1
|
Sheth JU, Stewart MW, Narayanan R, Anantharaman G, Chandran K, Lai TYY, Chakravarthy U, Das T. Macular neovascularization. Surv Ophthalmol 2025; 70:653-675. [PMID: 39222802 DOI: 10.1016/j.survophthal.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Neovascularization of the macula, a common complication of many chorioretinal diseases such as neovascular age-related macular degeneration, polypoidal choroidal vasculopathy, and pathologic myopia, results from increased synthesis of vascular endothelial growth factor (VEGF) by the retinal pigment epithelium and/or Müller cells because of localized ischemia and inflammation. The Consensus on Neovascular AMD Nomenclature (CONAN) study group acknowledged that these vessels may originate from either the choriocapillaris or the retinal microvasculature, prompting them to propose the term 'macular neovascularization' (MNV) to include intraretinal, subretinal, and sub-pigment epithelial neovascularization localized to the macula. MNV frequently appears as a grey-green macular lesion with overlying intraretinal thickening and/or subretinal exudation, causing metamorphopsia, reduced central vision, relative central scotoma, decreased reading speed, and problems with color recognition. Multimodal imaging with optical coherence tomography (OCT), OCT angiography, dye-based angiographies, fundus autofluorescence, and multiwavelength photography help establish the diagnosis and aid in selecting an appropriate treatment. The standard of care for MNV is usually intravitreal anti-vascular endothelial growth factor injections, though thermal laser photocoagulation, verteporfin photodynamic therapy, and vitreoretinal surgery are occasionally used. We discuss the etiology and clinical features of MNV, the role of multimodal imaging in establishing the diagnosis, and the available therapeutic options.
Collapse
Affiliation(s)
- Jay U Sheth
- Department of Vitreoretinal Services, Shantilal Shanghvi Eye Institute, Mumbai, India.
| | | | - Raja Narayanan
- Anant Bajaj Retina Institute, Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India
| | | | - Kiran Chandran
- Department of Vitreoretinal Services, Giridhar Eye Institute, Cochin, India
| | - Timothy Y Y Lai
- Department of Ophthalmology and Visual Sciences The Chinese University of Hong Kong, Hong Kong
| | - Usha Chakravarthy
- Department of Ophthalmology and Vision Science, Queen's University of Belfast, Belfast, United Kingdom
| | - Taraprasad Das
- Department of Vitreoretinal Services, Shantilal Shanghvi Eye Institute, Mumbai, India; Anant Bajaj Retina Institute, Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
2
|
Lanning EP, Branch MJ, Harding P, Margari M, Smith AJ, Ali RR, Pearson RA. Characterization of Bruch's Membrane Formation in Human Fetal Retina and De Novo Membrane Synthesis by hPSC-Derived Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2025; 66:40. [PMID: 40498044 PMCID: PMC12166504 DOI: 10.1167/iovs.66.6.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 05/21/2025] [Indexed: 06/16/2025] Open
Abstract
Purpose Little is known about the development of Bruch's membrane (BrM), the structure separating and supporting the retina and choroid, nor whether differentiation of human pluripotent stem cell (hPSC)-derived retinal pigment epithelium (RPE) accurately replicates BrM. This has relevance for tissue engineering strategies, both in the development of accurate in vitro models, and effective RPE transplant strategies. Here, we investigated BrM-associated protein production in human fetal tissue and hPSC-derived RPE. Methods The presence of laminin, elastin, fibronectin, and types I/III/IV collagen was examined in human fetal eyes at 6 to 21 post-conception weeks (PCWs) and hPSC-derived RPE cultures at 1 to 6 weeks in culture using immunohistochemistry/immunocytochemistry and quantitative PCR (qPCR). Results In human fetal retina, laminin and fibronectin were present from 6 PCW, type IV collagen from 8 PCW, elastin from 12 PCW, type I collagen by 17 PCW, and type III collagen from 21 PCW. BrM layering was discernible from 12 PCW, becoming distinct by 17 PCW. In hPSC-derived RPE cultures, basement membranes containing laminin and fibronectin were present from week 1, type IV collagen from week 2, and type I collagen from week 4. Type III collagen was present at all timepoints, although not localized as a basement membrane. Elastin was absent at all timepoints. Conclusions BrM-like membrane synthesis in hPSC-derived RPE largely recapitulates the temporal sequence seen in human development, excluding elastin. These support the utility of hPSC-derived RPE in in vitro systems to model RPE/retina interactions in health and disease, and inform cell therapy approaches, as de novo BrM-like membrane has the potential to support transplanted donor RPE.
Collapse
Affiliation(s)
- Emily P. Lanning
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Matthew J. Branch
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Philippa Harding
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Miriam Margari
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Alexander J. Smith
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Robin R. Ali
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Rachael A. Pearson
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| |
Collapse
|
3
|
Kozyrina AN, Piskova T, Semeraro F, Doolaar IC, Prapty T, Haraszti T, Hubert M, Windoffer R, Leube RE, Smith AS, Di Russo J. Laminin-defined mechanical status modulates retinal pigment epithelium phagocytosis. EMBO Rep 2025:10.1038/s44319-025-00475-9. [PMID: 40389756 DOI: 10.1038/s44319-025-00475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/07/2025] [Accepted: 04/29/2025] [Indexed: 05/21/2025] Open
Abstract
Epithelial cells exhibit strong interconnections that are crucial for tissue mechanical properties. In homeostasis, these properties, termed mechanical homeostasis, depend on the balance between intercellular tension and extracellular matrix (ECM) adhesion forces. While age-related ECM remodeling is linked to outer retinal disease, its fundamental role in mechanical homeostasis remains unclear. In our study, we quantified changes in the mechanical state of retinal pigment epithelium (RPE), revealing a correlation with gradients of basement membrane laminins and their integrin receptors, β1 and β4. This relationship is related to regional phagocytic demand for recycling photoreceptor outer segments. Using a reductionist approach, we found that laminin 332 and laminin 511 isoforms differentially influence engagement with β1 and β4 integrins at low densities. Notably, laminin 511 enhances RPE contractility by reducing the β4 to β1 integrin engagement ratio, which subsequently diminishes phagocytic efficiency. Our findings suggest that the ECM-defined mechanical status of RPE serves as a novel parameter for visual function.
Collapse
Affiliation(s)
- Aleksandra N Kozyrina
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Teodora Piskova
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Francesca Semeraro
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Iris C Doolaar
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, Aachen, D-52074, Germany
| | - Taspia Prapty
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Tamás Haraszti
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, Aachen, D-52074, Germany
| | - Maxime Hubert
- PULS Group, Department of Physics and Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander University of Erlangen-Nürnberg, 91058, Erlangen, Germany
- Group for Computational Life Sciences, Division of Physical Chemistry, Rudjer Bošković Institute, 10000, Zagreb, Croatia
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Ana-Sunčana Smith
- PULS Group, Department of Physics and Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander University of Erlangen-Nürnberg, 91058, Erlangen, Germany
- Group for Computational Life Sciences, Division of Physical Chemistry, Rudjer Bošković Institute, 10000, Zagreb, Croatia
| | - Jacopo Di Russo
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany.
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany.
| |
Collapse
|
4
|
Ong J, Selvam A, Driban M, Zarnegar A, Morgado Mendes Antunes Da Silva SI, Joy J, Rossi EA, Vande Geest JP, Sahel JA, Chhablani J. Characterizing Bruch's membrane: State-of-the-art imaging, computational segmentation, and biologic models in retinal disease and health. Prog Retin Eye Res 2025; 106:101358. [PMID: 40254245 DOI: 10.1016/j.preteyeres.2025.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
The Bruch's membrane (BM) is an acellular, extracellular matrix that lies between the choroid and retinal pigment epithelium (RPE). The BM plays a critical role in retinal health, performing various functions including biomolecule diffusion and RPE support. The BM is also involved in many retinal diseases, and insights into BM dysfunction allow for further understanding of the pathophysiology of various chorioretinal pathologies. Thus, characterization of the BM serves as an important area of research to further understand its involvement in retinal disease. In this article, we provide a review of various advancements in characterizing and visualizing the BM. We provide an overview of the BM in retinal health, as well as changes observed in aging and disease. We then describe current state-of-the-art imaging modalities and advances to further visualize the BM including various types of optical coherence tomography imaging, near-infrared reflectance (NIR), and autofluorescence imaging and tissue matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). Following advances in imaging of the BM, we describe animal, cellular, and synthetic models that have been developed to further visualize the BM. Following this section, we provide an overview of deep learning in retinal imaging and describe advances in computational and artificial intelligence (AI) techniques to provide automated segmentation of the BM and BM opening. We conclude this section considering the clinical implications of these segmentation techniques. Ultimately, the diverse advances aimed to further characterize the BM may allow for deeper insights into the involvement of this critical structure in retinal health and disease.
Collapse
Affiliation(s)
- Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, United States
| | - Amrish Selvam
- Illinois Eye and Ear Infirmary, University of Illinois College of Medicine, Chicago, IL, United States
| | - Matthew Driban
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, United States
| | - Arman Zarnegar
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Jincy Joy
- Karunya Eye Hospital, Kottarakara, Kerala, India
| | - Ethan A Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
5
|
Goerdt L, Clark ME, Thomas TN, Gao L, McGwin G, Hammer M, Crosson JN, Sloan KR, Owsley C, Curcio CA. Fluorescence Lifetime Imaging Ophthalmoscopy, Vision, and Chorioretinal Asymmetries in Aging and Age-Related Macular Degeneration: ALSTAR2. Invest Ophthalmol Vis Sci 2025; 66:56. [PMID: 40257785 PMCID: PMC12020951 DOI: 10.1167/iovs.66.4.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025] Open
Abstract
Purpose Eyes with age-related macular degeneration (AMD) and some healthy aged eyes exhibit risk-indicating delays in rod-mediated dark adaptation (RMDA) and prolonged long spectral channel (LSC) lifetimes by fluorescence lifetime imaging ophthalmoscopy (FLIO) in the Early Treatment Diabetic Retinopathy Study (ETDRS) outer ring, especially nasally. To learn FLIO's potential for AMD detection, we correlate FLIO to RMDA. Methods The ALSTAR2 follow-up cohort underwent FLIO, color fundus photography, two-wavelength autofluorescence (for macular pigment optical density [MPOD]), visual function testing, including RMDA (rod intercept time [RIT]). AMD was staged by the Age-Related Eye Disease Study (AREDS) 9-step at baseline and follow-up. In pseudophakic eyes with high-quality FLIO, mean intensity maps and meridian plots were created. Vision data were analyzed using linear regression and Spearman's r. Results Of 155 eyes (155 participants [75 ± 5.0 years; 60.7% female participants]), 67 eyes were healthy, 38 had early (e)AMD, and 50 had intermediate (i)AMD (P = 0.02). LSC lifetimes were longest in iAMD in all ETDRS regions (P < 0.01) and short spectral channel (SSC) lifetimes in inner and outer rings (P < 0.01). The LSC pattern manifested in 65 of 88 AMD eyes and 30 of 67 healthy eyes. Lifetimes were longest on the nasal meridian and shortest on temporal. LSC lifetimes in the inner and outer rings correlated strongly with RIT (r = 0.68). A stable subgroup had short LSC lifetimes and short RIT. SSC correlated weakly with MPOD. Conclusions Prolonged lifetimes in AMD exhibit spatial asymmetry, suggesting mechanisms beyond retinal cells and including choroid. Lifetimes correlate with delayed RMDA, potentially indicating risk for AMD onset and early progression. Further research into SSC signal sources is warranted.
Collapse
Affiliation(s)
- Lukas Goerdt
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Mark E. Clark
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tracy N. Thomas
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Liyan Gao
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Martin Hammer
- Department of Ophthalmology, University of Jena, Jena, Germany
| | - Jason N. Crosson
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Retina Consultants of Alabama, Birmingham, Alabama, United States
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
6
|
Antropoli A, Bianco L, Romano F, Trinco A, Arrigo A, Benadji A, Atia R, Palacci O, Dagostinoz D, Devisme C, Condroyer C, Antonio A, Bosello F, Casati S, Salvetti AP, Zaffalon C, Gaudric A, Sahel JA, Staurenghi G, Bandello F, Sennlaub F, Zeitz C, Meunier I, Battaglia Parodi M, Audo I. Extensive macular atrophy with pseudodrusen-like appearance (EMAP) clinical characteristics, diagnostic criteria, and insights from allied inherited retinal diseases and age-related macular degeneration. Prog Retin Eye Res 2025; 104:101320. [PMID: 39603590 DOI: 10.1016/j.preteyeres.2024.101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Extensive macular atrophy with pseudodrusen-like appearance (EMAP) was first described in France in 2009 as a symmetric and rapidly progressive form of macular atrophy primarily affecting middle-aged individuals. Despite the recent identification of a significant number of cases in Italy and worldwide, EMAP remains an underrecognized condition. The clinical triad typical of EMAP consists of vertically oriented macular atrophy with multilobular borders, pseudodrusen-like deposits across the posterior pole and mid-periphery, and peripheral pavingstone degeneration. Nonetheless, recent research has portrayed EMAP as a highly stage-dependent condition, allowing the identification of novel disease hallmarks, including a diffuse separation between the Bruch's membrane and the retinal pigment epithelium, along with consistent sparing of a region temporal to the macula. Additionally, retinal electrophysiology is particularly useful in distinguishing EMAP from age-related macular degeneration (AMD). Supported by unpublished data from the largest EMAP cohorts worldwide, this review aims to provide a comprehensive and updated description of EMAP, now recognized as a severely blinding disease characterized by diffuse chorioretinal atrophy and photoreceptor dysfunction. Furthermore, we propose a set of diagnostic criteria that incorporate clinical, imaging, and functional tests, to facilitate the recognition of this clinical entity. Lastly, we aim to shed light on its pathogenesis by comparing it with AMD and monogenic retinal disorders exhibiting similar phenotypes.
Collapse
Affiliation(s)
- Alessio Antropoli
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France; Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Bianco
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France; Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Romano
- Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Trinco
- Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Eye Clinic, Department of Biomedical and Clinical Science, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Amine Benadji
- CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
| | - Raphaël Atia
- CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
| | - Oana Palacci
- CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
| | - Dorothée Dagostinoz
- CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
| | - Céline Devisme
- CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
| | | | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Francesca Bosello
- Ophthalmic Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefano Casati
- Ophthalmic Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna Paola Salvetti
- Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Zaffalon
- Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmic Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Alain Gaudric
- Ophthalmology Center for Imaging and Laser, Paris, France; Department of Ophthalmology, AP-HP, Hôpital Lariboisière, Université Paris Cité, Paris, France
| | - José-Alain Sahel
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Giovanni Staurenghi
- Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Isabelle Meunier
- National Reference Center for Inherited Sensory Diseases, University Hospital of Montpellier, University of Montpellier, Montpellier, France
| | | | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France.
| |
Collapse
|
7
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
8
|
Geathers JS, Grillo SL, Karakoleva E, Campbell GP, Du Y, Chen H, Barber AJ, Zhao Y, Sundstrom JM. Sodium Iodate: Rapid and Clinically Relevant Model of AMD. FRONT BIOSCI-LANDMRK 2024; 29:380. [PMID: 39614439 DOI: 10.31083/j.fbl2911380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the most common cause of vision loss in people above the age of 50, affecting approximately 10% of the population worldwide and the incidence is rising. Hyperreflective foci (HRF) are a major predictor of AMD progression. The purpose of this study was to use the sodium iodate mouse model to study HRF formation in retinal degeneration. METHODS Sodium iodate (NaIO3) treated rodents were studied to characterize HRF. 3-month-old male wild-type (WT) C57Bl/6J mice were injected with phosphate-buffered saline (PBS) or varying doses of NaIO3 (15-60 mg/kg). Optical Coherence Tomography (OCT) images were collected at baseline and several days post-NaIO3 injection. Retinal thicknesses were measured using Bioptigen software. Seven days post-injection, eyes were prepared for either transmission electron microscopy (TEM), Hematoxylin & Eosin (H&E), or immunofluorescence. RESULTS OCT imaging of the mice given higher doses of NaIO3 revealed HRF formation in the neural retina (n = 4). The amount of HRF correlated with the degree of retinal tissue loss. H&E and TEM imaging of the retinas seven days post-NaIO3 injection revealed several pigmented bodies in multiple layers of the retina (n = 3-5). Immunofluorescence revealed that some pigmented bodies were positive for macrophage markers and an epithelial-to-mesenchymal transition marker, while all were retinal pigment epithelium (RPE) 65-negative (n = 4). CONCLUSIONS The data suggest that NaIO3 induces the formation of HRF in the outer retina and their abundance correlates with retinal tissue loss. The experiments in this study highlight NaIO3 as a clinically relevant model of intermediate AMD that can be used to study HRF formation and to discover new treatment targets.
Collapse
Affiliation(s)
- Jasmine S Geathers
- Department of Ophthalmology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Stephanie L Grillo
- Department of Ophthalmology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ema Karakoleva
- Department of Ophthalmology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gregory P Campbell
- Department of Ophthalmology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Yixuan Du
- Department of Ophthalmology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Han Chen
- Section of Research Resources, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Alistair J Barber
- Department of Ophthalmology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Yuanjun Zhao
- Department of Ophthalmology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jeffrey M Sundstrom
- Department of Ophthalmology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
9
|
Ossewaarde-van Norel J, Spaide RF. PROGRESSION OF PERIPAPILLARY AND MACULAR CHORIORETINAL ATROPHY IN MULTIFOCAL CHOROIDITIS IS ASSOCIATED WITH PERIATROPHIC INFLAMMATORY PLUMES. Retina 2024; 44:1860-1868. [PMID: 39089007 DOI: 10.1097/iae.0000000000004227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
PURPOSE To investigate peripapillary atrophy and macular chorioretinal scars in eyes affected by multifocal choroiditis and panuveitis. METHODS This retrospective cohort study reviewed the medical records, fundus photographs, and spectral-domain optical coherence tomographic scans of 31 eyes from 19 patients. RESULTS Patients had a mean age of 45 years (range 24-69 years). The average follow-up duration was 7 years (range, 2.5-14.5 years), with 14 patients undergoing immunosuppressive treatment. In the group of 31 eyes, 20 showed peripapillary plumes of ill-defined hyperreflectivity at the termination border of the retinal pigment epithelium. These plumes, extending from bare Bruch membrane to the outer nuclear layer, sometimes undermined the adjacent retinal pigment epithelium. They responded to corticosteroid treatment and resembled the material under the retinal pigment epithelium in acute lesions. Among 20 eyes with these peripapillary inflammatory lesions, 16 (80%) experienced increased atrophy, in contrast to none in the eyes without these lesions ( P < 0.001). Similar patterns were observed at the edges of macular chorioretinal atrophy. This observation occurred in patients using immunosuppressive medication who were otherwise thought to be under adequate control. CONCLUSION In patients with multifocal choroiditis and panuveitis, previously unrecognized plumes of smoldering inflammatory activity at the borders of chorioretinal atrophy appears to be linked to atrophy expansion. The recognition of this phenomenon may require a reappraisal of treatment of multifocal choroidopathies to help mitigate the expansion of atrophy in these eyes.
Collapse
Affiliation(s)
- Jeannette Ossewaarde-van Norel
- Vitreous, Retina, Macula Consultants of New York, New York; and
- University Medical Center Utrecht, Utrecht, the Netherlands
| | | |
Collapse
|
10
|
Hailey DR, Kanjilal D, Koulen P. Differential Expression of Mitogen-Activated Protein Kinase Signaling Pathways in the Human Choroid-Retinal Pigment Epithelial Complex Indicates Regional Predisposition to Disease. Int J Mol Sci 2024; 25:10105. [PMID: 39337590 PMCID: PMC11432750 DOI: 10.3390/ijms251810105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The retina is composed of neuronal layers that include several types of interneurons and photoreceptor cells, and separate underlying retinal pigment epithelium (RPE), Bruch's membrane, and choroid. Different regions of the human retina include the fovea, macula, and periphery, which have unique physiological functions and anatomical features. These regions are also unique in their protein expression, and corresponding cellular and molecular responses to physiological and pathophysiological stimuli. Skeie and Mahajan analyzed regional protein expression in the human choroid-RPE complex. Mitogen-Activated Protein Kinase (MAPK) signaling pathways have been implicated in responses to stimuli such as oxidative stress and inflammation, which are critical factors in retina diseases including age-related macular degeneration. We, therefore, analyzed the Skeie and Mahajan, 2014, dataset for regional differences in the expression of MAPK-related proteins and discussed the potential implications in retinal diseases presenting with regional signs and symptoms. Regional protein expression data from the Skeie and Mahajan, 2014, study were analyzed for members of signaling networks involving MAPK and MAPK-related proteins, categorized by specific MAPK cascades, such as p38, ERK1/2, and JNK1/2, both upstream or downstream of the respective MAPK and MAPK-related proteins. We were able to identify 207 MAPK and MAPK-related proteins, 187 of which belonging to specific MAPK cascades. A total of 31 of these had been identified in the retina with two proteins, DLG2 and FLG downstream, and the other 29 upstream, of MAPK proteins. Our findings provide evidence for potential molecular substrates of retina region-specific disease manifestation and potential new targets for therapeutics development.
Collapse
Affiliation(s)
| | | | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri–Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
11
|
Pfau K, Lengyel I, Ossewaarde-van Norel J, van Leeuwen R, Risseeuw S, Leftheriotis G, Scholl HPN, Feltgen N, Holz FG, Pfau M. Pseudoxanthoma elasticum - Genetics, pathophysiology, and clinical presentation. Prog Retin Eye Res 2024; 102:101274. [PMID: 38815804 PMCID: PMC12004504 DOI: 10.1016/j.preteyeres.2024.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Pseudoxanthoma elasticum (PXE) is an autosomal-recessively inherited multisystem disease. Mutations in the ABCC6-gene are causative, coding for a transmembrane transporter mainly expressed in hepatocytes, which promotes the efflux of adenosine triphosphate (ATP). This results in low levels of plasma inorganic pyrophosphate (PPi), a critical anti-mineralization factor. The clinical phenotype of PXE is characterized by the effects of elastic fiber calcification in the skin, the cardiovascular system, and the eyes. In the eyes, calcification of Bruch's membrane results in clinically visible lesions, including peau d'orange, angioid streaks, and comet tail lesions. Frequently, patients must be treated for secondary macular neovascularization. No effective therapy is available for treating the cause of PXE, but several promising approaches are emerging. Finding appropriate outcome measures remains a significant challenge for clinical trials in this slowly progressive disease. This review article provides an in-depth summary of the current understanding of PXE and its multi-systemic manifestations. The article offers a detailed overview of the ocular manifestations, including their morphological and functional consequences, as well as potential complications. Lastly, previous and future clinical trials of causative treatments for PXE are discussed.
Collapse
Affiliation(s)
- Kristina Pfau
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland; Department of Ophthalmology, University Hospital Bonn, Bonn, Germany.
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | | | - Redmer van Leeuwen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Sara Risseeuw
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Georges Leftheriotis
- University Hospital Nice, Vascular Physiology and Medicine Unit, 06000, Nice, France
| | | | - Nicolas Feltgen
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Frank G Holz
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Maximilian Pfau
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland; Institute of Molecular and Clinical Ophthalmology Basel, Basel, Basel-Stadt, Switzerland
| |
Collapse
|
12
|
Obasanmi G, Uppal M, Cui JZ, Xi J, Ju MJ, Song J, To E, Li S, Khan W, Cheng D, Zhu J, Irani L, Samad I, Zhu J, Yoo HS, Aubert A, Stoddard J, Neuringer M, Granville DJ, Matsubara JA. Granzyme B degrades extracellular matrix and promotes inflammation and choroidal neovascularization. Angiogenesis 2024; 27:351-373. [PMID: 38498232 PMCID: PMC11303490 DOI: 10.1007/s10456-024-09909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/11/2024] [Indexed: 03/20/2024]
Abstract
Age-related macular degeneration (AMD) is a common retinal neurodegenerative disease among the elderly. Neovascular AMD (nAMD), a leading cause of AMD-related blindness, involves choroidal neovascularization (CNV), which can be suppressed by anti-angiogenic treatments. However, current CNV treatments do not work in all nAMD patients. Here we investigate a novel target for AMD. Granzyme B (GzmB) is a serine protease that promotes aging, chronic inflammation and vascular permeability through the degradation of the extracellular matrix (ECM) and tight junctions. Extracellular GzmB is increased in retina pigment epithelium (RPE) and mast cells in the choroid of the healthy aging outer retina. It is further increased in donor eyes exhibiting features of nAMD and CNV. Here, we show in RPE-choroidal explant cultures that exogenous GzmB degrades the RPE-choroid ECM, promotes retinal/choroidal inflammation and angiogenesis while diminishing anti-angiogenic factor, thrombospondin-1 (TSP-1). The pharmacological inhibition of either GzmB or mast-cell degranulation significantly reduces choroidal angiogenesis. In line with our in vitro data, GzmB-deficiency reduces the extent of laser-induced CNV lesions and the age-related deterioration of electroretinogram (ERG) responses in mice. These findings suggest that targeting GzmB, a serine protease with no known endogenous inhibitors, may be a potential novel therapeutic approach to suppress CNV in nAMD.
Collapse
Affiliation(s)
- Gideon Obasanmi
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Manjosh Uppal
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Jing Z Cui
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Jeanne Xi
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Myeong Jin Ju
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
- School of Biomedical Engineering, UBC, Vancouver, BC, Canada
| | - Jun Song
- School of Biomedical Engineering, UBC, Vancouver, BC, Canada
| | - Eleanor To
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Siqi Li
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Wania Khan
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Darian Cheng
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - John Zhu
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Lyden Irani
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Isa Samad
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Julie Zhu
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Hyung-Suk Yoo
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Alexandre Aubert
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada
| | | | | | - David J Granville
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Hu ZL, Wang YX, Lin ZY, Ren WS, Liu B, Zhao H, Qin Q. Regulatory factors of Nrf2 in age-related macular degeneration pathogenesis. Int J Ophthalmol 2024; 17:1344-1362. [PMID: 39026906 PMCID: PMC11246936 DOI: 10.18240/ijo.2024.07.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/06/2024] [Indexed: 07/20/2024] Open
Abstract
Age-related macular degeneration (AMD) is a complicated disease that causes irreversible visual impairment. Increasing evidences pointed retinal pigment epithelia (RPE) cells as the decisive cell involved in the progress of AMD, and the function of anti-oxidant capacity of PRE plays a fundamental physiological role. Nuclear factor erythroid 2 related factor 2 (Nrf2) is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes. Its functions of protecting RPE cells against oxidative stress (OS) and ensuing physiological changes, including inflammation, mitochondrial damage and autophagy dysregulation, have already been elucidated. Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis. For the first time, this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis, including proteins and miRNAs, and their underlying molecular mechanisms, which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD.
Collapse
Affiliation(s)
- Zi-Ling Hu
- Five Year Program of Ophthalmology and Optometry 2019, Beijing Tong Ren Hospital, Capital Medical University, Beijing 100054, China
| | - Yu-Xuan Wang
- Four Year Program of Traditional Chinese Pharmacy 2020, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Zi-Yue Lin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Wen-Shuo Ren
- Four Year Program of Traditional Chinese Pharmacy 2020, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Bo Liu
- Five Year Program of Ophthalmology and Optometry 2021, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing 100069, China
| | - Qiong Qin
- Biochemistry & Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
14
|
Risseeuw S, Pilgrim MG, Bertazzo S, Brown CN, Csincsik L, Fearn S, Thompson RB, Bergen AA, ten Brink JB, Kortvely E, Spiering W, Ossewaarde–van Norel J, van Leeuwen R, Lengyel I. Bruch's Membrane Calcification in Pseudoxanthoma Elasticum: Comparing Histopathology and Clinical Imaging. OPHTHALMOLOGY SCIENCE 2024; 4:100416. [PMID: 38170125 PMCID: PMC10758992 DOI: 10.1016/j.xops.2023.100416] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 01/05/2024]
Abstract
Purpose To investigate the histology of Bruch's membrane (BM) calcification in pseudoxanthoma elasticum (PXE) and correlate this to clinical retinal imaging. Design Experimental study with clinicopathological correlation. Subjects and Controls Six postmortem eyes from 4 PXE patients and 1 comparison eye from an anonymous donor without PXE. One of the eyes had a multimodal clinical image set for comparison. Methods Calcification was labeled with OsteSense 680RD, a fluorescent dye specific for hydroxyapatite, and visualized with confocal microscopy. Scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy (SEM-EDX) and time-of-flight secondary ion mass spectrometry (TOF-SIMs) were used to analyze the elemental and ionic composition of different anatomical locations. Findings on cadaver tissues were compared with clinical imaging of 1 PXE patient. Main Outcome Measures The characteristics and topographical distribution of hydroxyapatite in BM in eyes with PXE were compared with the clinical manifestations of the disease. Results Analyses of whole-mount and sectioned PXE eyes revealed an extensive, confluent OsteoSense labeling in the central and midperipheral BM, transitioning to a speckled labeling in the midperiphery. These areas corresponded to hyperreflective and isoreflective zones on clinical imaging. Scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy and TOF-SIMs analyses identified these calcifications as hydroxyapatite in BM of PXE eyes. The confluent fluorescent appearance originates from heavily calcified fibrous structures of both the collagen and the elastic layers of BM. Calcification was also detected in an aged comparison eye, but this was markedly different from PXE eyes and presented as small snowflake-like deposits in the posterior pole. Conclusions Pseudoxanthoma elasticum eyes show extensive hydroxyapatite deposition in the inner and outer collagenous and elastic BM layers in the macula with a gradual change toward the midperiphery, which seems to correlate with the clinical phenotype. The snowflake-like calcification in BM of an aged comparison eye differed markedly from the extensive calcification in PXE. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Sara Risseeuw
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Matthew G. Pilgrim
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Connor N. Brown
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Lajos Csincsik
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Sarah Fearn
- Department of Materials, Imperial College London, London, United Kingdom
| | - Richard B. Thompson
- University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, Baltimore, Maryland
| | - Arthur A. Bergen
- Departments of Human Genetics and Ophthalmology, Amsterdam UMC, location AMC Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Jacoline B. ten Brink
- Departments of Human Genetics and Ophthalmology, Amsterdam UMC, location AMC Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Elod Kortvely
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Wilko Spiering
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands
| | | | - Redmer van Leeuwen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
15
|
Amini MA, Karbasi A, Vahabirad M, Khanaghaei M, Alizamir A. Mechanistic Insight into Age-Related Macular Degeneration (AMD): Anatomy, Epidemiology, Genetics, Pathogenesis, Prevention, Implications, and Treatment Strategies to Pace AMD Management. Chonnam Med J 2023; 59:143-159. [PMID: 37840684 PMCID: PMC10570864 DOI: 10.4068/cmj.2023.59.3.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 10/17/2023] Open
Abstract
One of the most complicated eye disorders is age-related macular degeneration (AMD) which is the leading cause of irremediable blindness all over the world in the elderly. AMD is classified as early stage to late stage (advanced AMD), in which this stage is divided into the exudative or neovascular form (wet AMD) and the nonexudative or atrophic form (dry AMD). Clinically, AMD primarily influences the central area of retina known as the macula. Importantly, the wet form is generally associated with more severe vision loss. AMD has a systemic component, where many factors, like aging, genetic, environment, autoimmune and non-autoimmune disorders are associated with this disease. Additionally, healthy lifestyles, regular exercise, maintaining a normal lipid profile and weight are crucial to decreasing the risk of AMD. Furthermore, therapeutic strategies for limiting AMD should encompass a variety of factors to avoid and improve drug interventions, and also need to take into account personalized genetic information. In conclusion, with the development of technology and research progress, visual impairment and legal blindness from AMD have been substantially reduced in incidence. This review article is focused on identifying and developing the knowledge about the association between genetics, and etiology with AMD. We hope that this review will encourage researchers and lecturers, open new discussions, and contribute to a better understanding of AMD that improves patients' visual acuity, and upgrades the quality of life of AMD patients.
Collapse
Affiliation(s)
- Mohammad Amin Amini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ashkan Karbasi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Vahabirad
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Khanaghaei
- Department of Laboratory Sciences, Sirjan Faculty of Medical Sciences, Sirjan, Iran
| | - Aida Alizamir
- Department of Pathology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
16
|
Navneet S, Brandon C, Simpson K, Rohrer B. Exploring the Therapeutic Potential of Elastase Inhibition in Age-Related Macular Degeneration in Mouse and Human. Cells 2023; 12:1308. [PMID: 37174708 PMCID: PMC10177483 DOI: 10.3390/cells12091308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Abnormal turnover of the extracellular matrix (ECM) protein elastin has been linked to AMD pathology. Elastin is a critical component of Bruch's membrane (BrM), an ECM layer that separates the retinal pigment epithelium (RPE) from the underlying choriocapillaris. Reduced integrity of BrM's elastin layer corresponds to areas of choroidal neovascularization (CNV) in wet AMD. Serum levels of elastin-derived peptides and anti-elastin antibodies are significantly elevated in AMD patients along with the prevalence of polymorphisms of genes regulating elastin turnover. Despite these results indicating significant associations between abnormal elastin turnover and AMD, very little is known about its exact role in AMD pathogenesis. Here we report on results that suggest that elastase enzymes could play a direct role in the pathogenesis of AMD. We found significantly increased elastase activity in the retinas and RPE cells of AMD mouse models, and AMD patient-iPSC-derived RPE cells. A1AT, a protease inhibitor that inactivates elastase, reduced CNV lesion sizes in mouse models. A1AT completely inhibited elastase-induced VEGFA expression and secretion, and restored RPE monolayer integrity in ARPE-19 monolayers. A1AT also mitigated RPE thickening, an early AMD phenotype, in HTRA1 overexpressing mice, HTRA1 being a serine protease with elastase activity. Finally, in an exploratory study, examining archival records from large patient data sets, we identified an association between A1AT use, age and AMD risk. Our results suggest that repurposing A1AT may have therapeutic potential in modifying the progression to AMD.
Collapse
Affiliation(s)
- Soumya Navneet
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carlene Brandon
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kit Simpson
- Department of Healthcare Leadership and Management, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC 29425, USA
| |
Collapse
|
17
|
Hammadi S, Tzoumas N, Ferrara M, Meschede IP, Lo K, Harris C, Lako M, Steel DH. Bruch's Membrane: A Key Consideration with Complement-Based Therapies for Age-Related Macular Degeneration. J Clin Med 2023; 12:2870. [PMID: 37109207 PMCID: PMC10145879 DOI: 10.3390/jcm12082870] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The complement system is crucial for immune surveillance, providing the body's first line of defence against pathogens. However, an imbalance in its regulators can lead to inappropriate overactivation, resulting in diseases such as age-related macular degeneration (AMD), a leading cause of irreversible blindness globally affecting around 200 million people. Complement activation in AMD is believed to begin in the choriocapillaris, but it also plays a critical role in the subretinal and retinal pigment epithelium (RPE) spaces. Bruch's membrane (BrM) acts as a barrier between the retina/RPE and choroid, hindering complement protein diffusion. This impediment increases with age and AMD, leading to compartmentalisation of complement activation. In this review, we comprehensively examine the structure and function of BrM, including its age-related changes visible through in vivo imaging, and the consequences of complement dysfunction on AMD pathogenesis. We also explore the potential and limitations of various delivery routes (systemic, intravitreal, subretinal, and suprachoroidal) for safe and effective delivery of conventional and gene therapy-based complement inhibitors to treat AMD. Further research is needed to understand the diffusion of complement proteins across BrM and optimise therapeutic delivery to the retina.
Collapse
Affiliation(s)
- Sarah Hammadi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nikolaos Tzoumas
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| | | | - Ingrid Porpino Meschede
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Katharina Lo
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Claire Harris
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David H. Steel
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| |
Collapse
|
18
|
Piskova T, Kozyrina AN, Di Russo J. Mechanobiological implications of age-related remodelling in the outer retina. BIOMATERIALS ADVANCES 2023; 147:213343. [PMID: 36801797 DOI: 10.1016/j.bioadv.2023.213343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The outer retina consists of the light-sensitive photoreceptors, the pigmented epithelium, and the choroid, which interact in a complex manner to sustain homeostasis. The organisation and function of these cellular layers are mediated by the extracellular matrix compartment named Bruch's membrane, situated between the retinal epithelium and the choroid. Like many tissues, the retina experiences age-related structural and metabolic changes, which are relevant for understanding major blinding diseases of the elderly, such as age-related macular degeneration. Compared with other tissues, the retina mainly comprises postmitotic cells, making it less able to maintain its mechanical homeostasis over the years functionally. Aspects of retinal ageing, like the structural and morphometric changes of the pigment epithelium and the heterogenous remodelling of the Bruch's membrane, imply changes in tissue mechanics and may affect functional integrity. In recent years, findings in the field of mechanobiology and bioengineering highlighted the importance of mechanical changes in tissues for understanding physiological and pathological processes. Here, we review the current knowledge of age-related changes in the outer retina from a mechanobiological perspective, aiming to generate food for thought for future mechanobiology studies in the outer retina.
Collapse
Affiliation(s)
- Teodora Piskova
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany; Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Aleksandra N Kozyrina
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany; Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Jacopo Di Russo
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany; Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany.
| |
Collapse
|
19
|
Recent Advances in Proteomics-Based Approaches to Studying Age-Related Macular Degeneration: A Systematic Review. Int J Mol Sci 2022; 23:ijms232314759. [PMID: 36499086 PMCID: PMC9735888 DOI: 10.3390/ijms232314759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Age-related macular degeneration (AMD) is a common ocular disease characterized by degeneration of the central area of the retina in the elderly population. Progression and response to treatment are influenced by genetic and non-genetic factors. Proteomics is a powerful tool to study, at the molecular level, the mechanisms underlying the progression of the disease, to identify new therapeutic targets and to establish biomarkers to monitor progression and treatment effectiveness. In this work, we systematically review the use of proteomics-based approaches for the study of the molecular mechanisms underlying the development of AMD, as well as the progression of the disease and on-treatment patient monitoring. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) reporting guidelines were followed. Proteomic approaches have identified key players in the onset of the disease, such as complement components and proteins involved in lipid metabolism and oxidative stress, but also in the progression to advanced stages, including factors related to extracellular matrix integrity and angiogenesis. Although anti-vascular endothelial growth factor (anti-VEGF)-based therapy has been crucial in the treatment of neovascular AMD, it is necessary to deepen our understanding of the underlying disease mechanisms to move forward to next-generation therapies for later-stage forms of this multifactorial disease.
Collapse
|
20
|
Dubchak E, Obasanmi G, Zeglinski MR, Granville DJ, Yeung SN, Matsubara JA. Potential role of extracellular granzyme B in wet age-related macular degeneration and fuchs endothelial corneal dystrophy. Front Pharmacol 2022; 13:980742. [PMID: 36204224 PMCID: PMC9531149 DOI: 10.3389/fphar.2022.980742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Age-related ocular diseases are the leading cause of blindness in developed countries and constitute a sizable socioeconomic burden worldwide. Age-related macular degeneration (AMD) and Fuchs endothelial corneal dystrophy (FECD) are some of the most common age-related diseases of the retina and cornea, respectively. AMD is characterized by a breakdown of the retinal pigment epithelial monolayer, which maintains retinal homeostasis, leading to retinal degeneration, while FECD is characterized by degeneration of the corneal endothelial monolayer, which maintains corneal hydration status, leading to corneal edema. Both AMD and FECD pathogenesis are characterized by disorganized local extracellular matrix (ECM) and toxic protein deposits, with both processes linked to aberrant protease activity. Granzyme B (GrB) is a serine protease traditionally known for immune-mediated initiation of apoptosis; however, it is now recognized that GrB is expressed by a variety of immune and non-immune cells and aberrant extracellular localization of GrB substantially contributes to various age-related pathologies through dysregulated cleavage of ECM, tight junction, and adherens junction proteins. Despite growing recognition of GrB involvement in multiple age-related pathologies, its role in AMD and FECD remains poorly understood. This review summarizes the pathophysiology of, and similarities between AMD and FECD, outlines the current knowledge of the role of GrB in AMD and FECD, as well as hypothesizes putative contributions of GrB to AMD and FECD pathogenesis and highlights the therapeutic potential of pharmacologically inhibiting GrB as an adjunctive treatment for AMD and FECD.
Collapse
Affiliation(s)
- Eden Dubchak
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Gideon Obasanmi
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Matthew R. Zeglinski
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - David J. Granville
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - Sonia N. Yeung
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
- *Correspondence: Joanne A. Matsubara,
| |
Collapse
|
21
|
Mulfaul K, Russell JF, Voigt AP, Stone EM, Tucker BA, Mullins RF. The Essential Role of the Choriocapillaris in Vision: Novel Insights from Imaging and Molecular Biology. Annu Rev Vis Sci 2022; 8:33-52. [PMID: 36108103 PMCID: PMC9668353 DOI: 10.1146/annurev-vision-100820-085958] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The choriocapillaris, a dense capillary network located at the posterior pole of the eye, is essential for supporting normal vision, supplying nutrients, and removing waste products from photoreceptor cells and the retinal pigment epithelium. The anatomical location, heterogeneity, and homeostatic interactions with surrounding cell types make the choroid complex to study both in vivo and in vitro. Recent advances in single-cell RNA sequencing, in vivo imaging, and in vitro cell modeling are vastly improving our knowledge of the choroid and its role in normal health and in age-related macular degeneration (AMD). Histologically, loss of endothelial cells (ECs) of the choriocapillaris occurs early in AMD concomitant with elevated formation of the membrane attack complex of complement. Advanced imaging has allowed us to visualize early choroidal blood flow changes in AMD in living patients, supporting histological findings of loss of choroidal ECs. Single-cell RNA sequencing is being used to characterize choroidal cell types transcriptionally and discover their altered patterns of gene expression in aging and disease. Advances in induced pluripotent stem cell protocols and 3D cultures will allow us to closely mimic the in vivo microenvironment of the choroid in vitro to better understand the mechanism leading to choriocapillaris loss in AMD.
Collapse
Affiliation(s)
- Kelly Mulfaul
- Department of Ophthalmology and Visual Sciences and the Institute for Vision Research, The University of Iowa, Iowa City, Iowa, USA;
| | - Jonathan F Russell
- Department of Ophthalmology and Visual Sciences and the Institute for Vision Research, The University of Iowa, Iowa City, Iowa, USA;
| | - Andrew P Voigt
- Department of Ophthalmology and Visual Sciences and the Institute for Vision Research, The University of Iowa, Iowa City, Iowa, USA;
| | - Edwin M Stone
- Department of Ophthalmology and Visual Sciences and the Institute for Vision Research, The University of Iowa, Iowa City, Iowa, USA;
| | - Budd A Tucker
- Department of Ophthalmology and Visual Sciences and the Institute for Vision Research, The University of Iowa, Iowa City, Iowa, USA;
| | - Robert F Mullins
- Department of Ophthalmology and Visual Sciences and the Institute for Vision Research, The University of Iowa, Iowa City, Iowa, USA;
| |
Collapse
|
22
|
Navneet S, Rohrer B. Elastin turnover in ocular diseases: A special focus on age-related macular degeneration. Exp Eye Res 2022; 222:109164. [PMID: 35798060 PMCID: PMC9795808 DOI: 10.1016/j.exer.2022.109164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 12/30/2022]
Abstract
The extracellular matrix (ECM) and its turnover play a crucial role in the pathogenesis of several inflammatory diseases, including age-related macular degeneration (AMD). Elastin, a critical protein component of the ECM, not only provides structural and mechanical support to tissues, but also mediates several intracellular and extracellular molecular signaling pathways. Abnormal turnover of elastin has pathological implications. In the eye elastin is a major structural component of Bruch's membrane (BrM), a critical ECM structure separating the retinal pigment epithelium (RPE) from the choriocapillaris. Reduced integrity of macular BrM elastin, increased serum levels of elastin-derived peptides (EDPs), and elevated elastin antibodies have been reported in AMD. Existing reports suggest that elastases, the elastin-degrading enzymes secreted by RPE, infiltrating macrophages or neutrophils could be involved in BrM elastin degradation, thus contributing to AMD pathogenesis. EDPs derived from elastin degradation can increase inflammatory and angiogenic responses in tissues, and the elastin antibodies are shown to play roles in immune cell activity and complement activation. This review summarizes our current understanding on the elastases/elastin fragments-mediated mechanisms of AMD pathogenesis.
Collapse
Affiliation(s)
- Soumya Navneet
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA.
| |
Collapse
|
23
|
Molins B, Mesquida M, Adan A. Bioengineering approaches for modelling retinal pathologies of the outer blood-retinal barrier. Prog Retin Eye Res 2022:101097. [PMID: 35840488 DOI: 10.1016/j.preteyeres.2022.101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
Abstract
Alterations of the junctional complex of the outer blood-retinal barrier (oBRB), which is integrated by the close interaction of the retinal pigment epithelium, the Bruch's membrane, and the choriocapillaris, contribute to the loss of neuronal signalling and subsequent vision impairment in several retinal inflammatory disorders such as age-related macular degeneration and diabetic retinopathy. Reductionist approaches into the mechanisms that underlie such diseases have been hindered by the absence of adequate in vitro models using human cells to provide the 3D dynamic architecture that enables expression of the in vivo phenotype of the oBRB. Conventional in vitro cell models are based on 2D monolayer cellular cultures, unable to properly recapitulate the complexity of living systems. The main drawbacks of conventional oBRB models also emerge from the cell sourcing, the lack of an appropriate Bruch's membrane analogue, and the lack of choroidal microvasculature with flow. In the last years, the advent of organ-on-a-chip, bioengineering, and stem cell technologies is providing more advanced 3D models with flow, multicellularity, and external control over microenvironmental properties. By incorporating additional biological complexity, organ-on-a-chip devices can mirror physiologically relevant properties of the native tissue while offering additional set ups to model and study disease. In this review we first examine the current understanding of oBRB biology as a functional unit, highlighting the coordinated contribution of the different components to barrier function in health and disease. Then we describe recent advances in the use of pluripotent stem cells-derived retinal cells, Bruch's membrane analogues, and co-culture techniques to recapitulate the oBRB. We finally discuss current advances and challenges of oBRB-on-a-chip technologies for disease modelling.
Collapse
Affiliation(s)
- Blanca Molins
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain.
| | - Marina Mesquida
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Alfredo Adan
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Instituto Clínic de Oftalmología, Hospital Clínic Barcelona, C/ Sabino de Arana 1, 08028, Barcelona, Spain
| |
Collapse
|
24
|
Ortolan D, Sharma R, Volkov A, Maminishkis A, Hotaling NA, Huryn LA, Cukras C, Di Marco S, Bisti S, Bharti K. Single-cell-resolution map of human retinal pigment epithelium helps discover subpopulations with differential disease sensitivity. Proc Natl Acad Sci U S A 2022; 119:e2117553119. [PMID: 35522714 PMCID: PMC9171647 DOI: 10.1073/pnas.2117553119] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
Regional phenotypic and functional differences in the retinal pigment epithelium (RPE) monolayer have been suggested to account for regional susceptibility in ocular diseases such as age-related macular degeneration (AMD), late-onset retinal degeneration (L-ORD), and choroideremia (CHM). However, a comprehensive description of human topographical RPE diversity is not yet available, thus limiting the understanding of regional RPE diversity and degenerative disease sensitivity in the eye. To develop a complete morphometric RPE map of the human eye, artificial intelligence–based software was trained to recognize, segment, and analyze RPE borders. Five statistically different, concentric RPE subpopulations (P1 to P5) were identified using cell area as a parameter, including a subpopulation (P4) with cell area comparable to that of macular cells in the far periphery of the eye. This work provides a complete reference map of human RPE subpopulations and their location in the eye. In addition, the analysis of cadaver non-AMD and AMD eyes and ultra-widefield fundus images of patients revealed differential vulnerability of the five RPE subpopulations to different retinal diseases.
Collapse
Affiliation(s)
- Davide Ortolan
- Ocular and Stem Cell Translational Research Section, National Eye Institute, NIH, Bethesda, MD 20892
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research Section, National Eye Institute, NIH, Bethesda, MD 20892
| | - Andrei Volkov
- Ocular and Stem Cell Translational Research Section, National Eye Institute, NIH, Bethesda, MD 20892
| | - Arvydas Maminishkis
- Ocular and Stem Cell Translational Research Section, National Eye Institute, NIH, Bethesda, MD 20892
| | - Nathan A. Hotaling
- Information Resources Technology Branch, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892
| | - Laryssa A. Huryn
- Ophthalmic Clinical Genetics Section, National Eye Institute, NIH, Bethesda, MD 20892
| | - Catherine Cukras
- Unit on Clinical Investigation of Retinal Disease, National Eye Institute, NIH, Bethesda, MD 20892
| | - Stefano Di Marco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Silvia Bisti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
- Biostructures and Biosystems National Institute, 00136 Roma, Italy
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
25
|
Verra DM, Spinnhirny P, Sandu C, Grégoire S, Acar N, Berdeaux O, Brétillon L, Sparrow JR, Hicks D. Intrinsic differences in rod and cone membrane composition: implications for cone degeneration. Graefes Arch Clin Exp Ophthalmol 2022; 260:3131-3148. [PMID: 35524799 DOI: 10.1007/s00417-022-05684-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022] Open
Abstract
PURPOSE In many retinal pathological conditions, rod and cone degeneration differs. For example, the early-onset maculopathy Stargardts disease type 1 (STGD1) is typified by loss of cones while rods are often less affected. We wanted to examine whether there exist intrinsic membrane differences between rods and cones that might explain such features. METHODS Abca4 mRNA and protein levels were quantified in rod- and cone-enriched samples from wild-type and Nrl-/- mice retinas; rod- and cone-enriched outer segments (ROS and COS respectively) were prepared from pig retinas, and total lipids were analyzed by flame ionization, chromatography, and tandem mass spectrometry. Immunohistochemical staining of cone-rich rodent Arvicanthis ansorgei retinas was conducted, and ultra-high performance liquid chromatography of lipid species in porcine ROS and COS was performed. RESULTS Abca4 mRNA and Abca4 protein content was significantly higher (50-300%) in cone compared to rod-enriched samples. ROS and COS displayed dramatic differences in several lipids, including very long chain poly-unsaturated fatty acids (VLC-PUFAs), especially docosahexaenoic acid (DHA, 22:6n-3): ROS 20.6% DHA, COS 3.3% (p < 0.001). VLC-PUFAs (> 50 total carbons) were virtually absent from COS. COS were impoverished (> 6× less) in phosphatidylethanolamine compared to ROS. ELOVL4 ("ELOngation of Very Long chain fatty acids 4") antibody labelled Arvicanthis cones only very weakly compared to rods. Finally, there were large amounts (905 a.u.) of the bisretinoid A2PE in ROS, whereas it was much lower (121 a.u., ~ 7.5-fold less) in COS fractions. In contrast, COS contained fivefold higher amounts of all-trans-retinal dimer (115 a.u. compared to 22 a.u. in rods). CONCLUSIONS Compared to rods, cones expressed higher levels of Abca4 mRNA and Abca4 protein, were highly impoverished in PUFA (especially DHA) and phosphatidylethanolamine, and contained significant amounts of all-trans-retinal dimer. Based on these and other data, we propose that in contrast to rods, cones are preferentially vulnerable to stress and may die through direct cellular toxicity in pathologies such as STGD1.
Collapse
Affiliation(s)
- Daniela M Verra
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France
| | - Perrine Spinnhirny
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France
| | - Cristina Sandu
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France
| | - Stéphane Grégoire
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Niyazi Acar
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Olivier Berdeaux
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Lionel Brétillon
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Janet R Sparrow
- Departments of Ophthalmology, and Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - David Hicks
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France.
| |
Collapse
|
26
|
Zouache MA. Variability in Retinal Neuron Populations and Associated Variations in Mass Transport Systems of the Retina in Health and Aging. Front Aging Neurosci 2022; 14:778404. [PMID: 35283756 PMCID: PMC8914054 DOI: 10.3389/fnagi.2022.778404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is associated with a broad range of visual impairments that can have dramatic consequences on the quality of life of those impacted. These changes are driven by a complex series of alterations affecting interactions between multiple cellular and extracellular elements. The resilience of many of these interactions may be key to minimal loss of visual function in aging; yet many of them remain poorly understood. In this review, we focus on the relation between retinal neurons and their respective mass transport systems. These metabolite delivery systems include the retinal vasculature, which lies within the inner portion of the retina, and the choroidal vasculature located externally to the retinal tissue. A framework for investigation is proposed and applied to identify the structures and processes determining retinal mass transport at the cellular and tissue levels. Spatial variability in the structure of the retina and changes observed in aging are then harnessed to explore the relation between variations in neuron populations and those seen among retinal metabolite delivery systems. Existing data demonstrate that the relation between inner retinal neurons and their mass transport systems is different in nature from that observed between the outer retina and choroid. The most prominent structural changes observed across the eye and in aging are seen in Bruch's membrane, which forms a selective barrier to mass transfers at the interface between the choroidal vasculature and the outer retina.
Collapse
Affiliation(s)
- Moussa A. Zouache
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
27
|
Sajovic J, Meglič A, Glavač D, Markelj Š, Hawlina M, Fakin A. The Role of Vitamin A in Retinal Diseases. Int J Mol Sci 2022; 23:1014. [PMID: 35162940 PMCID: PMC8835581 DOI: 10.3390/ijms23031014] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamin A is an essential fat-soluble vitamin that occurs in various chemical forms. It is essential for several physiological processes. Either hyper- or hypovitaminosis can be harmful. One of the most important vitamin A functions is its involvement in visual phototransduction, where it serves as the crucial part of photopigment, the first molecule in the process of transforming photons of light into electrical signals. In this process, large quantities of vitamin A in the form of 11-cis-retinal are being isomerized to all-trans-retinal and then quickly recycled back to 11-cis-retinal. Complex machinery of transporters and enzymes is involved in this process (i.e., the visual cycle). Any fault in the machinery may not only reduce the efficiency of visual detection but also cause the accumulation of toxic chemicals in the retina. This review provides a comprehensive overview of diseases that are directly or indirectly connected with vitamin A pathways in the retina. It includes the pathophysiological background and clinical presentation of each disease and summarizes the already existing therapeutic and prospective interventions.
Collapse
Affiliation(s)
- Jana Sajovic
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Andrej Meglič
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Špela Markelj
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Ana Fakin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| |
Collapse
|
28
|
Rohrer B, Parsons N, Annamalai B, Nicholson C, Obert E, Jones BW, Dick AD. Peptide-based immunotherapy against oxidized elastin ameliorates pathology in mouse model of smoke-induced ocular injury. Exp Eye Res 2021; 212:108755. [PMID: 34487725 PMCID: PMC9753162 DOI: 10.1016/j.exer.2021.108755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Age-related macular degeneration (AMD), the leading cause of blindness in western populations, is associated with an overactive complement system, and an increase in circulating antibodies against certain epitopes, including elastin. As loss of the elastin layer of Bruch's membrane (BrM) has been reported in aging and AMD, we previously showed that immunization with elastin peptide oxidatively modified by cigarette smoke (ox-elastin), exacerbated ocular pathology in the smoke-induced ocular pathology (SIOP) model. Here we asked whether ox-elastin peptide-based immunotherapy (PIT) ameliorates damage. METHODS C57BL/6J mice were injected with ox-elastin peptide at two doses via weekly subcutaneous administration, while exposed to cigarette smoke for 6 months. FcγR-/- and uninjected C57BL/6J mice served as controls. Retinal morphology was assessed by electron microscopy, and complement activation, antibody deposition and mechanisms of immunological tolerance were assessed by Western blotting and ELISA. RESULTS Elimination of Fcγ receptors, preventing antigen/antibody-dependent cytotoxicity, protected against SIOP. Mice receiving PIT with low dose ox-elastin (LD-PIT) exhibited reduced humoral immunity, reduced complement activation and IgG/IgM deposition in the RPE/choroid, and largely a preserved BrM. While there is no direct evidence of ox-elastin pathogenicity, LD-PIT reduced IFNγ and increased IL-4 within RPE/choroid. High dose PIT was not protective. CONCLUSIONS These data further support ox-elastin role in ocular damage in part via elastin-specific antibodies, and support the corollary that PIT with ox-elastin attenuates ocular pathology. Overall, damage is associated with complement activation, antibody-dependent cell-mediated cytotoxicity, and altered cytokine signature.
Collapse
Affiliation(s)
- Bärbel Rohrer
- Departments of Ophthalmology and Neurosciences Division of Research, Medical University of South Carolina, Charleston, SC, USA; Departments of Neurosciences Division of Research, Medical University of South Carolina, Charleston, SC, USA; Departments of Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, 29401, USA.
| | - Nathaniel Parsons
- Departments of Ophthalmology and Neurosciences Division of Research, Medical University of South Carolina, Charleston, SC, USA
| | - Balasubramaniam Annamalai
- Departments of Ophthalmology and Neurosciences Division of Research, Medical University of South Carolina, Charleston, SC, USA
| | - Crystal Nicholson
- Departments of Ophthalmology and Neurosciences Division of Research, Medical University of South Carolina, Charleston, SC, USA
| | - Elisabeth Obert
- Departments of Ophthalmology and Neurosciences Division of Research, Medical University of South Carolina, Charleston, SC, USA
| | - Bryan W Jones
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, 84132, USA
| | - Andrew D Dick
- University of Bristol, Bristol BS8 1TD, UK and University College London-Institute of Ophthalmology and the National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, EC1V 9EL, UK.
| |
Collapse
|
29
|
Murray IJ, Rodrigo-Diaz E, Kelly JMF, Tahir HJ, Carden D, Patryas L, Parry NR. The role of dark adaptation in understanding early AMD. Prog Retin Eye Res 2021; 88:101015. [PMID: 34626782 DOI: 10.1016/j.preteyeres.2021.101015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
The main aim of the paper is to discuss current knowledge on how Age Related Macular Degeneration (AMD) affects Dark Adaptation (DA). The paper is divided into three parts. Firstly, we outline some of the molecular mechanisms that control DA. Secondly, we review the psychophysical issues and the corresponding analytical techniques. Finally, we characterise the link between slowed DA and the morphological abnormalities in early AMD. Historically, DA has been regarded as too cumbersome for widespread clinical application. Yet the technique is extremely useful; it is widely accepted that the psychophysically obtained slope of the second rod-mediated phase of the dark adaptation function is an accurate assay of photoreceptor pigment regeneration kinetics. Technological developments have prompted new ways of generating the DA curve, but analytical problems remain. A simple potential solution to these, based on the application of a novel fast mathematical algorithm, is presented. This allows the calculation of the parameters of the DA curve in real time. Improving current management of AMD will depend on identifying a satisfactory endpoint for evaluating future therapeutic strategies. This must be implemented before the onset of severe disease. Morphological changes progress too slowly to act as a satisfactory endpoint for new therapies whereas functional changes, such as those seen in DA, may have more potential in this regard. It is important to recognise, however, that the functional changes are not confined to rods and that building a mathematical model of the DA curve enables the separation of rod and cone dysfunction and allows more versatility in terms of the range of disease severity that can be monitored. Examples are presented that show how analysing the DA curve into its constituent components can improve our understanding of the morphological changes in early AMD.
Collapse
Affiliation(s)
- Ian J Murray
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK.
| | - Elena Rodrigo-Diaz
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Jeremiah M F Kelly
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Humza J Tahir
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - David Carden
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Laura Patryas
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Neil Ra Parry
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK; Vision Science Centre, Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
30
|
Liu YV, Konar G, Aziz K, Tun SBB, Hua CHE, Tan B, Tian J, Luu CD, Barathi VA, Singh MS. Localized Structural and Functional Deficits in a Nonhuman Primate Model of Outer Retinal Atrophy. Invest Ophthalmol Vis Sci 2021; 62:8. [PMID: 34643661 PMCID: PMC8525844 DOI: 10.1167/iovs.62.13.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Cell-based therapy development for geographic atrophy (GA) in age-related macular degeneration (AMD) is hampered by the paucity of models of localized photoreceptor and retinal pigment epithelium (RPE) degeneration. We aimed to characterize the structural and functional deficits in a laser-induced nonhuman primate model, including an analysis of the choroid. Methods Macular laser photocoagulation was applied in four macaques. Fundus photography, optical coherence tomography (OCT), dye angiography, and OCT-angiography were conducted over 4.5 months, with histological correlation. Longitudinal changes in spatially resolved macular dysfunction were measured using multifocal electroretinography (MFERG). Results Lesion features, depending on laser settings, included photoreceptor layer degeneration, inner retinal sparing, skip lesions, RPE elevation, and neovascularization. The intralesional choroid was degenerated. The normalized mean MFERG amplitude within lesions was consistently lower than control regions (0.94 ± 0.35 vs. 1.10 ± 0.27, P = 0.032 at month 1, 0.67 ± 0.22 vs. 0.83 ± 0.15, P = 0.0002 at month 2, and 0.97 ± 0.31 vs. 1.20 ± 0.21, P < 0.0001 at month 3.5). The intertest variation of mean MFERG amplitudes in rings 1 to 5 ranged from 13.0% to 26.0% in normal eyes. Conclusions Laser application in this model caused localized outer retinal, RPE, and choriocapillaris loss. Localized dysfunction was apparent by MFERG in the first month after lesion induction. Correlative structure-function testing may be useful for research on the functional effects of stem cell-based therapy for GA. MFERG amplitude data should be interpreted in the context of relatively high intertest variability of the rings that correspond to the central macula. Sustained choroidal insufficiency may limit long-term subretinal graft viability in this model.
Collapse
Affiliation(s)
- Ying V Liu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Gregory Konar
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Kanza Aziz
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Sai Bo Bo Tun
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Candice Ho Ee Hua
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Bingyao Tan
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore.,SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
| | - Jing Tian
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, United States
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Victoria, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Victoria, Australia
| | - Veluchamy A Barathi
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore.,Academic Clinical Program in Ophthalmology, Duke-NUS Graduate Medical School, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
31
|
Chinchilla B, Fernandez-Godino R. AMD-Like Substrate Causes Epithelial Mesenchymal Transition in iPSC-Derived Retinal Pigment Epithelial Cells Wild Type but Not C3-Knockout. Int J Mol Sci 2021; 22:ijms22158183. [PMID: 34360950 PMCID: PMC8348968 DOI: 10.3390/ijms22158183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
The Bruch's membrane (BrM) is a five-layered extracellular matrix (ECM) that supports the retinal pigment epithelium (RPE). Normal age-related changes in the BrM may lead to RPE cell damage and ultimately to the onset and progression of age-related macular degeneration (AMD), which is the most common cause of visual loss among the elderly. A role for the complement system in AMD pathology has been established, but the disease mechanisms are poorly understood, which hampers the design of efficient therapies to treat millions of patients. In an effort to identify the mechanisms that lead from normal aging to pathology, we have developed a cell-based model using complement deficient human induced pluripotent stem cell (iPSC)-derived RPE cells cultured on an AMD-like ECM that mimics BrM. The data present evidence that changes in the ECM result in loss of differentiation and promote epithelial mesenchymal transition (EMT) of healthy RPE cells. This pathological process is mediated by complement activation and involves the formation of a randomly oriented collagen meshwork that drives the dedifferentiation of the RPE monolayer. Genetic ablation of complement component 3 has a protective effect against EMT but does not prevent the abnormal deposition of collagens. These findings offer new insights into the sequence of events that initiate AMD and may guide the design of efficient therapies to treat this disease with unmet medical needs.
Collapse
|
32
|
Brinks J, van Dijk EHC, Klaassen I, Schlingemann RO, Kielbasa SM, Emri E, Quax PHA, Bergen AA, Meijer OC, Boon CJF. Exploring the choroidal vascular labyrinth and its molecular and structural roles in health and disease. Prog Retin Eye Res 2021; 87:100994. [PMID: 34280556 DOI: 10.1016/j.preteyeres.2021.100994] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
The choroid is a key player in maintaining ocular homeostasis and plays a role in a variety of chorioretinal diseases, many of which are poorly understood. Recent advances in the field of single-cell RNA sequencing have yielded valuable insights into the properties of choroidal endothelial cells (CECs). Here, we review the role of the choroid in various physiological and pathophysiological mechanisms, focusing on the role of CECs. We also discuss new insights regarding the phenotypic properties of CECs, CEC subpopulations, and the value of measuring transcriptomics in primary CEC cultures derived from post-mortem eyes. In addition, we discuss key phenotypic, structural, and functional differences that distinguish CECs from other endothelial cells such as retinal vascular endothelial cells. Understanding the specific clinical and molecular properties of the choroid will shed new light on the pathogenesis of the broad clinical range of chorioretinal diseases such as age-related macular degeneration, central serous chorioretinopathy and other diseases within the pachychoroid spectrum, uveitis, and diabetic choroidopathy. Although our knowledge is still relatively limited with respect to the clinical features and molecular pathways that underlie these chorioretinal diseases, we summarise new approaches and discuss future directions for gaining new insights into these sight-threatening diseases and highlight new therapeutic strategies such as pluripotent stem cell‒based technologies and gene therapy.
Collapse
Affiliation(s)
- J Brinks
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - E H C van Dijk
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - I Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - R O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - S M Kielbasa
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - E Emri
- Department of Clinical Genetics, Section of Ophthalmogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - P H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - A A Bergen
- Department of Clinical Genetics, Section of Ophthalmogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - O C Meijer
- Department of Medicine, Division of Endocrinology and Metabolism, Leiden University Medical Center, Leiden, the Netherlands
| | - C J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
33
|
Meng LH, Chen YX. Lipid accumulation and protein modifications of Bruch's membrane in age-related macular degeneration. Int J Ophthalmol 2021; 14:766-773. [PMID: 34012894 DOI: 10.18240/ijo.2021.05.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 02/26/2021] [Indexed: 12/26/2022] Open
Abstract
Age-related macular degeneration (AMD) is a progressive retinal disease, which is the leading cause of blindness in western countries. There is an urgency to establish new therapeutic strategies that could prevent or delay the progression of AMD more efficiently. Until now, the pathogenesis of AMD has remained unclear, limiting the development of the novel therapy. Bruch's membrane (BM) goes through remarkable changes in AMD, playing a significant role during the disease course. The main aim of this review is to present the crucial processes that occur at the level of BM, with special consideration of the lipid accumulation and protein modifications. Besides, some therapies targeted at these molecules and the construction of BM in tissue engineering of retinal pigment epithelium (RPE) cells transplantation were listed. Hopefully, this review may provide a reference for researchers engaged in pathogenesis or management on AMD.
Collapse
Affiliation(s)
- Li-Hui Meng
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.,Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - You-Xin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.,Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
34
|
Sura AA, Chen L, Messinger JD, Swain TA, McGwin G, Freund KB, Curcio CA. Measuring the Contributions of Basal Laminar Deposit and Bruch's Membrane in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2021; 61:19. [PMID: 33186466 PMCID: PMC7671869 DOI: 10.1167/iovs.61.13.19] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Basal laminar deposit (BLamD) is a consistent finding in age-related macular degeneration (AMD). We quantified BLamD thickness, appearance, and topography in eyes of aged donors with and without AMD and evaluated its relationship to other components of the retinal pigment epithelium-basal lamina/Bruch's membrane (RPE-BL-BrM) complex. Methods Donor eyes (n = 132) were classified as normal (n = 54), early to intermediate AMD (n = 24), geographic atrophy (GA; n = 13), and neovascular AMD (NV; n = 41). In high-resolution histology, we assessed RPE, BLamD, and BrM thicknesses and phenotypes at 3309 predefined locations in the central (foveal and perifovea) and superior (perifoveal) sections. Pre-mortem optical coherence tomography (OCT) imaging of a 90-year-old woman was compared to postmortem histopathology. Results In non-atrophic areas of AMD eyes, the RPE-BLamD is thick (normal = 13.7 µm, early-intermediate = 16.8 µm, GA = 17.4 µm, NV = 18.7 µm), because the BLamD is thick (normal = 0.3 µm, early-intermediate = 5.5 µm, GA = 4.1 µm, NV = 5.3 µm). RPE layer thickness is similar across these stages. Disease-associated variants of BLamD (thick, late, basal mounds) cluster subfoveally. A thick BLamD is visible on OCT as a hyporeflective split in the RPE-BL-BrM complex. BrM is thin (3.5 µm) in NV (normal = 4.2 µm, early to intermediate = 4.4 µm, and GA = 4.2 µm). Conclusions The RPE-BL-BrM complex is thick in AMD, driven by the accumulation and expansion of BLamD rather than expansion of either three-layer BrM, RPE-BL, or RPE. BLamD is clinically appreciable by OCT in some patients as a non-neovascular "split RPE-BL-BrM complex" or "double-layer sign." BLamD may contribute toward the formation and progression of high-risk drusen yet also exhibit protective properties.
Collapse
Affiliation(s)
- Amol A Sura
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Ling Chen
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States.,The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, China
| | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Thomas A Swain
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States.,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States.,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,LuEsther T. Mertz Retinal Research Center, Manhattan Eye Ear and Throat Hospital, New York, New York, United States.,Department of Ophthalmology, NYU Langone School of Medicine, New York, New York, United States.,Columbia University College of Physicians and Surgeons, Harkness Eye Institute, New York, New York, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| |
Collapse
|
35
|
George SM, Lu F, Rao M, Leach LL, Gross JM. The retinal pigment epithelium: Development, injury responses, and regenerative potential in mammalian and non-mammalian systems. Prog Retin Eye Res 2021; 85:100969. [PMID: 33901682 DOI: 10.1016/j.preteyeres.2021.100969] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Diseases that result in retinal pigment epithelium (RPE) degeneration, such as age-related macular degeneration (AMD), are among the leading causes of blindness worldwide. Atrophic (dry) AMD is the most prevalent form of AMD and there are currently no effective therapies to prevent RPE cell death or restore RPE cells lost from AMD. An intriguing approach to treat AMD and other RPE degenerative diseases is to develop therapies focused on stimulating endogenous RPE regeneration. For this to become feasible, a deeper understanding of the mechanisms underlying RPE development, injury responses and regenerative potential is needed. In mammals, RPE regeneration is extremely limited; small lesions can be repaired by the expansion of adjacent RPE cells, but large lesions cannot be repaired as remaining RPE cells are unable to functionally replace lost RPE tissue. In some injury paradigms, RPE cells proliferate but do not regenerate a morphologically normal monolayer, while in others, proliferation is pathogenic and results in further disruption to the retina. This is in contrast to non-mammalian vertebrates, which possess tremendous RPE regenerative potential. Here, we discuss what is known about RPE formation during development in mammalian and non-mammalian vertebrates, we detail the processes by which RPE cells respond to injury, and we describe examples of RPE-to-retina and RPE-to-RPE regeneration in non-mammalian vertebrates. Finally, we outline barriers to RPE-dependent regeneration in mammals that could potentially be overcome to stimulate a regenerative response from the RPE.
Collapse
Affiliation(s)
- Stephanie M George
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fangfang Lu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lyndsay L Leach
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
36
|
Provis JM, Penfold PL, Cornish EE, Sandercoe TM, Madigan MC. Anatomy and development of the macula: specialisation and the vulnerability to macular degeneration. Clin Exp Optom 2021; 88:269-81. [PMID: 16255686 DOI: 10.1111/j.1444-0938.2005.tb06711.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 06/27/2005] [Accepted: 07/01/2005] [Indexed: 01/14/2023] Open
Abstract
The central retina in primates is adapted for high acuity vision. The most significant adaptations to neural retina in this respect are: 1. The very high density of cone photoreceptors on the visual axis; 2. The dominance of Midget pathways arising from these cones and 3. The diminishment of retinal blood supply in the macula, and its absence on the visual axis. Restricted blood supply to the part of the retina that has the highest density of neural elements is paradoxical. Inhibition of vascular growth and proliferation is evident during foetal life and results in metabolic stress in ganglion cells and Muller cells, which is resolved during formation of the foveal depression. In this review we argue that at the macula stressed retinal neurons adapt during development to a limited blood supply from the choriocapillaris, which supplies little in excess of metabolic demand of the neural retina under normal conditions. We argue also that while adaptation of the choriocapillaris underlying the foveal region may initially augment the local supply of oxygen and nutrients by diffusion, in the long term these adaptations make the region more vulnerable to age-related changes, including the accumulation of insoluble material in Bruch's membrane and beneath the retinal pigment epithelium. These changes eventually impact on delivery of oxygen and nutrients to the RPE and outer neural retina because of reduced flow in the choriocapillaris and the increasing barriers to effective diffusion. Both the inflammatory response and the sequelae of oxidative stress are predictable outcomes in this scenario.
Collapse
Affiliation(s)
- Jan M Provis
- Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra, ACT, 2601, Australia.
| | | | | | | | | |
Collapse
|
37
|
Histopathology of Age-Related Macular Degeneration and Implications for Pathogenesis and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33847998 DOI: 10.1007/978-3-030-66014-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Aging is associated with a number of histological changes in the choroid, Bruch's membrane, RPE, and neuroretina. Outside of the normal physiologic aging spectrum of changes, abnormal deposits such as basal laminar deposits, basal linear deposits, and soft drusen are known to be associated with AMD. Progression of AMD to advanced stages involving geographic atrophy, choroidal neovascularization, and/or disciform scars can result in debilitating vision loss. Knowledge of the angiogenic pathway and its components that stimulate neovascularization has led to the development of a new paradigm of intravitreal anti-VEGF pharmacotherapy in the management of neovascular AMD. Currently however, there are no available treatments for the modification of disease progression in non-neovascular AMD, or for the treatment of geographic atrophy. Further understanding of the histopathology of AMD and the molecular mechanisms that contribute to pathogenesis of the disease may reveal additional therapeutic targets.
Collapse
|
38
|
Pouw AE, Greiner MA, Coussa RG, Jiao C, Han IC, Skeie JM, Fingert JH, Mullins RF, Sohn EH. Cell-Matrix Interactions in the Eye: From Cornea to Choroid. Cells 2021; 10:687. [PMID: 33804633 PMCID: PMC8003714 DOI: 10.3390/cells10030687] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) plays a crucial role in all parts of the eye, from maintaining clarity and hydration of the cornea and vitreous to regulating angiogenesis, intraocular pressure maintenance, and vascular signaling. This review focuses on the interactions of the ECM for homeostasis of normal physiologic functions of the cornea, vitreous, retina, retinal pigment epithelium, Bruch's membrane, and choroid as well as trabecular meshwork, optic nerve, conjunctiva and tenon's layer as it relates to glaucoma. A variety of pathways and key factors related to ECM in the eye are discussed, including but not limited to those related to transforming growth factor-β, vascular endothelial growth factor, basic-fibroblastic growth factor, connective tissue growth factor, matrix metalloproteinases (including MMP-2 and MMP-9, and MMP-14), collagen IV, fibronectin, elastin, canonical signaling, integrins, and endothelial morphogenesis consistent of cellular activation-tubulogenesis and cellular differentiation-stabilization. Alterations contributing to disease states such as wound healing, diabetes-related complications, Fuchs endothelial corneal dystrophy, angiogenesis, fibrosis, age-related macular degeneration, retinal detachment, and posteriorly inserted vitreous base are also reviewed.
Collapse
Affiliation(s)
- Andrew E. Pouw
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Mark A. Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Razek G. Coussa
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Chunhua Jiao
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Ian C. Han
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Jessica M. Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
| | - John H. Fingert
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Robert F. Mullins
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Elliott H. Sohn
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
39
|
van Dijk EHC, Boon CJF. Serous business: Delineating the broad spectrum of diseases with subretinal fluid in the macula. Prog Retin Eye Res 2021; 84:100955. [PMID: 33716160 DOI: 10.1016/j.preteyeres.2021.100955] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023]
Abstract
A wide range of ocular diseases can present with serous subretinal fluid in the macula and therefore clinically mimic central serous chorioretinopathy (CSC). In this manuscript, we categorise the diseases and conditions that are part of the differential diagnosis into 12 main pathogenic subgroups: neovascular diseases, vitelliform lesions, inflammatory diseases, ocular tumours, haematological malignancies, paraneoplastic syndromes, genetic diseases, ocular developmental anomalies, medication-related conditions and toxicity-related diseases, rhegmatogenous retinal detachment and tractional retinal detachment, retinal vascular diseases, and miscellaneous diseases. In addition, we describe 2 new clinical pictures associated with macular subretinal fluid accumulation, namely serous maculopathy with absence of retinal pigment epithelium (SMARPE) and serous maculopathy due to aspecific choroidopathy (SMACH). Differentiating between these various diseases and CSC can be challenging, and obtaining the correct diagnosis can have immediate therapeutic and prognostic consequences. Here, we describe the key differential diagnostic features of each disease within this clinical spectrum, including representative case examples. Moreover, we discuss the pathogenesis of each disease in order to facilitate the differentiation from typical CSC.
Collapse
Affiliation(s)
- Elon H C van Dijk
- Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
40
|
Sohn EH, Han IC, Roos BR, Faga B, Luse MA, Binkley EM, Boldt HC, Folk JC, Russell SR, Mullins RF, Fingert JH, Stone EM, Scheetz TE. Genetic Association between MMP9 and Choroidal Neovascularization in Age-Related Macular Degeneration. OPHTHALMOLOGY SCIENCE 2021; 1:100002. [PMID: 37672224 PMCID: PMC9560657 DOI: 10.1016/j.xops.2020.100002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 11/30/2022]
Abstract
Purpose To evaluate the first association specific to exudative age-related macular degeneration (AMD) located near the matrix metalloproteinase 9 (MMP9) gene. Design Genetic association study. Participants One thousand seven hundred twelve patients with AMD (672 nonexudative, 1040 exudative) of predominantly northern European descent seeking treatment at the University of Iowa Hospitals and Clinics. Methods We reanalyzed the International AMD Genetics Consortium (IAMDGC) data to validate the association of polymorphisms near MMP9 with exudative AMD and to identify additional associated single nucleotide polymorphisms (SNPs), especially MMP9 coding sequence SNPs. We genotyped a cohort of 1712 AMD patients from Iowa with 3 SNPs identified with our analysis of the IAMDGC cohort using commercially available real-time quantitative polymerase chain reaction (PCR) assays. Firth regression was used to measure the association between MMP9 SNP genotypes and exudative AMD in our cohort of patients from Iowa. In addition, we developed a PCR-based assay to genotype the Iowa cohort at a short tandem repeat polymorphism (STRP) at the MMP9 locus. Main Outcome Measures Odds ratios and P values for exudative compared with nonexudative AMD patients in the Iowa cohort for MMP9 SNPs (rs4810482, rs17576, and rs17577) and STRP. Results We identified 3 SNPs in the MMP9 locus (rs4810482, rs17576, and rs17577) that are highly associated with exudative AMD in patient cohorts of the IAMDGC. These MMP9 SNPs also are associated with exudative AMD in the cohort of 1712 AMD patients from Iowa (rs4810482: odds ratio [OR], 0.82; P = 0.010; rs17576: OR, 0.86; P = 0.046; and rs17577: OR, 0.80; P = 0.041). We also genotyped the cohort of AMD patients from Iowa at rs142450006, another MMP9 polymorphism that previously was associated with exudative AMD. We detected a 4bp STRP, (TTTC)n, at the rs142450006 locus that is highly polymorphic and associated significantly with exudative AMD (OR, 0.78; P = 0.016). Conclusions This study independently confirms and expands an association between the MMP9 locus and exudative AMD, further implicating a role for extracellular matrix abnormalities in choroidal neovascularization.
Collapse
Affiliation(s)
- Elliott H. Sohn
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Ian C. Han
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Benjamin R. Roos
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Benjamin Faga
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Meagan A. Luse
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Elaine M. Binkley
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - H. Culver Boldt
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - James C. Folk
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Stephen R. Russell
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Robert F. Mullins
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - John H. Fingert
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Edwin M. Stone
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Todd E. Scheetz
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
41
|
Risseeuw S, van Leeuwen R, Imhof SM, Spiering W, Norel JOV. The Natural History of Bruch’s Membrane Calcification in Pseudoxanthoma Elasticum. OPHTHALMOLOGY SCIENCE 2021. [PMID: 37487136 PMCID: PMC9560584 DOI: 10.1016/j.xops.2020.100001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Purpose To describe the natural history of Bruch’s membrane (BM) calcification in patients with pseudoxanthoma elasticum (PXE). Design Retrospective cohort study. Participants Both eyes of 120 PXE patients younger than 50 years, 78 of whom had follow-up imaging after more than 1 year. Methods All patients underwent multimodal imaging, including color fundus photography, near-infrared reflectance (NIR) imaging, and late phase indocyanine green angiography (ICGA). We determined the distance from the optic disc to the central and temporal border of peau d’orange on NIR, expressed in horizontal optic disc diameter (ODD). The length of the longest angioid streak was classified into 5 zones. Main Outcome Measures Age-specific changes of peau d’orange, angioid streaks, and ICGA hypofluorescence as surrogate markers for the extent of BM calcification. Results In cross-sectional analysis, longer angioid streaks were associated with increasing age (P < 0.001 for trend). The temporal border of peau d’orange showed a weak association with increasing age (β = 0.02; 95% confidence interval [CI], 0.00–0.04), whereas the central border showed a strong association (β = 0.12; 95% CI, 0.09–0.15). Longitudinal analysis revealed a median shift of the central border to the periphery of 0.08 ODD per year (interquartile range [IQR], 0.00–0.17; P < 0.001). This shift was more pronounced in patients younger than 20 years (0.12 ODD per year [IQR, 0.08–0.28]) than in patients older than 40 years (0.07 ODD per year [IQR, –0.05 to 0.15]). The temporal border did not shift during follow-up (P = 0.69). New or growing angioid streaks were detected in 39 of 156 eyes (25%). The hypofluorescent area on ICGA was visible only in the fourth or fifth decade and correlated with longer angioid streaks. Conclusions In PXE patients, the speckled BM calcification slowly confluences during life. The location of the temporal border of peau d’orange remains rather constant, whereas the central border shifts to the periphery. This suggests the presence of a predetermined area for BM calcification. A larger ICGA hypofluorescent area correlates with older age and longer angioid streaks, which implies that it depends on the degree of BM calcification.
Collapse
|
42
|
Kim YH, Lee B, Kang E, Oh J. Comparison of Regional Differences in the Choroidal Thickness between Patients with Pachychoroid Neovasculopathy and Classic Exudative Age-related Macular Degeneration. Curr Eye Res 2021; 46:1398-1405. [PMID: 33550884 DOI: 10.1080/02713683.2021.1887269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Purpose: To compare the regional differences in the choroidal thickness (CT) between patients with pachychoroid neovasculopathy (PNV) and classic exudative age-related macular degeneration (ceAMD).Materials and Methods: We included both eyes of patients with unilateral macular neovascularization (MNV) due to ceAMD or PNV. Unilateral eyes of normal subjects were also included as a normal control group. The regional difference in CT was defined as a difference between the macular and extramacular areas, and calculated as the ratio of subfoveal CT (SFCT) to nasal peripapillary CT (PCT).Results: In normal subjects, the choroid was 2.25 ± 0.10 times thicker at the macula than at the extramacular area. The SFCT and PCT were significantly affected by age (P < .001 and P < .001, respectively), whereas the regional difference in CT were independent of age (P = .076). Analysis of covariance including age, sex, and MNV group showed that regional difference in CT were significantly affected by sex, nasal peripapillary CT, and MNV group (P = .023, P < .001, and P < .001, respectively). The estimated marginal mean of the regional difference in CT was significantly smaller in the ceAMD group (1.671 ± 0.103) than in the normal control (2.250 ± 0.095, P = .003) and PNV groups (2.0880 ± 0.086, P < .001).Conclusions: Regional differences in CT were consistent with aging. However, the difference varied with the presence of PNV or ceAMD. Measurement of regional differences in CT provides additional information for characterizing the choroid in patients with MNV.
Collapse
Affiliation(s)
- Young Ho Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Boram Lee
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Edward Kang
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Jaeryung Oh
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
43
|
Subthreshold Nano-Second Laser Treatment and Age-Related Macular Degeneration. J Clin Med 2021; 10:jcm10030484. [PMID: 33525639 PMCID: PMC7866172 DOI: 10.3390/jcm10030484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/06/2021] [Accepted: 01/17/2021] [Indexed: 12/26/2022] Open
Abstract
The presence of drusen is an important hallmark of age-related macular degeneration (AMD). Laser-induced regression of drusen, first observed over four decades ago, has led to much interest in the potential role of lasers in slowing the progression of the disease. In this article, we summarise the key insights from pre-clinical studies into the possible mechanisms of action of various laser interventions that result in beneficial changes in the retinal pigment epithelium/Bruch's membrane/choriocapillaris interface. Key learnings from clinical trials of laser treatment in AMD are also summarised, concentrating on the evolution of laser technology towards short pulse, non-thermal delivery such as the nanosecond laser. The evolution in our understanding of AMD, through advances in multimodal imaging and functional testing, as well as ongoing investigation of key pathological mechanisms, have all helped to set the scene for further well-conducted randomised trials to further explore potential utility of the nanosecond and other subthreshold short pulse lasers in AMD.
Collapse
|
44
|
Age-Related Macular Degeneration: Epidemiology and Clinical Aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:1-31. [PMID: 33847996 DOI: 10.1007/978-3-030-66014-7_1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Age-related macular degeneration (AMD) is a degenerative disease of the human retina affecting individuals over the age of 55 years. This heterogeneous condition arises from a complex interplay between age, genetics, and environmental factors including smoking and diet. It is the leading cause of blindness in industrialized countries. Worldwide, the number of people with AMD is predicted to increase from 196 million in 2020 to 288 million by 2040. By this time, Asia is predicted to have the largest number of people with the disease. Distinct patterns of AMD prevalence and phenotype are seen between geographical areas that are not explained fully by disparities in population structures. AMD is classified into early, intermediate, and late stages. The early and intermediate stages, when visual symptoms are typically absent or mild, are characterized by macular deposits (drusen) and pigmentary abnormalities. Through risk prediction calculators, grading these features helps predict the risk of progression to late AMD. Late AMD is divided into neovascular and atrophic forms, though these can coexist. The defining lesions are macular neovascularization and geographic atrophy, respectively. At this stage, visual symptoms are often severe and irreversible, and can comprise profoundly decreased central vision in both eyes. For these reasons, the condition has major implications for individuals and society, as affected individuals may experience substantially decreased quality of life and independence. Recent advances in retinal imaging have led to the recognition of an expanded set of AMD phenotypes, including reticular pseudodrusen, nonexudative macular neovascularization, and subtypes of atrophy. These developments may lead to refinements in current classification systems.
Collapse
|
45
|
Associations between the Complement System and Choroidal Neovascularization in Wet Age-Related Macular Degeneration. Int J Mol Sci 2020; 21:ijms21249752. [PMID: 33371261 PMCID: PMC7765894 DOI: 10.3390/ijms21249752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness affecting the elderly in the Western world. The most severe form of AMD, wet AMD (wAMD), is characterized by choroidal neovascularization (CNV) and acute vision loss. The current treatment for these patients comprises monthly intravitreal injections of anti-vascular endothelial growth factor (VEGF) antibodies, but this treatment is expensive, uncomfortable for the patient, and only effective in some individuals. AMD is a complex disease that has strong associations with the complement system. All three initiating complement pathways may be relevant in CNV formation, but most evidence indicates a major role for the alternative pathway (AP) and for the terminal complement complex, as well as certain complement peptides generated upon complement activation. Since the complement system is associated with AMD and CNV, a complement inhibitor may be a therapeutic option for patients with wAMD. The aim of this review is to (i) reflect on the possible complement targets in the context of wAMD pathology, (ii) investigate the results of prior clinical trials with complement inhibitors for wAMD patients, and (iii) outline important considerations when developing a future strategy for the treatment of wAMD.
Collapse
|
46
|
Zouache MA, Bennion A, Hageman JL, Pappas C, Richards BT, Hageman GS. Macular retinal thickness differs markedly in age-related macular degeneration driven by risk polymorphisms on chromosomes 1 and 10. Sci Rep 2020; 10:21093. [PMID: 33273512 PMCID: PMC7713215 DOI: 10.1038/s41598-020-78059-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
The two most common genetic contributors to age-related macular degeneration (AMD), a leading cause of irreversible vision loss worldwide, are variants associated with CFH-CFHR5 on chromosome 1 (Chr1) and ARMS2/HTRA1 on chromosome 10 (Chr10). We sought to determine if risk and protective variants associated with these two loci drive differences in macular retinal thickness prior and subsequent to the onset of clinically observable signs of AMD. We considered 299 individuals (547 eyes) homozygous for risk variants or haplotypes on Chr1 or Chr10 exclusively (Chr1-risk and Chr10-risk, respectively) or homozygous for a neutral haplotype (Chr1-neu), for the protective I62 tagged haplotype (Chr1-prot-I62) or for the protection conferring CFHR1/3 deletion haplotype (Chr1-prot-del) on Chr1 without any risk alleles on Chr10. Among eyes with no clinically observable signs of AMD, the deletion of CFHR1/3, which is strongly protective against this disease, is associated with significantly thicker retinas in the perifovea. When controlling for age, Chr10-risk eyes with early or intermediate AMD have thinner retinas as compared to eyes from the Chr1-risk group with similar disease severity. Our analysis indicates that this difference likely results from distinct biological and disease initiation and progression events associated with Chr1- and Chr10-directed AMD.
Collapse
Affiliation(s)
- Moussa A Zouache
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, 84132, UT, USA.
| | - Alex Bennion
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, 84132, UT, USA
| | - Jill L Hageman
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, 84132, UT, USA
| | - Christian Pappas
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, 84132, UT, USA
| | - Burt T Richards
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, 84132, UT, USA
| | - Gregory S Hageman
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, 84132, UT, USA.
| |
Collapse
|
47
|
Somasundaran S, Constable IJ, Mellough CB, Carvalho LS. Retinal pigment epithelium and age-related macular degeneration: A review of major disease mechanisms. Clin Exp Ophthalmol 2020; 48:1043-1056. [PMID: 32710488 PMCID: PMC7754492 DOI: 10.1111/ceo.13834] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 01/18/2023]
Abstract
Age‐related macular degeneration (AMD) is a progressive degenerative disease that is the leading cause of vision loss in the elderly population. Degeneration/dysregulation of the retinal pigment epithelium (RPE), a supportive monolayer of cells underlying the photoreceptors, is commonly seen in patients with AMD. While treatment exists for the neovascular/wet form of AMD, there is currently no cure for the non‐exudative/dry form of AMD, making it imperative to understand the pathogenesis of this disease. Although our understanding of the aetiology of AMD has increased over the years, the underlying disease mechanism has not yet been identified, mainly due to the multifactorial nature of this disease. Herein, we review some of the commonly proposed degeneration pathways of RPE cells and their role in the pathogenesis of AMD; including activation of the complement cascade, oxidative stress‐induced cell death mechanisms, dysfunctional mitochondria and the role of crystallins in AMD disease progression.
Collapse
Affiliation(s)
- Shreya Somasundaran
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Ian J Constable
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Carla B Mellough
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
48
|
Liva F, Cuffaro D, Nuti E, Nencetti S, Orlandini E, Vozzi G, Rossello A. Age-related Macular Degeneration: Current Knowledge of Zinc Metalloproteinases Involvement. Curr Drug Targets 2020; 20:903-918. [PMID: 30666909 DOI: 10.2174/1389450120666190122114857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/21/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly with limited therapeutic options. The disease is characterized by photoreceptor loss in the macula and reduced Retinal Pigment Epithelium (RPE) function, associated with matrix degradation, cell proliferation, neovascularization and inflammation. Matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) play a critical role in the physiology of extracellular matrix (ECM) turnover and, in turn, in ECM pathologies, such as AMD. A balance between the activities of MMPs and Tissue Inhibitors of Metalloproteinase (TIMPs) is crucial for the integrity of the ECM components; indeed, a dysregulation in the ratio of these factors produces profound changes in the ECM, including thickening and deposit formation, which eventually might lead to AMD development. OBJECTIVE This article reviews the relevance and impact of zinc metalloproteinases on the development of AMD and their roles as biomarkers and/or therapeutic targets. We illustrate some studies on several inhibitors of MMPs currently used to dissect physiological properties of MMPs. Moreover, all molecules or technologies used to control MMP and ADAM activity in AMD are analyzed. CONCLUSION This study underlines the changes in the activity of MMPs expressed by RPE cells, highlights the functions of already used MMP inhibitors and consequently suggests their application as therapeutic agents for the treatment of AMD.
Collapse
Affiliation(s)
- Francesca Liva
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.,Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Elisabetta Orlandini
- Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy.,Department of Earth Sciences, University of Pisa, Via Santa Maria 53, 56126 Pisa, Italy
| | - Giovanni Vozzi
- Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.,Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| |
Collapse
|
49
|
Luthert PJ, Kiel C. Combining Gene-Disease Associations with Single-Cell Gene Expression Data Provides Anatomy-Specific Subnetworks in Age-Related Macular Degeneration. NETWORK AND SYSTEMS MEDICINE 2020; 3:105-121. [PMID: 32789304 PMCID: PMC7416628 DOI: 10.1089/nsm.2020.0005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Age-related macular degeneration (AMD) is the most common cause of visual impairment in the developed world. Despite some treatment options for late AMD, there is no intervention that blocks early AMD proceeding to the late and blinding forms. This is partly due to the lack of precise drug targets, despite great advances in genetics, epidemiology, and protein-protein interaction (PPI) networks proposed to be driving the disease pathology. A systems approach to narrow down PPI networks to specific protein drug targets would provide new therapeutic options. Materials and Methods: In this study we analyzed single cell RNAseq (RNA sequencing) datasets of 17 cell types present in choroidal, retinal pigment epithelium (RPE), and neural retina (NR) tissues to explore if a more granular analysis incorporating different cell types exposes more specific pathways and relationships. Furthermore, we developed a novel and systematic gene ontology database (SysGO) to explore if a subcellular classification of processes will further enhance the understanding of the pathogenesis of this complex disorder and its comorbidities with other age-related diseases. Results: We found that 57% of the AMD (risk) genes are among the top 25% expressed genes in ∼1 of the 17 choroidal/RPE/NR cell types, and 9% were among the top 1% of expressed genes. Using SysGO, we identified an enrichment of AMD genes in cell membrane and extracellular anatomical locations, and we found both functional enrichments (e.g., cell adhesion) and cell types (e.g., fibroblasts, microglia) not previously associated with AMD pathogenesis. We reconstructed PPI networks among the top expressed AMD genes for all 17 choroidal/RPE/NR cell types, which provides molecular and anatomical definitions of AMD phenotypes that can guide therapeutic approaches to target this complex disease. Conclusion: We provide mechanism-based AMD endophenotypes that can be exploited in vitro, using computational models and for drug discovery/repurposing.
Collapse
Affiliation(s)
- Philip J. Luthert
- UCL Institute of Ophthalmology, and NIHR Moorfields Biomedical Research Centre, University College London, London, United Kingdom
| | - Christina Kiel
- Systems Biology Ireland and UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
50
|
Schnichels S, Paquet-Durand F, Löscher M, Tsai T, Hurst J, Joachim SC, Klettner A. Retina in a dish: Cell cultures, retinal explants and animal models for common diseases of the retina. Prog Retin Eye Res 2020; 81:100880. [PMID: 32721458 DOI: 10.1016/j.preteyeres.2020.100880] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
For many retinal diseases, including age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR), the exact pathogenesis is still unclear. Moreover, the currently available therapeutic options are often unsatisfactory. Research designed to remedy this situation heavily relies on experimental animals. However, animal models often do not faithfully reproduce human disease and, currently, there is strong pressure from society to reduce animal research. Overall, this creates a need for improved disease models to understand pathologies and develop treatment options that, at the same time, require fewer or no experimental animals. Here, we review recent advances in the field of in vitro and ex vivo models for AMD, glaucoma, and DR. We highlight the difficulties associated with studies on complex diseases, in which both the initial trigger and the ensuing pathomechanisms are unclear, and then delineate which model systems are optimal for disease modelling. To this end, we present a variety of model systems, ranging from primary cell cultures, over organotypic cultures and whole eye cultures, to animal models. Specific advantages and disadvantages of such models are discussed, with a special focus on their relevance to putative in vivo disease mechanisms. In many cases, a replacement of in vivo research will mean that several different in vitro models are used in conjunction, for instance to analyze and validate causative molecular pathways. Finally, we argue that the analytical decomposition into appropriate cell and tissue model systems will allow making significant progress in our understanding of complex retinal diseases and may furthermore advance the treatment testing.
Collapse
Affiliation(s)
- Sven Schnichels
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany.
| | - François Paquet-Durand
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Germany
| | - Marina Löscher
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - José Hurst
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Kiel, Germany
| |
Collapse
|