1
|
Qu HQ, Wang JF, Rosa-Campos A, Hakonarson H, Feldman AM. The Role of BAG3 Protein Interactions in Cardiomyopathies. Int J Mol Sci 2024; 25:11308. [PMID: 39457090 PMCID: PMC11605229 DOI: 10.3390/ijms252011308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Bcl-2-associated athanogene 3 (BAG3) plays an important function in cellular protein quality control (PQC) maintaining proteome stability. Mutations in the BAG3 gene result in cardiomyopathies. Due to its roles in cardiomyopathies and the complexity of BAG3-protein interactions, it is important to understand these protein interactions given the importance of the multifunctional cochaperone BAG3 in cardiomyocytes, using an in vitro cardiomyocyte model. The experimental assay was conducted using high pressure liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the human AC16 cardiomyocyte cell line with BioID technology. Proteins with BAG3-interaction were identified in all the 28 hallmark gene sets enriched in idiopathic cardiomyopathies and/or ischemic disease. Among the 24 hallmark gene sets enriched in both idiopathic cardiomyopathies and ischemic disease, 15 gene sets had at least 3 proteins with BAG3-interaction. This study highlights BAG3 protein interactions, unveiling the key gene sets affected in cardiomyopathies, which help to explain the molecular mechanisms of the cardioprotective effects of BAG3. In addition, this study also highlighted the complexity of proteins with BAG3 interactions, implying unwanted effects of BAG3.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Ju-Fang Wang
- Department of Medicine, Division of Cardiology, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.-F.W.); (A.M.F.)
| | - Alexandre Rosa-Campos
- Proteomics Facility, Sanford-Burnham-Presby Medical Discovery Institute, La Jolla, CA 92037, USA;
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Division of Human Genetics, Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Faculty of Medicine, University of Iceland, 102 Reykjavík, Iceland
| | - Arthur M. Feldman
- Department of Medicine, Division of Cardiology, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.-F.W.); (A.M.F.)
| |
Collapse
|
2
|
Russell-Hallinan A, Cappa O, Kerrigan L, Tonry C, Edgar K, Glezeva N, Ledwidge M, McDonald K, Collier P, Simpson DA, Watson CJ. Single-Cell RNA Sequencing Reveals Cardiac Fibroblast-Specific Transcriptomic Changes in Dilated Cardiomyopathy. Cells 2024; 13:752. [PMID: 38727290 PMCID: PMC11083662 DOI: 10.3390/cells13090752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is the most common cause of heart failure, with a complex aetiology involving multiple cell types. We aimed to detect cell-specific transcriptomic alterations in DCM through analysis that leveraged recent advancements in single-cell analytical tools. Single-cell RNA sequencing (scRNA-seq) data from human DCM cardiac tissue were subjected to an updated bioinformatic workflow in which unsupervised clustering was paired with reference label transfer to more comprehensively annotate the dataset. Differential gene expression was detected primarily in the cardiac fibroblast population. Bulk RNA sequencing was performed on an independent cohort of human cardiac tissue and compared with scRNA-seq gene alterations to generate a stratified list of higher-confidence, fibroblast-specific expression candidates for further validation. Concordant gene dysregulation was confirmed in TGFβ-induced fibroblasts. Functional assessment of gene candidates showed that AEBP1 may play a significant role in fibroblast activation. This unbiased approach enabled improved resolution of cardiac cell-type-specific transcriptomic alterations in DCM.
Collapse
Affiliation(s)
- Adam Russell-Hallinan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (A.R.-H.); (C.T.); (K.E.); (D.A.S.)
| | - Oisín Cappa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (A.R.-H.); (C.T.); (K.E.); (D.A.S.)
| | - Lauren Kerrigan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (A.R.-H.); (C.T.); (K.E.); (D.A.S.)
| | - Claire Tonry
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (A.R.-H.); (C.T.); (K.E.); (D.A.S.)
| | - Kevin Edgar
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (A.R.-H.); (C.T.); (K.E.); (D.A.S.)
| | - Nadezhda Glezeva
- School of Medicine, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (N.G.); (K.M.)
| | - Mark Ledwidge
- STOP-HF Unit, St Vincent’s Healthcare Group, D04 T6F4 Dublin, Ireland;
| | - Kenneth McDonald
- School of Medicine, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (N.G.); (K.M.)
- STOP-HF Unit, St Vincent’s Healthcare Group, D04 T6F4 Dublin, Ireland;
| | - Patrick Collier
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - David A. Simpson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (A.R.-H.); (C.T.); (K.E.); (D.A.S.)
| | - Chris J. Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (A.R.-H.); (C.T.); (K.E.); (D.A.S.)
| |
Collapse
|
3
|
Dai Q, Zhao S, Li W, Liu K, Tao X, Liu C, Yao H, Mu F, Chen S, Li J, Wei P, Gao F, Xi M. Pharmacodynamics and Mechanism of Astragali Radix and Anemarrhenae Rhizoma in Treating Chronic Heart Failure by Inhibiting Complement Activation. Rejuvenation Res 2024; 27:61-74. [PMID: 38386515 DOI: 10.1089/rej.2023.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Astragali radix (AR) and anemarrhenae rhizoma (AAR) are used clinically in Chinese medicine for the treatment of chronic heart failure (CHF), but the exact therapeutic mechanism is unclear. In this study, a total of 60 male C57BL/6 mice were divided into 5 groups, namely sham, model, AR, AAR, and AR-AAR. In the sham group, the chest was opened without ligation. In the other groups, the chest was opened and the transverse aorta was ligated to construct the transverse aortic constriction model. After 8 weeks of feeding, mice were given medicines by gavage for 4 weeks. Left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were detected by echocardiography. Heart weight index (HWI) and wheat germ agglutinin staining were used to evaluate cardiac hypertrophy. Hematoxylin-eosin staining was used to observe the pathological morphology of myocardial tissue. Masson staining was used to evaluate myocardial fibrosis. The content of serum brain natriuretic peptide (BNP) was detected by enzyme-linked immunosorbent assay kit. The content of serum immunoglobulin G (IgG) was detected by immunoturbidimetry. The mechanism of AR-AAR in the treatment of CHF was explored by proteomics. Western blot was used to detect the protein expressions of complement component 1s (C1s), complement component 9 (C9), and terminal complement complex 5b-9 (C5b-9). The results show that AR-AAR inhibits the expression of complement proteins C1s, C9, and C5b-9 by inhibiting the production of IgG antibodies from B cell activation, which further inhibits the complement activation, attenuates myocardial fibrosis, reduces HWI and cardiomyocyte cross-sectional area, improves cardiomyocyte injury, reduces serum BNP release, elevates LVEF and LVFS, improves cardiac function, and exerts myocardial protection.
Collapse
Affiliation(s)
- Qi Dai
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- TANK Medicinal Biology Institute of Xi'an, Xi'an, China
| | - Shi Zhao
- TANK Medicinal Biology Institute of Xi'an, Xi'an, China
| | - Weihong Li
- TANK Medicinal Biology Institute of Xi'an, Xi'an, China
- College of Life Sciences, Northwestern University, Xi'an, China
| | - Kedi Liu
- TANK Medicinal Biology Institute of Xi'an, Xi'an, China
| | - Xingru Tao
- TANK Medicinal Biology Institute of Xi'an, Xi'an, China
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chengzhao Liu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- TANK Medicinal Biology Institute of Xi'an, Xi'an, China
| | - Hong Yao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- TANK Medicinal Biology Institute of Xi'an, Xi'an, China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sha Chen
- YouYi Clinical Laboratories of Shaanxi, Xi'an, China
| | - Jing Li
- YouYi Clinical Laboratories of Shaanxi, Xi'an, China
| | - Peifeng Wei
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- National Drug Clinical Trial Institute, The Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Feng Gao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Miaomiao Xi
- TANK Medicinal Biology Institute of Xi'an, Xi'an, China
- National Drug Clinical Trial Institute, The Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
4
|
Klimentova J, Rehulka P, Stulik J, Vozandychova V, Rehulkova H, Jurcova I, Lazarova M, Aiglova R, Dokoupil J, Hrecko J, Pudil R. Proteomic Profiling of Dilated Cardiomyopathy Plasma Samples ─ Searching for Biomarkers with Potential to Predict the Outcome of Therapy. J Proteome Res 2024; 23:971-984. [PMID: 38363107 PMCID: PMC10913098 DOI: 10.1021/acs.jproteome.3c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Determination of the prognosis and treatment outcomes of dilated cardiomyopathy is a serious problem due to the lack of valid specific protein markers. Using in-depth proteome discovery analysis, we compared 49 plasma samples from patients suffering from dilated cardiomyopathy with plasma samples from their healthy counterparts. In total, we identified 97 proteins exhibiting statistically significant dysregulation in diseased plasma samples. The functional enrichment analysis of differentially expressed proteins uncovered dysregulation in biological processes like inflammatory response, wound healing, complement cascade, blood coagulation, and lipid metabolism in dilated cardiomyopathy patients. The same proteome approach was employed in order to find protein markers whose expression differs between the patients well-responding to therapy and nonresponders. In this case, 45 plasma proteins revealed statistically significant different expression between these two groups. Of them, fructose-1,6-bisphosphate aldolase seems to be a promising biomarker candidate because it accumulates in plasma samples obtained from patients with insufficient treatment response and with worse or fatal outcome. Data are available via ProteomeXchange with the identifier PXD046288.
Collapse
Affiliation(s)
- Jana Klimentova
- Faculty
of Military Health Sciences, Department of Molecular Pathology and
Biology, University of Defence, Trebesska 1575, Hradec Kralove 50001, Czech Republic
- The
first Department of Internal Medicine − Cardioangiology, Medical Faculty of Charles University in Hradec Kralove
and University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 50005, Czech Republic
| | - Pavel Rehulka
- Faculty
of Military Health Sciences, Department of Molecular Pathology and
Biology, University of Defence, Trebesska 1575, Hradec Kralove 50001, Czech Republic
| | - Jiri Stulik
- Faculty
of Military Health Sciences, Department of Molecular Pathology and
Biology, University of Defence, Trebesska 1575, Hradec Kralove 50001, Czech Republic
- Charles
University, Faculty of Medicine in Hradec Kralove, Simkova 870, Hradec Kralove 50003, Czech Republic
| | - Vera Vozandychova
- Faculty
of Military Health Sciences, Department of Molecular Pathology and
Biology, University of Defence, Trebesska 1575, Hradec Kralove 50001, Czech Republic
- The
first Department of Internal Medicine − Cardioangiology, Medical Faculty of Charles University in Hradec Kralove
and University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 50005, Czech Republic
| | - Helena Rehulkova
- Faculty
of Military Health Sciences, Department of Molecular Pathology and
Biology, University of Defence, Trebesska 1575, Hradec Kralove 50001, Czech Republic
- The
first Department of Internal Medicine − Cardioangiology, Medical Faculty of Charles University in Hradec Kralove
and University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 50005, Czech Republic
| | - Ivana Jurcova
- Institute
for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, Prague 14021, Czech Republic
| | - Marie Lazarova
- Department
of Internal Medicine I − Cardiology, Faculty of Medicine and
Dentistry, Palacky University and University
Hospital Olomouc, Zdravotniku 248/7, Olomouc 77900, Czech Republic
| | - Renata Aiglova
- Department
of Internal Medicine I − Cardiology, Faculty of Medicine and
Dentistry, Palacky University and University
Hospital Olomouc, Zdravotniku 248/7, Olomouc 77900, Czech Republic
| | - Jiri Dokoupil
- The
first Department of Internal Medicine − Cardioangiology, Medical Faculty of Charles University in Hradec Kralove
and University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 50005, Czech Republic
| | - Juraj Hrecko
- The
first Department of Internal Medicine − Cardioangiology, Medical Faculty of Charles University in Hradec Kralove
and University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 50005, Czech Republic
| | - Radek Pudil
- The
first Department of Internal Medicine − Cardioangiology, Medical Faculty of Charles University in Hradec Kralove
and University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 50005, Czech Republic
| |
Collapse
|
5
|
Zhang J, Cheng L, Li Z, Li H, Liu Y, Zhan H, Xu H, Huang Y, Feng F, Li Y. Immune cells and related cytokines in dilated cardiomyopathy. Biomed Pharmacother 2024; 171:116159. [PMID: 38242041 DOI: 10.1016/j.biopha.2024.116159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is a non-ischemic cardiomyopathy involving one or more underlying etiologies. It is characterized by structural and functional dysfunction of the myocardium, potentially leading to fibrosis and ventricular remodeling, and an elevated risk of heart failure (HF). Although the pathogenesis of DCM remains unknown, compelling evidence suggests that DCM-triggered immune cells and inflammatory cascades play a crucial role in the occurrence and development of DCM. Various factors are linked to myocardial damage, inducing aberrant activation of the immune system and sustained inflammatory responses in DCM. The investigation of the immunopathogenesis of DCM also contributes to discovering new biomarkers and therapeutic targets. This review examines the roles of immune cells and related cytokines in DCM pathogenesis and explores immunotherapy strategies in DCM.
Collapse
Affiliation(s)
- Jingdi Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhan Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongmei Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoting Zhan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Honglin Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan Huang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Futai Feng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Wang J, Liu L, Liu C, Cheng N, Mao Q, Chen C, Hu J, He H, Hui X, Qu P, Lian W, Duan L, Dong Y, Liu Y, Li J. Identification and analysis of differential miRNA-mRNA interactions in coronary heart disease: an experimental screening approach. Front Cardiovasc Med 2023; 10:1186297. [PMID: 37965086 PMCID: PMC10642340 DOI: 10.3389/fcvm.2023.1186297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023] Open
Abstract
Objective This aim of this study is to screen the differential molecules of kidney deficiency and blood stasis (KDBS) syndrome in coronary heart disease by high-throughput sequencing. In addition, the study aims to verify the alterations in the expression levels of miR-4685-3p and its regulated downstream, namely, C1QC, C4, and C5, using quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA), and to determine whether the complement and coagulation cascade pathway is the specific pathogenic pathway. Methods Patients diagnosed with unstable angina pectoris with KDBS syndrome, patients with non-kidney deficiency blood stasis (NKDBS) syndrome, and a Normal group were recruited. The clinical symptoms of each group were further analyzed. Illumina's NextSeq 2000 sequencing platform and FastQC software were used for RNA sequencing and quality control. DESeq software was used for differential gene expression (DGE) analysis. qPCR and ELISA verification were performed on DGE analysis. Results The DGE profiles of 77 miRNA and 331 mRNA were selected. The GO enrichment analysis comprised 43 biological processes, 49 cell components, and 42 molecular functions. The KEGG enrichment results included 40 KEGG pathways. The PCR results showed that, compared with the Normal group, the miR-4685-3p levels decreased in the CHD_KDBS group (P = 0.001), and were found to be lower than those observed in the CHD_NKDBS group. The downstream mRNA C1 regulated by miR-4685-3p showed an increasing trend in the CHD_KDBS group, which was higher than that in the Normal group (P = 0.0019). The mRNA C4 and C5 in the CHD_KDBS group showed an upward trend, but the difference was not statistically significant. ELISA was utilized for the detection of proteins associated with the complement and coagulation cascade pathway. It was found that the expression level of C1 was significantly upregulated in the CHD_KDBS group compared with the Normal group (P < 0.0001), which was seen to be higher than that in the CHD_NKDBS group (P < 0.0001). The expression levels of C4 and C5 in the CHD_KDBS group were significantly lower than the Normal group, and were lower than that in the CHD_NKDBS group (P < 0.0001). Conclusion The occurrence of CHD_KDBS might be related to the activation of the complement and coagulation cascade pathway, which is demonstrated by the observed decrease in miR-4685-3p and the subsequent upregulation of its downstream C1QC. In addition, the expression levels of complement C4 and C5 were found to be decreased, which provided a research basis for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Lanchun Liu
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Chao Liu
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Nuo Cheng
- Department of Graduate, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyuan Mao
- Department of Oncology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Cong Chen
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Jun Hu
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Haoqiang He
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Xiaoshan Hui
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Peirong Qu
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Wenjing Lian
- Department of Graduate, Beijing University of Chinese Medicine, Beijing, China
| | - Lian Duan
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Yan Dong
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Jun Li
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| |
Collapse
|
7
|
Böhme R, Daniel C, Ferrazzi F, Angeloni M, Ekici AB, Winkler TH, Hilgers KF, Wellmann U, Voll RE, Amann K. Cardiovascular changes in the NZB/W F1 mouse model of lupus nephritis. Front Cardiovasc Med 2023; 10:1182193. [PMID: 37554366 PMCID: PMC10405627 DOI: 10.3389/fcvm.2023.1182193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Patients with systemic lupus erythematosus (SLE), an autoimmune disease, have a higher risk of cardiovascular (CV) disease and death. In addition, up to 40%-50% of SLE patients develop lupus nephritis (LN) and chronic kidney disease, which is an additional CV risk factor. Thus, the individual contributions of LN and other SLE-specific factors to CV events are unclear. METHODS In this study, we investigated the effect of LN on the development of CV changes using the female NZBxNZW F1 (NZB/W) mouse model of lupus-like disease, with female NZW mice as controls. Standard serologic, morphologic, immunohistologic, and molecular analyses were performed. In a separate group of NZB/W mice, systolic blood pressure (BP) was measured during the course of the disease using tail plethysmography. RESULTS Our data show marked CV changes in NZB/W mice, i.e., increased heart weight, hypertrophy of the left ventricle (LV) and septum, and increased wall thickness of the intramyocardial arteries and the aorta, which correlated with the progression of renal damage, but not with the age of the mice. In addition, systolic BP was increased in NZB/W mice only when kidney damage progressed and proteinuria was present. Pathway analysis based on gene expression data revealed a significant upregulation of the response to interferon beta in NZB/W mice with moderate kidney injury compared with NZB mice. Furthermore, IFI202b and IL-6 mRNA expression is correlated with CV changes. Multiple linear regression analysis demonstrated serum urea as a surrogate marker of kidney function and IFI202b expression as an independent predictor for LV wall thickness. In addition, deposition of complement factors CFD and C3c in hearts from NZB/W mice was seen, which correlated with the severity of kidney disease. CONCLUSIONS Thus, we postulate that the pathogenesis of CV disease in SLE is affected by renal impairment, i.e., LN, but it can also be partly influenced by lupus-specific cardiac expression of pro-inflammatory factors and complement deposition.
Collapse
Affiliation(s)
- Romy Böhme
- Department of Nephropathology, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, Erlangen, Germany
| | - Fulvia Ferrazzi
- Department of Nephropathology, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, Erlangen, Germany
- Institute of Pathology, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, Erlangen, Germany
| | - Miriam Angeloni
- Institute of Pathology, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, Erlangen, Germany
| | - Arif Bülent Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich–Alexander–Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Thomas H. Winkler
- Divison of Genetics, Department of Biology, Nikolaus–Fiebiger–Center of Molecular Medicine, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, Erlangen, Germany
| | - Karl-Friedrich Hilgers
- Department of Nephrology and Hypertension, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, Erlangen, Germany
| | - Ute Wellmann
- Divison of Genetics, Department of Biology, Nikolaus–Fiebiger–Center of Molecular Medicine, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, Erlangen, Germany
| | - Reinhard E. Voll
- Department of Rheumatology and Clinical Immunology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Ren J, Chen L, Chen X, Zhang N, Sun X, Song J. Acylation-stimulating protein and heart failure progression in arrhythmogenic right ventricular cardiomyopathy. ESC Heart Fail 2022; 10:492-501. [PMID: 36316820 PMCID: PMC9871714 DOI: 10.1002/ehf2.14218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/18/2022] [Accepted: 10/14/2022] [Indexed: 01/29/2023] Open
Abstract
AIMS Our previous studies suggested that the complement system was critical in the prognosis of arrhythmogenic right ventricular cardiomyopathy (ARVC). The acylation-stimulating protein (ASP), generated through the alternate complement pathway, was reported to regulate lipogenesis and triglyceride storage. This study aimed to investigate the role of ASP in predicting adverse cardiac events in an ARVC cohort. METHODS AND RESULTS We enrolled 111 ARVC patients and 106 healthy volunteers, and measured their plasma ASP levels using enzyme-linked immunosorbent assays. Plasma ASP levels were significantly higher in the ARVC patients than in the healthy controls (2325.22 ± 20.08 vs. 2189.75 ± 15.55, P < 0.001), with a similar trend observed in the myocardial explant assay. Spearman correlation analysis indicated plasma ASP level associated with cardiac structural (right ventricular internal dimension, P = 0.006) and functional remodelling (left ventricular ejection fraction, P = 0.002) in ARVC patients. The ARVC patients were followed up for an average of 17.79 ± 1.09 months. Heart failure-associated events (HFAEs) were defined as heart transplantation, on a cardiac transplant list, or death due to end-stage heart failure. Plasma ASP levels in patients with HFAEs were significantly higher than in those without clinical events (2486.03 ± 26.70 vs. 2268.83 ± 23.51, P < 0.001) or those with malignant arrhythmic events (2486.03 ± 26.70 vs. 2297.80 ± 60.46, P = 0.008). LASSO (least absolute shrinkage and selection operator) and multivariable Cox regression analyses showed the ASP level (HR = 1.004, 95% CI [1.002,1.006], P = 0.002) was an independent predictor for adverse HFAEs in ARVC patients. The spline-fitting procedure was applied to illustrate the HFAE-free probabilities at different time points. CONCLUSIONS Our results suggest that plasma ASP may be a useful biomarker in prediction of adverse HF-associated events in ARVC patients.
Collapse
Affiliation(s)
- Jie Ren
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ningning Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaogang Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
9
|
Rasquinha MT, Lasrado N, Petro-Turnquist E, Weaver E, Venkataraman T, Anderson D, Laserson U, Larman HB, Reddy J. PhIP-Seq Reveals Autoantibodies for Ubiquitously Expressed Antigens in Viral Myocarditis. BIOLOGY 2022; 11:biology11071055. [PMID: 36101433 PMCID: PMC9312229 DOI: 10.3390/biology11071055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022]
Abstract
Simple Summary Myocarditis is the inflammation of the heart muscle, and viral infections are a common cause of this disease. Myocarditis in some patients can progress to dilated cardiomyopathy (DCM). The mouse model of coxsackievirus B3 (CVB3) is commonly used to understand this disease progression in DCM patients. In this paper, we have attempted to analyze antibodies for heart antigens that could be produced as a result of heart damage in animals infected with CVB3 using a technique called Phage ImmunoPrecipitation Sequencing (PhIP-Seq). The analyses led us to identify antibodies for several proteins that were not previously reported that may have relevance to human disease. Abstract Enteroviruses such as group B coxsackieviruses (CVB) are commonly suspected as causes of myocarditis that can lead to dilated cardiomyopathy (DCM), and the mouse model of CVB3 myocarditis is routinely used to understand DCM pathogenesis. Mechanistically, autoimmunity is suspected due to the presence of autoantibodies for select antigens. However, their role continues to be enigmatic, which also raises the question of whether the breadth of autoantibodies is sufficiently characterized. Here, we attempted to comprehensively analyze the autoantibody repertoire using Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a versatile and high-throughput platform, in the mouse model of CVB3 myocarditis. First, PhIP-Seq analysis using the VirScan library revealed antibody reactivity only to CVB3 in the infected group but not in controls, thus validating the technique in this model. Second, using the mouse peptide library, we detected autoantibodies to 32 peptides from 25 proteins in infected animals that are ubiquitously expressed and have not been previously reported. Third, by using ELISA as a secondary assay, we confirmed antibody reactivity in sera from CVB3-infected animals to cytochrome c oxidase assembly factor 4 homolog (COA4) and phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1), indicating the specificity of antibody detection by PhIP-Seq technology. Fourth, we noted similar antibody reactivity patterns in CVB3 and CVB4 infections, suggesting that the COA4- and PIK3AP1-reactive antibodies could be common to multiple CVB infections. The specificity of the autoantibodies was affirmed with influenza-infected animals that showed no reactivity to any of the antigens tested. Taken together, our data suggest that the autoantibodies identified by PhIP-Seq may have relevance to CVB pathogenesis, with a possibility that similar reactivity could be expected in human DCM patients.
Collapse
Affiliation(s)
- Mahima T. Rasquinha
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erika Petro-Turnquist
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (E.W.)
| | - Eric Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (E.W.)
| | - Thiagarajan Venkataraman
- Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Daniel Anderson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Uri Laserson
- Department of Genetics and Genomic Sciences and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - H. Benjamin Larman
- Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
- Correspondence: (H.B.L.); (J.R.); Tel.: +1-(410)-614-6525 (H.B.L); +1-(402)-472-8541 (J.R.)
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
- Correspondence: (H.B.L.); (J.R.); Tel.: +1-(410)-614-6525 (H.B.L); +1-(402)-472-8541 (J.R.)
| |
Collapse
|
10
|
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, is a global pandemic impacting 254 million people in 190 countries. Comorbidities, particularly cardiovascular disease, diabetes, and hypertension, increase the risk of infection and poor outcomes. SARS-CoV-2 enters host cells through the angiotensin-converting enzyme-2 receptor, generating inflammation and cytokine storm, often resulting in multiorgan failure. The mechanisms and effects of COVID-19 on patients with high-risk diabetes are not yet completely understood. In this review, we discuss the variety of coronaviruses, structure of SARS-CoV-2, mutations in SARS-CoV-2 spike proteins, receptors associated with viral host entry, and disease progression. Furthermore, we focus on possible mechanisms of SARS-CoV-2 in diabetes, leading to inflammation and heart failure. Finally, we discuss existing therapeutic approaches, unanswered questions, and future directions.
Collapse
Affiliation(s)
- Chandrakala Aluganti Narasimhulu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| |
Collapse
|
11
|
Zhang X, Sun Y, Wang N, Zhang Y, Xia Y, Liu Y. Immunomodulatory Treatment Strategies Targeting B Cells for Heart Failure. Front Pharmacol 2022; 13:854592. [PMID: 35350762 PMCID: PMC8957947 DOI: 10.3389/fphar.2022.854592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cardio-oncology, a nascent specialty, has evolved as a concerted strategy to address the cardiovascular complications of cancer therapies. On the other hand, emerging evidence has shown that some anti-tumor drugs, such as CD20-targeted rotuximab, also have markedly cardioprotective effects in addition to treating cancers. Rituximab is a CD20-targeted monoclonal antibody and kill tumor B-cells through antibody-mediated and antibody-independent pathways, indicating that B cells participate and promote the progression of cardiovascular diseases. In this review, we mainly present the evidence that B cells contribute to the development of hypertrophy, inflammation, and maladaptive tissue remodeling, with the aim of proposing novel immunomodulatory therapeutic strategies targeting B cells and their products for the treatment of heart failure.
Collapse
Affiliation(s)
- Xinxin Zhang
- Heart Failure and Structural Cardiology Division, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuxi Sun
- Heart Failure and Structural Cardiology Division, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ning Wang
- Heart Failure and Structural Cardiology Division, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanli Zhang
- Heart Failure and Structural Cardiology Division, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunlong Xia
- Heart Failure and Structural Cardiology Division, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Heart Failure and Structural Cardiology Division, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Sintou A, Mansfield C, Iacob A, Chowdhury RA, Narodden S, Rothery SM, Podovei R, Sanchez-Alonso JL, Ferraro E, Swiatlowska P, Harding SE, Prasad S, Rosenthal N, Gorelik J, Sattler S. Mediastinal Lymphadenopathy, Class-Switched Auto-Antibodies and Myocardial Immune-Complexes During Heart Failure in Rodents and Humans. Front Cell Dev Biol 2020; 8:695. [PMID: 32850816 PMCID: PMC7426467 DOI: 10.3389/fcell.2020.00695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/08/2020] [Indexed: 11/13/2022] Open
Abstract
Mediastinal lymphadenopathy and auto-antibodies are clinical phenomena during ischemic heart failure pointing to an autoimmune response against the heart. T and B cells have been convincingly demonstrated to be activated after myocardial infarction, a prerequisite for the generation of mature auto-antibodies. Yet, little is known about the immunoglobulin isotype repertoire thus pathological potential of anti-heart auto-antibodies during heart failure. We obtained human myocardial tissue from ischemic heart failure patients and induced experimental MI in rats. We found that anti-heart autoimmunity persists during heart failure. Rat mediastinal lymph nodes are enlarged and contain active secondary follicles with mature isotype-switched IgG2a B cells. Mature IgG2a auto-antibodies specific for cardiac antigens are present in rat heart failure serum, and IgG and complement C3 deposits are evident in heart failure tissue of both rats and human patients. Previously established myocardial inflammation, and the herein provided proof of B cell maturation in lymph nodes and myocardial deposition of mature auto-antibodies, provide all the hallmark signs of an established autoimmune response in chronic heart failure.
Collapse
Affiliation(s)
- Amalia Sintou
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Catherine Mansfield
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alma Iacob
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - Rasheda A. Chowdhury
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Salomon Narodden
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen M. Rothery
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Robert Podovei
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Elisa Ferraro
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pamela Swiatlowska
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sian E. Harding
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sanjay Prasad
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - Nadia Rosenthal
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
García-Rivas G, Castillo EC, Gonzalez-Gil AM, Maravillas-Montero JL, Brunck M, Torres-Quintanilla A, Elizondo-Montemayor L, Torre-Amione G. The role of B cells in heart failure and implications for future immunomodulatory treatment strategies. ESC Heart Fail 2020; 7:1387-1399. [PMID: 32533765 PMCID: PMC7373901 DOI: 10.1002/ehf2.12744] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
Despite numerous demonstrations that the immune system is activated in heart failure, negatively affecting patients' outcomes, no definitive treatment strategy exists directed to modulate the immune system. In this review, we present the evidence that B cells contribute to the development of hypertrophy, inflammation, and maladaptive tissue remodelling. B cells produce antibodies that interfere with cardiomyocyte function, which culminates as the result of recruitment and activation of a variety of innate and structural cell populations, including neutrophils, macrophages, fibroblasts, and T cells. As B cells appear as active players in heart failure, we propose here novel immunomodulatory therapeutic strategies that target B cells and their products.
Collapse
Affiliation(s)
- Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Nuevo León, Mexico.,Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, Centro de Investigación Biomédica, San Pedro Garza García, Nuevo León, Mexico
| | - Elena Cristina Castillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Nuevo León, Mexico
| | - Adrian M Gonzalez-Gil
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Nuevo León, Mexico
| | - José Luis Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Marion Brunck
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Nuevo León, Mexico
| | - Alejandro Torres-Quintanilla
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Nuevo León, Mexico
| | - Leticia Elizondo-Montemayor
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Nuevo León, Mexico.,Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, Centro de Investigación Biomédica, San Pedro Garza García, Nuevo León, Mexico
| | - Guillermo Torre-Amione
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Nuevo León, Mexico.,Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, Centro de Investigación Biomédica, San Pedro Garza García, Nuevo León, Mexico.,Weill Cornell Medical College, Methodist DeBakey Heart & Vascular Center, The Methodist Hospital, Houston, TX, USA
| |
Collapse
|
14
|
van den Hoogen P, de Jager SCA, Huibers MMH, Schoneveld AH, Puspitasari YM, Valstar GB, Oerlemans MIFJ, de Weger RA, Doevendans PA, den Ruijter HM, Laman JD, Vink A, Sluijter JPG. Increased circulating IgG levels, myocardial immune cells and IgG deposits support a role for an immune response in pre- and end-stage heart failure. J Cell Mol Med 2019; 23:7505-7516. [PMID: 31557411 PMCID: PMC6815814 DOI: 10.1111/jcmm.14619] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/17/2019] [Accepted: 08/03/2019] [Indexed: 12/22/2022] Open
Abstract
The chronic inflammatory response plays an important role in adverse cardiac remodelling and the development of heart failure (HF). There is also evidence that in the pathogenesis of several cardiovascular diseases, chronic inflammation is accompanied by antibody and complement deposits in the heart, suggestive of a true autoimmune response. However, the role of antibody-mediated immune responses in HF progression is less clear. We assessed whether immune cell infiltration and immunoglobulin levels are associated with HF type and disease stage, taking sex differences into account. We found IgG deposits and increased infiltration of immune cells in the affected myocardium of patients with end-stage HF with reduced ejection fraction (HFrEF, n = 20). Circulating levels of IgG1 and IgG3 were elevated in these patients. Furthermore, the percentage of transitional/regulatory B cells was decreased (from 6.9% to 2.4%) compared with healthy controls (n = 5). Similarly, increased levels of circulating IgG1 and IgG3 were observed in men with left ventricular diastolic dysfunction (LVDD, n = 5), possibly an early stage of HF with preserved EF (HFpEF). In conclusion, IgG deposits and infiltrates of immune cells are present in end-stage HFrEF. In addition, both LVDD patients and end-stage HFrEF patients show elevated levels of circulating IgG1 and IgG3, suggesting an antibody-mediated immune response upon cardiac remodelling, which in the early phase of remodelling appear to differ between men and women. These immunoglobulin subclasses might be used as marker for pre-stage HF and its progression. Future identification of auto-antigens might open possibilities for new therapeutic interventions.
Collapse
Affiliation(s)
- Patricia van den Hoogen
- Laboratory of Experimental Cardiology, UMC Utrecht Regenerative Medicine CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Saskia C. A. de Jager
- Laboratory of Experimental Cardiology, UMC Utrecht Regenerative Medicine CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Manon M. H. Huibers
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Arjan H. Schoneveld
- Laboratory of Clinical Chemistry & Haematology, ARCADIAUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Yustina M. Puspitasari
- Laboratory of Experimental Cardiology, UMC Utrecht Regenerative Medicine CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
- Center for Molecular CardiologyUniversity of ZurichZurichSwitzerland
| | - Gideon B. Valstar
- Laboratory of Experimental Cardiology, UMC Utrecht Regenerative Medicine CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Roel A. de Weger
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Pieter A. Doevendans
- Department of CardiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Heart and Lungs, Experimental CardiologyNetherlands Heart Institute (NHI)UtrechtThe Netherlands
- Centraal Militair Hospitaal (CMH)UtrechtThe Netherlands
| | - Hester M. den Ruijter
- Laboratory of Experimental Cardiology, UMC Utrecht Regenerative Medicine CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jon D. Laman
- Department of Biomedical Sciences of Cells and Systems (BSCS)University Medical Center GroningenGroningenThe Netherlands
| | - Aryan Vink
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Joost P. G. Sluijter
- Laboratory of Experimental Cardiology, UMC Utrecht Regenerative Medicine CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
15
|
Patel JK. The β 1-Adrenergic Receptor IgG Subclass 3 Autoantibody in Dilated Cardiomyopathy: Friend or Foe? J Am Coll Cardiol 2019; 69:978-980. [PMID: 28231951 DOI: 10.1016/j.jacc.2017.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
|
16
|
Hoffman WH, Sharma M, Cihakova D, Talor MV, Rose NR, Mohanakumar T, Passmore GG. Cardiac antibody production to self-antigens in children and adolescents during and following the correction of severe diabetic ketoacidosis. Autoimmunity 2016; 49:188-96. [PMID: 26911924 DOI: 10.3109/08916934.2015.1134509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetic cardiomyopathy (DC) is an independent phenotype of diabetic cardiovascular disease. The understanding of the pathogenesis of DC in young patients with type 1 diabetes (T1D) is limited. The cardiac insults of diabetic ketoacidosis (DKA) and progression of DC could include development of antibodies (Abs) to cardiac self-antigens (SAgs) such as: myosin (M), vimentin (V) and k-alpha 1 tubulin (Kα1T). The goal of this study is to determine if the insults of severe DKA and its inflammatory cascade are associated with immune responses to SAgs. Development of Abs to the SAgs were determined by an ELISA using sera collected at three time points in relation to severe DKA (pH < 7.2). Results demonstrate significant differences between the development of Abs to VIM and a previously reported diastolic abnormality (DA) during DKA and its treatment and a NDA group at 2-3 months post DKA (p = 0.0452). A significant association is present between T1D duration (<3 years) and Abs to Kα1T (p = 0.0134). Further, Abs to MYO and VIM are associated with inflammatory cytokines. We propose that severe DKA initiates the synthesis of Abs to cardiac SAgs that are involved in the early immunopathogenesis of DC in young patients with T1D.
Collapse
Affiliation(s)
- William H Hoffman
- a Department of Pediatrics , Georgia Regents University (Medical College of Georgia) , Augusta , GA , USA
| | - Monal Sharma
- b Department of Surgery , Washington University School of Medicine , St. Louis, MO , USA
| | - Daniela Cihakova
- c Department of Pathology , The Johns Hopkins University School of Medicine, The William H. Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health , Baltimore , MD , USA
| | - Monica V Talor
- d Department of Pathology , The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Noel R Rose
- c Department of Pathology , The Johns Hopkins University School of Medicine, The William H. Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health , Baltimore , MD , USA
| | - T Mohanakumar
- e Departments of Surgery , Pathology and Immunology, Washington University School of Medicine , St. Louis, MO , USA , and
| | - Gregory G Passmore
- f Medical Laboratory, Imaging and Radiologic Sciences, Georgia Regents University , Augusta , GA , USA
| |
Collapse
|
17
|
Delgado C, Ruiz-Hurtado G, Gómez-Hurtado N, González-Ramos S, Rueda A, Benito G, Prieto P, Zaragoza C, Delicado EG, Pérez-Sen R, Miras-Portugal MT, Núñez G, Boscá L, Fernández-Velasco M. NOD1, a new player in cardiac function and calcium handling. Cardiovasc Res 2015; 106:375-386. [PMID: 25824149 DOI: 10.1093/cvr/cvv118] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 03/05/2015] [Indexed: 02/07/2023] Open
Abstract
AIMS Inflammation is a significant contributor to cardiovascular disease and its complications; however, whether the myocardial inflammatory response is harmonized after cardiac injury remains to be determined. Some receptors of the innate immune system, including the nucleotide-binding oligomerization domain-like receptors (NLRs), play key roles in the host response after cardiac damage. Nucleotide-binding oligomerization domain containing 1 (NOD1), a member of the NLR family, is expressed in the heart, but its functional role has not been elucidated. We determine whether selective NOD1 activation modulates cardiac function and Ca(2+) signalling. METHODS AND RESULTS Mice were treated for 3 days with the selective NOD1 agonist C12-iE-DAP (iE-DAP), and cardiac function and Ca(2+) cycling were assessed. We found that iE-DAP treatment resulted in cardiac dysfunction, measured as a decrease in ejection fraction and fractional shortening. Cardiomyocytes isolated from iE-DAP-treated mice displayed a decrease in the L-type Ca(2+) current, [Ca(2+)]i transients and Ca(2+) load, and decreased expression of phospho-phospholamban, sarcoplasmic reticulum-ATPase, and Na(+)-Ca(2+) exchanger. Furthermore, iE-DAP prompted 'diastolic Ca(2+) leak' in cardiomyocytes, resulting from increased Ca(2+) spark frequency and RyR2 over-phosphorylation. Importantly, these iE-DAP-induced changes in Ca(2+) cycling were lost in NOD1(-/-) mice, indicating that iE-DAP exerts its actions through NOD1. Co-treatment of mice with iE-DAP and a selective inhibitor of NF-κB (BAY11-7082) prevented cardiac dysfunction and Ca(2+) handling impairment induced by iE-DAP. CONCLUSION Our data provide the first evidence that NOD1 activation induces cardiac dysfunction associated with excitation-contraction coupling impairment through NF-κB activation and uncover a new pro-inflammatory player in the regulation of cardiovascular function.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Calcium/metabolism
- Calcium Channels, L-Type/metabolism
- Calcium-Binding Proteins/metabolism
- Cells, Cultured
- Excitation Contraction Coupling/drug effects
- Inflammation Mediators/agonists
- Inflammation Mediators/antagonists & inhibitors
- Inflammation Mediators/metabolism
- Male
- Membrane Potentials
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- NF-kappa B/metabolism
- Nod1 Signaling Adaptor Protein/agonists
- Nod1 Signaling Adaptor Protein/antagonists & inhibitors
- Nod1 Signaling Adaptor Protein/deficiency
- Nod1 Signaling Adaptor Protein/genetics
- Nod1 Signaling Adaptor Protein/metabolism
- Phosphorylation
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Sodium-Calcium Exchanger/metabolism
- Stroke Volume
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Function, Left/drug effects
Collapse
Affiliation(s)
- Carmen Delgado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Instituto de Investigación i + 12 Hospital Universitario 12 de Octubre and Instituto Pluridisciplinar, UCM, Madrid, Spain
| | - Nieves Gómez-Hurtado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Gemma Benito
- Instituto de Investigación Hospital Universitario La PAZ, IDIPAZ, Madrid, Spain
| | - Patricia Prieto
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carlos Zaragoza
- Department of Cardiology, University Hospital Ramón y Cajal/University Francisco de Vitoria, Madrid, Spain
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria e Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense, Madrid, Spain
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria e Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense, Madrid, Spain
| | - Maria Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria e Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense, Madrid, Spain
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | |
Collapse
|
18
|
Ryan TD, Gupta A, Gupta D, Goldenberg P, Taylor MD, Lorts A, Jefferies JL. Dilated cardiomyopathy in a 32-year-old woman with Russell-Silver syndrome. Cardiovasc Pathol 2013; 23:21-7. [PMID: 24075556 DOI: 10.1016/j.carpath.2013.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/08/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022] Open
Abstract
INTRODUCTION Russell-Silver Syndrome (RSS) is a genetically determined condition characterized by severe intrauterine and postnatal growth retardation; relative macrocephaly; a small, triangular face; and fifth-finger clinodactyly. The etiology of RSS involves epigenetic regulation through either uniparental disomy or genomic imprinting via DNA methylation. There has been no documented association between RSS and cardiomyopathy. METHODS We present an original case of a 32-year-old woman with RSS with dilated a cardiomyopathy who on cardiac biopsy showed occasional hypertrophic and atrophic myocytes with no evidence of inflammation, abnormal sarcomeres and disintegration of the Z bands on ultrastructural analysis, abnormal desmin, and normal C9 immunoreactivity. CONCLUSION This case represents the first reported association between RSS and cardiomyopathy. Given the complex mechanisms of disease etiology in RSS, this novel case provides insights into the mechanism of progressive dilated cardiomyopathy in an older individual with RSS.
Collapse
Affiliation(s)
- Thomas D Ryan
- The Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Prohászka Z, Munthe-Fog L, Ueland T, Gombos T, Yndestad A, Förhécz Z, Skjoedt MO, Pozsonyi Z, Gustavsen A, Jánoskuti L, Karádi I, Gullestad L, Dahl CP, Askevold ET, Füst G, Aukrust P, Mollnes TE, Garred P. Association of ficolin-3 with severity and outcome of chronic heart failure. PLoS One 2013; 8:e60976. [PMID: 23596511 PMCID: PMC3626638 DOI: 10.1371/journal.pone.0060976] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/05/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Inflammatory mechanisms involving complement activation has been shown to take part in the pathophysiology of congestive heart failure, but the initiating mechanisms are unknown. We hypothesized that the main initiator molecules of the lectin complement pathway mannose-binding lectin (MBL), ficolin-2 and ficolin-3 were related to disease severity and outcome in chronic heart failure. METHODS AND RESULTS MBL, ficolin-2 and ficolin-3 plasma concentrations were determined in two consecutive cohorts comprising 190 patients from Hungary and 183 patients from Norway as well as controls. Disease severity and clinical parameters were determined at baseline, and all-cause mortality was registered after 5-years follow-up. In univariate analysis a low level of ficolin-3, but not that of MBL or ficolin-2, was significantly associated with advanced heart failure (New York Heart Association Class IV, p<0.001 for both cohorts) and showed inverse correlation with B- type natriuretic peptide (BNP) levels (r = -0.609, p<0.001 and r = -0.467, p<0.001, respectively). In multivariable Cox regression analysis, adjusted for age, gender and BNP, decreased plasma ficolin-3 was a significant predictor of mortality (HR 1.368, 95% CI 1.052-6.210; and HR 1.426, 95% CI 1.013-2.008, respectively). Low ficolin-3 levels were associated with increased complement activation product C3a and correspondingly decreased concentrations of complement factor C3. CONCLUSIONS This study provides evidence for an association of low ficolin-3 levels with advanced heart failure. Concordant results from two cohorts show that low levels of ficolin-3 are associated with advanced heart failure and outcome. The decrease of ficolin-3 was associated with increased complement activation.
Collapse
Affiliation(s)
- Zoltán Prohászka
- IIIrd Department of Internal Medicine, Semmelweis University, and Research Group of Inflammation Biology and Immunogenomics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Lea Munthe-Fog
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Thor Ueland
- The Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
| | - Timea Gombos
- IIIrd Department of Internal Medicine, Semmelweis University, and Research Group of Inflammation Biology and Immunogenomics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Arne Yndestad
- The Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
| | - Zsolt Förhécz
- IIIrd Department of Internal Medicine, Semmelweis University, and Research Group of Inflammation Biology and Immunogenomics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Zoltan Pozsonyi
- IIIrd Department of Internal Medicine, Semmelweis University, and Research Group of Inflammation Biology and Immunogenomics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Alice Gustavsen
- Department of Immunology, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
| | - Lívia Jánoskuti
- IIIrd Department of Internal Medicine, Semmelweis University, and Research Group of Inflammation Biology and Immunogenomics, Hungarian Academy of Sciences, Budapest, Hungary
| | - István Karádi
- IIIrd Department of Internal Medicine, Semmelweis University, and Research Group of Inflammation Biology and Immunogenomics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Lars Gullestad
- Center for Heart Failure Research, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
| | - Christen P. Dahl
- The Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
| | - Erik T. Askevold
- The Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
| | - George Füst
- IIIrd Department of Internal Medicine, Semmelweis University, and Research Group of Inflammation Biology and Immunogenomics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Pål Aukrust
- The Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
| | - Tom E. Mollnes
- Department of Immunology, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
20
|
Syriga M, Mavroidis M. Complement system activation in cardiac and skeletal muscle pathology: friend or foe? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:207-18. [PMID: 23402029 DOI: 10.1007/978-1-4614-4118-2_14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A major goal in current cardiology practice is to determine optimal strategies for minimizing myocardial necrosis and optimizing cardiac repair following an acute myocardial infarction. Temporally regulated activation and suppression of innate immunity may be critical for achieving this goal. Extensive experimental data in various animal models have indicated that inhibiting complement activation offers protection to cardiac tissue after ischemia/reperfusion. However, the results of clinical studies using complement inhibitors (mainly at the C5 level) in patients with acute myocardial infarction have largely been disappointing. In cases in which complement activation participates in the initial events of muscle cell destruction, as in autoimmune myocarditis or autoimmune muscle disorders, inhibition of complement activation is expected to prove a successful treatment. In other pathologic conditions in which complement is recruited by degenerating or dying muscle cells, as in ischemia, the ideal approach is probably to modulate rather than abruptly blunt complement activation. Beneficial effects of complement action with regard to waste disposal, recruitment of stem cells, regeneration, angiogenesis, and better utilization of energy sources under hypoxic conditions may also prove important for successful disease treatment. Patient outcome after myocardial infarction almost certainly depend upon the combined activation of several distinct but potentially interrelated signaling pathways, suggesting that a combination of treatments targeted to different pathways should be the therapy of choice, and modulation of complement could be one of them.
Collapse
Affiliation(s)
- Msaro Syriga
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | | |
Collapse
|
21
|
Yu JF, Leng J, Shen T, Zhou CF, Xu H, Jiang T, Xu SH, Zhu QX. Possible role of complement activation in renal impairment in trichloroethylene-sensitized guinea pigs. Toxicology 2012; 302:172-8. [DOI: 10.1016/j.tox.2012.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 11/16/2022]
|
22
|
Gombos T, Förhécz Z, Pozsonyi Z, Széplaki G, Kunde J, Füst G, Jánoskuti L, Karádi I, Prohászka Z. Complement anaphylatoxin C3a as a novel independent prognostic marker in heart failure. Clin Res Cardiol 2012; 101:607-15. [PMID: 22373875 DOI: 10.1007/s00392-012-0432-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate complement activation in a heart failure cohort. Based on their powerful biological activity, we hypothesized that the levels of anaphylatoxin C3a are related to pathological signs and outcomes in heart failure. DESIGN, SETTING AND PATIENTS Complement activation products C3a and SC5b9 were determined in 182 consecutive CHF patients (single centre, prospective cohort study), with a left ventricular ejection fraction <45%. Mortality and re-hospitalisation due to the progression of CHF were assessed after a median follow-up of 14 months. INTERVENTIONS None. RESULTS In the univariate analysis, high level of anaphylatoxin C3a was significantly associated with clinical events (p < 0.0001), whereas SC5b9 showed a tendency of association (p = 0.094). In multivariable Cox analysis, adjusted for age, NT-proBNP, diastolic blood pressure, body mass index (BMI), haemoglobin and creatinine levels, C3a was a significant predictor of HF-related re-hospitalization or death (HR 1.189 per 1-SD increase, 95% CI 1.023-1.383), and of cardiovascular events or death (HR 1.302, CI 1.083-1.566). C3a was strongly associated with the presence of peripheral oedema, inflammatory markers (CRP, prealbumin, IL-6, sTNFRI, sTNFRII), heat-shock protein 70 levels and endothelial activation markers (von-Willebrand factor and endothelin-1). CONCLUSIONS Results of the present study showed that complement activation is strongly linked to unfavourable outcomes in heart failure. High levels of anaphylatoxin C3a predicted re-hospitalization, cardiovascular events and mortality in adjusted survival model. Increased C3a levels were associated with biomarkers of acute-phase reaction, inflammation, cellular stress response, endothelial-cell activation and oedematous complications independently from disease severity.
Collapse
Affiliation(s)
- Tímea Gombos
- IIIrd Department of Internal Medicine, Semmelweis University, Kútvölgyi út 4, Budapest 1125, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tegla CA, Cudrici C, Patel S, Trippe R, Rus V, Niculescu F, Rus H. Membrane attack by complement: the assembly and biology of terminal complement complexes. Immunol Res 2012; 51:45-60. [PMID: 21850539 DOI: 10.1007/s12026-011-8239-5] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complement system activation plays an important role in both innate and acquired immunity. Activation of the complement and the subsequent formation of C5b-9 channels (the membrane attack complex) on the cell membranes lead to cell death. However, when the number of channels assembled on the surface of nucleated cells is limited, sublytic C5b-9 can induce cell cycle progression by activating signal transduction pathways and transcription factors and inhibiting apoptosis. This induction by C5b-9 is dependent upon the activation of the phosphatidylinositol 3-kinase/Akt/FOXO1 and ERK1 pathways in a Gi protein-dependent manner. C5b-9 induces sequential activation of CDK4 and CDK2, enabling the G1/S-phase transition and cellular proliferation. In addition, it induces RGC-32, a novel gene that plays a role in cell cycle activation by interacting with Akt and the cyclin B1-CDC2 complex. C5b-9 also inhibits apoptosis by inducing the phosphorylation of Bad and blocking the activation of FLIP, caspase-8, and Bid cleavage. Thus, sublytic C5b-9 plays an important role in cell activation, proliferation, and differentiation, thereby contributing to the maintenance of cell and tissue homeostasis.
Collapse
Affiliation(s)
- Cosmin A Tegla
- Department of Neurology, School of Medicine, University of Maryland, 655 W. Baltimore Street, BRB 12-033, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Recent studies suggest that the heart possesses an innate immune system that is intended to delimit tissue injury, as well as orchestrate homoeostatic responses, within the heart. The extant literature suggests that this intrinsic stress response system is mediated, at least in part, by a family of pattern recognition receptors, most notably the Toll-like receptors. Although the innate immune system provides a short-term adaptive response to tissue injury, the beneficial effects of this phylogenetically ancient system may be lost if innate immune signaling becomes sustained and/or excessive; in which case, the salutary effects of activation of these pathways are contravened by the known deleterious effects of inflammatory signaling. Herein, the biology of innate immune signaling in the heart is reviewed, as well as the literature suggesting that the innate immune system is involved in the pathogenesis of atherosclerosis, acute coronary syndromes, stroke, viral myocarditis, sepsis, ischemia/reperfusion injury, and heart failure. The review concludes by discussing new therapies that are being developed to modulate the innate immune system.
Collapse
Affiliation(s)
- Douglas L Mann
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
25
|
Kleinbongard P, Schulz R, Heusch G. TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail Rev 2011; 16:49-69. [PMID: 20571888 DOI: 10.1007/s10741-010-9180-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TNFα is crucially involved in the pathogenesis and progression of myocardial ischemia/reperfusion injury and heart failure. The formation and release of TNFα and its downstream signal transduction cascade following activation of its two receptor subtypes are characterized. Myocardial TNFα and TNF receptor activation have an ambivalent role in myocardial ischemia/reperfusion injury and protection from it. Excessive TNFα expression and subsequent cardiomyocyte TNF receptor type 1 stimulation induce contractile dysfunction, hypertrophy, fibrosis and cell death, while a lower TNFα concentration and subsequent cardiomyocyte TNF receptor type 2 stimulation are protective. Apart from its concentration and receptor subtype, the myocardial action of TNFα depends on the duration of its exposure and its localization. While detrimental during sustained ischemia, TNFα contributes to ischemic preconditioning protection, no matter whether it is the first, second or third window of protection, and both TNF receptors are involved in the protective signal transduction cascade. Finally, the available clinical attempts to antagonize TNFα in cardiovascular disease, notably heart failure, are critically discussed.
Collapse
Affiliation(s)
- Petra Kleinbongard
- Institut für Pathophysiologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | | | | |
Collapse
|
26
|
She RC, Hammond EH. Utility of immunofluorescence and electron microscopy in endomyocardial biopsies from patients with unexplained heart failure. Cardiovasc Pathol 2010; 19:e99-105. [DOI: 10.1016/j.carpath.2009.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 03/07/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022] Open
|
27
|
Singh MV, Kapoun A, Higgins L, Kutschke W, Thurman JM, Zhang R, Singh M, Yang J, Guan X, Lowe JS, Weiss RM, Zimmermann K, Yull FE, Blackwell TS, Mohler PJ, Anderson ME. Ca2+/calmodulin-dependent kinase II triggers cell membrane injury by inducing complement factor B gene expression in the mouse heart. J Clin Invest 2009; 119:986-96. [PMID: 19273909 DOI: 10.1172/jci35814] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 01/21/2009] [Indexed: 01/04/2023] Open
Abstract
Myocardial Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibition improves cardiac function following myocardial infarction (MI), but the CaMKII-dependent pathways that participate in myocardial stress responses are incompletely understood. To address this issue, we sought to determine the transcriptional consequences of myocardial CaMKII inhibition after MI. We performed gene expression profiling in mouse hearts with cardiomyocyte-delimited transgenic expression of either a CaMKII inhibitory peptide (AC3-I) or a scrambled control peptide (AC3-C) following MI. Of the 8,600 mRNAs examined, 156 were substantially modulated by MI, and nearly half of these showed markedly altered responses to MI with CaMKII inhibition. CaMKII inhibition substantially reduced the MI-triggered upregulation of a constellation of proinflammatory genes. We studied 1 of these proinflammatory genes, complement factor B (Cfb), in detail, because complement proteins secreted by cells other than cardiomyocytes can induce sarcolemmal injury during MI. CFB protein expression in cardiomyocytes was triggered by CaMKII activation of the NF-kappaB pathway during both MI and exposure to bacterial endotoxin. CaMKII inhibition suppressed NF-kappaB activity in vitro and in vivo and reduced Cfb expression and sarcolemmal injury. The Cfb-/- mice were partially protected from the adverse consequences of MI. Our findings demonstrate what we believe is a novel target for CaMKII in myocardial injury and suggest that CaMKII is broadly important for the genetic effects of MI in cardiomyocytes.
Collapse
Affiliation(s)
- Madhu V Singh
- Division of Cardiovascular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Induced B7-H1 expression on human renal tubular epithelial cells by the sublytic terminal complement complex C5b-9. Mol Immunol 2009; 46:375-83. [DOI: 10.1016/j.molimm.2008.10.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/17/2008] [Accepted: 10/20/2008] [Indexed: 11/22/2022]
|
29
|
Rampersad R, Barton A, Sadovsky Y, Nelson DM. The C5b-9 membrane attack complex of complement activation localizes to villous trophoblast injury in vivo and modulates human trophoblast function in vitro. Placenta 2008; 29:855-61. [PMID: 18783824 DOI: 10.1016/j.placenta.2008.07.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Revised: 07/11/2008] [Accepted: 07/22/2008] [Indexed: 12/31/2022]
Abstract
The complement system plays an important role in normal human pregnancy. Uncontrolled activation of this system has been associated with many disease states. We tested the hypothesis that the C5b-9 membrane attack complex (MAC) localizes to sites of villous injury and modulates trophoblast function. Placental sections from pregnancies with no complications, intrauterine growth restriction, or preeclampsia were immunostained and the surface density for MAC and fibrin was determined by morphometric analysis. Primary cytotrophoblasts from term placentas were cultured in a FiO(2) of <1%, 8% and 20% with 10% human serum containing active MAC or heat-inactivated control serum. Immunofluorescent MAC binding to trophoblast was quantified, and the neoepitopes formed in cytokeratin 18 filaments and poly-ADP-ribose polymerase during apoptosis were used to measure cell death. Trophoblast differentiation was assessed by HCG secretion, formation of syncytia, and expression of syncytin. MAC localized to fibrin deposits in normal placentas, and especially in placentas from IUGR and preeclampsia. MAC binding to cytotrophoblasts was inversely proportional to FiO(2) and enhanced apoptosis. MAC increased markers of differentiation in cultures at 72h (medium HCG, syncytia and syncytin expression). Our findings demonstrate that MAC associates with fibrin deposits at sites of villous injury in vivo. Hypoxia also enhances MAC deposition in cultured trophoblasts and MAC alters trophoblast function in a phenotype specific manner.
Collapse
Affiliation(s)
- R Rampersad
- Department of Obstetrics and Gynecology, Washington University, 4566 Scott Avenue, Saint Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
30
|
Baba A. Autoantigen Estimation and Simple Screening Assay Against Cardiodepressant Autoantibodies in Patients With Dilated Cardiomyopathy. Ther Apher Dial 2008; 12:109-16. [DOI: 10.1111/j.1744-9987.2008.00555.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Kallwellis-Opara A, Dörner A, Poller WC, Noutsias M, Kühl U, Schultheiss HP, Pauschinger M. Autoimmunological features in inflammatory cardiomyopathy. Clin Res Cardiol 2007; 96:469-80. [PMID: 17503113 DOI: 10.1007/s00392-007-0524-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 02/28/2007] [Indexed: 12/31/2022]
Abstract
During recent years, increasing evidence has been obtained that cellular as well as humoral autoimmunity is involved in the pathogenesis of dilated cardiomyopathy (DCM). The immune system is generally activated by viral infections with the objective of virus elimination from the myocardium. However, a relevant number of patients demonstrate viral persistence and/or chronic inflammation in the myocardium. This chronic myocardial inflammation, defined by chronic inflammation, is termed "inflammatory cardiomyopathy" according to the WHO classification of cardiomyopathies. Chronic inflammation is frequently followed by the development of autoimmunity. A breakdown in the control mechanisms protecting against autoimmune reactions by both presentation of normally not accessible self-antigens and bystander- activation, induced by the pathogen, leads to the formation of autoreactive antibodies and T cells. The auto-reactive antibodies interact directly with heart tissue resulting in altered signal transduction or complement activation, whereas the T cell-mediated mechanisms include direct attack by cytotoxic T cells or indirect effects of cytotoxic cytokines released by stimulated T cells or macrophages.
Collapse
Affiliation(s)
- Angela Kallwellis-Opara
- Charité - Universitätsmedizin Berlin, Campus Benjamin-Franklin, Medizinische Klinik II, Abteilung für Kardiologie und Pneumologie, Hindenburgdamm 30, 12200 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Dörner A, Kallwellis-Opara A, Pauschinger M, Kühl U, Schultheiss HP. Cardiac autoantibodies in viral myocarditis. Heart Fail Clin 2007; 1:333-43. [PMID: 17386858 DOI: 10.1016/j.hfc.2005.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Zimmermann O, Kochs M, Zwaka TP, Bienek-Ziolkowski M, Höher M, Hombach V, Torzewski J. Prognostic role of myocardial tumor necrosis factor-alpha and terminal complement complex expression in patients with dilated cardiomyopathy. Eur J Heart Fail 2007; 9:51-4. [PMID: 16730227 DOI: 10.1016/j.ejheart.2006.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 02/02/2006] [Accepted: 04/03/2006] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND In patients with dilated cardiomyopathy (DCM), elevated plasma levels of tumor necrosis factor-alpha (TNF-alpha) are associated with poor prognosis. The terminal complement complex (C5b-9) stimulates myocardial TNF-alpha expression. AIMS To investigate whether myocardial TNF-alpha and C5b-9 expression correlate with clinical outcome in DCM. METHODS AND RESULTS 71 patients with DCM underwent myocardial biopsy. Biopsies were analyzed for TNF-alpha, C5b-9, markers of inflammation and for viral genome. Patients were divided into three groups according to biopsy results: group A: no TNF-alpha and no C5b-9; group B: TNF-alpha or C5b-9; and group C: TNF-alpha and C5b-9. NYHA classification, ECG and echocardiography were documented. Patients received conventional treatment of heart failure and, in a few cases, additional treatment with interferon beta(1b) (virus positive) or prednisolone (inflammatory DCM). There were 13 patients (18%) in group A, 19 patients (27%) in group B, and 39 patients (55%) in group C. All groups had a similar and significant improvement in NYHA classification and echocardiographic parameters. TNF-alpha and C5b-9 did not significantly correlate with the presence of viral genome or with markers of inflammation. CONCLUSION TNF-alpha and C5b-9 are widely distributed in the myocardium of DCM patients. Neither of the antigens correlates with clinical outcome. Myocardial TNF-alpha may not be a useful prognostic marker in DCM.
Collapse
Affiliation(s)
- Oliver Zimmermann
- Department of Internal Medicine II-Cardiology, University of Ulm, Robert-Koch-Str. 8, 89081 Ulm, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Baba A, Yoshikawa T, Iwata M, Anzai T, Nakamura I, Wainai Y, Ogawa S, Fu M. Antigen-specific effects of autoantibodies against sarcolemmal Na–K-ATPase pump in immunized cardiomyopathic rabbits. Int J Cardiol 2006; 112:15-20. [PMID: 16863664 DOI: 10.1016/j.ijcard.2006.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVES We examine antigen-specific actions of autoantibodies directed against sarcolemmal Na-K-ATPase. BACKGROUND Autoantibodies against some receptors or pumps were detected in patients with dilated cardiomyopathy. Although immunoglobulin adsorption therapy improved cardiac function in such patients, direct pathogenic effects of autoantibodies remain to be proven. METHODS Japanese white rabbits were immunized once a month with purified Na-K-ATPase (NKA rabbits, n=10) or a synthetic peptide corresponding to the second extracellular loop of beta1-adrenergic receptors (beta rabbits, n=10), respectively. Control rabbits (n=10) received vehicle in the same manner. RESULTS At 6 months, cardiac hypertrophy along with increased left ventricular end-diastolic pressure was observed in both NKA and beta rabbits, and inhibitory G protein level increased in both NKA and beta rabbits. Histological findings showed similar myocyte hypertrophy and interstitial fibrosis in both rabbits. Enzymatic activities of Na-K-ATPase were lower in NKA rabbits than in other groups. Immunoblotting showed that alpha3-isoform of Na-K-ATPase was selectively reduced in myocardium from NKA rabbits. CONCLUSIONS Our present findings suggested that isoform-specific alterations of myocardial Na-K-ATPase activity were induced by immunizing rabbits. This was not secondary change due to cardiac hypertrophy. Thus, autoantibodies against sarcolemmal Na-K-ATPase have antigen-specific effect on the heart in vivo.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Autoantibodies/immunology
- Autoantigens/immunology
- Autoimmunity
- Cardiac Output/drug effects
- Cardiomyopathy, Dilated/immunology
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/physiopathology
- Cardiomyopathy, Hypertrophic/immunology
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- GTP-Binding Protein alpha Subunits, Gi-Go/immunology
- Heart Ventricles/diagnostic imaging
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Hypertrophy, Left Ventricular/immunology
- Immunization
- Immunoblotting
- Immunoglobulin G/administration & dosage
- Immunologic Factors/administration & dosage
- Male
- Myocardium/enzymology
- Myocardium/immunology
- Myocardium/pathology
- Rabbits
- Receptors, Adrenergic, beta-1/immunology
- Sarcolemma/enzymology
- Sarcolemma/immunology
- Sodium-Potassium-Exchanging ATPase/drug effects
- Sodium-Potassium-Exchanging ATPase/immunology
- Sodium-Potassium-Exchanging ATPase/metabolism
- Ultrasonography
- Ventricular Pressure/drug effects
Collapse
Affiliation(s)
- Akiyasu Baba
- Department of Medicine, Kitasato Institute Hospital, 5-9-1 Shirokane Minato-ku, Tokyo 108 8642, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zimmermann O, Kochs M, Zwaka TP, Kaya Z, Lepper PM, Bienek-Ziolkowski M, Hoher M, Hombach V, Torzewski J. Myocardial biopsy based classification and treatment in patients with dilated cardiomyopathy. Int J Cardiol 2006; 104:92-100. [PMID: 16137516 DOI: 10.1016/j.ijcard.2005.02.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 02/16/2005] [Accepted: 02/19/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND We investigated whether myocardial biopsy analysis for inflammation and viruses correlates with outcome in dilated cardiomyopathy. METHODS Myocardial biopsies of 82 patients were analyzed for HLAI, HLAII, CD54, CD2, CD68 and entero-/adenovirus. Ejection fraction was determined by left ventriculography. NYHA classification, electrocardiogram (ECG) and echocardiography were analyzed at first admission and for follow up. Patients were attributed to three groups: (A) no inflammation/no virus (B) inflammation/no virus (C) virus with/without inflammation. Patients not responding to conventional treatment of heart failure received interferon beta1b (group C) or prednisolone (group B). Median follow up was 7 months (group A), 11 months (group B) and 14.5 months (group C). RESULTS Thirty nine patients (48%) belonged to group A, 33 patients (40%) to group B, 10 patients (12%) to group C. Only enterovirus was detected. Ejection fraction at admission was worse for group B compared to group A (p=0.003). Groups A and B improved for echocardiography and NYHA (p< or =0.001). Group C improved for echocardiography only (p=0.031). Group B showed a better outcome for echocardiography (p=0.014) and NYHA (p=0.023) than group A. CONCLUSIONS Inflammatory cardiomyopathy shows the best outcome. Antiinflammatory or antiviral treatment may be an option in patients not responding to conventional therapy.
Collapse
Affiliation(s)
- Oliver Zimmermann
- Department of Internal Medicine II-Cardiology, University of Ulm, Robert-Koch-Str. 8, 89081 Ulm, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Oliveira GHM, Brann CN, Becker K, Thohan V, Koerner MM, Loebe M, Noon GP, Torre-Amione G. Dynamic expression of the membrane attack complex (MAC) of the complement system in failing human myocardium. Am J Cardiol 2006; 97:1626-9. [PMID: 16728227 DOI: 10.1016/j.amjcard.2005.12.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 12/20/2005] [Accepted: 12/20/2005] [Indexed: 02/08/2023]
Abstract
Inflammatory cytokine-mediated pathways are activated in heart failure and participate in the pathogenesis and progression of the disease. Another major response to inflammation is mediated through the complement system with the production of the membrane attack complex (MAC), a protein known to cause cell lysis and mediate apoptosis. It was postulated that the complement system is activated in patients with heart failure, and this study investigated whether hemodynamic conditions regulate this pathway. The expression of the MAC was assessed in myocardial biopsy samples of normal and failing hearts by immunohistochemistry and Western blot analysis. Myocardial samples from failing hearts were obtained before and after left ventricular assist device implantation. Immunohistochemical staining and Western blot analysis identified increased MAC expression in failing but not normal myocardium. After hemodynamic unloading with left ventricular assist device support, MAC expression returned to levels found in normal controls. In failing hearts, MAC expression did not differ between ischemic and nonischemic causes of heart failure. In conclusion, increased MAC expression in failing human hearts indicates that the complement system is activated in the heart failure milieu. Its removal after hemodynamic normalization is evidence of dynamic regulation, suggesting a pathogenic role for the MAC. These findings identify the complement system as part of a novel pathophysiologic path in heart failure that can potentially be targeted by future therapy.
Collapse
Affiliation(s)
- Guilherme H M Oliveira
- Baylor College of Medicine, Houston, Texas; Methodist DeBakey Heart Center, Houston, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Fairweather D, Frisancho-Kiss S, Njoku DB, Nyland JF, Kaya Z, Yusung SA, Davis SE, Frisancho JA, Barrett MA, Rose NR. Complement receptor 1 and 2 deficiency increases coxsackievirus B3-induced myocarditis, dilated cardiomyopathy, and heart failure by increasing macrophages, IL-1beta, and immune complex deposition in the heart. THE JOURNAL OF IMMUNOLOGY 2006; 176:3516-24. [PMID: 16517720 DOI: 10.4049/jimmunol.176.6.3516] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement and complement receptors (CR) play a central role in immune defense by initiating the rapid destruction of invading microorganisms, amplifying the innate and adaptive immune responses, and mediating solubilization and clearance of immune complexes. Defects in the expression of C or CR have been associated with loss of tolerance to self proteins and the development of immune complex-mediated autoimmune diseases such as systemic lupus erythematosus. In this study, we examined the role of CR on coxsackievirus B3 (CVB3)-induced myocarditis using mice deficient in CR1/2. We found that CR1/2 deficiency significantly increased acute CVB3 myocarditis and pericardial fibrosis resulting in early progression to dilated cardiomyopathy and heart failure. The increase in inflammation was not due to increased viral replication, which was not significantly altered in the hearts of CR1/2-deficient mice, but was associated with increased numbers of macrophages, IL-1beta levels, and immune complex deposition in the heart. The complement regulatory protein, CR1-related gene/protein Y (Crry), was increased on cardiac macrophage populations, while immature B220(low) B cells were increased in the spleen of CR1/2-deficient mice during acute CVB3-induced myocarditis. These results show that expression of CR1/2 is not necessary for effective clearance of CVB3 infection, but prevents immune-mediated damage to the heart.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Environmental Health Sciences, Johns Hopkins University and Bloomberg School of Public Health, 615 North Wolfe Street, Rm. E7628, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
von Haehling S, Doehner W, Anker SD. The roles of immunity and autoimmunity in chronic heart failure. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:155-68. [PMID: 16329662 DOI: 10.1007/3-540-30822-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chronic heart failure (CHF) represents a major public health burden in developed countries. The introduction of new treatments has helped to improve its prognosis in recent years. However, it is still not possible to directly target the immunological aspects of the disease. In fact, chronic immune activation with the up-regulation of pro-inflammatory substances in the plasma remains an important feature of the disease, independently of its aetiology. Autoimmune mechanisms play a significant role in a subgroup of patients with dilated cardiomyopathy. The interplay between the two systems has not been established so far. This review briefly summarizes immune and autoimmune mechanisms in CHF.
Collapse
Affiliation(s)
- S von Haehling
- Department of Clinical Cardiology, Imperial College School of Medicine, National Heart & Lung Institute, London, UK.
| | | | | |
Collapse
|
39
|
Staudt A, Dörr M, Staudt Y, Böhm M, Probst M, Empen K, Plötz S, Maschke HE, Hummel A, Baumann G, Felix SB. Role of immunoglobulin G3 subclass in dilated cardiomyopathy: results from protein A immunoadsorption. Am Heart J 2005; 150:729-36. [PMID: 16209975 DOI: 10.1016/j.ahj.2004.11.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 11/13/2004] [Indexed: 01/22/2023]
Abstract
BACKGROUND Immunoadsorption (IA) by anti-immunoglobulin G (anti-IgG) columns that effectively eliminates total IgG, including IgG3 subclass, represents an additional therapeutic approach in dilated cardiomyopathy (DCM). A recent study revealed that IA with protein A columns does not effectively remove IgG3 and does not induce hemodynamic improvement in DCM. METHODS Eighteen patients with DCM (left ventricular ejection fraction < or =30%) were included in this case-control study. In all patients, IA with protein A was performed in 4 courses, at 1-month intervals until month 3. Nine patients underwent protein A IA with an improved treatment regimen for IgG3 elimination. Data of these patients were compared retrospectively to existing findings for 9 comparable patients treated by protein A IA with ineffective IgG3 reduction. RESULTS In both groups, IA induced a comparable reduction of the total IgG level. However, reduction of the IgG3 level was different in the 2 groups (P < .001). Hemodynamics did not significantly change throughout the 3 months in the group with ineffective IgG3 reduction. In contrast, the group with improved IgG3 reduction demonstrated during the first IA course an increase in cardiac index from 2.2 +/- 0.1 to 2.8 +/- 0.2 L min(-1) m(-2) (P < .05). After 3 months before the last IA course, cardiac index was 2.2 +/- 0.1 L min(-1) m(-2) in the group with ineffective IgG3 elimination and 2.8 +/- 0.2 L min(-1) m(-2) in the group with improved IgG3 reduction (P < .01). In the group with ineffective IgG3 reduction, left ventricular ejection fraction increased after 3 months from 21.6 +/- 2% to 24.4 +/- 2% (NS), and from 24.3 +/- 2 to 34.7 +/- 4% in the group with improved IgG3 reduction (P < .05). CONCLUSIONS Autoantibodies belonging to IgG3 may play an important role in cardiac dysfunction of patients with DCM. Protein A IA in conjunction with an improved treatment regimen for IgG3 elimination induces hemodynamic benefit in patients suffering from DCM.
Collapse
Affiliation(s)
- Alexander Staudt
- Klinik für Innere Medizin B, Ernst-Moritz-Arndt-Universität, Greifswald, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Zimmermann O, Grebe O, Merkle N, Nusser T, Kochs M, Bienek-Ziolkowski M, Hombach V, Torzewski J. Myocardial biopsy findings and gadolinium enhanced cardiovascular magnetic resonance in dilated cardiomyopathy. Eur J Heart Fail 2005; 8:162-6. [PMID: 16111918 DOI: 10.1016/j.ejheart.2005.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 03/27/2005] [Accepted: 06/08/2005] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In some patients suffering from dilated cardiomyopathy (DCM) magnetic resonance imaging (MRI) shows late gadolinium enhancement with variable distribution. Myocardial biopsies in DCM reveal a chronic myocardial inflammatory process in almost 50% and myocardial persistence of adenoviral or enteroviral genome in about 15% of the patients. AIMS We prospectively investigated whether the pattern of late gadolinium enhancement correlates with myocardial biopsy findings. METHODS AND RESULTS 42 patients with DCM and 42 control subjects underwent contrast MRI. In the DCM group, endomyocardial biopsies were performed and evaluated for inflammation and viral genome. None of the control subjects showed late gadolinium enhancement whereas in 29 DCM patients (69%) gadolinium enhancement was detectable (p<0.001). 21 of the DCM patients (50%) showed midwall septal enhancement, 7 patients (17%) showed a patchy distribution of hyperenhancement and 1 patient (2%) showed enhancement typical for ischemic heart disease. In myocardial biopsy analysis, 2 patients (5%) showed persistence of viral genome, 18 patients (43%) showed inflammation and in 22 patients (52%) neither virus nor inflammation was detected. The pattern of late gadolinium enhancement and myocardial biopsy findings were not significantly correlated (p = 0.854). CONCLUSION MRI as a non-invasive technique cannot replace myocardial biopsy for the differential diagnosis of DCM.
Collapse
Affiliation(s)
- Oliver Zimmermann
- Department of Internal Medicine II-Cardiology, University of Ulm, Robert-Koch-Str. 8, 89081 Ulm, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Twining CM, Sloane EM, Schoeniger DK, Milligan ED, Martin D, Marsh H, Maier SF, Watkins LR. Activation of the spinal cord complement cascade might contribute to mechanical allodynia induced by three animal models of spinal sensitization. THE JOURNAL OF PAIN 2005; 6:174-83. [PMID: 15772911 DOI: 10.1016/j.jpain.2004.11.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present series of experiments examined whether the complement cascade might play a key role in the expression of mechanical allodynia. Soluble complement receptor 1 (sCR1) was used to block the activation of the membrane attack pathway of the complement cascade. In doing so, sCR1 prevents the formation of the biologically active end products C3a, C5a, and membrane attack complexes (MACs). Intrathecal sCR1 had no effect on the behavioral responses of control groups. In contrast, blockade of this pathway abolished the expression of mechanical allodynia induced by peripheral nerve inflammation (sciatic inflammatory neuropathy model), partial sciatic nerve injury (chronic constriction injury model), and intrathecal injection of human immunodeficiency virus type 1 gp120, a viral envelope protein that activates glia. The fact that enhanced nociception was prevented or reversed in all 3 paradigms suggests that complement might be broadly involved in spinally mediated pain enhancement. The mechanisms whereby complement activation might potentially affect the functioning of microglia, astrocytes, and neurons are discussed. The complement cascade has not been previously implicated in spinal sensitization. These data suggest that complement activation within the spinal cord might contribute to enhanced pain states and provide additional evidence for immune regulation of pain transmission.
Collapse
Affiliation(s)
- Carin M Twining
- Department of Psychology and the Center of Neuroscience, University of Colorado at Boulder, 80309, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Berman J, Girardi G, Salmon JE. TNF-alpha is a critical effector and a target for therapy in antiphospholipid antibody-induced pregnancy loss. THE JOURNAL OF IMMUNOLOGY 2005; 174:485-90. [PMID: 15611274 DOI: 10.4049/jimmunol.174.1.485] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The antiphospholipid syndrome (APS) is characterized by recurrent fetal loss, intrauterine growth restriction, and vascular thrombosis in the presence of antiphospholipid (aPL) Abs. Our studies in a murine model of APS induced by passive transfer of human aPL Abs have shown that activation of complement and recruitment of neutrophils into decidua are required for fetal loss, and emphasize the importance of inflammation in aPL Ab-induced pregnancy loss. In this study, we examine the role of TNF-alpha in pregnancy complications associated with aPL Abs in a murine model of APS. We show that aPL Abs are specifically targeted to decidual tissue and cause a rapid increase in decidual and systemic TNF-alpha levels. We identify the release of TNF-alpha as a critical intermediate that acts downstream of C5 activation, based on the fetal protective effects of TNF-alpha deficiency and TNF blockade and on the absence of increased TNF-alpha levels in C5-deficient mice treated with aPL Abs. Our results suggest that TNF-alpha links pathogenic aPL Abs to fetal damage and identify TNF blockade as a potential therapy for the pregnancy complications of APS.
Collapse
Affiliation(s)
- Jessica Berman
- Department of Medicine, Hospital for Special Surgery-Weill Medical College of Cornell University, 535 East 70th Street, New York, NY 10021, USA
| | | | | |
Collapse
|
44
|
Afanasyeva M, Georgakopoulos D, Rose NR. Autoimmune myocarditis: cellular mediators of cardiac dysfunction. Autoimmun Rev 2004; 3:476-86. [PMID: 15546794 DOI: 10.1016/j.autrev.2004.08.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immune mediators play a critical role in the pathogenesis and outcomes of a number of cardiac diseases. This review summarizes recent findings on the composition of the inflammatory infiltrate and the role of different types and subtypes of immune cells and their products in mediating cardiac dysfunction in experimental autoimmune myocarditis (EAM). CD4+ T cells are required for initiation of myocarditis and their numbers in the heart infiltrate correlate with systolic dysfunction during disease progression. Other immune cells, including CD8+ T cells, granulocytes, and mast cells, can directly affect cardiomyocyte function. When regulatory mechanisms fail, the local damage leads to cardiomyocyte death, replacement fibrosis and overall cardiac dysfunction. EAM provides insights into the role of the immune system in the development of dilated cardiomyopathy (DCM) and heart failure and may serve as a general paradigm for autoimmune organ-specific tissue damage.
Collapse
Affiliation(s)
- Marina Afanasyeva
- Cardiovascular Research Group, Faculty of Medicine, University of Calgary, Canada
| | | | | |
Collapse
|
45
|
Matsumoto Y, Tsukada Y, Miyakoshi A, Sakuma H, Kohyama K. C protein-induced myocarditis and subsequent dilated cardiomyopathy: rescue from death and prevention of dilated cardiomyopathy by chemokine receptor DNA therapy. THE JOURNAL OF IMMUNOLOGY 2004; 173:3535-41. [PMID: 15322218 DOI: 10.4049/jimmunol.173.5.3535] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Severe experimental autoimmune myocarditis and subsequent dilated cardiomyopathy (DCM) were successfully produced in Lewis rats by immunization with recombinant cardiac C protein. Seventy-five percent of immunized rats died between days 15 and 49 postimmunization, and all of the survived rats showed typical DCM characterized by the presence of ventricular dilatation and extensive fibrosis. Immunopathological and chemokine analysis during the acute phase revealed that there were marked macrophage infiltration with myocyte necrosis and up-regulation of MCP-1 and IFN-gamma-inducible protein-10 (IP-10). Based on these findings, we prepared plasmid DNAs encoding the binding site of CCR2 and CXCR3, which are receptors for MCP-1 and IP-10, respectively. The culture supernatant of cells transfected with these DNAs inhibited the migration of T cells and macrophages induced by MCP-1 and IP-10. Remarkably, administration of the DNAs to C protein-immunized rats prevented the disease progression and rescued animals from death. The present study has demonstrated for the first time that gene therapy targeting the chemokine receptor could be a powerful tool for the control of experimental autoimmune myocarditis and DCM.
Collapse
Affiliation(s)
- Yoh Matsumoto
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Although the mechanisms of immune-mediated pregnancy loss are unknown, investigations are currently focused on mediators of immune activation and tissue injury at the maternal-fetal interface. A new study, however, demonstrates that systemic inflammatory mediators can induce pregnancy failure in a different way, by inhibiting ovarian hormone production, and identifies links between the immune and reproductive endocrine systems.
Collapse
Affiliation(s)
- Jane E Salmon
- Department of Medicine, Hospital for Special Surgery, Weill Medical College of Cornell University, New York, New York 10021, USA.
| |
Collapse
|
47
|
Mobini R, Maschke H, Waagstein F. New insights into the pathogenesis of dilated cardiomyopathy: possible underlying autoimmune mechanisms and therapy. Autoimmun Rev 2004; 3:277-84. [PMID: 15246023 DOI: 10.1016/j.autrev.2003.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2003] [Revised: 10/13/2003] [Accepted: 10/13/2003] [Indexed: 01/22/2023]
Abstract
In the present study, autoimmune processes involved in the pathogenesis of dilated cardiomyopathy (DCM) are discussed. Genetic predisposition, persistent viral infection, and molecular mimicry have previously been described as the underlying mechanisms of the disease, and prevalence of autoantibodies (AABs) against several intra- and extracellular cardiotropic targets has been confirmed. These autoantibodies are able to disturb the normal physiological activity of the cardiomyocytes. They also could function as mediators in an activated immune system and direct a great deal of attention to injured tissue via (1) complement activation and (2) genesis of circulatory immunocomplexes (CICs) in association with self-antigens. The number as well as duration of accessible autoantigens or CICs seem to play an important role in activation of the antigen-presenting cells (APCs) and, consequently, promotion of autoimmunity. Since AABs play such a decisive role, their exclusion by immunoadsorption (IA) therapy has been discussed as a new approach in DCM treatment. Hitherto, all performed pilot studies using this approach have shown improvement in cardiac function and quality of life in the vast majority of treated DCM patients. The removal of circulating AABs may downregulate the autoimmune system, moderate the inflammatory signals, and hasten the recovery of the affected tissue.
Collapse
Affiliation(s)
- Reza Mobini
- Wallenberg Laboratory for Cardiovascular Research, Cardiovascular Institute, Göteborg University, Sahlgrenska University Hospital, 41345, Göteborg, Sweden
| | | | | |
Collapse
|
48
|
Zwaka TP, Torzewski J, Hoeflich A, Déjosez M, Kaiser S, Hombach V, Jehle PM. The terminal complement complex inhibits apoptosis in vascular smooth muscle cells by activating an autocrine IGF-1 loop. FASEB J 2003; 17:1346-8. [PMID: 12759337 DOI: 10.1096/fj.02-0814fje] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Two counteracting processes determine accumulation of human vascular smooth muscle cells (SMCs) in atherosclerotic lesions: cell proliferation and apoptosis. SMCs synthesize insulin-like growth factor-1 (IGF-1), which potently inhibits apoptosis. The terminal complement complex C5b-9 interacts with SMCs in early human atherogenesis. In this study, we investigated whether C5b-9 may activate the IGF-1 system in SMCs, resulting in the inhibition of SMC apoptosis. C5b-9 generation on SMCs in vitro markedly reduced CD95-mediated apoptosis as assessed by flowcytometric analysis of annexin V binding and in caspase 3 assays. C5b-9 induced both significant IGF-1 release and up-regulation of IGF-1 binding sites in SMCs. Immunoneutralization of IGF-1 with a monoclonal IGF-1 antibody abolished the antiapoptotic effects of C5b-9. We conclude that C5b-9 inhibits apoptosis in SMCs by inducing an autocrine IGF-1 loop. This mechanism may contribute to the accumulation of SMCs in early human atherosclerotic lesions.
Collapse
Affiliation(s)
- Thomas P Zwaka
- Department of Internal Medicine II, University of Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Afanasyeva M, Rose NR. Cardiomyopathy is linked to complement activation. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:351-7. [PMID: 12163358 PMCID: PMC1850717 DOI: 10.1016/s0002-9440(10)64189-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Marina Afanasyeva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | |
Collapse
|