinguishing the difference of MFZ enantiomers to zebrafish, and provide scientific reference for improving the risk assessment of chiral pesticides MFZ.
Collapse
Affiliation(s)
- Yanhong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Bo Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Tingting Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Haiyue Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Hanlin Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
18
|
Xu S, Shen F, Song J, Wang Y, Yu S, Zhang L, Fang H, Yu Y. Enantioselectivity of new chiral triazole fungicide mefentrifluconazole: Bioactivity against phytopathogen, and acute toxicity and bioaccumulation in earthworm (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152937. [PMID: 35007570 DOI: 10.1016/j.scitotenv.2022.152937] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Elaborating the environmental behavior of mefentrifluconazole, a novel triazole fungicide, in stereoselective level is of paramount importance for the application of the pesticide in agriculture. In this study, the enantioselective bioactivity, acute toxicity and stereoselective bioaccumulation of mefentrifluconazole in earthworm (Eisenia fetida) were investigated. Bioactivity tests against four pathogens revealed that R-(-)-mefentrifluconazole exhibited approximately 11-113 times higher bioactivity than its S-(+)-mefentrifluconazole. However, the LC50 of S-(+)-, rac- and R-(-)-mefentrifluconazole to earthworm was measured to be 4.1, 11.4 and 7.3 μg/cm2, respectively, indicating active ingredient R-(-)-mefentrifluconazole is less toxic than its racemate and S-form. Accumulation of mefentrifluconazole in earthworms was non-enantioselective and negatively related to its adsorption onto soils. The concentration of mefentrifluconazole in in situ pore water (CIPW) and CaCl2 extraction (CCaCl2) was closely related to its accumulation in earthworms, suggesting that CIPW and CCaCl2 could be appropriate indicators for estimation of the bioavailability of mefentrifluconazole in soil. Conclusively, our study provides necessary information for the risk assessment of mefentrifluconazole in agriculture.
Collapse
Affiliation(s)
- Shiji Xu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fan Shen
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jialu Song
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yingnan Wang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Sumei Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, the Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Ishii H, Watanabe H, Yamaoka Y, Schnabel G. Sensitivity to fungicides in isolates of Colletotrichum gloeosporioides and C. acutatum species complexes and efficacy against anthracnose diseases. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105049. [PMID: 35249649 DOI: 10.1016/j.pestbp.2022.105049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Colletotrichum species cause diseases on many plants and are among the 'top 10' fungal plant pathogens. Species of the C. gloeosporioides and C. acutatum complexes are particularly important because they infect temperate fruit crops, but their control relies largely on chemical fungicides. In this study, differences in intrinsic fungicide sensitivity were determined in vitro using isolates of the C. gloeosporioides sp. complex (C. fructicola, C. siamense, and C. tropicale) and the C. acutatum sp. complex (C. fioriniae and C. nymphaeae), which had never been exposed to fungicides. Mycelial growth of all isolates was sensitive to the QoI azoxystrobin, the SDHI benzovindiflupyr, and the new DMI fungicide mefentrifluconazole. The isolates of C. nymphaeae were highly sensitive to the phenylpyrrole fungicide fludioxonil. The isolates of C. gloeosporioides sp. complex were sensitive to the bis-guanidine fungicide iminoctadine-albesilate, whereas those of C. acutatum sp. complex were inherently insensitive. These results are valuable when sensitivity of field populations is monitored in resistance management. Although SDHI fungicides are largely not effective against diseases caused by Colletotrichum species, benzovindiflupyr controlled anthracnose disease of various crops such as kidney bean, garland chrysanthemum, and strawberry, caused by C. lindemuthianum, C. chrysanthemi, and C. siamense, respectively, demonstrating this fungicide to be unique among SDHIs and having a broad control spectrum against anthracnose. To help understanding the reason for differential activity of benzovindiflupyr and boscalid, sdhB gene sequences were analyzed but those of C. lindemuthianum, C. chrysanthemi, and C. scovillei revealed no known mutations reported to be responsible for SDHI resistance in other fungi, indicating that other mechanism(s) than target-site modification may be involved in differential sensitivity to benzovindiflupyr and boscalid, found in Colletotrichum species.
Collapse
Affiliation(s)
- Hideo Ishii
- University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan; Clemson University, 105 Collings Street, Clemson, SC 29634, USA; Kibi International University, Sareo 370-1, Shichi, Minami-awaji, Hyogo 656-0484, Japan.
| | - Hideki Watanabe
- Gifu Prefectural Agricultural Technology Centre, Matamaru, Gifu, Gifu 501-1152, Japan
| | - Yuichi Yamaoka
- University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Guido Schnabel
- Clemson University, 105 Collings Street, Clemson, SC 29634, USA
| |
Collapse
|
20
|
Alexandrino DAM, Almeida CMR, Mucha AP, Carvalho MF. Revisiting pesticide pollution: The case of fluorinated pesticides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118315. [PMID: 34634397 DOI: 10.1016/j.envpol.2021.118315] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/11/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Fluorinated pesticides acquired a significant market share in the agrochemical sector due to the surge of new fluoroorganic ingredients approved in the last two decades. This growing trend has not been accompanied by a comprehensive scientific and regulatory framework entailing all their potential negative impacts for the environment, especially when considering the hazardous properties that may result from the incorporation of fluorine into organic molecules. This review aims to address the safe/hazardous dichotomy associated with fluorinated pesticides by providing an updated outlook on their relevancy in the agrochemical sector and how it leads to their role as environmental pollutants. Specifically, the environmental fate and distribution of these pesticides in the ecosystems is discussed, while also analysing their potential to act as toxic substances for non-target organisms.
Collapse
Affiliation(s)
- Diogo A M Alexandrino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - C Marisa R Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Ana P Mucha
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Faculty of Sciences, University of Porto, Rua do Campo Alegre 790, 4150-171, Porto, Portugal
| | - Maria F Carvalho
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| |
Collapse
|
21
|
Sadretdinova ZR, Akhmetov AR, Tulyabaev AR, Budnikova YH, Dudkina YB, Tuktarov AR, Dzhemilev UM. Synthesis of fullerenyl-1,2,3-triazoles by reaction of fullerenyl azide with terminal acetylenes. Org Biomol Chem 2021; 19:9299-9305. [PMID: 34647569 DOI: 10.1039/d1ob01483h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fullerenyltriazoles were synthesized by the interaction of azidofullerene with terminal acetylenes, in which the heterocyclic fragment is directly attached to the fullerene core. The electrochemical studies of the synthesized triazole-containing fullerenes have proved that the potentials of the first reduction peaks are shifted to a less cathodic region compared to unmodified C60. According to theoretical calculations, synthesized fullerene C60 derivatives can be considered as promising acceptor components of organic solar cells.
Collapse
Affiliation(s)
- Zarema R Sadretdinova
- Institute of Petrochemistry and Catalysis of RAS (IPC RAS), Prospect Octyabrya, 141, 450075 Ufa, Russian Federation.
| | - Arslan R Akhmetov
- Institute of Petrochemistry and Catalysis of RAS (IPC RAS), Prospect Octyabrya, 141, 450075 Ufa, Russian Federation.
| | - Artur R Tulyabaev
- Institute of Petrochemistry and Catalysis of RAS (IPC RAS), Prospect Octyabrya, 141, 450075 Ufa, Russian Federation.
| | - Yulia H Budnikova
- Arbuzov Institute of Organic and Physical Chemistry of RAS, 8. Arbuzov str., 420088 Kazan, Russian Federation. yulia@iopc
| | - Yulia B Dudkina
- Arbuzov Institute of Organic and Physical Chemistry of RAS, 8. Arbuzov str., 420088 Kazan, Russian Federation. yulia@iopc
| | - Airat R Tuktarov
- Institute of Petrochemistry and Catalysis of RAS (IPC RAS), Prospect Octyabrya, 141, 450075 Ufa, Russian Federation.
| | - Usein M Dzhemilev
- Institute of Petrochemistry and Catalysis of RAS (IPC RAS), Prospect Octyabrya, 141, 450075 Ufa, Russian Federation.
| |
Collapse
|
22
|
Jørgensen LN, Heick TM. Azole Use in Agriculture, Horticulture, and Wood Preservation - Is It Indispensable? Front Cell Infect Microbiol 2021; 11:730297. [PMID: 34557427 PMCID: PMC8453013 DOI: 10.3389/fcimb.2021.730297] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022] Open
Abstract
Plant pathogens cause significant damage to plant products, compromising both quantities and quality. Even though many elements of agricultural practices are an integral part of reducing disease attacks, modern agriculture is still highly reliant on fungicides to guarantee high yields and product quality. The azoles, 14-alpha demethylase inhibitors, have been the fungicide class used most widely to control fungal plant diseases for more than four decades. More than 25 different azoles have been developed for the control of plant diseases in crops and the group has a world market value share of 20-25%. Azoles have proven to provide long-lasting control of many target plant pathogens and are categorized to have moderate risk for developing fungicide resistance. Field performances against many fungal pathogens have correspondingly been stable or only moderately reduced over time. Hence azoles are still, to date, considered the backbone in many control strategies and widely used as solo fungicides or as mixing partners with other fungicide groups, broadening the control spectrum as well as minimizing the overall risk of resistance development. This review describes the historic perspective of azoles, their market shares and importance for production of major crops like cereals, rice, oilseed rape, sugar beet, banana, citrus, and soybeans. In addition, information regarding use in amenity grass, in the wood preservation industry and as plant growth regulators are described. At the end of the review azoles are discussed in a wider context including future threats following stricter requirements for registration and potential impact on human health.
Collapse
|
23
|
Liu Z, Cheng Y, Yuan L, Ren X, Liao X, Li L, Li W, Chen Z. Enantiomeric profiling of mefentrifluconazole in watermelon across China: Enantiochemistry, environmental fate, storage stability, and comparative dietary risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125985. [PMID: 33984784 DOI: 10.1016/j.jhazmat.2021.125985] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/10/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Elucidating the enantiomeric chemistry and enantioselective fate of the novel chiral triazole fungicide mefentrifluconazole is of vital importance for agroecosystem safety and human health. The absolute configuration of mefentrifluconazole was identified firstly as S-(+)-mefentrifluconazole and R-(-)-mefentrifluconazole on a cellulose tris(3-chloro-4-methylphenylcarbamate) chiral phase. A baseline resolution (Rs, 2.51), favorable retention (RT ≤ 2.24 min), and high sensitivity (LOQ, 0.5 μg/kg) of enantiomer pair were achieved by reversed-phase liquid chromatography tandem mass spectrometry combined with a 3D response surface strategy. Nationwide field trials were undertaken to clarify the enantiomer occurrence, enantioselective dissipation, terminal concentrations, and storage stability of S-mefentrifluconazole and R-mefentrifluconazole in watermelon across China. The original deposition of the sum of enantiomer pair was estimated to be 14.4-163.7 μg/kg, and terminally decreased to < LOQ-59.3 μg/kg 10 days after foliage application. S-mefentrifluconazole preferentially degraded (T1/2, 3.3-6.0 days), resulting in the relative enrichment of R-mefentrifluconazole (T1/2, 3.9-6.6 days) in watermelon. A probabilistic model is recommended for the dietary risk assessment, although both acute (%ARfD, 0.435-22.188%) and chronic (%ADI, 1.697-9.658%) risks are acceptable for associated population. The long-term exposures should be continuously emphasized given the increasing applications and persistent fate of mefentrifluconazole, especially for urban children.
Collapse
Affiliation(s)
- Ziqi Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Tianjin Agricultural University, Tianjin 300380, PR China
| | - Youpu Cheng
- Tianjin Agricultural University, Tianjin 300380, PR China
| | - Longfei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xianjun Liao
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, PR China
| | - Li Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
24
|
Ishii H, Cools HJ, Nishimura K, Borghi L, Kikuhara K, Yamaoka Y. DMI-Fungicide Resistance in Venturia nashicola, the Causal Agent of Asian Pear Scab-How Reliable Are Mycelial Growth Tests in Culture? Microorganisms 2021; 9:1377. [PMID: 34202715 PMCID: PMC8306131 DOI: 10.3390/microorganisms9071377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
Scab, caused by Venturia nashicola, is among the most serious diseases of Asian pears and control of this disease largely relies on sterol demethylation inhibitor (DMI) fungicides. However, pear growers have complained about field performance of DMIs since the mid-2000s. In this study, to evaluate pathogen sensitivity, mycelial growth tests and inoculation tests were conducted using DMI-amended culture medium and fungicide-sprayed potted pear trees, respectively. Results confirmed distribution of isolates resistant to fenarimol, hexaconazole, and difenoconazole in the field populations. Importantly, results from tests in culture did not fully correlate with those from tests in planta. Due to phenotypic instability of resistance and poor sporulation of this pathogen in culture, resistance is generally assessed by laborious and time-consuming inoculation with conidia collected from a field. To improve the result interpretation from in vitro tests, the isolates were genotyped: the CYP51 gene which encodes the target sterol 14α-demethylase was sequenced and various mutations have been detected in the coding sequence of DMI-resistant isolates. In addition to the detected single nucleotide polymorphisms, alternative mechanisms, not based on changes in the structure of the target protein, may also increase DMI resistance. Development of molecular methods for the diagnosis of DMI resistance seems to be challenging in V. nashicola.
Collapse
Affiliation(s)
- Hideo Ishii
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan;
- National Institute for Agro-Environmental Sciences, Kannondai 3-1-3, Tsukuba 305-8604, Japan;
- Department of Agriculture, Kibi International University, Sareo 370-1, Shichi, Minami-Awaji 656-0484, Japan
| | - Hans Jorgen Cools
- Syngenta, Jealott’s Hill International Research Centre, Bracknell RG42 6EY, UK;
| | - Kumiko Nishimura
- National Institute for Agro-Environmental Sciences, Kannondai 3-1-3, Tsukuba 305-8604, Japan;
| | - Lorenzo Borghi
- Syngenta Crop Protection AG, Werk Stein, Schaffhauserstrasse, WST.820.2.79, CH-4332 Stein, Switzerland;
| | - Kenji Kikuhara
- Fukuoka Agriculture and Forestry Research Center, Yoshiki 587, Chikushino 818-8549, Japan;
| | - Yuichi Yamaoka
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan;
| |
Collapse
|
25
|
Synthetic approaches to the 2015-2018 new agrochemicals. Bioorg Med Chem 2021; 39:116162. [PMID: 33895705 DOI: 10.1016/j.bmc.2021.116162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022]
Abstract
In this review, the synthesis of 33 agrochemicals that received an international standardization organization (ISO) name between January 2015 and December 2018 is described. The aim is to showcase the broad range and scope of reactions, reagents and intermediates used to discover and produce the latest active ingredients addressing the crop protection industry's needs.
Collapse
|
26
|
Li L, Sun X, Zhao X, Xiong Y, Gao B, Zhang J, Shi H, Wang M. Absolute Configuration, Enantioselective Bioactivity, and Degradation of the Novel Chiral Triazole Fungicide Mefentrifluconazole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4960-4967. [PMID: 33877830 DOI: 10.1021/acs.jafc.0c07947] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mefentrifluconazole is a new chiral triazole fungicide with a pair of enantiomers. However, the enantioselective differences in the biological effects and environmental behaviors of mefentrifluconazole are unclear. In the present work, a new simultaneous determination method of mefentrifluconazole enantiomers was established using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The absolute configuration of the two mefentrifluconazole enantiomers was confirmed by comparing the experimental and calculated ECD spectra. The enantioselective bioactivity to target fungi and degradation in cucumber samples were also assessed. The absolute configurations of the two enantiomers eluted on the Superchiral IG-3 column were confirmed as R-(-)-mefentrifluconazole and S-(+)-mefentrifluconazole. The R-(-)-mefentrifluconazole possessed 5-473 times higher bioactivity than S-(+)-mefentrifluconazole toward six kinds of target pathogenic fungi. In addition, R-(-)-mefentrifluconazole exhibited stronger efficacy of suppression of ergosterol biosynthesis. The molecular docking results indicated that R-(-)-mefentrifluconazole had shorter binding distances and lower energies with the target protein than S-(+)-mefentrifluconazole, which may result in the enantioselective bioactivity. The high-efficiency enantiomer of R-(-)-mefentrifluconazole has longer duration in cucumber samples due to the relatively long half-life of 4.0 days. This research has clarified the bioactivity differences and mechanism between mefentrifluconazole enantiomers against target fungi and laid the foundation for an in-depth study of mefentrifluconazole at the chiral level.
Collapse
Affiliation(s)
- Lianshan Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Xiaofang Sun
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Xuejun Zhao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Yudie Xiong
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Beibei Gao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Jing Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| |
Collapse
|
27
|
Li T, Li H, Liu T, Zhu J, Zhang L, Mu W, Liu F. Evaluation of the antifungal and biochemical activities of mefentrifluconazole against Botrytis cinerea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104784. [PMID: 33771264 DOI: 10.1016/j.pestbp.2021.104784] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Mefentrifluconazole is the first product of a new sub-class of triazoles fungicides, i.e., the isopropanol triazoles, with the broad spectrum and high activity. In this study, the potential and biochemical activities of mefentrifluconazole against Botrytis cinerea were investigated. The frequency distribution of all EC50 values of mefentrifluconazole against mycelial growth and germ tube elongation of 106 isolates formed unimodal curve, with the mean EC50 values of 0.124 ± 0.025 and 0.015 ± 0.008 μg/mL, respectively. The effect of mefentrifluconazole against gray mold was determined on detached leaves of cucumber in vivo, the treatment of mefentrifluconazole at 200 μg/mL provided 100% preventative efficacy and 72.7% curative efficacy. No evident correlation was detected between the sensitivity of B. cinerea to mefentrifluconazole and that to tebuconazole, difenoconazole, myclobutanil, hexaconazole, triadimefon, flusilazole and pyrisoxazole (P > 0.05). Mefentrifluconazole treatment resulted in the increase of mycelium branch, the decrease of ergosterol content and the changes of the permeability of cell membrane. These studies evaluated the potential of mefentrifluconazole to control gray mold and helped us to understand the possible biochemical activity of mefentrifluconazole against B.cinerea.
Collapse
Affiliation(s)
- Tongtong Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Haolin Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Tingting Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jiamei Zhu
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lanyun Zhang
- Agricultural and Rural Undertaking Development Center of Linzi District, Zibo, Shandong 255400, China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
28
|
Ishii H, Bryson PK, Kayamori M, Miyamoto T, Yamaoka Y, Schnabel G. Cross-resistance to the new fungicide mefentrifluconazole in DMI-resistant fungal pathogens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104737. [PMID: 33357559 DOI: 10.1016/j.pestbp.2020.104737] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
In the European Union (EU), regulation of sterol demethylation inhibiting (DMI) fungicides is tightened due to their suspected endocrine disrupting properties. However, the new DMI fungicide mefentrifluconazole was reported to have high fungicidal activity with minimal adverse side effects. In addition, some evidence suggests inconsistent cross resistance between mefentrifluconazole and other azoles. In this study, mefentrifluconazole and other triazoles were examined for activity to select pathogens sensitive or resistant to DMIs using mycelial growth tests on fungicide-treated culture medium or spray trials using cucumber plants. Cross-resistance was confirmed for all of the fungal species tested but activity levels varied. The sensitivity of Monilinia fructicola from peach to mefentrifluconazole was higher compared to other DMIs. In contrast, the inhibitory activity of mefentrifluconazole was equal or slightly inferior compared to difenoconazole, tebuconazole, propiconazole in Colletotrichum spp., Alternaria alternaria sp. complex and Cercospora beticola isolated from peach and sugar beet, respectively. Similar tendencies (i.e. equal or slightly inferior activity and cross-resistance) were observed for cucumber powdery mildew (Podosphaera xanthii) resistant to triflumizole, myclobutanil, and difenoconazole. Despite cross-resistance to other DMIs, mefentrifluconazole is a promising fungicide for fungal disease control on peach and other crops, with a reportedly more favorable toxicity profile.
Collapse
Affiliation(s)
- Hideo Ishii
- University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan; Clemson University, 105 Collings St., Clemson, SC 29634, USA.
| | | | - Miyuki Kayamori
- Tokachi Agricultural Experiment Station, Hokkaido Research Organization, Memuro, Kasai, Hokkaido 082-0081, Japan
| | - Takuya Miyamoto
- Horticultural Research Institute, Ibaraki Agricultural Centre, 3165-1 Ago, Kasama, Ibaraki 312-0292, Japan
| | - Yuichi Yamaoka
- University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Guido Schnabel
- Clemson University, 105 Collings St., Clemson, SC 29634, USA.
| |
Collapse
|
29
|
Wang X, Wang A, Qiu L, Chen M, Lu A, Li G, Yang C, Xue W. Expedient Discovery for Novel Antifungal Leads Targeting Succinate Dehydrogenase: Pyrazole-4-formylhydrazide Derivatives Bearing a Diphenyl Ether Fragment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14426-14437. [PMID: 33216530 DOI: 10.1021/acs.jafc.0c03736] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The pyrazole-4-carboxamide scaffold containing a flexible amide chain has emerged as the molecular skeleton of highly efficient agricultural fungicides targeting succinate dehydrogenase (SDH). Based on the above vital structural features of succinate dehydrogenase inhibitors (SDHI), three types of novel pyrazole-4-formylhydrazine derivatives bearing a diphenyl ether moiety were rationally conceived under the guidance of a virtual docking comparison between bioactive molecules and SDH. Consistent with the virtual verification results of a molecular docking comparison, the in vitro antifungal bioassays indicated that the skeleton structure of title compounds should be optimized as an N'-(4-phenoxyphenyl)-1H-pyrazole-4-carbohydrazide scaffold. Strikingly, N'-(4-phenoxyphenyl)-1H-pyrazole-4-carbohydrazide derivatives 11o against Rhizoctonia solani, 11m against Fusarium graminearum, and 11g against Botrytis cinerea exhibited excellent antifungal effects, with corresponding EC50 values of 0.14, 0.27, and 0.52 μg/mL, which were obviously better than carbendazim against R. solani (0.34 μg/mL) and F. graminearum (0.57 μg/mL) as well as penthiopyrad against B. cinerea (0.83 μg/mL). The relative studies on an in vivo bioassay against R. solani, bioactive evaluation against SDH, and molecular docking were further explored to ascertain the practical value of compound 11o as a potential fungicide targeting SDH. The present work provided a non-negligible complement for the structural optimization of antifungal leads targeting SDH.
Collapse
Affiliation(s)
- Xiaobin Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - An Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingling Qiu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Aimin Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xue
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
30
|
Li J, Dong C, An W, Zhang Y, Zhao Q, Li Z, Jiao B. Simultaneous Enantioselective Determination of Two New Isopropanol-Triazole Fungicides in Plant-Origin Foods Using Multiwalled Carbon Nanotubes in Reversed-Dispersive Solid-Phase Extraction and Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5969-5979. [PMID: 32347725 DOI: 10.1021/acs.jafc.0c01385] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A simple and sensitive enantiomeric analytical method was established for the determination of two new isopropanol-triazole fungicides mefentrifluconazole and ipfentrifluconazole in plant-origin foods using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The best enantioseparation of the four target stereoisomers was achieved on a Chiral MX(2)-RH column within 7 min by reversed-phase liquid chromatography, which is a significant improvement in the resolution of different chiral compounds under one set of conditions. A simple and effective pretreatment procedure was developed for the extraction and purification of the two target chiral fungicides using reversed-dispersive solid-phase extraction (r-DSPE) with multiwalled carbon nanotubes (MWCNTs). The influence of the type and amount of MWCNTs on the purification efficiencies and recoveries was evaluated. The mean recoveries for all four stereoisomers were in the range of 76.9-91.2%, with relative standard deviation (RSD) values below 7.2%. The limit of quantification (LOQ) of all stereoisomers of mefentrifluconazole and ipfentrifluconazole was 5 μg/kg for all tested matrixes. The results of the method validation and real samples analysis confirm that the established method is efficient and reliable for the enantiomeric determination of mefentrifluconazole and ipfentrifluconazole in plant-origin food samples.
Collapse
Affiliation(s)
- Jing Li
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China
- Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture, Chongqing 400712, People's Republic of China
| | - Chao Dong
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China
- Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture, Chongqing 400712, People's Republic of China
| | - Wenjin An
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China
- Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture, Chongqing 400712, People's Republic of China
| | - Yaohai Zhang
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China
- Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture, Chongqing 400712, People's Republic of China
| | - Qiyang Zhao
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China
- Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture, Chongqing 400712, People's Republic of China
| | - Zhixia Li
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China
- Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture, Chongqing 400712, People's Republic of China
| | - Bining Jiao
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China
- Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture, Chongqing 400712, People's Republic of China
| |
Collapse
|
31
|
Hu HR, Wang A, Qiu LL, Wang XB, Chen M, Lu AM, Yang CL. Novel pyrrolidine-2,4-dione derivatives containing pharmacophores of both hydrazine and diphenyl ether as potential antifungal agents: design, synthesis, biological evaluation, and 3D-QSAR study. NEW J CHEM 2020. [DOI: 10.1039/d0nj04551a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Novel pyrrolidine-2,4-dione derivatives were designed based on natural products. Some synthesized compounds showed excellent antifungal activity. Scanning electron microscopy was used to observe mycelium morphology. 3D-QSAR was also studied.
Collapse
Affiliation(s)
- Hao-Ran Hu
- Jiangsu Key Laboratory of Pesticide Science
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - An Wang
- Jiangsu Key Laboratory of Pesticide Science
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Ling-Ling Qiu
- Jiangsu Key Laboratory of Pesticide Science
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Xiao-Bin Wang
- Jiangsu Key Laboratory of Pesticide Science
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science
- Nanjing Agricultural University
- Nanjing
- P. R. China
- Department of Chemistry, College of Sciences
| | - Ai-Min Lu
- Jiangsu Key Laboratory of Pesticide Science
- Nanjing Agricultural University
- Nanjing
- P. R. China
- Department of Chemistry, College of Sciences
| | - Chun-Long Yang
- Jiangsu Key Laboratory of Pesticide Science
- Nanjing Agricultural University
- Nanjing
- P. R. China
- Department of Chemistry, College of Sciences
| |
Collapse
|
32
|
Zhang Y, Wu X, Li X, Duan T, Xu J, Dong F, Liu X, Guo L, Zheng Y. A fast and sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry method for determining mefentrifluconazole in plant- and animal-derived foods. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1348-1357. [DOI: 10.1080/19440049.2019.1628361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ying Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and In t Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, People’s Republic of China
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, People’s Republic of China
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and In t Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, People’s Republic of China
| | - Xianbin Li
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, People’s Republic of China
| | - Tingting Duan
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, People’s Republic of China
| | - Jun Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and In t Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, People’s Republic of China
| | - Fengshou Dong
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and In t Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, People’s Republic of China
| | - Xingang Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and In t Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, People’s Republic of China
| | - Luyao Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and In t Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, People’s Republic of China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and In t Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, People’s Republic of China
| |
Collapse
|