1
|
Essouma M, Noubiap JJ. Lupus and other autoimmune diseases: Epidemiology in the population of African ancestry and diagnostic and management challenges in Africa. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100288. [PMID: 39282618 PMCID: PMC11399606 DOI: 10.1016/j.jacig.2024.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 09/19/2024]
Abstract
Autoimmune diseases are prevalent among people of African ancestry living outside Africa. However, the burden of autoimmune diseases in Africa is not well understood. This article provides a global overview of the current burden of autoimmune diseases in individuals of African descent. It also discusses the major factors contributing to autoimmune diseases in this population group, as well as the challenges involved in diagnosing and managing autoimmune diseases in Africa.
Collapse
Affiliation(s)
- Mickael Essouma
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Cameroon
| | - Jean Jacques Noubiap
- Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, Calif
| |
Collapse
|
2
|
Martins YC, Rosa-Gonçalves P, Daniel-Ribeiro CT. Theories of immune recognition: Is anybody right? Immunology 2024; 173:274-285. [PMID: 39034280 DOI: 10.1111/imm.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
The clonal selection theory (CST) is the centrepiece of the current paradigm used to explain immune recognition and memory. Throughout the past decades, the original CST had been expanded and modified to explain new experimental evidences since its original publication by Burnet. This gave origin to new paradigms that govern experimental immunology nowadays, such as the associative recognition of antigen model and the stranger/danger signal model. However, these new theories also do not fully explain experimental findings such as natural autoimmune immunoglobulins, idiotypic networks, low and high dose tolerance, and dual-receptor T and B cells. To make sense of these empirical data, some authors have been trying to change the paradigm of immune cognition using a systemic approach, analogies with brain processing and concepts from second-order cybernetics. In the present paper, we review the CST and some of the theories/hypotheses derived from it, focusing on immune recognition. We point out their main weaknesses and highlight arguments made by their opponents and believers. We conclude that, until now, none of the proposed theories can fully explain the totality of immune phenomena and that a theory of everything is needed in immunology.
Collapse
Affiliation(s)
- Yuri Chaves Martins
- Department of Anesthesiology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Pamela Rosa-Gonçalves
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Martins YC, Jurberg AD, Daniel-Ribeiro CT. Visiting Molecular Mimicry Once More: Pathogenicity, Virulence, and Autoimmunity. Microorganisms 2023; 11:1472. [PMID: 37374974 DOI: 10.3390/microorganisms11061472] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023] Open
Abstract
The concept of molecular mimicry describes situations in which antigen sharing between parasites and hosts could benefit pathogen evasion from host immune responses. However, antigen sharing can generate host responses to parasite-derived self-like peptides, triggering autoimmunity. Since its conception, molecular mimicry and the consequent potential cross-reactivity following infections have been repeatedly described in humans, raising increasing interest among immunologists. Here, we reviewed this concept focusing on the challenge of maintaining host immune tolerance to self-components in parasitic diseases. We focused on the studies that used genomics and bioinformatics to estimate the extent of antigen sharing between proteomes of different organisms. In addition, we comparatively analyzed human and murine proteomes for peptide sharing with proteomes of pathogenic and non-pathogenic organisms. We conclude that, although the amount of antigenic sharing between hosts and both pathogenic and non-pathogenic parasites and bacteria is massive, the degree of this antigen sharing is not related to pathogenicity or virulence. In addition, because the development of autoimmunity in response to infections by microorganisms endowed with cross-reacting antigens is rare, we conclude that molecular mimicry by itself is not a sufficient factor to disrupt intact self-tolerance mechanisms.
Collapse
Affiliation(s)
- Yuri Chaves Martins
- Department of Anesthesiology, Saint Louis University School of Medicine, St. Louis, MO 63110, USA
| | - Arnon Dias Jurberg
- Instituto de Educação Médica, Campus Vista Carioca, Universidade Estácio de Sá, Rio de Janeiro 20071-004, RJ, Brazil
- Laboratório de Animais Transgênicos, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, RJ, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária and Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21041-250, RJ, Brazil
| |
Collapse
|
4
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Ngulube P. Humoral Immune Responses to P. falciparum Circumsporozoite Protein (Pfcsp) Induced by the RTS, S Vaccine - Current Update. Infect Drug Resist 2023; 16:2147-2157. [PMID: 37077252 PMCID: PMC10106824 DOI: 10.2147/idr.s401247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/23/2023] [Indexed: 04/21/2023] Open
Abstract
Malaria vaccines targeting the circumsporozoite protein (CSP) of the P. falciparum parasite have been overall relatively promising. RTS, S is a pre-erythrocytic recombinant protein-based malaria vaccine that targets CSP. RTS, S effectiveness shows some limited success regardless of its 58% efficacy for severe disease. P. falciparum circumsporozoite protein (Pfcsp) has stood to be the main candidate protein for most pre-erythrocytic stage vaccines. Studies on the structural and biophysical characteristics of antibodies specific to CSP (anti-CSP) are underway to achieve fine specificity with the CSP polymorphic regions. More recent studies have proposed the use of different kinds of monoclonal antibodies, the use of appropriate adjuvants, ideal vaccination dose and frequency, and improved targeting of particular epitopes for the robust production of functional antibodies and high complement-fixing activity as other potential methods for achieving long-lasting RTS, S. This review highlights recent findings regarding humoral immune responses to CSP elicited by RTS, S vaccine.
Collapse
Affiliation(s)
- Peter Ngulube
- Department of Biological Sciences, Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
- Correspondence: Peter Ngulube, Email
| |
Collapse
|
6
|
Abstract
"The Primate Malarias" book has been a uniquely important resource for multiple generations of scientists, since its debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumental for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to studying longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be anticipated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmission, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria Host-Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective interventions against malaria.
Collapse
Affiliation(s)
- Mary R Galinski
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center (Yerkes National Primate Research Center), Emory University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Mortazavi SE, Lugaajju A, Kaddumukasa M, Tijani MK, Kironde F, Persson KEM. Osteopontin and malaria: no direct effect on parasite growth, but correlation with P. falciparum-specific B cells and BAFF in a malaria endemic area. BMC Microbiol 2021; 21:307. [PMID: 34742229 PMCID: PMC8571855 DOI: 10.1186/s12866-021-02368-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
Background The dysregulation of B cell activation is prevalent during naturally acquired immunity against malaria. Osteopontin (OPN), a protein produced by various cells including B cells, is a phosphorylated glycoprotein that participates in immune regulation and has been suggested to be involved in the immune response against malaria. Here we studied the longitudinal concentrations of OPN in infants and their mothers living in Uganda, and how OPN concentrations correlated with B cell subsets specific for P. falciparum and B cell activating factor (BAFF). We also investigated the direct effect of OPN on P. falciparum in vitro. Results The OPN concentration was higher in the infants compared to the mothers, and OPN concentration in infants decreased from birth until 9 months. OPN concentration in infants during 9 months were independent of OPN concentrations in corresponding mothers. OPN concentrations in infants were inversely correlated with total atypical memory B cells (MBCs) as well as P. falciparum-specific atypical MBCs. There was a positive correlation between OPN and BAFF concentrations in both mothers and infants. When OPN was added to P. falciparum cultured in vitro, parasitemia was unaffected regardless of OPN concentration. Conclusions The concentrations of OPN in infants were higher and independent of the OPN concentrations in corresponding mothers. In vitro, OPN does not have a direct effect on P. falciparum growth. Our correlation analysis results suggest that OPN could have a role in the B cell immune response and acquisition of natural immunity against malaria. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02368-y.
Collapse
Affiliation(s)
- Susanne E Mortazavi
- Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Infectious Diseases, Skåne University Hospital, Lund, Sweden
| | - Allan Lugaajju
- Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden.,College of Health Sciences, Makerere University, Kampala, Uganda
| | - Mark Kaddumukasa
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Muyideen Kolapo Tijani
- Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden.,Cellular Parasitology Program, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Fred Kironde
- Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Kristina E M Persson
- Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
8
|
Leitner WW, Haraway M, Pierson T, Bergmann-Leitner ES. Role of Opsonophagocytosis in Immune Protection against Malaria. Vaccines (Basel) 2020; 8:E264. [PMID: 32486320 PMCID: PMC7350021 DOI: 10.3390/vaccines8020264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
The quest for immune correlates of protection continues to slow vaccine development. To date, only vaccine-induced antibodies have been confirmed as direct immune correlates of protection against a plethora of pathogens. Vaccine immunologists, however, have learned through extensive characterizations of humoral responses that the quantitative assessment of antibody responses alone often fails to correlate with protective immunity or vaccine efficacy. Despite these limitations, the simple measurement of post-vaccination antibody titers remains the most widely used approaches for vaccine evaluation. Developing and performing functional assays to assess the biological activity of pathogen-specific responses continues to gain momentum; integrating serological assessments with functional data will ultimately result in the identification of mechanisms that contribute to protective immunity and will guide vaccine development. One of these functional readouts is phagocytosis of antigenic material tagged by immune molecules such as antibodies and/or complement components. This review summarizes our current understanding of how phagocytosis contributes to immune defense against pathogens, the pathways involved, and defense mechanisms that pathogens have evolved to deal with the threat of phagocytic removal and destruction of pathogens.
Collapse
Affiliation(s)
- Wolfgang W. Leitner
- Basic Immunology Branch, Division of Allergy, Immunology, and Transplantation/National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA;
| | - Megan Haraway
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.H.); (T.P.)
| | - Tony Pierson
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.H.); (T.P.)
| | - Elke S. Bergmann-Leitner
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.H.); (T.P.)
| |
Collapse
|
9
|
Rivera-Correa J, Conroy AL, Opoka RO, Batte A, Namazzi R, Ouma B, Bangirana P, Idro R, Schwaderer AL, John CC, Rodriguez A. Autoantibody levels are associated with acute kidney injury, anemia and post-discharge morbidity and mortality in Ugandan children with severe malaria. Sci Rep 2019; 9:14940. [PMID: 31624288 PMCID: PMC6797715 DOI: 10.1038/s41598-019-51426-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/26/2019] [Indexed: 12/02/2022] Open
Abstract
Autoantibodies targeting host antigens contribute to autoimmune disorders, frequently occur during and after infections and have been proposed to contribute to malaria-induced anemia. We measured anti-phosphatidylserine (PS) and anti-DNA antibody levels in 382 Ugandan children prospectively recruited in a study of severe malaria (SM). High antibody levels were defined as antibody levels greater than the mean plus 3 standard deviations of community children (CC). We observed increases in median levels of anti-PS and anti-DNA antibodies in children with SM compared to CC (p < 0.0001 for both). Children with severe malarial anemia were more likely to have high anti-PS antibodies than children with cerebral malaria (16.4% vs. 7.4%), p = 0.02. Increases in anti-PS and anti-DNA antibodies were associated with decreased hemoglobin (p < 0.05). A one-unit increase in anti-DNA antibodies was associated with a 2.99 (95% CI, 1.68, 5.31) increase odds of acute kidney injury (AKI) (p < 0.0001). Elevated anti-PS and anti-DNA antibodies were associated with post-discharge mortality (p = 0.031 and p = 0.042, respectively). Children with high anti-PS antibodies were more likely to have multiple hospital readmissions compared to children with normal anti-PS antibody levels (p < 0.05). SM is associated with increased autoantibodies against PS and DNA. Autoantibodies were associated with anemia, AKI, post-discharge mortality, and hospital readmission.
Collapse
Affiliation(s)
- Juan Rivera-Correa
- Department of Microbiology, New York University School of Medicine, New York, NY, 10010, USA
| | - Andrea L Conroy
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Robert O Opoka
- Department of Pediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Anthony Batte
- Child Health and Development Centre, Makerere University, Kampala, Uganda
| | - Ruth Namazzi
- Department of Pediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Benson Ouma
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Paul Bangirana
- Department of Psychiatry, Makerere University, Kampala, Uganda
| | - Richard Idro
- Department of Pediatrics and Child Health, Makerere University, Kampala, Uganda
- Centre of Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Andrew L Schwaderer
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chandy C John
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, USA
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, NY, 10010, USA
| |
Collapse
|
10
|
Rivera-Correa J, Rodriguez A. Divergent Roles of Antiself Antibodies during Infection. Trends Immunol 2018; 39:515-522. [PMID: 29724608 PMCID: PMC6386177 DOI: 10.1016/j.it.2018.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/19/2022]
Abstract
Antiself antibodies are most commonly associated with autoimmune disorders, but a large body of evidence indicates that they are also present in numerous infectious diseases. These autoimmune antibodies appear transiently during infection with a number of viruses, bacteria, and parasites and in some cases have been associated with the development of autoimmune disorders that develop after infection has been cleared. Traditionally these infection-associated autoantibodies are considered an erroneous byproduct of a legitimate immune response, but their possible role in the clearance of microbes and infected cells or inhibition of host-cell invasion suggests that they may be present because of their beneficial protective role against various infections.
Collapse
Affiliation(s)
- Juan Rivera-Correa
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
11
|
Bhattacharya J, Pappas K, Toz B, Aranow C, Mackay M, Gregersen PK, Doumbo O, Traore AK, Lesser ML, McMahon M, Utset T, Silverman E, Levy D, McCune WJ, Jolly M, Wallace D, Weisman M, Romero-Diaz J, Diamond B. Serologic features of cohorts with variable genetic risk for systemic lupus erythematosus. Mol Med 2018; 24:24. [PMID: 30134810 PMCID: PMC6016868 DOI: 10.1186/s10020-018-0019-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic, hormonal, and environmental influences. In Western Europe and North America, individuals of West African descent have a 3-4 fold greater incidence of SLE than Caucasians. Paradoxically, West Africans in sub-Saharan Africa appear to have a low incidence of SLE, and some studies suggest a milder disease with less nephritis. In this study, we analyzed sera from African American female SLE patients and four other cohorts, one with SLE and others with varying degrees of risk for SLE in order to identify serologic factors that might correlate with risk of or protection against SLE. METHODS Our cohorts included West African women with previous malaria infection assumed to be protected from development of SLE, clinically unaffected sisters of SLE patients with high risk of developing SLE, healthy African American women with intermediate risk, healthy Caucasian women with low risk of developing SLE, and women with a diagnosis of SLE. We developed a lupus risk index (LRI) based on titers of IgM and IgG anti-double stranded DNA antibodies and levels of C1q. RESULTS The risk index was highest in SLE patients; second highest in unaffected sisters of SLE patients; third highest in healthy African-American women and lowest in healthy Caucasian women and malaria-exposed West African women. CONCLUSION This risk index may be useful in early interventions to prevent SLE. In addition, it suggests new therapeutic approaches for the treatment of SLE.
Collapse
Affiliation(s)
- Jyotsna Bhattacharya
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Karalyn Pappas
- Department of Statistical Science, Cornell University, Ithaca, NY, USA
| | - Bahtiyar Toz
- Department of Internal Medicine, Istanbul University, Istanbul, Turkey
| | - Cynthia Aranow
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Meggan Mackay
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Peter K Gregersen
- The Feinstein Institute for Medical Research, Center for Genomics and Human Genetics, Manhasset, NY, USA
| | | | - Abdel Kader Traore
- Deputy of the Department of Internal Medicine, University Hospital, Bamako, Mali
| | - Martin L Lesser
- The Feinstein Institute for Medical Research, Center of Biostatistics Unit Manhasset, Manhasset, NY, USA
| | - Maureen McMahon
- UCLA David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Tammy Utset
- University of Chicago Medical Center, Chicago, IL, USA
| | - Earl Silverman
- Hospital for Sick Children, University of Toronto, Toronto, ON M5G, 1X8, Canada
| | - Deborah Levy
- Hospital for Sick Children, University of Toronto, Toronto, ON M5G, 1X8, Canada
| | | | | | - Daniel Wallace
- Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | | | - Juanita Romero-Diaz
- Instituto Nacional de Ciencias Medicas y Nutrician Salvador Zubiran, Mexico City, Mexico
| | - Betty Diamond
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr, Manhasset, NY, 11030, USA.
| |
Collapse
|
12
|
Ventura AMRDS, Fernandes AAM, Zanini GM, Pratt-Riccio LR, Sequeira CG, do Monte CRS, Martins-Filho AJ, Machado RLD, Libonati RMF, de Souza JM, Daniel-Ribeiro CT. Clinical and immunological profiles of anaemia in children and adolescents with Plasmodium vivax malaria in the Pará state, Brazilian Amazon. Acta Trop 2018; 181:122-131. [PMID: 29408596 DOI: 10.1016/j.actatropica.2018.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 11/18/2022]
Abstract
Children and adolescents are at great risk for developing iron deficiency anaemia worldwide. In the tropical areas, malaria and intestinal parasites may also play an important role in anaemia pathogenesis. This study aimed at evaluating clinical and immunological aspects of anaemia in children and adolescents with Plasmodium vivax malaria, in the Pará State, Brazil. A longitudinal study was performed in two Reference Centers for malaria diagnosis in the Brazilian Amazon in children and adolescents with malaria (n = 81), as compared to a control group (n = 40). Patients had blood drawn three times [before treatment (D0), after treatment (D7) and at the first cure control (D30)] and hemogram, autoantibody analysis (anticardiolipin, antibodies against normal RBC membrane components) and cytokine studies (TNF and IL-10) were performed. Stool samples were collected for a parasitological examination. Malaria patients had a 2.7-fold greater chance of anaemia than the control group. At D0, 66.1% of the patients had mild anaemia, 30.5% had moderate and 3.5% had severe anaemia. Positivity to intestinal helminths and/or protozoa at stool examinations had no influence on anaemia. Patients had significantly lower levels of plasmatic TNF than control individuals at D0. Low TNF levels were more prevalent among patients with moderate/severe anaemia than in those with mild anaemia and among anaemic patients than in anaemic controls. TNF levels were positively correlated with the haemoglobin rates and negatively correlated with the interval time elapsed between the onset of symptoms and diagnosis. Both plasma TNF levels and haemoglobin rates increased during the follow-up period. The IL-10 levels were lower in patients than in the controls at day 0 and decreased thereafter up to the end of treatment. Only the anti-anticardiolipin autoantibodies were associated with moderate/severe anaemia and, possibly by reacting with the parasite glycosylphosphatidylinositol (a powerful stimulator of TNF production), may have indirectly contributed to decrease the TNF levels, which could be involved in the malarial vivax anaemia of these children and adolescents. More studies addressing this issue are necessary to confirm these findings and to add more information on the multifactorial pathogenesis of the malarial anaemia.
Collapse
Affiliation(s)
- Ana Maria Revoredo da Silva Ventura
- Laboratório de Ensaios Clínicos em Malária, Instituto Evandro Chagas, Ministério da Saúde, Secretaria de Vigilância em Saúde (IEC/MS/SVS), Ananindeua, Pará, Brazil; Serviço de Pediatria - Departamento de Saúde Integrada, Universidade do Estado do Pará (UEPA), Belém, Pará, Brazil.
| | | | - Graziela Maria Zanini
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil.
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil.
| | - Carina Guilhon Sequeira
- Serviço de Pediatria - Departamento de Saúde Integrada, Universidade do Estado do Pará (UEPA), Belém, Pará, Brazil.
| | | | - Arnaldo Jorge Martins-Filho
- Serviço de Patologia Clínica, Instituto Evandro Chagas, Ministério da Saúde, Secretaria de Vigilância em Saúde (IEC/MS/SVS), Ananindeua, Pará, Brazil.
| | - Ricardo Luiz Dantas Machado
- Laboratório de Imunogenética, Instituto Evandro Chagas, Ministério da Saúde, Secretaria de Vigilância em Saúde (IEC/MS/SVS), Ananindeua, Pará, Brazil.
| | | | - José Maria de Souza
- Laboratório de Ensaios Clínicos em Malária, Instituto Evandro Chagas, Ministério da Saúde, Secretaria de Vigilância em Saúde (IEC/MS/SVS), Ananindeua, Pará, Brazil.
| | | |
Collapse
|
13
|
Pinna RA, Dos Santos AC, Perce-da-Silva DS, da Silva LA, da Silva RNR, Alves MR, Santos F, de Oliveira Ferreira J, Lima-Junior JC, Villa-Verde DM, De Luca PM, Carvalho-Pinto CE, Banic DM. Correlation of APRIL with production of inflammatory cytokines during acute malaria in the Brazilian Amazon. IMMUNITY INFLAMMATION AND DISEASE 2018; 6:207-220. [PMID: 29314720 PMCID: PMC5946147 DOI: 10.1002/iid3.208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A proliferation-inducing ligand (APRIL) and B cell activation factor (BAFF) are known to play a significant role in the pathogenesis of several diseases, including BAFF in malaria. The aim of this study was to investigate whether APRIL and BAFF plasma concentrations could be part of inflammatory responses associated with P. vivax and P. falciparum malaria in patients from the Brazilian Amazon. METHODS Blood samples were obtained from P. vivax and P. falciparum malaria patients (n = 52) resident in Porto Velho before and 15 days after the beginning of treatment and from uninfected individuals (n = 12). We investigated APRIL and BAFF circulating levels and their association with parasitaemia, WBC counts, and cytokine/chemokine plasma levels. The expression levels of transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) on PBMC from a subset of 5 P. vivax-infected patients were analyzed by flow cytometry. RESULTS APRIL plasma levels were transiently increased during acute P. vivax and P. falciparum infections whereas BAFF levels were only increased during acute P. falciparum malaria. Although P. vivax and P. falciparum malaria patients have similar cytokine profiles during infection, in P. vivax acute phase malaria, APRIL but not BAFF levels correlated positively with IL-1, IL-2, IL-4, IL-6, and IL-13 levels. We did not find any association between P. vivax parasitaemia and APRIL levels, while an inverse correlation was found between P. falciparum parasitaemia and APRIL levels. The percentage of TACI positive CD4+ and CD8+ T cells were increased in the acute phase P. vivax malaria. CONCLUSION These findings suggest that the APRIL and BAFF inductions reflect different host strategies for controlling infection with each malaria species.
Collapse
Affiliation(s)
- Raquel A Pinna
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Adriana C Dos Santos
- Laboratory of Experimental Pathology, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil, 24020-140
| | - Daiana S Perce-da-Silva
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Luciene A da Silva
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Rodrigo N Rodrigues da Silva
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Marcelo R Alves
- Laboratory of Research in Pharmacogenetics, National Institute of Infectology, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Fátima Santos
- Laboratory of Entomology, LACEN/RO, Rua Anita Garibalde, 4130 - Costa e Silva, Porto Velho, RO, Brazil, 76803-620
| | - Joseli de Oliveira Ferreira
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Josué C Lima-Junior
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Déa M Villa-Verde
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Paula M De Luca
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Carla E Carvalho-Pinto
- Laboratory of Experimental Pathology, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil, 24020-140
| | - Dalma M Banic
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| |
Collapse
|
14
|
Rivera-Correa J, Guthmiller JJ, Vijay R, Fernandez-Arias C, Pardo-Ruge MA, Gonzalez S, Butler NS, Rodriguez A. Plasmodium DNA-mediated TLR9 activation of T-bet + B cells contributes to autoimmune anaemia during malaria. Nat Commun 2017; 8:1282. [PMID: 29101363 PMCID: PMC5670202 DOI: 10.1038/s41467-017-01476-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 09/20/2017] [Indexed: 01/05/2023] Open
Abstract
Infectious pathogens contribute to the development of autoimmune disorders, but the mechanisms connecting these processes are incompletely understood. Here we show that Plasmodium DNA induces autoreactive responses against erythrocytes by activating a population of B cells expressing CD11c and the transcription factor T-bet, which become major producers of autoantibodies that promote malarial anaemia. Additionally, we identify parasite DNA-sensing through Toll-like receptor 9 (TLR9) along with inflammatory cytokine receptor IFN-γ receptor (IFN-γR) as essential signals that synergize to promote the development and appearance of these autoreactive T-bet+ B cells. The lack of any of these signals ameliorates malarial anaemia during infection in a mouse model. We also identify both expansion of T-bet+ B cells and production of anti-erythrocyte antibodies in ex vivo cultures of naive human peripheral blood mononuclear cells (PBMC) exposed to P. falciprum infected erythrocyte lysates. We propose that synergistic TLR9/IFN-γR activation of T-bet+ B cells is a mechanism underlying infection-induced autoimmune-like responses.
Collapse
MESH Headings
- Anemia, Hemolytic, Autoimmune/etiology
- Anemia, Hemolytic, Autoimmune/immunology
- Anemia, Hemolytic, Autoimmune/parasitology
- Animals
- Autoantibodies/biosynthesis
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/parasitology
- DNA, Protozoan/immunology
- Erythrocytes/immunology
- Erythrocytes/parasitology
- Female
- Humans
- Lymphocyte Activation
- Malaria, Falciparum/complications
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Plasmodium falciparum/immunology
- Plasmodium falciparum/pathogenicity
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- T-Box Domain Proteins/deficiency
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- Toll-Like Receptor 9/deficiency
- Toll-Like Receptor 9/genetics
- Toll-Like Receptor 9/metabolism
- Interferon gamma Receptor
Collapse
Affiliation(s)
- J Rivera-Correa
- Department of Microbiology, New York University School of Medicine, New York, NY, 10010, USA
| | - J J Guthmiller
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - R Vijay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - C Fernandez-Arias
- Department of Microbiology, New York University School of Medicine, New York, NY, 10010, USA
| | - M A Pardo-Ruge
- Department of Microbiology, New York University School of Medicine, New York, NY, 10010, USA
| | - S Gonzalez
- Department of Microbiology, New York University School of Medicine, New York, NY, 10010, USA
| | - N S Butler
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - A Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, NY, 10010, USA.
| |
Collapse
|
15
|
Totino PRR, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Evidencing the Role of Erythrocytic Apoptosis in Malarial Anemia. Front Cell Infect Microbiol 2016; 6:176. [PMID: 28018860 PMCID: PMC5145864 DOI: 10.3389/fcimb.2016.00176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/21/2016] [Indexed: 01/06/2023] Open
Abstract
In the last decade it has become clear that, similarly to nucleated cells, enucleated red blood cells (RBCs) are susceptible to programmed apoptotic cell death. Erythrocytic apoptosis seems to play a role in physiological clearance of aged RBCs, but it may also be implicated in anemia of different etiological sources including drug therapy and infectious diseases. In malaria, severe anemia is a common complication leading to death of children and pregnant women living in malaria-endemic regions of Africa. The pathogenesis of malarial anemia is multifactorial and involves both ineffective production of RBCs by the bone marrow and premature elimination of non-parasitized RBCs, phenomena potentially associated with apoptosis. In the present overview, we discuss evidences associating erythrocytic apoptosis with the pathogenesis of severe malarial anemia, as well as with regulation of parasite clearance in malaria. Efforts to understand the role of erythrocytic apoptosis in malarial anemia can help to identify potential targets for therapeutic intervention based on apoptotic pathways and consequently, mitigate the harmful impact of malaria in global public health.
Collapse
Affiliation(s)
- Paulo R R Totino
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz Rio de Janeiro, Brazil
| | - Cláudio T Daniel-Ribeiro
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz Rio de Janeiro, Brazil
| | | |
Collapse
|
16
|
Hart GT, Akkaya M, Chida AS, Wei C, Jenks SA, Tipton C, He C, Wendel BS, Skinner J, Arora G, Kayentao K, Ongoiba A, Doumbo O, Traore B, Narum DL, Jiang N, Crompton PD, Sanz I, Pierce SK. The Regulation of Inherently Autoreactive VH4-34-Expressing B Cells in Individuals Living in a Malaria-Endemic Area of West Africa. THE JOURNAL OF IMMUNOLOGY 2016; 197:3841-3849. [PMID: 27798155 DOI: 10.4049/jimmunol.1600491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 09/21/2016] [Indexed: 11/19/2022]
Abstract
Plasmodium falciparum malaria is a deadly infectious disease in which Abs play a critical role in naturally acquired immunity. However, the specificity and nature of Abs elicited in response to malaria are only partially understood. Autoreactivity and polyreactivity are common features of Ab responses in several infections and were suggested to contribute to effective pathogen-specific Ab responses. In this article, we report on the regulation of B cells expressing the inherently autoreactive VH4-34 H chain (identified by the 9G4 mAb) and 9G4+ plasma IgG in adults and children living in a P. falciparum malaria-endemic area in West Africa. The frequency of 9G4+ peripheral blood CD19+ B cells was similar in United States adults and African adults and children; however, more 9G4+ B cells appeared in classical and atypical memory B cell compartments in African children and adults compared with United States adults. The levels of 9G4+ IgG increased following acute febrile malaria but did not increase with age as humoral immunity is acquired or correlate with protection from acute disease. This was the case, even though a portion of 9G4+ B cells acquired phenotypes of atypical and classical memory B cells and 9G4+ IgG contained equivalent numbers of somatic hypermutations compared with all other VHs, a characteristic of secondary Ab repertoire diversification in response to Ag stimulation. Determining the origin and function of 9G4+ B cells and 9G4+ IgG in malaria may contribute to a better understanding of the varied roles of autoreactivity in infectious diseases.
Collapse
Affiliation(s)
- Geoffrey T Hart
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Munir Akkaya
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Asiya S Chida
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322
| | - Chungwen Wei
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322
| | - Scott A Jenks
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322
| | | | - Chenfeng He
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712
| | - Ben S Wendel
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712
| | - Jeff Skinner
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Gunjan Arora
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Kassoum Kayentao
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, Bamako, Mali; and
| | - Aissata Ongoiba
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, Bamako, Mali; and
| | - Ogobara Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, Bamako, Mali; and
| | - Boubacar Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, Bamako, Mali; and
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Ning Jiang
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Ignacio Sanz
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| |
Collapse
|
17
|
Crespi BJ, Go MC. Diametrical diseases reflect evolutionary-genetic tradeoffs: Evidence from psychiatry, neurology, rheumatology, oncology and immunology. Evol Med Public Health 2015; 2015:216-53. [PMID: 26354001 PMCID: PMC4600345 DOI: 10.1093/emph/eov021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022] Open
Abstract
Tradeoffs centrally mediate the expression of human adaptations. We propose that tradeoffs also influence the prevalence and forms of human maladaptation manifest in disease. By this logic, increased risk for one set of diseases commonly engenders decreased risk for another, diametric, set of diseases. We describe evidence for such diametric sets of diseases from epidemiological, genetic and molecular studies in four clinical domains: (i) psychiatry (autism vs psychotic-affective conditions), (ii) rheumatology (osteoarthritis vs osteoporosis), (iii) oncology and neurology (cancer vs neurodegenerative disorders) and (iv) immunology (autoimmunity vs infectious disease). Diametric disorders are important to recognize because genotypes or environmental factors that increase risk for one set of disorders protect from opposite disorders, thereby providing novel and direct insights into disease causes, prevention and therapy. Ascertaining the mechanisms that underlie disease-related tradeoffs should also indicate means of circumventing or alleviating them, and thus reducing the incidence and impacts of human disease in a more general way.
Collapse
Affiliation(s)
| | - Matthew C Go
- Department of Biological Sciences; Department of Archaeology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6 Present address: Department of Anthropology, University of Illinois at Urbana-Champaign, 109 Davenport Hall, 607 S Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
18
|
Gomes LR, Martins YC, Ferreira-da-Cruz MF, Daniel-Ribeiro CT. Autoimmunity, phospholipid-reacting antibodies and malaria immunity. Lupus 2015; 23:1295-8. [PMID: 25228731 DOI: 10.1177/0961203314546021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several questions regarding the production and functioning of autoantibodies (AAb) during malaria infection remain open. Here we provide an overview of studies conducted in our laboratory that shed some light on the questions of whether antiphospholipid antibodies (aPL) and other AAb associated with autoimmune diseases (AID) can recognize Plasmodia antigens and exert anti-parasite activity; and whether anti-parasite phospholipid antibodies, produced in response to malaria, can inhibit phospholipid-induced inflammatory responses and protect against the pathogenesis of severe malaria. Our work showed that sera from patients with AID containing AAb against dsDNA, ssDNA, nuclear antigens (ANA), actin, cardiolipin (aCL) and erythrocyte membrane antigens recognize plasmodial antigens and can, similarly to monoclonal AAb of several specificities including phospholipid, inhibit the growth of P. falciparum in vitro. However, we did not detect a relationship between the presence of anti-glycosylphosphatidylinositol (GPI) antibodies in the serum and asymptomatic malaria infection, although we did register a relationship between these antibodies and parasitemia levels in infected individuals. Taken together, these results indicate that autoimmune responses mediated by AAb of different specificities, including phospholipid, may have anti-plasmodial activity and protect against malaria, although it is not clear whether anti-parasite phospholipid antibodies can mediate the same effect. The potential effect of anti-parasite phospholipid antibodies in malarious patients that are prone to the development of systemic lupus erythematosus or antiphospholipid syndrome, as well as the (possibly protective?) role of the (pathogenic) aPL on the malaria symptomatology and severity in these individuals, remain open questions.
Collapse
Affiliation(s)
- L R Gomes
- Laboratory for Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro and Center for Malaria Research and Training (CPD-Mal), Fiocruz, Rio de Janeiro / Secretary for Health Surveillance (SVS), Ministry of Health, Brazil
| | - Y C Martins
- Laboratory for Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro and Center for Malaria Research and Training (CPD-Mal), Fiocruz, Rio de Janeiro / Secretary for Health Surveillance (SVS), Ministry of Health, Brazil Department of Pathology, Albert Einstein College of Medicine, The Bronx, New York, USA
| | - M F Ferreira-da-Cruz
- Laboratory for Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro and Center for Malaria Research and Training (CPD-Mal), Fiocruz, Rio de Janeiro / Secretary for Health Surveillance (SVS), Ministry of Health, Brazil
| | - C T Daniel-Ribeiro
- Laboratory for Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro and Center for Malaria Research and Training (CPD-Mal), Fiocruz, Rio de Janeiro / Secretary for Health Surveillance (SVS), Ministry of Health, Brazil
| |
Collapse
|
19
|
Autoantibody profile of patients infected with knowlesi malaria. Clin Chim Acta 2015; 448:33-8. [PMID: 26086445 DOI: 10.1016/j.cca.2015.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/05/2015] [Accepted: 06/03/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND Autoantibodies or antibodies against self-antigens are produced either during physiological processes to maintain homeostasis or pathological process such as trauma and infection. Infection with parasites including Plasmodium has been shown to generally induce elevated self-antibody (autoantibody) levels. Plasmodium knowlesi is increasingly recognized as one of the most important emerging human malaria in Southeast Asia that can cause severe infection leading to mortality. Autoimmune-like phenomena have been hypothesized to play a role in the protective immune responses in malaria infection. METHODS We studied the autoantibody profile from serum of eleven patients diagnosed with P. knowlesi. Autoantigen arrays were used to elucidate the autoantibody repertoire of P. knowlesi infected patients. The patented OGT Discovery Array with 1636 correctly folded antigen was employed. RESULTS Analysis of the patient versus control sera gave us 24 antigens with high reactivity with serum antibodies. CONCLUSIONS Understanding the autoantibody profile of malarious patients infected with P. knowlesi would help to further understand the host-parasite interaction, host immune response and disease pathogenesis. These reactive antigens may serve as potential biomarkers for cases of asymptomatic malaria and mild malaria or predictive markers for severe malaria.
Collapse
|
20
|
Guiyedi V, Bécavin C, Herbert F, Gray J, Cazenave PA, Kombila M, Crisanti A, Fesel C, Pied S. Asymptomatic Plasmodium falciparum infection in children is associated with increased auto-antibody production, high IL-10 plasma levels and antibodies to merozoite surface protein 3. Malar J 2015; 14:162. [PMID: 25889717 PMCID: PMC4419484 DOI: 10.1186/s12936-015-0658-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/19/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Mechanisms of acquired protection to malaria in asymptomatic Plasmodium falciparum carriers are only partially understood. Among them, the role plays by the self-reactive antibodies has not been clarified yet. In this study, the relationship between repertoires of circulating self-reactive and parasite-specific immunoglobulin G (IgG), their correlation with cytokine levels, and their association with protection against malaria was investigated in asymptomatic Plasmodium falciparum-infected Gabonese children. METHODS The diversity of P. falciparum-specific antibody repertoire was analysed using a protein micro-array immunoassay, the total auto-antibody repertoire by quantitative immunoblotting and circulating cytokine levels were measured by ELISA in endemic controls (EC) and P. falciparum-infected children from Gabon with asymptomatic (AM) or mild malaria (MM). The association of self- and parasite-specific antibody repertoires with circulating cytokines was evaluated using single linkage hierarchical clustering, Kruskal-Wallis tests and Spearman's rank correlation. RESULTS Children with AM exhibited an IgG response to merozoite surface protein 3 (MSP3) but not to MSP1-19, although their levels of total P. falciparum-specific IgG were similar to those in the MM group. Moreover, the asymptomatic children had increased levels of autoantibodies recognising brain antigens. In addition, a correlation between IL-10 levels and parasite load was found in AM and MM children. These two groups also exhibited significant correlations between plasma levels of IL-10 and IFN-γ with age and with total plasma IgG levels. IL-10 and IFN-γ levels were also associated with auto-antibody responses in AM. CONCLUSIONS Altogether, these results indicate that a self-reactive polyclonal response associated with increased IgG to MSP3 and high plasma levels of IL-10 and IFN-γ may contribute to protective immune mechanisms triggered in asymptomatic P. falciparum infection in Gabonese children.
Collapse
Affiliation(s)
- Vincent Guiyedi
- CIIL-Centre for Infection and Immunity of Lille, INSERM U1019 - CNRS UMR 8204, Lille University, Institut Pasteur de Lille, 1, rue du Professeur Calmette, Cedex 59019, Lille, France.
- Département de Parasitologie-Mycologie-Médecine Tropicale, Faculté de Médecine de Libreville, Université des Sciences de la Santé, Owendo, Gabon.
| | - Christophe Bécavin
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015, Paris, France.
| | - Fabien Herbert
- CIIL-Centre for Infection and Immunity of Lille, INSERM U1019 - CNRS UMR 8204, Lille University, Institut Pasteur de Lille, 1, rue du Professeur Calmette, Cedex 59019, Lille, France.
| | - Julian Gray
- Department of Biological Sciences, London Imperial College, London, UK.
| | - Pierre-André Cazenave
- CIIL-Centre for Infection and Immunity of Lille, INSERM U1019 - CNRS UMR 8204, Lille University, Institut Pasteur de Lille, 1, rue du Professeur Calmette, Cedex 59019, Lille, France.
| | - Maryvonne Kombila
- Département de Parasitologie-Mycologie-Médecine Tropicale, Faculté de Médecine de Libreville, Université des Sciences de la Santé, Owendo, Gabon.
| | - Andrea Crisanti
- Department of Biological Sciences, London Imperial College, London, UK.
| | | | - Sylviane Pied
- CIIL-Centre for Infection and Immunity of Lille, INSERM U1019 - CNRS UMR 8204, Lille University, Institut Pasteur de Lille, 1, rue du Professeur Calmette, Cedex 59019, Lille, France.
| |
Collapse
|
21
|
Thomé R, Bombeiro AL, Issayama LK, Rapôso C, Lopes SCP, da Costa TA, Di Gangi R, Ferreira IT, Longhini ALF, Oliveira ALR, da Cruz Höfling MA, Costa FTM, Verinaud L. Exacerbation of autoimmune neuro-inflammation in mice cured from blood-stage Plasmodium berghei infection. PLoS One 2014; 9:e110739. [PMID: 25329161 PMCID: PMC4201583 DOI: 10.1371/journal.pone.0110739] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/16/2014] [Indexed: 01/24/2023] Open
Abstract
The thymus plays an important role shaping the T cell repertoire in the periphery, partly, through the elimination of inflammatory auto-reactive cells. It has been shown that, during Plasmodium berghei infection, the thymus is rendered atrophic by the premature egress of CD4+CD8+ double-positive (DP) T cells to the periphery. To investigate whether autoimmune diseases are affected after Plasmodium berghei NK65 infection, we immunized C57BL/6 mice, which was previously infected with P. berghei NK65 and treated with chloroquine (CQ), with MOG35-55 peptide and the clinical course of Experimental Autoimmune Encephalomyelitis (EAE) was evaluated. Our results showed that NK65+CQ+EAE mice developed a more severe disease than control EAE mice. The same pattern of disease severity was observed in MOG35-55-immunized mice after adoptive transfer of P. berghei-elicited splenic DP-T cells. The higher frequency of IL-17+- and IFN-γ+-producing DP lymphocytes in the Central Nervous System of these mice suggests that immature lymphocytes contribute to disease worsening. To our knowledge, this is the first study to integrate the possible relationship between malaria and multiple sclerosis through the contribution of the thymus. Notwithstanding, further studies must be conducted to assert the relevance of malaria-induced thymic atrophy in the susceptibility and clinical course of other inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Rodolfo Thomé
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - André Luis Bombeiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Luidy Kazuo Issayama
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Catarina Rapôso
- Department of Histology and Embryology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Stefanie Costa Pinto Lopes
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Thiago Alves da Costa
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Rosária Di Gangi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Isadora Tassinari Ferreira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | | | | | | | - Liana Verinaud
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
22
|
Kanda Y, Kawamura T, Kobayashi T, Kawamura H, Watanabe H, Abo T. Reactivity of autoantibodies against not only erythrocytes but also hepatocytes in sera of mice with malaria. Cell Immunol 2014; 289:162-6. [PMID: 24838093 DOI: 10.1016/j.cellimm.2014.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 04/02/2014] [Accepted: 04/15/2014] [Indexed: 12/20/2022]
Abstract
In order to further examine the reactivity of autoantibodies, mice were infected with a non-lethal strain of Plasmodium yoelii. Parasitemia appeared between days 10 and 21. During this period, hyperglycemia and hypothermia were serially obeserved and this phenomenon resembled stress-associated responses. In parallel with parasitemia, autoantibodies appeared against nucleus and double-stranded DNA in the sera. To examine further the reactivity of autoantibodies against tissues, immunohistochemical staining using sera from mice with or without malaria was conducted. Autoantibodies contained reactivity to erythrocytes in the spleen, bone marrow and peripheral blood, especially against tissues obtained from mice with malaria. In the liver and intestine, autoantibodies reacted with hepatocytes and intestinal epithelial cells, respectively. These results suggested that the reactivity of autoantibodies against erythrocytes and hepatocytes might be associated with the modulation of the disease course in malaria.
Collapse
Affiliation(s)
- Yasuhiro Kanda
- Division of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Toshihiko Kawamura
- Division of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| | - Takahiro Kobayashi
- Division of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Department of Microbiology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hiroki Kawamura
- Division of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Hisami Watanabe
- Division of Cellular and Molecular Immunology, Center of Molecular Biosciences, University of Ryukyus, Okinawa 903-0213, Japan
| | - Toru Abo
- Division of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| |
Collapse
|
23
|
Prime-boost vaccination with plasmid DNA followed by recombinant vaccinia virus expressing BgGARP induced a partial protective immunity to inhibit Babesia gibsoni proliferation in dogs. Acta Parasitol 2013; 58:619-23. [PMID: 24338330 DOI: 10.2478/s11686-013-0183-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2013] [Indexed: 11/20/2022]
Abstract
A heterologous prime-boost vaccination regime with DNA and recombinant vaccinia virus (rvv) vectors expressing relevant antigens has been shown to induce effective immune responses against several infectious pathogens. In this study, we describe the effectiveness of the prime-boost strategy by immunizing dogs with a recombinant plasmid followed by vaccinia virus, both of which expressed the glutamic acid-rich protein (BgGARP) of Babesia gibsoni. The dogs immunized with the prime-boost regime developed a significantly high level of specific antibodies against BgGARP when compared with the control groups. The antibody level was strongly increased after a booster immunization with a recombinant vaccinia virus. Two weeks after the booster immunization with a recombinant vaccinia virus expressing BgGARP, the dogs were challenged with B. gibsoni parasite. The dogs immunized with the prime-boost regime showed partial protection, manifested as a significantly low level of parasitemia. These results indicated that this type of DNA/rvv prime-boost immunization approach may have use against B. gibsoni infection in dogs.
Collapse
|
24
|
Brasil P, Costa AP, Longo CL, da Silva S, Ferreira-da-Cruz MF, Daniel-Ribeiro CT. Malaria, a difficult diagnosis in a febrile patient with sub-microscopic parasitaemia and polyclonal lymphocyte activation outside the endemic region, in Brazil. Malar J 2013; 12:402. [PMID: 24200365 PMCID: PMC3831259 DOI: 10.1186/1475-2875-12-402] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 10/31/2013] [Indexed: 11/22/2022] Open
Abstract
A case of autochthonous Plasmodium vivax malaria with sub-microscopic parasitaemia and polyclonal B-cell activation (PBA) (as reflected by positive IgM and IgG serology for toxoplasmosis, cytomegalovirus, and antinuclear and rheumatoid factors) was diagnosed by polymerase chain reaction (PCR) after consecutive negative rapid diagnostic test results and blood films. The patient, a 44-year-old man from Rio de Janeiro state, Brazil, had visited the Atlantic Forest, a tourist, non-malaria-endemic area where no autochthonous cases of ’bromeliad malaria‘ has ever been described. The characteristic pattern of fever, associated with PBA, was the clue to malaria diagnosis, despite consecutive negative thick blood smears. The study highlights a need for changes in clinical and laboratory diagnostic approaches, namely the incorporation of PCR as part of the current routine malaria diagnostic methods in non-endemic areas.
Collapse
Affiliation(s)
- Patrícia Brasil
- Laboratório de Doenças Febris Agudas, Instituto de Pesquisa Clínica Evandro Chagas (IPEC), Fundação Oswaldo Cruz (Fiocruz), Av, Brasil 4365, Manguinhos, Rio de Janeiro, RJ CEP 21,045-900, Brazil.
| | | | | | | | | | | |
Collapse
|
25
|
Scholzen A, Sauerwein RW. How malaria modulates memory: activation and dysregulation of B cells in Plasmodium infection. Trends Parasitol 2013; 29:252-62. [DOI: 10.1016/j.pt.2013.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 12/25/2022]
|
26
|
Portugal S, Pierce SK, Crompton PD. Young lives lost as B cells falter: what we are learning about antibody responses in malaria. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:3039-46. [PMID: 23526829 PMCID: PMC3608210 DOI: 10.4049/jimmunol.1203067] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasmodium falciparum malaria remains a major public health threat for which there is no licensed vaccine. Abs play a key role in malaria immunity, but Ab-mediated protection is only acquired after years of repeated infections, leaving children in endemic areas vulnerable to severe malaria and death. Many P. falciparum Ags are extraordinarily diverse and clonally variant, which likely contribute to the inefficient acquisition of protective Abs. However, mounting evidence suggests that there is more to the story and that infection-induced dysregulation of B cell function also plays a role. We herein review progress toward understanding the B cell biology of P. falciparum infection, focusing on what has been learned from population-based studies in malaria-endemic areas. We suggest ways in which advances in immunology and genomics-based technology can further improve our understanding of the B cell response in malaria and perhaps illuminate new pathways to the development of effective vaccines.
Collapse
Affiliation(s)
- Silvia Portugal
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | |
Collapse
|
27
|
Immunobiologic and antiinflammatory properties of a bark extract from Ampelozizyphus amazonicus Ducke. BIOMED RESEARCH INTERNATIONAL 2013; 2013:451679. [PMID: 23555087 PMCID: PMC3600244 DOI: 10.1155/2013/451679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/28/2012] [Accepted: 12/29/2012] [Indexed: 01/17/2023]
Abstract
Ampelozizyphus amazonicus is used in the treatment and prevention of malaria. The effect of an aqueous extract from this plant (SART) on the immune response was investigated by measuring immunoglobulin production induced by immunization with the antigen TNP-Ficoll in Plasmodium chabaudi-infected mice. SART treatment increased antigen-specific IgM and IgG levels in TNP-Ficoll-immunized mice. The B cell response during malarial infection was also modified by SART. There was an increase in total serum IgM and IgG and a decrease in the percentage of splenic plasma cells (CD138+ cells) in P. chabaudi-infected, SART-treated animals. SART (1, 3 or 10 mg/kg, p.o.) and the reference drug dexamethasone (5 mg/kg) were also tested in carrageenan-induced leukocyte migration to the subcutaneous air pouch (SAP). All SART doses significantly reduced leukocyte migration into the SAP. The protein concentration resulting from extravasation into the peritoneum was also significantly reduced. Our data indicate that SART possesses immunomodulatory properties, inducing an in vivo modification of the B lymphocyte response and anti-inflammatory properties, which are partly due to a reduction in cell migration and are most likely due to an inhibition of the production of inflammatory mediators. Preliminary HPLC-ESI-MS/MS analysis of SART shows a complex saponin profile with deprotonated molecule [M-H]− ions in the range of m/z 800–1000.
Collapse
|
28
|
Dassé R, Lefranc D, Dubucquoi S, Dussart P, Dutoit-Lefèvre V, Sendid B, Sombo Mambo F, Vermersch P, Prin L. [Singular, systemic, self-reactive IgG patterns related to age: relationship with cerebral malaria susceptibility in exposed subjects residing in an endemic area in Abidjan, Côte-d'Ivoire]. BULLETIN DE LA SOCIETE DE PATHOLOGIE EXOTIQUE (1990) 2012; 105:276-283. [PMID: 22886432 DOI: 10.1007/s13149-012-0252-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/19/2012] [Indexed: 06/01/2023]
Abstract
The impact of autoimmunity on malaria-infection evolution reported by various works has led us to compare reactive patterns of self-dependent systemic IgG from 54 patients aged less than 15 years old to those from 46 subjects older than 15 years. These subjects were divided into 34 Plasmodium falciparum asymptomatic carriers (ACs), 30 cases of uncomplicated malaria (UM), and 36 patients suffering from cerebral malaria (CM) living in the same endemic area. The reactivity of the plasma antibodies against human brain tissue extract was assessed by western blotting. Comparative analysis of reactive bands (linear discriminant analysis, LDA) revealed the existence of patterns that distinguish, among the more susceptible subjects aged less than 15 years old, the different clinical forms. In contrast, in less susceptible subjects aged more than 15 years old, the patterns are homogenous and do not allow the separation of these clinical forms. This self-reactive repertoire might be witnessed as an imprint of the clinical tolerance acquired during the years of living in endemic areas. The singularity of this profile under the age of 15 years might have a prognostic value.
Collapse
Affiliation(s)
- R Dassé
- Laboratoire d'immunologie EA 2686, université Lille-II, Lille cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Brahimi K, Martins YC, Zanini GM, Ferreira-da-Cruz MDF, Daniel-Ribeiro CT. Monoclonal auto-antibodies and sera of autoimmune patients react with Plasmodium falciparum and inhibit its in vitro growth. Mem Inst Oswaldo Cruz 2012; 106 Suppl 1:44-51. [PMID: 21881756 DOI: 10.1590/s0074-02762011000900006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 03/25/2011] [Indexed: 01/05/2023] Open
Abstract
The relationship between autoimmunity and malaria is not well understood. To determine whether autoimmune responses have a protective role during malaria, we studied the pattern of reactivity to plasmodial antigens of sera from 93 patients with 14 different autoimmune diseases (AID) who were not previously exposed to malaria. Sera from patients with 13 different AID reacted against Plasmodium falciparum by indirect fluorescent antibody test with frequencies varying from 33-100%. In addition, sera from 37 AID patients were tested for reactivity against Plasmodium yoelii 17XNL and the asexual blood stage forms of three different P. falciparum strains. In general, the frequency of reactive sera was higher against young trophozoites than schizonts (p < 0.05 for 2 strains), indicating that the antigenic determinants targeted by the tested AID sera might be more highly expressed by the former stage. The ability of monoclonal auto-antibodies (auto-Ab) to inhibit P. falciparum growth in vitro was also tested. Thirteen of the 18 monoclonal auto-Ab tested (72%), but none of the control monoclonal antibodies, inhibited parasite growth, in some cases by greater than 40%. We conclude that autoimmune responses mediated by auto-Ab may present anti-plasmodial activity.
Collapse
Affiliation(s)
- Karima Brahimi
- Laboratorie de Parasitologie Biomédicale, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
30
|
Mannoor K, Li C, Inafuku M, Taniguchi T, Abo T, Sato Y, Watanabe H. Induction of ssDNA-binding autoantibody secreting B cell immunity during murine malaria infection is a critical part of the protective immune responses. Immunobiology 2012; 218:10-20. [PMID: 22361243 DOI: 10.1016/j.imbio.2012.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/19/2012] [Accepted: 01/21/2012] [Indexed: 01/26/2023]
Abstract
Although it has been hypothesized that autoimmune-like phenomena may play a critical role in the protective immune responses to both human and animal malaria, there are still no evidence-based data to support this view. In this study we demonstrate that the majority of anti-single stranded (ss) DNA autoantibody secreting B cells were confined to B220(+)CD21(+)CD23(-) cells and that these cells expanded significantly in the spleen of C57BL/6 mice infected with Plasmodium yoelii 17X non-lethal (PyNL). To determine the role of ssDNA-binding autoantibody secreting B cell responses in murine malaria, we conjugated generation 6 (poly) amidoamine dendrimer nanoparticles with ssDNA to deplete ssDNA-binding autoreactive B cells in vivo. Our data revealed that 55.5% of mice died after DNA-coated nanoparticle-mediated in vivo depletion of ssDNA-specific autoreactive B cells and subsequent challenge using PyNL. Adoptive transfer of B cells with ssDNA specificity to mice, followed by PyNL infection, caused a later appearance and inhibition of parasitemia. The possible mechanism by which the ssDNA-binding autoantibody secreting B cells is involved in the protection against murine malaria has also been demonstrated.
Collapse
Affiliation(s)
- Kaiissar Mannoor
- Department of Parasitology and International Health, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Plasmodium riboprotein PfP0 induces a deviant humoral immune response in Balb/c mice. J Biomed Biotechnol 2012; 2012:695843. [PMID: 22315513 PMCID: PMC3270442 DOI: 10.1155/2012/695843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/30/2011] [Accepted: 10/02/2011] [Indexed: 12/04/2022] Open
Abstract
Passive immunization with antibodies to recombinant Plasmodium falciparum P0 riboprotein (rPfP0, 61–316 amino acids) provides protection against malaria. Carboxy-terminal 16 amino acids of the protein (PfP0C0) are conserved and show 69% identity to human and mouse P0. Antibodies to this domain are found in 10–15% of systemic lupus erythematosus patients. We probed the nature of humoral response to PfP0C0 by repeatedly immunizing mice with rPfP0. We failed to raise stable anti-PfP0C0 hybridomas from any of the 21 mice. The average serum anti-PfP0C0 titer remained low (5.1 ± 1.3 × 104). Pathological changes were observed in the mice after seven boosts. Adsorption with dinitrophenyl hapten revealed that the anti-PfP0C0 response was largely polyreactive. This polyreactivity was distributed across all isotypes. Similar polyreactive responses to PfP0 and PfP0C0 were observed in sera from malaria patients. Our data suggests that PfP0 induces a deviant humoral response, and this may contribute to immune evasion mechanisms of the parasite.
Collapse
|
32
|
Dassé R, Lefranc D, Dubucquoi S, Dussart P, Dutoit-Lefevre V, Sendid B, Sombo Mambo F, Vermersch P, Prin L. Changes Related to Age in Natural and Acquired Systemic Self-IgG Responses in Malaria. Interdiscip Perspect Infect Dis 2011; 2011:462767. [PMID: 22253622 PMCID: PMC3255176 DOI: 10.1155/2011/462767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 09/23/2011] [Indexed: 01/22/2023] Open
Abstract
Background. Absence of acquired protective immunity in endemic areas children leads to higher susceptibility to severe malaria. To investigate the involvement of regulatory process related to self-reactivity, we evaluated potent changes in auto-antibody reactivity profiles in children and older subjects living in malaria-endemic zones comparatively to none-exposed healthy controls. Methods. Analysis of IgG self-reactive footprints was performed using Western blotting against healthy brain antigens. Plasmas of 102 malaria exposed individuals (MEIs) from endemic zone, with or without cerebral malaria (CM) were compared to plasmas from non-endemic controls (NECs). Using linear discriminant and principal component analysis, immune footprints were compared by counting the number, the presence or absence of reactive bands. We identified the most discriminant bands with respect to age and clinical status. Results. A higher number of bands were recognized by IgG auto-antibodies in MEI than in NEC. Characteristic changes in systemic self-IgG-reactive repertoire were found with antigenic bands that discriminate Plasmodium falciparum infections with or without CM according to age. 8 antigenic bands distributed in MEI compared with NEC were identified while 6 other antigenic bands were distributed within MEI according to the age and clinical status. Such distortion might be due to evolutionary processes leading to pathogenic/protective events.
Collapse
Affiliation(s)
- Romuald Dassé
- Laboratoire d'Immunologie EA 2686, IMPRT-IFR 114, Faculté de Médecine Pôle Recherche, Université Lille 2, 1 Place de Verdun, 59045 Lille Cedex, France
- Laboratoire d'Immunologie et Hématologie du CHU-Cocody, Abidjan, Cote D'Ivoire
| | - Didier Lefranc
- Laboratoire d'Immunologie EA 2686, IMPRT-IFR 114, Faculté de Médecine Pôle Recherche, Université Lille 2, 1 Place de Verdun, 59045 Lille Cedex, France
| | - Sylvain Dubucquoi
- Laboratoire d'Immunologie EA 2686, IMPRT-IFR 114, Faculté de Médecine Pôle Recherche, Université Lille 2, 1 Place de Verdun, 59045 Lille Cedex, France
| | - Patricia Dussart
- Laboratoire d'Immunologie EA 2686, IMPRT-IFR 114, Faculté de Médecine Pôle Recherche, Université Lille 2, 1 Place de Verdun, 59045 Lille Cedex, France
| | - Virginie Dutoit-Lefevre
- Laboratoire d'Immunologie EA 2686, IMPRT-IFR 114, Faculté de Médecine Pôle Recherche, Université Lille 2, 1 Place de Verdun, 59045 Lille Cedex, France
| | - Boualem Sendid
- Laboratoire de Parasitologie et de Mycologie, Institute de Biologie et Pathologie, CHRU de Lille 59037 Lille, France
| | | | - Patrick Vermersch
- Service de Neurologie D, Hôpital Roger Salengro, 59037 Lille Cedex, France
| | - Lionel Prin
- Laboratoire d'Immunologie EA 2686, IMPRT-IFR 114, Faculté de Médecine Pôle Recherche, Université Lille 2, 1 Place de Verdun, 59045 Lille Cedex, France
| |
Collapse
|
33
|
Mekhaiel DNA, Daniel-Ribeiro CT, Cooper PJ, Pleass RJ. Do regulatory antibodies offer an alternative mechanism to explain the hygiene hypothesis? Trends Parasitol 2011; 27:523-9. [PMID: 21943801 DOI: 10.1016/j.pt.2011.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 12/24/2022]
Abstract
The 'hygiene hypothesis', or lack of microbial and parasite exposure during early life, is postulated as an explanation for the recent increase in autoimmune and allergic diseases in developed countries. The favored mechanism is that microbial and parasite-derived products interact directly with pathogen recognition receptors to subvert proinflammatory signaling via T regulatory cells, thereby inducing anti-inflammatory effects and control of autoimmune disease. Parasites, such as helminths, are considered to have a major role in the induction of immune regulatory mechanisms among children living in developing countries. Invoking Occam's razor, we believe we can select an alternative mechanism to explain the hygiene hypothesis, based on antibody-mediated inhibition of immune responses that may more simply explain the available evidence.
Collapse
Affiliation(s)
- David N A Mekhaiel
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | | | | |
Collapse
|
34
|
Nduati E, Gwela A, Karanja H, Mugyenyi C, Langhorne J, Marsh K, Urban BC. The plasma concentration of the B cell activating factor is increased in children with acute malaria. J Infect Dis 2011; 204:962-70. [PMID: 21849293 PMCID: PMC3156925 DOI: 10.1093/infdis/jir438] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 06/20/2011] [Indexed: 11/17/2022] Open
Abstract
Malaria-specific antibody responses in children often appear to be short-lived but the mechanisms underlying this phenomenon are not well understood. In this study, we investigated the relationship between the B-cell activating factor (BAFF) and its receptors expressed on B cells with antibody responses during and after acute malaria in children. Our results demonstrate that BAFF plasma levels increased during acute malarial disease and reflected disease severity. The expression profiles for BAFF receptors on B cells agreed with rapid activation and differentiation of a proportion of B cells to plasma cells. However, BAFF receptor (BAFF-R) expression was reduced on all peripheral blood B cells during acute infection, but those children with the highest level of BAFF-R expression on B cells maintained schizont-specific immunoglobin G (IgG) over a period of 4 months, indicating that dysregulation of BAFF-R expression on B cells may contribute to short-lived antibody responses to malarial antigens in children. In summary, this study suggests a potential role for BAFF during malaria disease, both as a marker for disease severity and in shaping the differentiation pattern of antigen-specific B cells.
Collapse
Affiliation(s)
- Eunice Nduati
- KEMRI/Wellcome Trust Collaborative Research Program, Centre for Geographical Medicine Research, Kilifi, Kenya
| | - Agnes Gwela
- KEMRI/Wellcome Trust Collaborative Research Program, Centre for Geographical Medicine Research, Kilifi, Kenya
| | - Henry Karanja
- KEMRI/Wellcome Trust Collaborative Research Program, Centre for Geographical Medicine Research, Kilifi, Kenya
| | - Cleopatra Mugyenyi
- KEMRI/Wellcome Trust Collaborative Research Program, Centre for Geographical Medicine Research, Kilifi, Kenya
| | - Jean Langhorne
- Division of Parasitology, MRC, National Institute for Medical Research, London
| | - Kevin Marsh
- KEMRI/Wellcome Trust Collaborative Research Program, Centre for Geographical Medicine Research, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington
| | - Britta C. Urban
- KEMRI/Wellcome Trust Collaborative Research Program, Centre for Geographical Medicine Research, Kilifi, Kenya
- Molecular and Biochemical Parasitology Group, Liverpool School of Tropical Medicine, United Kingdom
| |
Collapse
|
35
|
Lacerda MVG, Mourão MPG, Coelho HCC, Santos JB. Thrombocytopenia in malaria: who cares? Mem Inst Oswaldo Cruz 2011; 106 Suppl 1:52-63. [DOI: 10.1590/s0074-02762011000900007] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/26/2011] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Maria Paula Gomes Mourão
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Brasil; Universidade do Estado do Amazonas, Brasil; Universidade Nilton Lins, Brasil
| | | | | |
Collapse
|
36
|
Mutapi F, Imai N, Nausch N, Bourke CD, Rujeni N, Mitchell KM, Midzi N, Woolhouse MEJ, Maizels RM, Mduluza T. Schistosome infection intensity is inversely related to auto-reactive antibody levels. PLoS One 2011; 6:e19149. [PMID: 21573157 PMCID: PMC3089602 DOI: 10.1371/journal.pone.0019149] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/18/2011] [Indexed: 01/05/2023] Open
Abstract
In animal experimental models, parasitic helminth infections can protect the host from auto-immune diseases. We conducted a population-scale human study investigating the relationship between helminth parasitism and auto-reactive antibodies and the subsequent effect of anti-helminthic treatment on this relationship. Levels of antinuclear antibodies (ANA) and plasma IL-10 were measured by enzyme linked immunosorbent assay in 613 Zimbabweans (aged 2-86 years) naturally exposed to the blood fluke Schistosoma haematobium. ANA levels were related to schistosome infection intensity and systemic IL-10 levels. All participants were offered treatment with the anti-helminthic drug praziquantel and 102 treated schoolchildren (5-16 years) were followed up 6 months post-antihelminthic treatment. ANA levels were inversely associated with current infection intensity but were independent of host age, sex and HIV status. Furthermore, after allowing for the confounding effects of schistosome infection intensity, ANA levels were inversely associated with systemic levels of IL-10. ANA levels increased significantly 6 months after anti-helminthic treatment. Our study shows that ANA levels are attenuated in helminth-infected humans and that anti-helminthic treatment of helminth-infected people can significantly increase ANA levels. The implications of these findings are relevant for understanding both the aetiology of immune disorders mediated by auto-reactive antibodies and in predicting the long-term consequences of large-scale schistosomiasis control programs.
Collapse
Affiliation(s)
- Francisca Mutapi
- Ashworth Laboratories, School of Biological Sciences, Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gallien S, Roussilhon C, Blanc C, Pérignon JL, Druilhe P. Autoantibody against dendrite in Plasmodium falciparum infection: a singular auto-immune phenomenon preferentially in cerebral malaria. Acta Trop 2011; 118:67-70. [PMID: 21315059 DOI: 10.1016/j.actatropica.2011.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 01/13/2011] [Accepted: 01/16/2011] [Indexed: 01/02/2023]
Abstract
To investigate auto-reactive antibodies against dendrites of neurons (AAD) previously reported in cerebral malaria (CM) for their functional biological activity, a serological study was conducted in a larger cohort of patients with CM and uncomplicated falciparum malaria (UM). Sera from Thai adults with CM (n=22) and UM (n=21) were tested to determine the titers of AAD by indirect fluorescent antibody test and specific antibody responses to Plasmodium falciparum antigens by ELISA. Immunoreactivity against the dendrites of neurons was observed in 100% of sera from the cerebral malaria group as compared to 71% from the non-cerebral malaria group, and the median titer of AAD was higher in CM versus UM, though the difference did not reach significance. In contrast an opposite pattern was seen for anti-P. falciparum antibody titers, which were significantly lower among CM than among UM patients, both for IgG and IgM (p=0.024 and p=0.0033, respectively). Our results indicate that this auto-immune phenomenon induced by P. falciparum infection occurs preferentially in cerebral malaria despite lower responses in parasite-specific antibody responses.
Collapse
|
38
|
Herman JH, Ayache S, Olkowska D. Autoimmunity in transfusion babesiosis: A spectrum of clinical presentations. J Clin Apher 2010; 25:358-61. [DOI: 10.1002/jca.20262] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 07/15/2010] [Indexed: 11/09/2022]
|
39
|
The Plasmodium falciparum-specific human memory B cell compartment expands gradually with repeated malaria infections. PLoS Pathog 2010; 6:e1000912. [PMID: 20502681 PMCID: PMC2873912 DOI: 10.1371/journal.ppat.1000912] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 04/19/2010] [Indexed: 01/26/2023] Open
Abstract
Immunity to Plasmodium falciparum (Pf) malaria is only acquired after years of repeated infections and wanes rapidly without ongoing parasite exposure. Antibodies are central to malaria immunity, yet little is known about the B-cell biology that underlies the inefficient acquisition of Pf-specific humoral immunity. This year-long prospective study in Mali of 185 individuals aged 2 to 25 years shows that Pf-specific memory B-cells and antibodies are acquired gradually in a stepwise fashion over years of repeated Pf exposure. Both Pf-specific memory B cells and antibody titers increased after acute malaria and then, after six months of decreased Pf exposure, contracted to a point slightly higher than pre-infection levels. This inefficient, stepwise expansion of both the Pf-specific memory B-cell and long-lived antibody compartments depends on Pf exposure rather than age, based on the comparator response to tetanus vaccination that was efficient and stable. These observations lend new insights into the cellular basis of the delayed acquisition of malaria immunity. Plasmodium falciparum (Pf) is a mosquito-borne parasite that causes over 500 million cases of malaria annually, one million of which result in death, primarily among African children. The development of an effective malaria vaccine would be a critical step toward the control and eventual elimination of this disease. To date, most licensed vaccines are for pathogens that induce long-lived protective antibodies after a single infection. In contrast, immunity to malaria is only acquired after repeated infections. Antibodies play a key role in protection from malaria, yet several studies indicate that antibodies against some Pf proteins are generated inefficiently and lost rapidly. The cells that are responsible for the maintenance of antibodies over the human lifespan are memory B-cells and long-lived plasma cells. To determine how these cells are generated and maintained in response to Pf infection, we conducted a year-long study in an area of Mali that experiences a six-month malaria season. We found memory B-cells and long-lived antibodies specific for the parasite were generated in a gradual, step-wise fashion over years despite intense Pf exposure. This contrasts sharply with the efficient response to tetanus vaccination in the same population. This study lends new insights into the delayed acquisition of malaria immunity. Future studies of the cellular and molecular basis of these observations could open the door to strategies for the development of a highly effective malaria vaccine.
Collapse
|
40
|
Jain V, Singh PP, Silawat N, Patel R, Saxena A, Bharti PK, Shukla M, Biswas S, Singh N. A preliminary study on pro- and anti-inflammatory cytokine profiles in Plasmodium vivax malaria patients from central zone of India. Acta Trop 2010; 113:263-8. [PMID: 19958746 DOI: 10.1016/j.actatropica.2009.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 11/11/2009] [Accepted: 11/24/2009] [Indexed: 11/18/2022]
Abstract
The aim of this preliminary study was to investigate the plasma cytokine profiles in a group of patients suffering from Plasmodium vivax malaria during the peak of its transmission season. Plasma samples of 173 P. vivax patients and 34 healthy individuals were analyzed for IFN-gamma, TNF-alpha, IL-10 and IP-10 levels by ELISA. Levels of both pro- and anti-inflammatory cytokines were significantly higher in P. vivax patients compared to controls. Children with P. vivax infection had significantly higher levels of IFN-gamma than adults (P=0.017). Asexual parasitaemia versus TNF-alpha (r=-0.31, P=0.01), IL-10 (r=-0.30, P=0.015) and gametocytaemia versus IFN-gamma (r=-0.26; P=0.034) levels showed significant negative correlation in children compared to adults. The median concentrations of IFN-gamma (P=0.001), IL-10 (P=0.032) and IP-10 (P</=0.05) were higher in children reported with chills and rigors, whereas in adults only IFN-gamma levels was higher (P<0.0001). The median plasma concentrations of IFN- gamma (P=0.02), IL-10 (P<0.0001) and IP-10 (P=0.068) were higher in patients with mild anaemia compared to non-anaemic patients. The results indicated that both pro- and anti-inflammatory cytokine responses are associated with clinical signs of mild anaemia and paroxysm during symptomatic P. vivax malaria in Central India.
Collapse
Affiliation(s)
- Vidhan Jain
- National Institute of Malaria Research, FS-Jabalpur, MP, India
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kanda Y, Kawamura H, Matsumoto H, Kobayashi T, Kawamura T, Abo T. Identification and characterization of autoantibody-producing B220low B (B-1) cells appearing in malarial infection. Cell Immunol 2010; 263:49-54. [DOI: 10.1016/j.cellimm.2010.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 02/17/2010] [Accepted: 02/22/2010] [Indexed: 01/07/2023]
|
42
|
Zanini GM, De Moura Carvalho LJ, Brahimi K, De Souza-Passos LF, Guimarães SJ, Da Silva Machado E, Bianco-Junior C, Riccio EKP, De Sousa MA, Alecrim MDGC, Leite N, Druilhe P, Daniel-Ribeiro CT. Sera of patients with systemic lupus erythematosus react with plasmodial antigens and can inhibit thein vitrogrowth ofPlasmodium falciparum. Autoimmunity 2009; 42:545-52. [DOI: 10.1080/08916930903039810] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Akkoc N. Are spondyloarthropathies as common as rheumatoid arthritis worldwide? A review. Curr Rheumatol Rep 2008; 10:371-8. [DOI: 10.1007/s11926-008-0060-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Fernandes AAM, Carvalho LJDM, Zanini GM, Ventura AMRDS, Souza JM, Cotias PM, Silva-Filho IL, Daniel-Ribeiro CT. Similar cytokine responses and degrees of anemia in patients with Plasmodium falciparum and Plasmodium vivax infections in the Brazilian Amazon region. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:650-8. [PMID: 18256207 PMCID: PMC2292669 DOI: 10.1128/cvi.00475-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/02/2008] [Accepted: 01/29/2008] [Indexed: 11/20/2022]
Abstract
The mechanisms of malarial anemia induction are poorly understood, but cytokines and autoantibodies are considered to play important roles. This work aimed at evaluating the degree of anemia and the plasmatic profile of the cytokines tumor necrosis factor alpha (TNF-alpha), gamma interferon (IFN-gamma), interleukin-12 (IL-12), migration inhibitory factor (MIF), and IL-10 and the monocyte chemotactic protein-1 (MCP-1) chemokine, as well as evaluating the presence of antibodies directed to components of the normal erythrocyte membrane and to cardiolipin in individuals with malaria from the Brazilian Amazon. No difference was observed in the frequency of anemia between patients infected by Plasmodium vivax and those infected by Plasmodium falciparum, and there was no relationship between the levels of parasitemia and the manifestations of anemia in P. vivax and P. falciparum patients. Significant increases in the concentrations of TNF-alpha, IFN-gamma, MIF, and MCP-1 were observed in patients with P. falciparum and P. vivax malaria, whereas the concentrations of IL-10 was increased only in patients with P. vivax infection. Higher concentrations of IL-12 and IL-10 were observed in the P. falciparum anemic patients, while for TNF-alpha this profile was observed in the nonanemic ones. P. vivax-infected and P. falciparum-infected patients with positive immunoglobulin M (IgM) or IgM and IgG responses, respectively, against blood-stage forms of the parasites had significantly lower hemoglobin levels than did those with negative responses. There was no correlation between the presence of anti-erythrocyte and anti-cardiolipin antibodies and the presence or intensity of the anemia. Our data suggest that in areas of low endemicity and unstable transmission of malaria, P. vivax and P. falciparum infections present similar characteristics in terms of the induction of anemia and cytokine responses.
Collapse
|
45
|
Vivas L, O'Dea KP, Noya O, Pabon R, Magris M, Botto C, Holder AA, Brown KN. Hyperreactive malarial splenomegaly is associated with low levels of antibodies against red blood cell and Plasmodium falciparum derived glycolipids in Yanomami Amerindians from Venezuela. Acta Trop 2008; 105:207-14. [PMID: 18243148 DOI: 10.1016/j.actatropica.2007.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 12/11/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
The immunological basis of the aberrant immune response in hyperreactive malarial splenomegaly (HMS) is poorly understood, but believed to be associated with polyclonal B cell activation by an unidentified malaria mitogen, leading to unregulated immunoglobulin and autoantibody production. HMS has been previously reported in Yanomami communities in the Upper Orinoco region of the Venezuelan Amazon. To investigate a possible association between antibody responses against Plasmodium falciparum and uninfected red blood cell (URBC) glycolipids and splenomegaly, a direct comparison of the parasite versus host anti-glycolipid antibody responses was made in an isolated community of this area. The anti-P. falciparum glycolipid (Pfglp) response was IgG3 dominated, whereas the uninfected red blood cell glycolipid (URBCglp) response showed a predominance of IgG1. The levels of IgG1 against Pfglp, and of IgG4 and IgM against URBCglp were significantly higher in women, while the anti-Pfglp or URBCglp IgM levels were inversely correlated with the degree of splenomegaly. Overall, these results suggest differential regulation of anti-parasite and autoreactive responses and that these responses may be linked to the development and evolution of HMS in this population exposed to endemic malaria. The high mortality rates associated with HMS point out that its early diagnosis together with the implementation of malaria control measures in these isolated Amerindian communities are a priority.
Collapse
Affiliation(s)
- Livia Vivas
- National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom. <>
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 2007; 8:239-45. [PMID: 17304234 DOI: 10.1038/ni1443] [Citation(s) in RCA: 1194] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 01/17/2007] [Indexed: 12/12/2022]
Abstract
The programmed cell death 1 (PD-1) surface receptor binds to two ligands, PD-L1 and PD-L2. Studies have shown that PD-1-PD-L interactions control the induction and maintenance of peripheral T cell tolerance and indicate a previously unknown function for PD-L1 on nonhematopoietic cells in protecting tissues from autoimmune attack. PD-1 and its ligands have also been exploited by a variety of microorganisms to attenuate antimicrobial immunity and facilitate chronic infection. Here we examine the functions of PD-1 and its ligands in regulating antimicrobial and self-reactive T cell responses and discuss the therapeutic potential of manipulating this pathway.
Collapse
Affiliation(s)
- Arlene H Sharpe
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
47
|
Carvalho LJM, Ferreira-da-cruz MF, Daniel-Ribeiro CT, Pelajo-Machado M, Lenzi HL. Plasmodium berghei ANKA infection induces thymocyte apoptosis and thymocyte depletion in CBA mice. Mem Inst Oswaldo Cruz 2007; 101:523-8. [PMID: 17072456 DOI: 10.1590/s0074-02762006000500007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 05/19/2006] [Indexed: 11/22/2022] Open
Abstract
Immune responses to malaria infections are characterized by strong T and B cell activation, which, in addition of potentially causing immunopathology, are of poor efficacy against the infection. It is possible that the thymus is involved in the origin of immunopathological reactions and a target during malaria infections. This work was developed in an attempt to further clarify these points. We studied the sequential changes in the thymus of CBA mice infected with Plasmodium berghei ANKA, a model in which 60-90% of the infected animals develop cerebral malaria. During the acute phase of infection, different degrees of thymocyte apoptosis were recorded. (1) starry-sky pattern of diffuse apoptosis with maintenance of cortical-medullary structure; (2) intense apoptosis with cortical atrophy, with absence of large cells; (3) severe cortical thymocyte depletion, resulting in cortical-medullary inversion. In the latter, only residual clusters of small thymocytes were observed within the framework of epithelial cells. The intensity of thymus alterations could not be associated with the degree of parasitemia, the expression of clinical signs of cerebral malaria or intensity of brain lesions. The implications of these events for malaria immunity and pathology are discussed.
Collapse
Affiliation(s)
- Leonardo J M Carvalho
- Laboratório de Pesquisas em Malária, Departamento de Imunologia, Instituto Oswaldo Cruz-Fiocruz, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brasil.
| | | | | | | | | |
Collapse
|
48
|
Ribeiro-Dias F, Tosta CE. Dynamics and kinetics of natural killer cell cytotoxicity in human malaria as evaluated by a novel stepwise cytotoxicity assay. Rev Soc Bras Med Trop 2006; 39:357-64. [PMID: 17119751 DOI: 10.1590/s0037-86822006000400008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Accepted: 07/27/2006] [Indexed: 11/21/2022] Open
Abstract
Malaria causes important functional alterations of the immune system, but several of them are poorly defined. To evaluate thoroughly the natural killer cell cytotoxicity in patients with malaria, we developed a technique capable to assess both the dynamics and the kinetics of the process. For the kinetics assay, human peripheral blood mononuclear cells were previously incubated with K562 cells and kept in agarose medium, while for the dynamics assay both cells were maintained in suspension. NK activity from patients with vivax malaria presented a kinetics profile faster than those with falciparum malaria. NK cytotoxicity positively correlated with parasitemia in falciparum malaria. The dynamics of NK cytotoxicity of healthy individuals was elevated at the beginning of the process and then significantly decreased. In contrast, malaria patients presented successive peaks of NK activity. Our results confirmed the occurrence of alteration in NK cell function during malaria, and added new data about the NK cytotoxicity process.
Collapse
MESH Headings
- Acute Disease
- Adolescent
- Adult
- Animals
- Case-Control Studies
- Cytotoxicity Tests, Immunologic/methods
- Cytotoxicity, Immunologic/immunology
- Cytotoxicity, Immunologic/physiology
- Female
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/physiology
- Kinetics
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/parasitology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Male
- Middle Aged
- Parasitemia/immunology
- Time Factors
Collapse
Affiliation(s)
- Fátima Ribeiro-Dias
- Area de Patologia, Laboratório de Imunologia Celular, Faculdade de Medicina, Universidade de Brasília, Brasília, DF
| | | |
Collapse
|
49
|
Marks DJB, Mitchison NA, Segal AW, Sieper J. Can unresolved infection precipitate autoimmune disease? Curr Top Microbiol Immunol 2006; 305:105-25. [PMID: 16724803 DOI: 10.1007/3-540-29714-6_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Autoimmune diseases are frequently postulated to arise as post-infectious phenomena. Here we survey the evidence supporting these theories, with particular emphasis on Crohn's disease and ankylosing spondylitis. Direct proof that infection establishes persistent autoimmunity remains lacking, although it may provoke a prolonged inflammatory response when occurring on a susceptible immunological background. The argument of infective causality is by no means trivial, since it carries important consequences for the safety of vaccine development.
Collapse
Affiliation(s)
- D J B Marks
- Centre for Molecular Medicine, University College London, UK
| | | | | | | |
Collapse
|
50
|
Abstract
In addition to alloimmune and autoimmune cell lysis, a third category of immune destruction of blood cells should be recognized. This additional immunologic response occurs when cells or tissues are injured by immunologic reactions in which the cells act as "innocent bystanders." One mechanism by which an immune response to an exogenous antigen leads to the destruction of autologous blood cells is the temporary development of autoantibodies. This is actually an alloimmune reaction which results in a temporary state of "pseudo"-autoimmunity. Although originally described as a type of hemolysis of autologous cells, the concept of bystander immune cytolysis has been extended to include other instances in which immune destruction of cells is caused by antibody that is not developed in response to intrinsic antigens on the cell being lysed. In recent years, compelling data have been presented documenting bystander immune cytolysis in a number of different clinical settings, and efforts have been made to define the mechanisms by which this occurs. Physicians must be aware that some examples of immune lysis of autologous cells are, in reality, examples of temporary bystander immune cytolysis rather than true autoimmune disease. Furthermore, some alloimmune hemolytic reactions can result in lysis of bystander cells.
Collapse
Affiliation(s)
- Lawrence D Petz
- University of California Los Angeles (UCLA) Medical Center, Los Angeles, CA, USA.
| |
Collapse
|