1
|
Tabilin EJ, Gray DJ, Jiz MA, Mationg ML, Inobaya M, Avenido-Cervantes E, Sato M, Sato MO, Sako Y, Mu Y, You H, Kelly M, Cai P, Gordon CA. Schistosomiasis in the Philippines: A Comprehensive Review of Epidemiology and Current Control. Trop Med Infect Dis 2025; 10:29. [PMID: 39998033 PMCID: PMC11860700 DOI: 10.3390/tropicalmed10020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Schistosomiasis japonica is an infectious parasitic disease caused by infection with the blood fluke Schistosoma japonicum, which is endemic in China, small pockets of Indonesia, and the Philippines. Of the three countries, the prevalence of infection is the highest in the Philippines, despite decades of mass drug administration (MDA). As a zoonosis with 46 potential mammalian definitive hosts and a snail intermediate host, the control and eventual elimination of S. japonicum requires management of these animal hosts in addition to new interventions for the human hosts, including health education and water, sanitation, and hygiene (WASH) infrastructure. In this review we examine the status and epidemiology of S. japonicum in the Philippines with an overview of the current control program there and what needs to be accomplished in the future to control and eliminate this disease in the country.
Collapse
Affiliation(s)
- Emmanuel John Tabilin
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (Y.M.); (H.Y.); (P.C.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Darren J. Gray
- Global Health & Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.G.); (M.L.M.)
- Don McManus Tropical Health Centre, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Mario A. Jiz
- Immunology Department, Research Institute of Tropical Medicine, Manila 1781, Philippines; (M.A.J.); (E.A.-C.)
| | - Mary Lorraine Mationg
- Global Health & Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.G.); (M.L.M.)
| | - Marianette Inobaya
- Department of Epidemiology and Biostatistics, Research Institute of Tropical Medicine, Manila 1781, Philippines;
| | - Eleonor Avenido-Cervantes
- Immunology Department, Research Institute of Tropical Medicine, Manila 1781, Philippines; (M.A.J.); (E.A.-C.)
| | - Megumi Sato
- Graduate School of Health Sciences, Niigata University, Niigata 951-8518, Japan;
| | - Marcello Otake Sato
- Division of Global Environment Parasitology, Faculty of Medical Technology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata 956-8603, Japan;
| | - Yasuhito Sako
- Division of Parasitology, Department of Infectious Diseases, Asahikawa Medical University, Asahikawa 078-8510, Japan;
| | - Yi Mu
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (Y.M.); (H.Y.); (P.C.)
| | - Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (Y.M.); (H.Y.); (P.C.)
| | - Matthew Kelly
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT 2601, Australia;
| | - Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (Y.M.); (H.Y.); (P.C.)
| | - Catherine A. Gordon
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (Y.M.); (H.Y.); (P.C.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
- Don McManus Tropical Health Centre, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| |
Collapse
|
2
|
Yamey G, McDade KK, Anderson RM, Bartsch SM, Bottazzi ME, Diemert D, Hotez PJ, Lee BY, McManus D, Molehin AJ, Roestenberg M, Rollinson D, Siddiqui AA, Tendler M, Webster JP, You H, Zellweger RM, Marshall C. Vaccine value profile for schistosomiasis. Vaccine 2024:126020. [PMID: 39592316 PMCID: PMC11754535 DOI: 10.1016/j.vaccine.2024.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 11/28/2024]
Abstract
Schistosomiasis is caused by parasitic flatworms (Schistosoma). The disease in humans can be caused by seven different species of Schistosoma: S. mansoni, S. japonicum, S. haematobium, S. malayensis, S. mekongi, S. guineensis and S. intercalatum, as well as by hybrids between species, including livestock schistosome species. People are infected when exposed to infested water and the parasite larvae penetrate the skin. Poor and rural communities are typically the most affected, and the general population who lives in affected areas and is exposed to contaminated water is at risk. Areas with poor access to safe water and adequate sanitation are also at heightened risk. About 236.6 million people required treatment for schistosomiasis in 2019-mostly people living in poor, rural communities, especially fishing and agricultural communities. This 'Vaccine Value Profile' (VVP) for schistosomiasis is intended to provide a high-level, holistic assessment of the information and data that are currently available to inform the potential public health, economic, and societal value of pipeline vaccines and vaccine-like products. This VVP was developed by a working group of subject matter experts from academia, non-profit organizations, public private partnerships, and multi-lateral organizations. All contributors have extensive expertise on various elements of the schistosomiasis VVP and collectively aimed to identify current research and knowledge gaps. The VVP was developed using only existing and publicly available information.
Collapse
Affiliation(s)
- Gavin Yamey
- Duke Global Health Institute, Duke University, Durham, NC, United States.
| | | | - Roy M Anderson
- Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom.
| | - Sarah M Bartsch
- Public Health Informatics, Computational, and Operations Research and Center for Advanced Technology and Communication in Health, City University of New York Graduate School of Public Health and Health Policy, New York City, NY, United States.
| | - Maria Elena Bottazzi
- National School of Tropical Medicine, Baylor College of Medicine, Texas Children's Hospital Center for Vaccine Development, Houston, TX, United States.
| | - David Diemert
- School of Medicine and Health Sciences, George Washington University, Washington, D.C., United States.
| | - Peter J Hotez
- National School of Tropical Medicine, Baylor College of Medicine, Texas Children's Hospital Center for Vaccine Development, Houston, TX, United States.
| | - Bruce Y Lee
- Public Health Informatics, Computational, and Operations Research and Center for Advanced Technology and Communication in Health, City University of New York Graduate School of Public Health and Health Policy, New York City, NY, United States.
| | - Donald McManus
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Adebayo J Molehin
- Department of Microbiology & Immunology, Midwestern University, Glendale, AZ, United States.
| | | | | | - Afzal A Siddiqui
- Center for Tropical Medicine & Infectious Diseases, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States.
| | - Miriam Tendler
- Laboratory of Research and Development of Anti-Helminth Vaccines, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil.
| | - Joanne P Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, United Kingdom.
| | - Hong You
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
3
|
Zumuk CP, Jones MK, Navarro S, Gray DJ, You H. Transmission-Blocking Vaccines against Schistosomiasis Japonica. Int J Mol Sci 2024; 25:1707. [PMID: 38338980 PMCID: PMC10855202 DOI: 10.3390/ijms25031707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Control of schistosomiasis japonica, endemic in Asia, including the Philippines, China, and Indonesia, is extremely challenging. Schistosoma japonicum is a highly pathogenic helminth parasite, with disease arising predominantly from an immune reaction to entrapped parasite eggs in tissues. Females of this species can generate 1000-2200 eggs per day, which is about 3- to 15-fold greater than the egg output of other schistosome species. Bovines (water buffalo and cattle) are the predominant definitive hosts and are estimated to generate up to 90% of parasite eggs released into the environment in rural endemic areas where these hosts and humans are present. Here, we highlight the necessity of developing veterinary transmission-blocking vaccines for bovines to better control the disease and review potential vaccine candidates. We also point out that the approach to producing efficacious transmission-blocking animal-based vaccines before moving on to human vaccines is crucial. This will result in effective and feasible public health outcomes in agreement with the One Health concept to achieve optimum health for people, animals, and the environment. Indeed, incorporating a veterinary-based transmission vaccine, coupled with interventions such as human mass drug administration, improved sanitation and hygiene, health education, and snail control, would be invaluable to eliminating zoonotic schistosomiasis.
Collapse
Affiliation(s)
- Chika P. Zumuk
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Malcolm K. Jones
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Severine Navarro
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Centre for Childhood Nutrition Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Darren J. Gray
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
4
|
Kuo YJ, Paras G, Tagami T, Yi C, Aquino LJC, Oh H, Rychtář J, Taylor D. A compartmental model for Schistosoma japonicum transmission dynamics in the Philippines. Acta Trop 2024; 249:107084. [PMID: 38029954 DOI: 10.1016/j.actatropica.2023.107084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
Schistosomiasis is a chronic and debilitating neglected tropical disease (NTD), second only to malaria as one of the most devastating parasitic diseases. Caused by a parasitic flatworm of the genus Schistosoma, infection occurs when skin comes in contact with contaminated freshwater that contains schistosome-hosting snails. The disease continues to be endemic in many regions of the Philippines, where it poses a significant public health challenge due to a lack of healthcare resources. In the Philippines, additional mammalian reservoirs for the S. japonicum parasite, especially bovines such as carabaos, also facilitate the spread of schistosomiasis. We extend existing compartment models to include human, snail, bovine, and free-living Schistosoma for a comprehensive look at the transmission dynamics of the disease. Sensitivity analysis of model parameters shows that the carabaos themselves can sustain the endemicity of schistosomiasis. Thus, we consider the control method of farming mechanization to avoid contaminated freshwater sources. We find that a reduction of contaminated water contacts by at least 77% will break the transmission cycle and eliminate the disease. However, reducing the contact by about 70% will still result in decrease of human schistosomiasis prevalence to under 1% in 15 years or less. Achieving such high reduction of contact rates could be a daunting task, especially in rural areas. Still, the potential to eliminate or at least reduce the schistosomiasis prevalence should be considered an additional benefit of mechanization efforts in the Philippines.
Collapse
Affiliation(s)
- Yuan-Jen Kuo
- College of Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Gian Paras
- School of Engineering, University of Guam, Mangilao, GU, 96923, USA
| | | | - Claire Yi
- Harvest Christian Academy, Barrigada, GU 96921, USA
| | | | - Hyunju Oh
- Division of Mathematics and Computer Science, University of Guam, Mangilao, GU 96923, USA
| | - Jan Rychtář
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Dewey Taylor
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
5
|
Díaz AV, Walker M, Webster JP. Reaching the World Health Organization elimination targets for schistosomiasis: the importance of a One Health perspective. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220274. [PMID: 37598697 PMCID: PMC10440173 DOI: 10.1098/rstb.2022.0274] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
The past three years has seen the launch of a new World Health Organization (WHO) neglected tropical diseases (NTDs) roadmap, together with revised control and elimination guidelines. Across all, there is now a clear emphasis on the need to incorporate a One Health approach, recognizing the critical links between human and animal health and the environment. Schistosomiasis, caused by Schistosoma spp. trematodes, is a NTD of global medical and veterinary importance, with over 220 million people and untold millions of livestock currently infected. Its burden remains extremely high in certain regions, particularly within sub-Saharan Africa, despite over two decades of mass preventive chemotherapy (mass drug administration), predominantly to school-aged children. In Africa, in contrast to Asia, any zoonotic component of schistosomiasis transmission and its implications for disease control has, until recently, been largely ignored. Here, we review recent epidemiological, clinical, molecular, and modelling work across both Asia and Africa. We outline the evolutionary history and transmission dynamics of Schistosoma species, and emphasize the emerging risk raised by both wildlife reservoirs and viable hybridization between human and animal schistosomes. To achieve the 2030 WHO roadmap elimination targets, a truly multi-disciplinary One Health perspective must be implemented. This article is part of the theme issue 'Challenges and opportunities in the fight against neglected tropical diseases: a decade from the London Declaration on NTDs'.
Collapse
Affiliation(s)
- Adriana V. Díaz
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Martin Walker
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research, Faculty of Medicine, Imperial College, London W2 1PG, UK
| | - Joanne P. Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research, Faculty of Medicine, Imperial College, London W2 1PG, UK
| |
Collapse
|
6
|
Lowe C, Ahmadabadi Z, Gray D, Kelly M, McManus DP, Williams G. Systematic review of applied mathematical models for the control of Schistosoma japonicum. Acta Trop 2023; 241:106873. [PMID: 36907291 DOI: 10.1016/j.actatropica.2023.106873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Schistosoma japonicum remains endemic in China and the Philippines. Substantial progress has been made in the control of Japonicum in both China and the Philippines. China is reaching elimination thanks to a concerted effort of control strategies. Mathematical modelling has been a key tool in the design of control strategies, in place of expensive randomised-controlled trials. We conducted a systematic review to investigate mathematical models of Japonicum control strategies in China and the Philippines. METHODS We conducted a systematic review on July 5, 2020, in four electronic bibliographic databases - PubMed, Web of Science, SCOPUS and Embase. Articles were screened for relevance and for meeting the inclusion criteria. Data extracted included authors, year of publication, year of data collection, setting and ecological context, objectives, control strategies, main findings, the form and content of the model including its background, type, representation of population dynamics, heterogeneity of hosts, simulation period, source of parameters, model validation and sensitivity analysis. Results After screening, 19 eligible papers were included in the systematic review. Seventeen considered control strategies in China and two in the Philippines. Two frameworks were identified; the mean-worm burden framework and the prevalence-based framework, the latter of which increasingly common. Most models considered human and bovine definitive hosts. There were mixed additional elements included in the models, such as alternative definitive hosts and the role of seasonality and weather. Models generally agreed upon the need for an integrated control strategy rather than reliance on mass drug administration alone to sustain reductions in prevalence. CONCLUSIONS Mathematical modelling of Japonicum has converged from multiple approaches to modelling using the prevalence-based framework with human and bovine definitive hosts and find integrated control strategies to be most effective. Further research could investigate the role of other definitive hosts and model the effect of seasonal fluctuations in transmission.
Collapse
Affiliation(s)
- Callum Lowe
- Department of Global Health, National Centre for Epidemiology and Population Health, Australian National University, Building 62a Mills Street, ACT, Acton 2601, Australia.
| | - Zohre Ahmadabadi
- School of Public Health, Discipline of Epidemiology and Biostatistics, University of Queensland, Brisbane, Australia
| | - Darren Gray
- Department of Global Health, National Centre for Epidemiology and Population Health, Australian National University, Building 62a Mills Street, ACT, Acton 2601, Australia; School of Public Health, Discipline of Epidemiology and Biostatistics, University of Queensland, Brisbane, Australia; Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Matthew Kelly
- Department of Global Health, National Centre for Epidemiology and Population Health, Australian National University, Building 62a Mills Street, ACT, Acton 2601, Australia
| | - Donald P McManus
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Gail Williams
- School of Public Health, Discipline of Epidemiology and Biostatistics, University of Queensland, Brisbane, Australia
| |
Collapse
|
7
|
Ross AG, Harn DA, Chy D, Inobaya M, Guevarra JR, Shollenberger L, Li Y, McManus DP, Gray DJ, Williams GM. First bovine vaccine to prevent human schistosomiasis - a cluster randomised Phase 3 clinical trial. Int J Infect Dis 2023; 129:110-117. [PMID: 36736992 DOI: 10.1016/j.ijid.2023.01.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE Schistosomiasis is a neglected tropical parasitic disease caused by blood flukes of the genus Schistosoma. Schistosoma japonicum is zoonotic in China, the Philippines, and Indonesia, with bovines acting as major reservoirs of human infection. The primary objective of the trial was to examine the impact of a combination of human mass chemotherapy, snail control through mollusciciding, and SjCTPI bovine vaccination on the rate of human infection. METHODS A 5-year phase IIIa cluster randomized control trial was conducted among 18 schistosomiasis-endemic villages comprising 18,221 residents in Northern Samar, The Philippines. RESULTS Overall, bovine vaccination resulted in a statistically significant decrease in human infection (relative risk [RR] = 0.75; 95% confidence interval [CI] = 0.69 to 0.82) across all trial follow-ups. The best outcome of the trial was when bovine vaccination was combined with snail mollusciciding. This combination resulted in a 31% reduction (RR = 0.69; 95% CI = 0.61 to 0.78) in human infection. CONCLUSION This is the first trial to demonstrate the effectiveness of a bovine vaccine for schistosomiasis in reducing human schistosome infection. The trial is registered with Australian New Zealand Clinical Trials Registry (ACTRN12619001048178).
Collapse
Affiliation(s)
- Allen G Ross
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, Australia.
| | - Donald A Harn
- Department of Infectious Diseases, College of Veterinary Medicine and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, USA
| | - Delia Chy
- Municipal Officer of Health, Palapag, Northern Samar, The Philippines
| | | | | | - Lisa Shollenberger
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, USA
| | - Yuesheng Li
- Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Donald P McManus
- Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Darren J Gray
- Research School of Population Health, Australian National University, Canberra, Australia
| | - Gail M Williams
- School of Public Health, University of Queensland, Brisbane, Australia
| |
Collapse
|
8
|
You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, Pouton CW, McManus DP. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin Microbiol Rev 2023; 36:e0024121. [PMID: 36625671 PMCID: PMC10035331 DOI: 10.1128/cmr.00241-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite intensive long-term efforts, with very few exceptions, the development of effective vaccines against parasitic infections has presented considerable challenges, given the complexity of parasite life cycles, the interplay between parasites and their hosts, and their capacity to escape the host immune system and to regulate host immune responses. For many parasitic diseases, conventional vaccine platforms have generally proven ill suited, considering the complex manufacturing processes involved and the costs they incur, the inability to posttranslationally modify cloned target antigens, and the absence of long-lasting protective immunity induced by these antigens. An effective antiparasite vaccine platform is required to assess the effectiveness of novel vaccine candidates at high throughput. By exploiting the approach that has recently been used successfully to produce highly protective COVID mRNA vaccines, we anticipate a new wave of research to advance the use of mRNA vaccines to prevent parasitic infections in the near future. This article considers the characteristics that are required to develop a potent antiparasite vaccine and provides a conceptual foundation to promote the development of parasite mRNA-based vaccines. We review the recent advances and challenges encountered in developing antiparasite vaccines and evaluate the potential of developing mRNA vaccines against parasites, including those causing diseases such as malaria and schistosomiasis, against which vaccines are currently suboptimal or not yet available.
Collapse
Affiliation(s)
- Hong You
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Catherine A. Gordon
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexa E. Arganda
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pengfei Cai
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Harry Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Donald P. McManus
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
9
|
Ogongo P, Nyakundi RK, Chege GK, Ochola L. The Road to Elimination: Current State of Schistosomiasis Research and Progress Towards the End Game. Front Immunol 2022; 13:846108. [PMID: 35592327 PMCID: PMC9112563 DOI: 10.3389/fimmu.2022.846108] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The new WHO Roadmap for Neglected Tropical Diseases targets the global elimination of schistosomiasis as a public health problem. To date, control strategies have focused on effective diagnostics, mass drug administration, complementary and integrative public health interventions. Non-mammalian intermediate hosts and other vertebrates promote transmission of schistosomiasis and have been utilized as experimental model systems. Experimental animal models that recapitulate schistosomiasis immunology, disease progression, and pathology observed in humans are important in testing and validation of control interventions. We discuss the pivotal value of these models in contributing to elimination of schistosomiasis. Treatment of schistosomiasis relies heavily on mass drug administration of praziquantel whose efficacy is comprised due to re-infections and experimental systems have revealed the inability to kill juvenile schistosomes. In terms of diagnosis, nonhuman primate models have demonstrated the low sensitivity of the gold standard Kato Katz smear technique. Antibody assays are valuable tools for evaluating efficacy of candidate vaccines, and sera from graded infection experiments are useful for evaluating diagnostic sensitivity of different targets. Lastly, the presence of Schistosomes can compromise the efficacy of vaccines to other infectious diseases and its elimination will benefit control programs of the other diseases. As the focus moves towards schistosomiasis elimination, it will be critical to integrate treatment, diagnostics, novel research tools such as sequencing, improved understanding of disease pathogenesis and utilization of experimental models to assist with evaluating performance of new approaches.
Collapse
Affiliation(s)
- Paul Ogongo
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Ruth K. Nyakundi
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Gerald K. Chege
- Primate Unit & Delft Animal Centre, South African Medical Research Council, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Lucy Ochola
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
- Department of Environmental Health, School of Behavioural and Lifestyle Sciences, Faculty of Health Sciences, Nelson Mandela University, Gqeberha, South Africa
| |
Collapse
|
10
|
Janoušková E, Clark J, Kajero O, Alonso S, Lamberton PHL, Betson M, Prada JM. Public Health Policy Pillars for the Sustainable Elimination of Zoonotic Schistosomiasis. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.826501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis is a parasitic disease acquired through contact with contaminated freshwater. The definitive hosts are terrestrial mammals, including humans, with some Schistosoma species crossing the animal-human boundary through zoonotic transmission. An estimated 12 million people live at risk of zoonotic schistosomiasis caused by Schistosoma japonicum and Schistosoma mekongi, largely in the World Health Organization’s Western Pacific Region and in Indonesia. Mathematical models have played a vital role in our understanding of the biology, transmission, and impact of intervention strategies, however, these have mostly focused on non-zoonotic Schistosoma species. Whilst these non-zoonotic-based models capture some aspects of zoonotic schistosomiasis transmission dynamics, the commonly-used frameworks are yet to adequately capture the complex epi-ecology of multi-host zoonotic transmission. However, overcoming these knowledge gaps goes beyond transmission dynamics modelling. To improve model utility and enhance zoonotic schistosomiasis control programmes, we highlight three pillars that we believe are vital to sustainable interventions at the implementation (community) and policy-level, and discuss the pillars in the context of a One-Health approach, recognising the interconnection between humans, animals and their shared environment. These pillars are: (1) human and animal epi-ecological understanding; (2) economic considerations (such as treatment costs and animal losses); and (3) sociological understanding, including inter- and intra-human and animal interactions. These pillars must be built on a strong foundation of trust, support and commitment of stakeholders and involved institutions.
Collapse
|
11
|
Vaccines for Human Schistosomiasis: Recent Progress, New Developments and Future Prospects. Int J Mol Sci 2022; 23:ijms23042255. [PMID: 35216369 PMCID: PMC8879820 DOI: 10.3390/ijms23042255] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022] Open
Abstract
Schistosomiasis, caused by human trematode blood flukes (schistosomes), remains one of the most prevalent and serious of the neglected tropical parasitic diseases. Currently, treatment of schistosomiasis relies solely on a single drug, the anthelmintic praziquantel, and with increased usage in mass drug administration control programs for the disease, the specter of drug resistance developing is a constant threat. Vaccination is recognized as one of the most sustainable options for the control of any pathogen, but despite the discovery and reporting of numerous potentially promising schistosome vaccine antigens, to date, no schistosomiasis vaccine for human or animal deployment is available. This is despite the fact that Science ranked such an intervention as one of the top 10 vaccines that need to be urgently developed to improve public health globally. This review summarizes current progress of schistosomiasis vaccines under clinical development and advocates the urgent need for the establishment of a revolutionary and effective anti-schistosome vaccine pipeline utilizing cutting-edge technologies (including developing mRNA vaccines and exploiting CRISPR-based technologies) to provide novel insight into future vaccine discovery, design, manufacture and deployment.
Collapse
|
12
|
Kadaleka S, Abelman S, Tchuenche JM. A Mathematical Model of the Transmission Dynamics of Bovine Schistosomiasis with Contaminated Environment. Acta Biotheor 2022; 70:9. [PMID: 35020068 DOI: 10.1007/s10441-021-09434-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/28/2021] [Indexed: 11/01/2022]
Abstract
Schistosomiasis, a vector-borne chronically debilitating infectious disease, is a serious public health concern for humans and animals in the affected tropical and sub-tropical regions. We formulate and theoretically analyze a deterministic mathematical model with snail and bovine hosts. The basic reproduction number [Formula: see text] is computed and used to investigate the local stability of the model's steady states. Global stability of the endemic equilibrium is carried out by constructing a suitable Lyapunov function. Sensitivity analysis shows that the basic reproduction number is most sensitive to the model parameters related to the contaminated environment, namely: shedding rate of cercariae by snails, cercariae to miracidia survival probability, snails-miracidia effective contact rate and natural death rate of miracidia and cercariae. Numerical results show that when no intervention measures are implemented, there is an increase of the infected classes, and a rapid decline of the number of susceptible and exposed bovines and snails. Effects of the variation of some of the key sensitive model parameters on the schistosomiasis dynamics as well as on the initial disease transmission threshold parameter [Formula: see text] are graphically depicted.
Collapse
|
13
|
Lund AJ, Wade KJ, Nikolakis ZL, Ivey KN, Perry BW, Pike HNC, Paull SH, Liu Y, Castoe TA, Pollock DD, Carlton EJ. Integrating genomic and epidemiologic data to accelerate progress toward schistosomiasis elimination. eLife 2022; 11:79320. [PMID: 36040013 PMCID: PMC9427098 DOI: 10.7554/elife.79320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The global community has adopted ambitious goals to eliminate schistosomiasis as a public health problem, and new tools are needed to achieve them. Mass drug administration programs, for example, have reduced the burden of schistosomiasis, but the identification of hotspots of persistent and reemergent transmission threaten progress toward elimination and underscore the need to couple treatment with interventions that reduce transmission. Recent advances in DNA sequencing technologies make whole-genome sequencing a valuable and increasingly feasible option for population-based studies of complex parasites such as schistosomes. Here, we focus on leveraging genomic data to tailor interventions to distinct social and ecological circumstances. We consider two priority questions that can be addressed by integrating epidemiological, ecological, and genomic information: (1) how often do non-human host species contribute to human schistosome infection? and (2) what is the importance of locally acquired versus imported infections in driving transmission at different stages of elimination? These questions address processes that can undermine control programs, especially those that rely heavily on treatment with praziquantel. Until recently, these questions were difficult to answer with sufficient precision to inform public health decision-making. We review the literature related to these questions and discuss how whole-genome approaches can identify the geographic and taxonomic sources of infection, and how such information can inform context-specific efforts that advance schistosomiasis control efforts and minimize the risk of reemergence.
Collapse
Affiliation(s)
- Andrea J Lund
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| | - Kristen J Wade
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Zachary L Nikolakis
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Kathleen N Ivey
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Blair W Perry
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Hamish NC Pike
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Sara H Paull
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| | - Yang Liu
- Sichuan Centers for Disease Control and PreventionChengduChina
| | - Todd A Castoe
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - David D Pollock
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Elizabeth J Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| |
Collapse
|
14
|
Kadaleka S, Abelman S, Tchuenche JM. A Human-Bovine Schistosomiasis Mathematical Model with Treatment and Mollusciciding. Acta Biotheor 2021; 69:511-541. [PMID: 34191204 DOI: 10.1007/s10441-021-09416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
To mitigate the spread of schistosomiasis, a deterministic human-bovine mathematical model of its transmission dynamics accounting for contaminated water reservoirs, including treatment of bovines and humans and mollusciciding is formulated and theoretically analyzed. The disease-free equilibrium is locally and globally asymptotically stable whenever the basic reproduction number [Formula: see text], while global stability of the endemic equilibrium is investigated by constructing a suitable Lyapunov function. To support the analytical results, parameter values from published literature are used for numerical simulations and where applicable, uncertainty analysis on the non-dimensional system parameters is performed using the Latin Hypercube Sampling and Partial Rank Correlation Coefficient techniques. Sensitivity analysis to determine the relative importance of model parameters to disease transmission shows that the environment-related parameters namely, [Formula: see text] (snails shedding rate of cercariae), [Formula: see text] (probability that cercariae shed by snails survive), c (fraction of the contaminated environment sprayed by molluscicides) and [Formula: see text] (mortality rate of cercariae) are the most significant to mitigate the spread of schistosomiasis. Mollusciciding, which directly impacts the contaminated environment as a single control strategy is more effective compared to treatment. However, concurrently applying mollusciciding and treatment will yield a better outcome.
Collapse
|
15
|
McManus DP. The Search for a Schistosomiasis Vaccine: Australia's Contribution. Vaccines (Basel) 2021; 9:vaccines9080872. [PMID: 34451997 PMCID: PMC8402410 DOI: 10.3390/vaccines9080872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023] Open
Abstract
Schistosomiasis, a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma, results in considerable human morbidity in sub-Saharan Africa, in particular, but also parts of the Middle East, South America, and Southeast Asia. The anti-schistosome drug praziquantel is efficacious and safe against the adult parasites of all Schistosoma species infecting humans; however, it does not prevent reinfection and the development of drug resistance is a constant concern. The need to develop an effective vaccine is of great importance if the health of many in the developing world is to be improved. Indeed, vaccination, in combination with other public health measures, can provide an invaluable tool to achieve lasting control, leading to schistosomiasis elimination. Australia has played a leading role in schistosomiasis vaccine research over many years and this review presents an overview of some of the significant contributions made by Australian scientists in this important area.
Collapse
Affiliation(s)
- Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| |
Collapse
|
16
|
KADALEKA S, ABELMAN S, MWAMTOBE PM, TCHUENCHE JM. OPTIMAL CONTROL ANALYSIS OF A HUMAN–BOVINE SCHISTOSOMIASIS MODEL. J BIOL SYST 2021. [DOI: 10.1142/s0218339021500017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We formulate and analyze a deterministic mathematical model for the transmission dynamics of schistosomiasis with treatment of both humans and bovines and mollu-sciciding of the contaminated environment. The model effective reproduction number is derived and analytical results show that the disease-free and endemic equilibria are both locally and globally asymptotically stable. Pontryagin’s Maximum Principle which uses both Lagrangian and Hamiltonian principles with respect to a time-dependent constant is used to establish the existence of the optimal control problem and to derive the necessary conditions for optimal control of the disease. Mollusciciding of the contaminated environment has a major impact on disease control. However, combining it with treatment could help mitigate the spread of the disease compared to applying each control measure individually. Numerical simulations are performed to support theoretical results.
Collapse
Affiliation(s)
- S. KADALEKA
- School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050, South Africa
- Department of Mathematics and Statistics, University of Malawi, Private Bag 303, Chichiri, Blantyre, Malawi
| | - S. ABELMAN
- School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050, South Africa
| | - P. M. MWAMTOBE
- Department of Applied Studies, Malawi University of Science and Technology, P. O. Box 5196, Limbe, Malawi
| | - J. M. TCHUENCHE
- School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050, South Africa
| |
Collapse
|
17
|
Zhang W, Le L, Ahmad G, Molehin AJ, Siddiqui AJ, Torben W, Karmakar S, Rojo JU, Sennoune S, Lazarus S, Khatoon S, Freeborn J, Sudduth J, Rezk AF, Carey D, Wolf RF, Papin JF, Damian R, Gray SA, Marks F, Carter D, Siddiqui AA. Fifteen Years of Sm-p80-Based Vaccine Trials in Nonhuman Primates: Antibodies From Vaccinated Baboons Confer Protection in vivo and in vitro From Schistosoma mansoni and Identification of Putative Correlative Markers of Protection. Front Immunol 2020; 11:1246. [PMID: 32636844 PMCID: PMC7318103 DOI: 10.3389/fimmu.2020.01246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in systems biology have shifted vaccine development from a largely trial-and-error approach to an approach that promote rational design through the search for immune signatures and predictive correlates of protection. These advances will doubtlessly accelerate the development of a vaccine for schistosomiasis, a neglected tropical disease that currently affects over 250 million people. For over 15 years and with contributions of over 120 people, we have endeavored to test and optimize Sm-p80-based vaccines in the non-human primate model of schistosomiasis. Using RNA-sequencing on eight different Sm-p80-based vaccine strategies, we sought to elucidate immune signatures correlated with experimental protective efficacy. Furthermore, we aimed to explore the role of antibodies through in vivo passive transfer of IgG obtained from immunized baboons and in vitro killing of schistosomula using Sm-p80-specific antibodies. We report that passive transfer of IgG from Sm-p80-immunized baboons led to significant worm burden reduction, egg reduction in liver, and reduced egg hatching percentages from tissues in mice compared to controls. In addition, we observed that sera from Sm-p80-immunized baboons were able to kill a significant percent of schistosomula and that this effect was complement-dependent. While we did not find a universal signature of immunity, the large datasets generated by this study will serve as a substantial resource for further efforts to develop vaccine or therapeutics for schistosomiasis.
Collapse
Affiliation(s)
- Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Loc Le
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Gul Ahmad
- Department of Natural Sciences, Peru State College, Peru, NE, United States
| | - Adebayo J. Molehin
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Workineh Torben
- Department of Biological Sciences, Louisiana State University of Alexandria, Alexandria, LA, United States
| | - Souvik Karmakar
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Juan U. Rojo
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Souad Sennoune
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Samara Lazarus
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Sabiha Khatoon
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jasmin Freeborn
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Justin Sudduth
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Ashraf F. Rezk
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - David Carey
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Roman F. Wolf
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma City VA Health Care System, Oklahoma City, OK, United States
| | - James F. Papin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ray Damian
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | | | - Florian Marks
- International Vaccine Institute, SNU Research Park, Seoul, South Korea
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Darrick Carter
- PAI Life Sciences, Seattle, WA, United States
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Afzal A. Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
18
|
Schistosomiasis-from immunopathology to vaccines. Semin Immunopathol 2020; 42:355-371. [PMID: 32076812 PMCID: PMC7223304 DOI: 10.1007/s00281-020-00789-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
Schistosomiasis (bilharzia) is a neglected tropical disease caused by trematode worms of the genus Schistosoma. The transmission cycle involves human (or other mammalian) water contact with surface water contaminated by faeces or urine, as well as specific freshwater snails acting as intermediate hosts. The main disease-causing species are S. haematobium, S. mansoni and S. japonicum. According to the World Health Organisation, over 250 million people are infected worldwide, leading to considerable morbidity and the estimated loss of 1.9 million disability-adjusted life years (DALYs), a likely underestimated figure. Schistosomiasis is characterised by focal epidemiology and an over-dispersed population distribution, with higher infection rates in children. Complex immune mechanisms lead to the slow acquisition of immune resistance, but innate factors also play a part. Acute schistosomiasis, a feverish syndrome, is most evident in travellers following a primary infection. Chronic schistosomiasis affects mainly individuals with long-standing infections residing in poor rural areas. Immunopathological reactions against schistosome eggs trapped in host tissues lead to inflammatory and obstructive disease in the urinary system (S. haematobium) or intestinal disease, hepatosplenic inflammation and liver fibrosis (S. mansoni and S. japonicum). An effective drug—praziquantel—is available for treatment but, despite intensive efforts, no schistosomiasis vaccines have yet been accepted for public use. In this review, we briefly introduce the schistosome parasites and the immunopathogenic manifestations resulting from schistosomiasis. We then explore aspects of the immunology and host-parasite interplay in schistosome infections paying special attention to the current status of schistosomiasis vaccine development highlighting the advancement of a new controlled human challenge infection model for testing schistosomiasis vaccines.
Collapse
|
19
|
Tenorio JCB, Molina EC. Schistosoma japonicum infections in cattle and water buffaloes of farming communities of Koronadal City, Philippines. INTERNATIONAL JOURNAL OF ONE HEALTH 2020. [DOI: 10.14202/ijoh.2020.28-33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Schistosomiasis is one of the seven neglected tropical diseases that are of public health concern in the Philippines. The disease is prevalent in few of the barangays (communities) in Koronadal City, Philippines. Status of the Schistosoma japonicum infections in domestic animal reservoir host has yet to be explored in these endemic communities. The study aimed to determine the prevalence and infection intensity of the disease in cattle and water buffaloes of endemic communities of Koronadal City.
Materials and Methods: Schistosomiasis was investigated in 70 cattle and 38 water buffaloes from three endemic communities in Koronadal City. The copro-parasitological technique used was the formalin-ethyl acetate sedimentation method.
Results: S. japonicum infection was observed in 48.6% of cattle and 60.5% in water buffaloes. The bovine contamination index indicated that all infected animals released 3,505,500 eggs/day. On average, infected cattle released 1,674,500 eggs daily, while infected water buffaloes liberated 1,932,000 eggs in the environment daily.
Conclusion: Cattle and water buffaloes in these endemic areas are infected with S. japonicum. These animals release large numbers of eggs in the environment daily; hence, played an important role in disease transmission. Those living and working in endemic areas should be aware of the inherent dangers of the disease.
Collapse
Affiliation(s)
- Jan Clyden B. Tenorio
- Department of Paraclinical Sciences, College Of Veterinary Medicine, University of Southern Mindanao, Kabacan, Cotabato, Philippines
| | - Elizabeth C. Molina
- Department of Paraclinical Sciences, College Of Veterinary Medicine, University of Southern Mindanao, Kabacan, Cotabato, Philippines; Cotabato Agriculture, Aquatic and Natural Resources Research and Development Consortium, University of Southern Mindanao, Kabacan, Cotabato, Philippines
| |
Collapse
|
20
|
Betson M, Alonte AJI, Ancog RC, Aquino AMO, Belizario VY, Bordado AMD, Clark J, Corales MCG, Dacuma MG, Divina BP, Dixon MA, Gourley SA, Jimenez JRD, Jones BP, Manalo SMP, Prada JM, van Vliet AHM, Whatley KCL, Paller VGV. Zoonotic transmission of intestinal helminths in southeast Asia: Implications for control and elimination. ADVANCES IN PARASITOLOGY 2020; 108:47-131. [PMID: 32291086 DOI: 10.1016/bs.apar.2020.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal helminths are extremely widespread and highly prevalent infections of humans, particularly in rural and poor urban areas of low and middle-income countries. These parasites have chronic and often insidious effects on human health and child development including abdominal problems, anaemia, stunting and wasting. Certain animals play a fundamental role in the transmission of many intestinal helminths to humans. However, the contribution of zoonotic transmission to the overall burden of human intestinal helminth infection and the relative importance of different animal reservoirs remains incomplete. Moreover, control programmes and transmission models for intestinal helminths often do not consider the role of zoonotic reservoirs of infection. Such reservoirs will become increasingly important as control is scaled up and there is a move towards interruption and even elimination of parasite transmission. With a focus on southeast Asia, and the Philippines in particular, this review summarises the major zoonotic intestinal helminths, risk factors for infection and highlights knowledge gaps related to their epidemiology and transmission. Various methodologies are discussed, including parasite genomics, mathematical modelling and socio-economic analysis, that could be employed to improve understanding of intestinal helminth spread, reservoir attribution and the burden associated with infection, as well as assess effectiveness of interventions. For sustainable control and ultimately elimination of intestinal helminths, there is a need to move beyond scheduled mass deworming and to consider animal and environmental reservoirs. A One Health approach to control of intestinal helminths is proposed, integrating interventions targeting humans, animals and the environment, including improved access to water, hygiene and sanitation. This will require coordination and collaboration across different sectors to achieve best health outcomes for all.
Collapse
Affiliation(s)
- Martha Betson
- University of Surrey, Guildford, Surrey, United Kingdom.
| | | | - Rico C Ancog
- University of the Philippines Los Baños, Laguna, Philippines
| | | | | | | | - Jessica Clark
- University of Surrey, Guildford, Surrey, United Kingdom
| | | | | | - Billy P Divina
- University of the Philippines Los Baños, Laguna, Philippines
| | | | | | | | - Ben P Jones
- University of Surrey, Guildford, Surrey, United Kingdom
| | | | | | | | | | | |
Collapse
|
21
|
Adekiya TA, Aruleba RT, Oyinloye BE, Okosun KO, Kappo AP. The Effect of Climate Change and the Snail-Schistosome Cycle in Transmission and Bio-Control of Schistosomiasis in Sub-Saharan Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:E181. [PMID: 31887979 PMCID: PMC6981654 DOI: 10.3390/ijerph17010181] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/30/2023]
Abstract
In the next century, global warming, due to changes in climatic factors, is expected to have an enormous influence on the interactions between pathogens and their hosts. Over the years, the rate at which vector-borne diseases and their transmission dynamics modify and develop has been shown to be highly dependent to a certain extent on changes in temperature and geographical distribution. Schistosomiasis has been recognized as a tropical and neglected vector-borne disease whose rate of infection has been predicted to be elevated worldwide, especially in sub-Saharan Africa; the region currently with the highest proportion of people at risk, due to changes in climate. This review not only suggests the need to develop an efficient and effective model that will predict Schistosoma spp. population dynamics but seeks to evaluate the effectiveness of several current control strategies. The design of a framework model to predict and accommodate the future incidence of schistosomiasis in human population dynamics in sub-Saharan Africa is proposed. The impact of climate change on schistosomiasis transmission as well as the distribution of several freshwater snails responsible for the transmission of Schistosoma parasites in the region is also reviewed. Lastly, this article advocates for modelling several control mechanisms for schistosomiasis in sub-Saharan Africa so as to tackle the re-infection of the disease, even after treating infected people with praziquantel, the first-line treatment drug for schistosomiasis.
Collapse
Affiliation(s)
- Tayo Alex Adekiya
- Biotechnology and Structural Biology Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (R.T.A.); (B.E.O.)
| | - Raphael Taiwo Aruleba
- Biotechnology and Structural Biology Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (R.T.A.); (B.E.O.)
| | - Babatunji Emmanuel Oyinloye
- Biotechnology and Structural Biology Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (R.T.A.); (B.E.O.)
- Department of Biochemistry, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
| | - Kazeem Oare Okosun
- Department of Mathematics, Vaal University of Technology, Vanderbijlpark 1900, South Africa;
| | - Abidemi Paul Kappo
- Biotechnology and Structural Biology Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (R.T.A.); (B.E.O.)
| |
Collapse
|
22
|
Abstract
Over the past 20 years, RNAS+ has been generating research results from highly collaborative projects meant to promote and advance understanding in various aspects of schistosomiasis. Epidemiological studies in endemic countries like the Philippines, the People's Republic of China (PR China), the Lao People's Democratic Republic (Lao PDR) and Cambodia clarified the role of reservoir hosts in transmission and the use of spatio-temporal methods such as remote sensing and geographical information systems (GIS) in surveillance of schistosomiasis. Morbidity studies proposed factors that might influence development of fibrosis, anaemia and malnutrition in schistosomiasis. Immune responses in schistosomiasis continue to be an interesting focus in research to explain possible development of resistance with age. Results of evaluation of candidate vaccine molecules are also presented. New diagnostics are continually being developed in response to the call for more sensitive and field applicable techniques that will be used for surveillance in areas nearing elimination of the disease. Several studies presented here show the insufficiency of mass drug administration (MDA) with praziquantel in eliminating the disease. Emphasis is given to an integrated control approach that can be accomplished through intensive and extensive intersectoral collaboration.
Collapse
|
23
|
Mao Y, He C, Li H, Lu K, Fu Z, Hong Y, Jin Y, Lin J, Zhang X, Liu J. Comparative analysis of transcriptional profiles of Schistosoma japonicum adult worms derived from primary-infected and re-infected water buffaloes. Parasit Vectors 2019; 12:340. [PMID: 31296252 PMCID: PMC6625002 DOI: 10.1186/s13071-019-3600-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/06/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Schistosoma japonicum (S. japonicum) is an important zoonotic parasite that is prevalent in China and parts of Southeast Asia. Water buffaloes are an important reservoir and the main transmission sources of S. japonicum. However, self-curing and resistance to re-infection have been observed in water buffaloes. RESULTS In this study, we compared the morphometry and differences in transcriptional expression of adult S. japonicum worms recovered from primary-infected and re-infected water buffaloes using Illumina RNA-sequencing (RNA-Seq) technology. Results of morphometry analysis revealed that adult S. japonicum worms recovered from re-infected water buffaloes were runtish with smaller organs. The ventral length of male worms was shorter in re-infected buffaloes (328 ± 13 vs 273 ± 8 µm, P < 0.05), and in female worms the oral sucker length (44 ± 3 vs 33 ± 5 µm, P < 0.05), ovary length (578 ± 23 vs 297 ± 27 µm, P < 0.05) and width (150 ± 8 vs 104 ± 9 µm, P < 0.05) were shorter, with fewer eggs in the uteri (41 ± 2 vs 12 ± 1, P < 0.05). Of 13,605 identified genes, 112 were differentially expressed, including 51 upregulated and 61 downregulated genes, in worms from re-infected compared with primary-infected water buffaloes. Gene ontology (GO) enrichment analysis revealed that GO terms such as "oxidation-reduction process", "calcium-dependent phospholipid binding", "lipid binding" and "calcium ion binding" were significantly enriched in downregulated genes, whereas GO terms related to metabolism and biosynthesis were significantly enriched in upregulated genes. The results revealed that the downregulation of some important genes might contribute to a reduction in worm numbers and maldevelopment of surviving worms in re-infected water buffaloes. Furthermore, upregulation of genes related to metabolic processes and biosynthesis might be a compensatory mechanism of worms in disadvantageous environments. CONCLUSIONS To our knowledge, our results present the first large-scale transcriptional expression study identifying the differences between adult S. japonicum worms from primary-infected and re-infected water buffaloes, and particularly emphasize differential expression that may affect the survival and growth of worms in re-infected water buffalo. This will provide new insight into screening for anti-schistosome targets and vaccine candidates.
Collapse
Affiliation(s)
- Yudan Mao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Chuanchuan He
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Yamei Jin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Xin Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Jinming Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
24
|
Williams GM, Li YS, Gray DJ, Zhao ZY, Harn DA, Shollenberger LM, Li SM, Yu X, Feng Z, Guo JG, Zhou J, Dong YL, Li Y, Guo B, Driguez P, Harvie M, You H, Ross AG, McManus DP. Field Testing Integrated Interventions for Schistosomiasis Elimination in the People's Republic of China: Outcomes of a Multifactorial Cluster-Randomized Controlled Trial. Front Immunol 2019; 10:645. [PMID: 31001264 PMCID: PMC6456715 DOI: 10.3389/fimmu.2019.00645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/11/2019] [Indexed: 11/13/2022] Open
Abstract
Despite significant progress, China faces the challenge of re-emerging schistosomiasis transmission in currently controlled areas due, in part, to the presence of a range of animal reservoirs, notably water buffalo and cattle, which can harbor Schistosoma japonicum infections. Environmental, ecological and social-demographic changes in China, shown to affect the distribution of oncomelanid snails, can also impact future schistosomiasis transmission. In light of their importance in the S. japonicum, lifecycle, vaccination has been proposed as a means to reduce the excretion of egg from cattle and buffalo, thereby interrupting transmission from these reservoir hosts to snails. A DNA-based vaccine (SjCTPI) our team developed showed encouraging efficacy against S. japonicum in Chinese water buffaloes. Here we report the results of a double-blind cluster randomized trial aimed at determining the impact of a combination of the SjCTPI bovine vaccine (given as a prime-boost regimen), human mass chemotherapy and snail control on the transmission of S. japonicum in 12 selected administrative villages around the Dongting Lake in Hunan province. The trial confirmed human praziquantel treatment is an effective intervention at the population level. Further, mollusciciding had an indirect ~50% efficacy in reducing human infection rates. Serology showed that the SjCTPI vaccine produced an effective antibody response in vaccinated bovines, resulting in a negative correlation with bovine egg counts observed at all post-vaccination time points. Despite these encouraging outcomes, the effect of the vaccine in preventing human infection was inconclusive. This was likely due to activities undertaken by the China National Schistosomiasis Control Program, notably the treatment, sacrifice or removal of bovines from trial villages, over which we had no control; as a result, the trial design was compromised, reducing power and contaminating outcome measures. This highlights the difficulties in undertaking field trials of this nature and magnitude, particularly over a long period, and emphasizes the importance of mathematical modeling in predicting the potential impact of control intervention measures. A transmission blocking vaccine targeting bovines for the prevention of S. japonicum with the required protective efficacy would be invaluable in tandem with other preventive intervention measures if the goal of eliminating schistosomiasis from China is to become a reality.
Collapse
Affiliation(s)
- Gail M. Williams
- School of Public Health, University of Queensland, Brisbane, QLD, Australia
| | - Yue-Sheng Li
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Hunan Institute of Parasitic Diseases, Yueyang, China
| | - Darren J. Gray
- School of Public Health, University of Queensland, Brisbane, QLD, Australia
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Research School of Population Health, Australian National University, Canberra, ACT, Australia
| | - Zheng-Yuan Zhao
- World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Hunan Institute of Parasitic Diseases, Yueyang, China
| | - Donald A. Harn
- Department of Infectious Diseases, College of Veterinary Medicine and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Lisa M. Shollenberger
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| | - Sheng-Ming Li
- World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Hunan Institute of Parasitic Diseases, Yueyang, China
| | - Xinglin Yu
- World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Hunan Institute of Parasitic Diseases, Yueyang, China
| | - Zeng Feng
- Chinese Centre for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China
| | - Jia-Gang Guo
- World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Hunan Institute of Parasitic Diseases, Yueyang, China
| | - Jie Zhou
- World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Hunan Institute of Parasitic Diseases, Yueyang, China
| | - Yu-Lan Dong
- World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Hunan Institute of Parasitic Diseases, Yueyang, China
| | - Yuan Li
- Centre of Cell and Molecular Biology Experiment, Xiangya School of Medicine, Central South University, Changsha, China
| | - Biao Guo
- School of Public Health, University of Queensland, Brisbane, QLD, Australia
| | - Patrick Driguez
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Marina Harvie
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Hong You
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Allen G. Ross
- Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia
- International Centre for Diarrhoeal Disease Research (ICDDR), Dhaka, Bangladesh
| | - Donald P. McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
25
|
Asian Schistosomiasis: Current Status and Prospects for Control Leading to Elimination. Trop Med Infect Dis 2019; 4:tropicalmed4010040. [PMID: 30813615 PMCID: PMC6473711 DOI: 10.3390/tropicalmed4010040] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
Schistosomiasis is an infectious disease caused by helminth parasites of the genus Schistosoma. Worldwide, an estimated 250 million people are infected with these parasites with the majority of cases occurring in sub-Saharan Africa. Within Asia, three species of Schistosoma cause disease. Schistosoma japonicum is the most prevalent, followed by S. mekongi and S. malayensis. All three species are zoonotic, which causes concern for their control, as successful elimination not only requires management of the human definitive host, but also the animal reservoir hosts. With regard to Asian schistosomiasis, most of the published research has focused on S. japonicum with comparatively little attention paid to S. mekongi and even less focus on S. malayensis. In this review, we examine the three Asian schistosomes and their current status in their endemic countries: Cambodia, Lao People's Democratic Republic, Myanmar, and Thailand (S. mekongi); Malaysia (S. malayensis); and Indonesia, People's Republic of China, and the Philippines (S. japonicum). Prospects for control that could potentially lead to elimination are highlighted as these can inform researchers and disease control managers in other schistosomiasis-endemic areas, particularly in Africa and the Americas.
Collapse
|
26
|
Da'Dara AA, Li C, Yu X, Zheng M, Zhou J, Shollenberger LM, Li YS, Harn DA. Prime-Boost Vaccine Regimen for SjTPI and SjC23 Schistosome Vaccines, Increases Efficacy in Water Buffalo in a Field Trial in China. Front Immunol 2019; 10:284. [PMID: 30842779 PMCID: PMC6391362 DOI: 10.3389/fimmu.2019.00284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/04/2019] [Indexed: 01/14/2023] Open
Abstract
Schistosomiasis remains a serious zoonotic disease in China and the Philippines. Water buffalo and cattle account for the majority of transmission. Vaccination of water buffalo is considered a key strategy to reduce disease prevalence. Previously, we showed that vaccination of water buffalo with SjC23 or SjCTPI plasmid DNA vaccines, induced 50% efficacy to challenge infection. Here, we evaluated several parameters to determine if we can develop a two dose vaccine that maintains the efficacy of the three dose vaccine. We performed four trials evaluating: (1) lab produced vs. GLP grade vaccines, (2) varying the time between prime and boost, (3) the influence of an IL-12 adjuvant, and (4) a two dose heterologous (DNA-protein) prime-boost. We found the source of the DNA vaccines did not matter, nor did increasing the interval between prime and boost. Elimination of the IL-12 plasmid lowered homologous DNA-DNA vaccine efficacy. A major finding was that the heterologous prime boost improved vaccine efficacy, with the prime-boost regimen incorporating both antigens providing a 55% reduction in adult worms and 53% reduction in liver eggs. Vaccinated buffalo produced vaccine-specific antibody responses. These trials suggest that highly effective vaccination against schistosomes can be achieved using a two dose regimen. No adjuvants were used with the protein boost, and the potential that addition of adjuvant to the protein boost to further increase efficacy should be evaluated. These results suggest that use of these two schistosome vaccines can be part of an integrated control strategy to reduce transmission of schistosomiasis in Asia.
Collapse
Affiliation(s)
- Akram A. Da'Dara
- Department of Infectious Diseases and Global Health, Tufts Cummings School of Veterinary Medicine, Tufts University, Grafton, MA, United States
| | - Changlin Li
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Xinling Yu
- Hunan Institute of Parasitic Diseases, World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Yueyang, China
| | - Mao Zheng
- Hunan Institute of Parasitic Diseases, World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Yueyang, China
| | - Jie Zhou
- Hunan Institute of Parasitic Diseases, World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Yueyang, China
| | - Lisa M. Shollenberger
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| | - Yue-sheng Li
- Hunan Institute of Parasitic Diseases, World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Yueyang, China
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Donald A. Harn
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
27
|
He C, Mao Y, Zhang X, Li H, Lu K, Fu Z, Hong Y, Tang Y, Jin Y, Lin J, Liu J. High resistance of water buffalo against reinfection with Schistosoma japonicum. Vet Parasitol 2018; 261:18-21. [PMID: 30253847 DOI: 10.1016/j.vetpar.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 11/17/2022]
Abstract
Schistosomiasis is a zoonotic parasitic disease threatening tens of millions people and farm animals. Water buffalos are a major reservoir for schistosomiasis and a control target. Epidemiological surveys suggest that buffalos can develop resistance against Schistosoma japonicum reinfection. In the present paper, relative to control animals, we report an over 97% worm burden reduction after two rounds of infection with S. japonicum and treatment with Praziquantel (PZQ). Relative to control animals, shorter length of female worms, and lower egg counts (over 87.7% reduction rates) were observed in reinfected buffalos. We also found that the reinfected buffalos had significantly higher levels of IL-4, IL-10, and IFN-γ, 4-9 weeks after the secondary infection, and a significantly higher level of specific IgG antibodies before infection. Our results confirmed that after infection buffalos develop resistance against S. japonicum reinfection, and that this resistance is mainly due to acquired immunity. These findings may aid in the future vaccine design for water buffalos.
Collapse
Affiliation(s)
- Chuanchuan He
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, People's Republic of China
| | - Yudan Mao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, People's Republic of China
| | - Xin Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, People's Republic of China
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, People's Republic of China
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, People's Republic of China
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, People's Republic of China
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, People's Republic of China
| | - Yalan Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, People's Republic of China
| | - Yamei Jin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, People's Republic of China
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, People's Republic of China
| | - Jinming Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, People's Republic of China.
| |
Collapse
|
28
|
Li Y, Teng Z, Ruan S, Li M, Feng X. A mathematical model for the seasonal transmission of schistosomiasis in the lake and marshland regions of China. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2018; 14:1279-1299. [PMID: 29161861 DOI: 10.3934/mbe.2017066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Schistosomiasis, a parasitic disease caused by \textit{ Schistosoma Japonicum}, is still one of the most serious parasitic diseases in China and remains endemic in seven provinces, including Hubei, Anhui, Hunan, Jiangsu, Jiangxi, Sichuan, and Yunnan. The monthly data of human schistosomiasis cases in Hubei, Hunan, and Anhui provinces (lake and marshland regions) released by the Chinese Center for Disease Control and Prevention (China CDC) display a periodic pattern with more cases in late summer and early autumn. Based on this observation, we construct a deterministic model with periodic transmission rates to study the seasonal transmission dynamics of schistosomiasis in these lake and marshland regions in China. We calculate the basic reproduction number R0, discuss the dynamical behavior of solutions to the model, and use the model to fit the monthly data of human schistosomiasis cases in Hubei. We also perform some sensitivity analysis of the basic reproduction number R0 in terms of model parameters. Our results indicate that treatment of at-risk population groups, improving sanitation, hygiene education, and snail control are effective measures in controlling human schistosomiasis in these lakes and marshland regions.
Collapse
Affiliation(s)
- Yingke Li
- College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Zhidong Teng
- College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Shigui Ruan
- Department of Mathematics, University of Miami, Coral Gables, FL 33146, United States
| | - Mingtao Li
- Complex Systems Research Center, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaomei Feng
- Department of Mathematics, Yuncheng University, Yuncheng, Shanxi 044000, China
| |
Collapse
|
29
|
You H, Cai P, Tebeje BM, Li Y, McManus DP. Schistosome Vaccines for Domestic Animals. Trop Med Infect Dis 2018; 3:tropicalmed3020068. [PMID: 30274464 PMCID: PMC6073927 DOI: 10.3390/tropicalmed3020068] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 01/10/2023] Open
Abstract
Schistosomiasis is recognized as a tropical disease of considerable public health importance, but domestic livestock infections due to Schistosoma japonicum, S. bovis, S. mattheei and S. curassoni are often overlooked causes of significant animal morbidity and mortality in Asia and Africa. In addition, whereas schistosomiasis japonica is recognized as an important zoonosis in China and the Philippines, reports of viable schistosome hybrids between animal livestock species and S. haematobium point to an underappreciated zoonotic component of transmission in Africa as well. Anti-schistosome vaccines for animal use have long been advocated as part of the solution to schistosomiasis control, benefitting humans and animals and improving the local economy, features aligning with the One Health concept synergizing human and animal health. We review the history of animal vaccines for schistosomiasis from the early days of irradiated larvae and then consider the recombinant DNA technology revolution and its impact in developing schistosome vaccines that followed. We evaluate the major candidates tested in livestock, including the glutathione S-transferases, paramyosin and triose-phosphate isomerase, and summarize some of the future challenges that need to be overcome to design and deliver effective anti-schistosome vaccines that will complement current control options to achieve and sustain future elimination goals.
Collapse
Affiliation(s)
- Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| | - Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| | - Biniam Mathewos Tebeje
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| | - Yuesheng Li
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| |
Collapse
|
30
|
Abstract
Schistosomiasis in China has been substantially reduced due to an effective control programme employing various measures including bovine and human chemotherapy, and the removal of bovines from endemic areas. To fulfil elimination targets, it will be necessary to identify other possible reservoir hosts for Schistosoma japonicum and include them in future control efforts. This study determined the infection prevalence of S. japonicum in rodents (0-9·21%), dogs (0-18·37%) and goats (6·9-46·4%) from the Dongting Lake area of Hunan province, using a combination of traditional coproparasitological techniques (miracidial hatching technique and Kato-Katz thick smear technique) and molecular methods [quantitative real-time PCR (qPCR) and droplet digital PCR (ddPCR)]. We found a much higher prevalence in goats than previously recorded in this setting. Cattle and water buffalo were also examined using the same procedures and all were found to be infected, emphasising the occurrence of active transmission. qPCR and ddPCR were much more sensitive than the coproparasitological procedures with both KK and MHT considerably underestimating the true prevalence in all animals surveyed. The high level of S. japonicum prevalence in goats indicates that they are likely important reservoirs in schistosomiasis transmission, necessitating their inclusion as targets of control, if the goal of elimination is to be achieved in China.
Collapse
|
31
|
Gao SJ, Cao HH, He YY, Liu YJ, Zhang XY, Yang GJ, Zhou XN. The basic reproductive ratio of Barbour's two-host schistosomiasis model with seasonal fluctuations. Parasit Vectors 2017; 10:42. [PMID: 28122646 PMCID: PMC5264280 DOI: 10.1186/s13071-017-1983-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 01/12/2017] [Indexed: 12/17/2022] Open
Abstract
Background Motivated by the first mathematical model for schistosomiasis proposed by Macdonald and Barbour’s classical schistosomiasis model tracking the dynamics of infected human population and infected snail hosts in a community, in our previous study, we incorporated seasonal fluctuations into Barbour’s model, but ignored the effect of bovine reservoir host in the transmission of schistosomiasis. Inspired by the findings from our previous work, the model was further improved by integrating two definitive hosts (human and bovine) and seasonal fluctuations, so as to understand the transmission dynamics of schistosomiasis japonica and evaluate the ongoing control measures in Liaonan village, Xingzi County, Jiangxi Province. Methods The basic reproductive ratio R0 and its computation formulae were derived by using the operator theory in functional analysis and the monodromy matrix theory. The mathematical methods for global dynamics of periodic systems were used in order to show that R0 serves as a threshold value that determines whether there was disease outbreak or not. The parameter fitting and the ratio calculation were performed with surveillance data obtained from the village of Liaonan using numerical simulation. Sensitivity analysis was carried out in order to understand the impact of R0 on seasonal fluctuations and snail host control. The modified basic reproductive ratios were compared with known results to illustrate the infection risk. Results The Barbour’s two-host model with seasonal fluctuations was proposed. The implicit expression of R0 for the model was given by the spectral radius of next infection operator. The R0s for the model ranged between 1.030 and 1.097 from 2003 to 2010 in the village of Liaonan, Xingzi County, China, with 1.097 recorded as the maximum value in 2005 but declined dramatically afterwards. In addition, we proved that the disease goes into extinction when R0 is less than one and persists when R0 is greater than one. Comparisons of the different improved models were also made. Conclusions Based on the mechanism and characteristics of schistosomiasis transmission, Barbour’s model was improved by considering seasonality. The implicit formula of R0 for the model and its calculation were given. Theoretical results showed that R0 gave a sharp threshold that determines whether the disease dies out or not. Simulations concluded that: (i) ignoring seasonality would overestimate the transmission risk of schistosomiasis, and (ii) mollusiciding is an effective control measure to curtail schistosomiasis transmission in Xingzi County when the removal rate of infected snails is small. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-1983-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shu-Jing Gao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH, WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.,Key Laboratory of Jiangxi Province for Numerical Simulation and Emulation Techniques, Gannan Normal University, Ganzhou, 341000, China
| | - Hua-Hua Cao
- Key Laboratory of Jiangxi Province for Numerical Simulation and Emulation Techniques, Gannan Normal University, Ganzhou, 341000, China
| | - Yu-Ying He
- Key Laboratory of Jiangxi Province for Numerical Simulation and Emulation Techniques, Gannan Normal University, Ganzhou, 341000, China
| | - Yu-Jiang Liu
- Key Laboratory of Jiangxi Province for Numerical Simulation and Emulation Techniques, Gannan Normal University, Ganzhou, 341000, China
| | - Xiang-Yu Zhang
- Key Laboratory of Jiangxi Province for Numerical Simulation and Emulation Techniques, Gannan Normal University, Ganzhou, 341000, China
| | - Guo-Jing Yang
- Jiangsu Institute of Parasitic Diseases, Key Laboratory on Control Technology for Parasitic Diseases, Ministry of Health, Wuxi, Jiangsu, 214064, China.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH, WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.
| |
Collapse
|
32
|
Song LG, Wu XY, Sacko M, Wu ZD. History of schistosomiasis epidemiology, current status, and challenges in China: on the road to schistosomiasis elimination. Parasitol Res 2016; 115:4071-4081. [PMID: 27679451 DOI: 10.1007/s00436-016-5253-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 01/04/2023]
Abstract
Schistosomiasis is a snail-borne disease caused by worms of the genus Schistosoma. Worldwide, human schistosomiasis remains a serious public health problem, threatening ∼800 million people in 78 countries with a loss of 70 million disability-adjusted life years. Schistosoma japonicum is the only human blood fluke that occurs in China. As one of the countries suffering greatly from schistosomiasis, over the past 65 years, China has made great strides in controlling schistosomiasis, blocking the transmission of S. japonicum in five provinces, remarkably reducing transmission intensities in the other seven endemic provinces, and China is currently preparing to move toward the elimination of this disease before 2025. However, while on the road to schistosomiasis elimination, emerging challenges merit attention, including severe advanced cases, increased movements of population and livestock, large-area distribution of intermediate host snails, limitations of new drug developments and no vaccine available, as well as imported schistosomiasis and its potential risk.
Collapse
Affiliation(s)
- Lan-Gui Song
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, Guangdong, China
| | - Xiao-Ying Wu
- School of Public Health, Fudan University, Shanghai, China
| | - Moussa Sacko
- National Institute for Research in Public Health, Ministry of Health, Bamako, Mali
| | - Zhong-Dao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, Guangdong, China.
| |
Collapse
|
33
|
Multi-host model and threshold of intermediate host Oncomelania snail density for eliminating schistosomiasis transmission in China. Sci Rep 2016; 6:31089. [PMID: 27535177 PMCID: PMC4989165 DOI: 10.1038/srep31089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/13/2016] [Indexed: 11/24/2022] Open
Abstract
Schistosomiasis remains a serious public health issue in many tropical countries, with more than 700 million people at risk of infection. In China, a national integrated control strategy, aiming at blocking its transmission, has been carried out throughout endemic areas since 2005. A longitudinal study was conducted to determine the effects of different intervention measures on the transmission dynamics of S. japonicum in three study areas and the data were analyzed using a multi-host model. The multi-host model was also used to estimate the threshold of Oncomelania snail density for interrupting schistosomiasis transmission based on the longitudinal data as well as data from the national surveillance system for schistosomiasis. The data showed a continuous decline in the risk of human infection and the multi-host model fit the data well. The 25th, 50th and 75th percentiles, and the mean of estimated thresholds of Oncomelania snail density below which the schistosomiasis transmission cannot be sustained were 0.006, 0.009, 0.028 and 0.020 snails/0.11 m2, respectively. The study results could help develop specific strategies of schistosomiasis control and elimination tailored to the local situation for each endemic area.
Collapse
|
34
|
Feng Y, Liu L, Xia S, Xu JF, Bergquist R, Yang GJ. Reaching the Surveillance-Response Stage of Schistosomiasis Control in The People's Republic of China: A Modelling Approach. ADVANCES IN PARASITOLOGY 2016; 92:165-96. [PMID: 27137447 DOI: 10.1016/bs.apar.2016.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the goal set to eliminate schistosomiasis nationwide by 2020, The People's Republic of China has initiated the surveillance-response stage to identify remaining sources of infection and potential pockets from where the disease could reemerge. Shifting the focus from classical monitoring and evaluation to rapid detection and immediate response, this approach requires modelling to bridge the surveillance and response components. We review here studies relevant to schistosomiasis modelling in a Chinese surveillance-response system with the expectation to achieve a practically useful understanding of the current situation and potential future study directions. We also present useful experience that could tentatively be applied in other endemic regions in the world. Modelling is discussed at length as it plays an essential role, both with regard to the intermediate snail host and in the definitive, mammal hosts. Research gaps with respect to snail infection, animal hosts and sectoral research cooperation are identified and examined against the prevailing background of ecosystem and socioeconomic changes with a focus on coexisting challenges and opportunities in a situation with increasing financial constraints.
Collapse
Affiliation(s)
- Y Feng
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Wuxi, The People's Republic of China; Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, The People's Republic of China; Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, The People's Republic of China; Public Health Research Center, Jiangnan University, Wuxi, Jiangsu Province, The People's Republic of China
| | - L Liu
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Wuxi, The People's Republic of China; Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, The People's Republic of China; Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, The People's Republic of China; Public Health Research Center, Jiangnan University, Wuxi, Jiangsu Province, The People's Republic of China
| | - S Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| | - J-F Xu
- Hubei University for Nationalities, The People's Republic of China
| | - R Bergquist
- Geospatial Health, University of Naples Federico II, Naples, Italy
| | - G-J Yang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Wuxi, The People's Republic of China; Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, The People's Republic of China; Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, The People's Republic of China; Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
35
|
Fenton A, Streicker DG, Petchey OL, Pedersen AB. Are All Hosts Created Equal? Partitioning Host Species Contributions to Parasite Persistence in Multihost Communities. Am Nat 2015; 186:610-22. [PMID: 26655774 DOI: 10.1086/683173] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many parasites circulate endemically within communities of multiple host species. To understand disease persistence within these communities, it is essential to know the contribution each host species makes to parasite transmission and maintenance. However, quantifying those contributions is challenging. We present a conceptual framework for classifying multihost sharing, based on key thresholds for parasite persistence. We then develop a generalized technique to quantify each species' contribution to parasite persistence, allowing natural systems to be located within the framework. We illustrate this approach using data on gastrointestinal parasites circulating within rodent communities and show that, although many parasites infect several host species, parasite persistence is often driven by just one host species. In some cases, however, parasites require multiple host species for maintenance. Our approach provides a quantitative method for differentiating these cases using minimal reliance on system-specific parameters, enabling informed decisions about parasite management within poorly understood multihost communities.
Collapse
Affiliation(s)
- Andy Fenton
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | | | | | | |
Collapse
|
36
|
Turner HC, Walker M, Lustigman S, Taylor DW, Basáñez MG. Human Onchocerciasis: Modelling the Potential Long-term Consequences of a Vaccination Programme. PLoS Negl Trop Dis 2015; 9:e0003938. [PMID: 26186715 PMCID: PMC4506122 DOI: 10.1371/journal.pntd.0003938] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/28/2015] [Indexed: 11/21/2022] Open
Abstract
Background Currently, the predominant onchocerciasis control strategy in Africa is annual mass drug administration (MDA) with ivermectin. However, there is a consensus among the global health community, supported by mathematical modelling, that onchocerciasis in Africa will not be eliminated within proposed time frameworks in all endemic foci with only annual MDA, and novel and alternative strategies are urgently needed. Furthermore, use of MDA with ivermectin is already compromised in large areas of central Africa co-endemic with Loa loa, and there are areas where suboptimal or atypical responses to ivermectin have been documented. An onchocerciasis vaccine would be highly advantageous in these areas. Methodology/Principal Findings We used a previously developed onchocerciasis transmission model (EPIONCHO) to investigate the impact of vaccination in areas where loiasis and onchocerciasis are co-endemic and ivermectin is contraindicated. We also explore the potential influence of a vaccination programme on infection resurgence in areas where local elimination has been successfully achieved. Based on the age range included in the Expanded Programme on Immunization (EPI), the vaccine was assumed to target 1 to 5 year olds. Our modelling results indicate that the deployment of an onchocerciasis vaccine would have a beneficial impact in onchocerciasis–loiasis co-endemic areas, markedly reducing microfilarial load in the young (under 20 yr) age groups. Conclusions/Significance An onchocerciasis prophylactic vaccine would reduce the onchocerciasis disease burden in populations where ivermectin cannot be administered safely. Moreover, a vaccine could substantially decrease the chance of re-emergence of Onchocerca volvulus infection in areas where it is deemed that MDA with ivermectin can be stopped. Therefore, a vaccine would protect the substantial investments made by present and past onchocerciasis control programmes, decreasing the chance of disease recrudescence and offering an important additional tool to mitigate the potentially devastating impact of emerging ivermectin resistance. Novel and alternative strategies are required to meet the demanding control and elimination (of infection) goals for human onchocerciasis (river blindness) in Africa. Due to the overlapping distribution of onchocerciasis and loiasis (African eye worm) in forested areas of central Africa, millions of people living in such areas are not well served by current interventions because they cannot safely receive the antiparasitic drug ivermectin that is distributed en masse to treat onchocerciasis elsewhere in Africa. The Onchocerciasis Vaccine for Africa—TOVA—Initiative has been established to develop and trial an onchocerciasis vaccine. We model the potential impact of a hypothetical childhood vaccination programme rolled out in areas where co-endemicity of onchocerciasis and African eye worm makes mass distribution of ivermectin difficult and potentially unsafe for treating, controlling and eliminating river blindness. We find that, 15 years into the programme, a vaccine would substantially reduce infection levels in children and young adults, protecting them from the morbidity and mortality associated with onchocerciasis. Most benefit would be reaped from a long-lived vaccine, even if only partially protective. We also discuss how a vaccine could substantially reduce the risk of re-emergence of onchocerciasis in areas freed from infection after years of successful intervention.
Collapse
Affiliation(s)
- Hugo C. Turner
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St. Mary’s Campus), Imperial College London, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St. Mary’s Campus), Imperial College London, London, United Kingdom
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St. Mary’s Campus), Imperial College London, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St. Mary’s Campus), Imperial College London, London, United Kingdom
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - David W. Taylor
- Division of Infection and Pathway Medicine, University of Edinburgh Medical School, The Chancellor’s Building, Edinburgh, United Kingdom
| | - María-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St. Mary’s Campus), Imperial College London, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St. Mary’s Campus), Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Hosking CG, Driguez P, McWilliam HEG, Ilag LL, Gladman S, Li Y, Piedrafita D, McManus DP, Meeusen ENT, de Veer MJ. Using the local immune response from the natural buffalo host to generate an antibody fragment library that binds the early larval stages of Schistosoma japonicum. Int J Parasitol 2015; 45:729-40. [PMID: 26116907 DOI: 10.1016/j.ijpara.2015.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 12/30/2022]
Abstract
Antibodies isolated from the local draining inguinal lymph node of field exposed-water buffaloes following challenge with Schistosoma japonicum cercariae showed high reactivity towards S. japonicum antigen preparations and bound specifically to formaldehyde-fixed S. japonicum schistosomules. Using this specific local immune response we produced a series of single-chain antibody Fv domain libraries from the same lymph nodes. Removal of phage that cross reacted with epitopes on adult parasites yielded a single-chain antibody Fv domain-phage library that specifically bound to whole formaldehyde-fixed and live S. japonicum schistosomules. DNA sequencing indicated clear enrichment of the single-chain antibody Fv domain library for buffalo B-cell complementarity determining regions post-selection for schistosomule binding. This study also revealed that long heavy chain complementarity determining regions appear to be an important factor when selecting for antibody binding fragments against schistosomule proteins. The selected single-chain antibody Fv domain-phage were used to probe a schistosome-specific protein microarray, which resulted in the recognition of many proteins expressed across all schistosome life-cycle stages. Following absorption to adult worms, the single-chain antibody Fv domain-phage library showed significantly reduced binding to most proteins, whilst two proteins (NCBI GenBank accession numbers AY915878 and AY815196) showed increased binding. We have thus developed a unique set of host derived single-chain antibody Fv domains comprising buffalo B-cell variable regions that specifically bind to early S. japonicum life-stages.
Collapse
Affiliation(s)
- Christopher G Hosking
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Victoria 3800, Australia
| | - Patrick Driguez
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Victoria 3000, Australia
| | - Leodevico L Ilag
- Bio21, Molecular Sciences and Biotechnology Institute, The University of Melbourne, Victoria 3052, Australia
| | - Simon Gladman
- Victorian Life Sciences Computation Initiative, The University of Melbourne Parkville, Victoria 3052, Australia
| | - Yuesheng Li
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - David Piedrafita
- School of Applied and Biomedical Science, Federation University Australia, Gippsland Campus, Churchill, Victoria 3842, Australia; Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Donald P McManus
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Els N T Meeusen
- Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Michael J de Veer
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
38
|
Gordon CA, Acosta LP, Gobert GN, Jiz M, Olveda RM, Ross AG, Gray DJ, Williams GM, Harn D, Li Y, McManus DP. High prevalence of Schistosoma japonicum and Fasciola gigantica in bovines from Northern Samar, the Philippines. PLoS Negl Trop Dis 2015; 9:e0003108. [PMID: 25643317 PMCID: PMC4313937 DOI: 10.1371/journal.pntd.0003108] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/10/2014] [Indexed: 11/18/2022] Open
Abstract
The cause of zoonotic schistosomiasis in the Philippines is Schistosoma japonicum, which infects up to 46 mammalian hosts, including humans and bovines. In China, water buffaloes have been identified as major reservoir hosts for schistosomiasis japonica, contributing up to 75% of human transmission. In the Philippines, water buffaloes (carabao; Bubalus bubalis carabanesis) have, historically, been considered unimportant reservoirs. We therefore revisited the possible role of bovines in schistosome transmission in the Philippines, using the recently described formalin-ethyl acetate sedimentation (FEA-SD) technique and a qPCR assay to examine fecal samples from 153 bovines (both carabao and cattle) from six barangays in Northern Samar. A high prevalence of S. japonicum was found using qPCR and FEA-SD in both cattle (87.50% and 77.08%, respectively) and carabao (80.00% and 55.24%, respectively). The average daily egg output for each bovine was calculated at 195,000. High prevalence and infection intensity of F. gigantica was also found in the bovines by qPCR and FEA-SD (95.33% and 96.00%, respectively). The identification of bovines as major reservoir hosts for S. japonicum transmission suggests that bovine treatment and/or vaccination, as one becomes available, should be included in any future control program that aims to reduce the disease burden due to schistosomiasis in the Philippines.
Collapse
Affiliation(s)
- Catherine A. Gordon
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Institute of Medical Research, Brisbane, Australia
- Infectious Disease Epidemiology Unit, School of Population Health, University of Queensland, Brisbane, Australia
- * E-mail: (CAG); (DPM)
| | - Luz P. Acosta
- Department of Immunology, Research Institute of Tropical Medicine, Manila, Philippines
| | - Geoffrey N. Gobert
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Institute of Medical Research, Brisbane, Australia
| | - Mario Jiz
- Department of Immunology, Research Institute of Tropical Medicine, Manila, Philippines
| | - Remigio M. Olveda
- Department of Immunology, Research Institute of Tropical Medicine, Manila, Philippines
| | - Allen G. Ross
- Griffith Health Institute, Griffith University, Brisbane, Australia
| | - Darren J. Gray
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Institute of Medical Research, Brisbane, Australia
- Infectious Disease Epidemiology Unit, School of Population Health, University of Queensland, Brisbane, Australia
- Research School of Population Health, the Australian National University, Canberra, Australia
| | - Gail M. Williams
- Discipline of Epidemiology and Biostatistics, School of Population Health, University of Queensland, Brisbane, Australia
| | - Donald Harn
- University of Georgia, College of Veterinary Medicine, Athens, Georgia, United States of America
| | - Yuesheng Li
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Institute of Medical Research, Brisbane, Australia
| | - Donald P. McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Institute of Medical Research, Brisbane, Australia
- * E-mail: (CAG); (DPM)
| |
Collapse
|
39
|
Xu JF, Lv S, Wang QY, Qian MB, Liu Q, Bergquist R, Zhou XN. Schistosomiasis japonica: modelling as a tool to explore transmission patterns. Acta Trop 2015; 141:213-22. [PMID: 25004441 DOI: 10.1016/j.actatropica.2014.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/22/2014] [Accepted: 06/27/2014] [Indexed: 11/26/2022]
Abstract
Modelling is an important tool for the exploration of Schistosoma japonicum transmission patterns. It provides a general theoretical framework for decision-makers and lends itself specifically to assessing the progress of the national control programme by following the outcome of surveys. The challenge of keeping up with the many changes of social, ecological and environmental factors involved in control activities is greatly facilitated by modelling that can also indicate which activities are critical and which are less important. This review examines the application of modelling tools in the epidemiological study of schistosomiasis japonica during the last 20 years and explores the application of enhanced models for surveillance and response. Updated and timely information for decision-makers in the national elimination programme is provided but, in spite of the new modelling techniques introduced, many questions remain. Issues on application of modelling are discussed with the view to improve the current situation with respect to schistosomiasis japonica.
Collapse
|
40
|
Abstract
Schistosomiasis is one of the most prevalent, insidious and serious of the tropical parasitic diseases. Although the effective anthelmintic drug, praziquantel, is widely available and cheap, it does not protect against re-infection, drug-resistant schistosome may evolve and mass drug administration programmes based around praziquantel are probably unsustainable long term. Whereas protective anti-schistosome vaccines are not yet available, the zoonotic nature of Schistosoma japonicum provides a novel approach for developing a transmission-blocking veterinary vaccine in domestic animals, especially bovines, which are major reservoir hosts, being responsible for up to 90% of environmental egg contamination in China and the Philippines. However, a greater knowledge of schistosome immunology is required to understand the processes associated with anti-schistosome protective immunity and to reinforce the rationale for vaccine development against schistosomiasis japonica. Importantly as well, improved diagnostic tests, with high specificity and sensitivity, which are simple, rapid and able to diagnose light S. japonicum infections, are required to determine the extent of transmission interruption and the complete elimination of schistosomiasis following control efforts. This article discusses aspects of the host immune response in schistosomiasis, the current status of vaccine development against S. japonicum and reviews approaches for diagnosing and detecting schistosome infections in mammalian hosts.
Collapse
|
41
|
Mitchell KM, Mutapi F, Mduluza T, Midzi N, Savill NJ, Woolhouse MEJ. Predicted impact of mass drug administration on the development of protective immunity against Schistosoma haematobium. PLoS Negl Trop Dis 2014; 8:e3059. [PMID: 25079601 PMCID: PMC4117464 DOI: 10.1371/journal.pntd.0003059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 06/17/2014] [Indexed: 01/08/2023] Open
Abstract
Previous studies suggest that protective immunity against Schistosoma haematobium is primarily stimulated by antigens from dying worms. Praziquantel treatment kills adult worms, boosting antigen exposure and protective antibody levels. Current schistosomiasis control efforts use repeated mass drug administration (MDA) of praziquantel to reduce morbidity, and may also reduce transmission. The long-term impact of MDA upon protective immunity, and subsequent effects on infection dynamics, are not known. A stochastic individual-based model describing levels of S. haematobium worm burden, egg output and protective parasite-specific antibody, which has previously been fitted to cross-sectional and short-term post-treatment egg count and antibody patterns, was used to predict dynamics of measured egg output and antibody during and after a 5-year MDA campaign. Different treatment schedules based on current World Health Organisation recommendations as well as different assumptions about reductions in transmission were investigated. We found that antibody levels were initially boosted by MDA, but declined below pre-intervention levels during or after MDA if protective immunity was short-lived. Following cessation of MDA, our models predicted that measured egg counts could sometimes overshoot pre-intervention levels, even if MDA had had no effect on transmission. With no reduction in transmission, this overshoot occurred if protective immunity was short-lived. This implies that disease burden may temporarily increase following discontinuation of treatment, even in the absence of any reduction in the overall transmission rate. If MDA was additionally assumed to reduce transmission, a larger overshoot was seen across a wide range of parameter combinations, including those with longer-lived protective immunity. MDA may reduce population levels of immunity to urogenital schistosomiasis in the long-term (3-10 years), particularly if transmission is reduced. If MDA is stopped while S. haematobium is still being transmitted, large rebounds (up to a doubling) in egg counts could occur.
Collapse
Affiliation(s)
- Kate M. Mitchell
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Francisca Mutapi
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Takafira Mduluza
- Department of Biochemistry, University of Zimbabwe, Harare, Zimbabwe
- College of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| | | | - Nicholas J. Savill
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark E. J. Woolhouse
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
42
|
Gray DJ, Li YS, Williams GM, Zhao ZY, Harn DA, Li SM, Ren MY, Feng Z, Guo FY, Guo JG, Zhou J, Dong YL, Li Y, Ross AG, McManus DP. A multi-component integrated approach for the elimination of schistosomiasis in the People's Republic of China: design and baseline results of a 4-year cluster-randomised intervention trial. Int J Parasitol 2014; 44:659-68. [PMID: 24929133 DOI: 10.1016/j.ijpara.2014.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 11/16/2022]
Abstract
Despite major successes in its control over the past 50years, schistosomiasis japonica continues to be a public health problem in the People's Republic of China (P.R. China). Historically, the major endemic foci occur in the lakes and marshlands along the Yangtze River, areas where transmission interruption has proven difficult. The current endemic situation may alter due to the closure of the Three Gorges Dam. Considerable environmental and ecological changes are anticipated that may result in new habitats for the oncomelanid intermediate snail host of Schistosoma japonicum (Sj), thereby increasing the risk of transmission. The current national control program for P.R. China involves a multi-component integrated strategy but, despite targeting multiple transmission pathways, certain challenges remain. As the Chinese government pushes towards elimination, there is a requirement for additional tools, such as vaccination, for long-term prevention. Whereas the zoonotic nature of schistosomiasis japonica adds to the complexity of control, it provides a unique opportunity to develop a transmission blocking vaccine targeting bovines to assist in the prevention of human infection and disease. Mathematical modelling has shown that control options targeting the various transmission pathways of schistosomiasis japonica and incorporating bovine vaccination, mass human chemotherapy and mollusciciding could lead to its elimination from P.R. China. Here we present the study design and baseline results of a four-year cluster randomised intervention trial we are undertaking around the schistosomiasis-endemic Dongting Lake in Hunan Province aimed at determining the impact on schistosome transmission of the multi-component integrated control strategy, including bovine vaccination using a heterologous "prime-boost" delivery platform based on the previously tested SjCTPI vaccine.
Collapse
Affiliation(s)
- Darren J Gray
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Population Health, University of Queensland, Brisbane, Australia; Research School of Population Health, Australian National University, Canberra, Australia
| | - Yue-Sheng Li
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Hunan Institute of Parasitic Diseases, World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Yueyang, Hunan Province, People's Republic of China
| | - Gail M Williams
- School of Population Health, University of Queensland, Brisbane, Australia
| | - Zheng-Yuan Zhao
- Hunan Institute of Parasitic Diseases, World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Yueyang, Hunan Province, People's Republic of China
| | - Donald A Harn
- Department of Infectious Diseases, College of Veterinary Medicine and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, USA
| | - Sheng-Ming Li
- Hunan Institute of Parasitic Diseases, World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Yueyang, Hunan Province, People's Republic of China
| | - Mao-Yuan Ren
- Hunan Institute of Parasitic Diseases, World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Yueyang, Hunan Province, People's Republic of China
| | - Zeng Feng
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Feng-Ying Guo
- Hunan Institute of Parasitic Diseases, World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Yueyang, Hunan Province, People's Republic of China
| | - Jia-Gang Guo
- Hunan Institute of Parasitic Diseases, World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Yueyang, Hunan Province, People's Republic of China
| | - Jie Zhou
- Hunan Institute of Parasitic Diseases, World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Yueyang, Hunan Province, People's Republic of China
| | - Yu-Lan Dong
- Hunan Institute of Parasitic Diseases, World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Yueyang, Hunan Province, People's Republic of China
| | - Yuan Li
- Central South University, Changsha, People's Republic of China
| | - Allen G Ross
- Griffith Health Institute, Griffith University, Gold Coast, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| |
Collapse
|
43
|
Water, Sanitation, and Hygiene (WASH): a critical component for sustainable soil-transmitted helminth and schistosomiasis control. PLoS Negl Trop Dis 2014; 8:e2651. [PMID: 24722335 PMCID: PMC3983087 DOI: 10.1371/journal.pntd.0002651] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
44
|
Li YS, McManus DP, Lin DD, Williams GM, Harn DA, Ross AG, Feng Z, Gray DJ. The Schistosoma japonicum self-cure phenomenon in water buffaloes: potential impact on the control and elimination of schistosomiasis in China. Int J Parasitol 2014; 44:167-71. [PMID: 24440417 DOI: 10.1016/j.ijpara.2013.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 11/29/2022]
Abstract
Schistosomiasis japonica, caused by Schistosoma japonicum, is an important zoonotic disease in China, the Philippines and small pockets of Indonesia. In addition to infecting people, S. japonicum can infect over 40 species of wild and domestic animals which have varying impacts on human infection. It is now generally accepted that bovines, particularly water buffaloes, are the major reservoir for human infection in China as they are naturally infected with schistosomes and deposit more eggs into the environment than humans or any other animal host. This complicates control efforts and the economic burden associated with schistosomiasis morbidity and mortality has taken its toll on both human and livestock populations. Over the last 50years, the schistosomiasis control program in China has made great strides in reducing prevalence and morbidity, and the Chinese authorities now aim to eliminate the disease nationwide in the next decade. Current Chinese control strategies place particular importance on interventions targeting bovines including: praziquantel treatment, barrier farming to prevent grazing in transmission areas, their replacement with mechanized tractors and possible bovine vaccination. A number of studies have shown that in the period following S. japonicum infection, the worm burden drops sharply in water buffaloes and some other animal hosts such as pigs. This is due to a self-cure phenomenon whereby there is parasite clearance by both immune and non-immune factors. Here we review studies investigating the self-cure effect, paying particular attention to S. japonicum infection in water buffaloes, and discuss its potential impact on the future schistosomiasis control and elimination efforts in China. Further understanding of the mechanism of self-cure in water buffaloes could be important for future schistosome vaccine design and delivery.
Collapse
Affiliation(s)
- Yue-Sheng Li
- Hunan Institute of Parasitic Diseases, World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Yueyang, Hunan Province, People's Republic of China; Molecular Parasitology Laboratory, Infectious Diseases Division, Queensland Institute of Medical Research, Brisbane, Australia; School of Population Health, University of Queensland, Brisbane, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, Queensland Institute of Medical Research, Brisbane, Australia; School of Population Health, University of Queensland, Brisbane, Australia
| | - Dan-Dan Lin
- Jiangxi Institute of Parasitic Diseases, Nanchang, Jiangxi, People's Republic of China
| | - Gail M Williams
- School of Population Health, University of Queensland, Brisbane, Australia
| | - Donald A Harn
- College of Veterinary Medicine, University of Georgia, Athens, USA
| | - Allen G Ross
- Griffith Health Institute, Griffith University, Gold Coast, Australia
| | - Zheng Feng
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Darren J Gray
- Molecular Parasitology Laboratory, Infectious Diseases Division, Queensland Institute of Medical Research, Brisbane, Australia; School of Population Health, University of Queensland, Brisbane, Australia.
| |
Collapse
|
45
|
Smits HL. Prospects for the control of neglected tropical diseases by mass drug administration. Expert Rev Anti Infect Ther 2014; 7:37-56. [DOI: 10.1586/14787210.7.1.37] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Abstract
Parasitic diseases caused by protozoan and helminth parasites are among the leading causes of morbidity and mortality in tropical and subtropical regions of the world. Unfortunately, at present, there is no vaccine against any human parasitic disease. Conventional vaccine methods have largely failed against parasitic infections. This is due, in part, to the complexity of the parasite life cycle, the ability of the parasite to evade the immune system, and difficulties in identifying and eliciting the desired protective immune responses. The discovery of DNA vaccines has renewed hope for vaccine development against parasites. In the last decade, DNA vaccines were successful in inducing at least partial protection against several parasitic diseases. This review discusses the latest developments in DNA vaccines against tropical parasitic diseases.
Collapse
Affiliation(s)
- Akram A Da'dara
- Department of Immunology and Infectious Disease, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA.
| | | |
Collapse
|
47
|
Brooker S, Bethony JM, Rodrigues LC, Alexander N, Geiger SM, Hotez PJ. Epidemiologic, immunologic and practical considerations in developing and evaluating a human hookworm vaccine. Expert Rev Vaccines 2014. [DOI: 10.1586/14760584.4.1.35] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Chura-Chambi RM, Nakajima E, de Carvalho RR, Miyasato PA, Oliveira SC, Morganti L, Martins EAL. Refolding of the recombinant protein Sm29, a step toward the production of the vaccine candidate against schistosomiasis. J Biotechnol 2013; 168:511-9. [PMID: 24084635 DOI: 10.1016/j.jbiotec.2013.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 09/19/2013] [Accepted: 09/23/2013] [Indexed: 12/28/2022]
Abstract
Schistosomiasis is an important parasitic disease, with about 240 million people infected worldwide. Humans and animals can be infected, imposing an enormous social and economic burden. The only drug available for chemotherapy, praziquantel, does not control reinfections, and an efficient vaccine for prophylaxis is still missing. However, the tegumental protein Sm29 of Schistosoma mansoni was shown to be a promising antigen to compose an anti-schistosomiasis vaccine. Though, recombinant Sm29 is expressed in Escherichia coli as insoluble inclusion bodies requiring an efficient process of refolding, thus, hampering its production in large scale. We present in this work studies to refold the recombinant Sm29 using high hydrostatic pressure, a mild condition to dissociate aggregated proteins, leading to refolding on a soluble conformation. Our studies resulted in high yield of rSm29 (73%) as a stably soluble and structured protein. The refolded antigen presented protective effect against S. mansoni development in immunized mice. We concluded that the refolding process by application of high hydrostatic pressure succeeded, and the procedure can be scaled-up, allowing industrial production of Sm29.
Collapse
Affiliation(s)
- Rosa M Chura-Chambi
- Centro de Biotecnologia, Instituto Pesquisas Energéticas e Nucleares, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
49
|
Road to the elimination of schistosomiasis from Asia: the journey is far from over. Microbes Infect 2013; 15:858-65. [PMID: 23973709 DOI: 10.1016/j.micinf.2013.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 11/21/2022]
Abstract
Schistosomiasis is a neglected tropical disease with a very long endemic history in Asia. Great strides have been made to control the disease in China and the Philippines but the road to elimination is far from over, given the zoonotic nature of the schistosome parasites in both countries.
Collapse
|
50
|
Identifying host species driving transmission of schistosomiasis japonica, a multihost parasite system, in China. Proc Natl Acad Sci U S A 2013; 110:11457-62. [PMID: 23798418 DOI: 10.1073/pnas.1221509110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Understanding disease transmission dynamics in multihost parasite systems is a research priority for control and potential elimination of many infectious diseases. In China, despite decades of multifaceted control efforts against schistosomiasis, the indirectly transmitted helminth Schistosoma japonicum remains endemic, partly because of the presence of zoonotic reservoirs. We used mathematical modeling and conceptual frameworks of multihost transmission ecology to assess the relative importance of various definitive host species for S. japonicum transmission in contrasting hilly and marshland areas of China. We examine whether directing control interventions against zoonotic reservoirs could further reduce incidence of infection in humans or even eliminate transmission. Results suggest that, under current control programs, infections in humans result from spillover of transmission among zoonotic reservoirs. Estimates of the basic reproduction number within each species suggest that bovines (water buffalo and cattle) maintained transmission in the marshland area and that the recent removal of bovines from this area could achieve local elimination of transmission. However, the sole use of antifecundity S. japonicum vaccines for bovines, at least at current efficacies, may not achieve elimination in areas of comparable endemicity where removal of bovines is not a feasible option. The results also suggest that rodents drive transmission in the hilly area. Therefore, although targeting bovines could further reduce and potentially interrupt transmission in marshland regions of China, elimination of S. japonicum could prove more challenging in areas where rodents might maintain transmission. In conclusion, we show how mathematical modeling can give important insights into multihost transmission of indirectly transmitted pathogens.
Collapse
|