1
|
Hattori Y, Yamada H, Mori H, Oba S, Yokota K, Omi M, Yamamoto Y, Toyama K, Ohnaka M, Takahashi K, Imai H. The effect of fibroblast growth factor 2 on neovascular vessels depends on the stage of angiogenesis. Heliyon 2024; 10:e39843. [PMID: 39553576 PMCID: PMC11566843 DOI: 10.1016/j.heliyon.2024.e39843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
Objective The exact relationship between fibroblast growth factor 2 (FGF2) and choroidal neovascularization (CNV) remains unclear. In this study, using optical coherence tomography angiography (OCTA) and FGF2-tg mice which are transgenic mice with a rhodopsin promoter/FGF2 gene fusion, we aimed to investigate the dynamics of FGF2's role in angiogenesis over time. Methods We developed laser-induced CNV models of FGF2-tg and wild-type (WT) mice and then separated them into two groups using different laser photocoagulation (PC) conditions. The first group received 3 intense PC shots (1st PC) altogether (one-time PC group), while the other group received 3 intense PC shots (1st PC) followed by 6 additional weak PC shots (2 nd PC) on the 7th day after 1st PC (two-times PC group). Results Using OCTA to observe vessel changes within the same individual over time, there was no difference in the timing of vessel transition from the CNV development phase to the CNV regression phase between FGF2-tg and WT mice in the one-time PC group. In contrast, the neovascular vessels in the two-times PC group of FGF2-tg mice were maintained at least 28 days post-2nd PC without regression. In addition, mature vessels surrounded by PDGFRβ positive pericytes and α-SMA positive smooth muscle cells were observed. Real-time qPCR showed a substantial increase in apelin mRNA expression in the one-time PC group of FGF2-tg, rather than VEGF-A (p < 0.05, n = 5 or 6). Moreover, the expression levels of PDGFRβ, apelin, and Ang1 were significantly higher in FGF2-tg mice of two-times PC group than in WT mice (p < 0.05, n = 5 or 6). Conclusions FGF2 not only promotes neovascularization via the apelin/APJ system, which is independent of VEGF signaling pathway, but also helps maintain and stabilize pre-existing neovascular vessels by stimulating PDGFRβ and Ang1. The effect of FGF2 on the neovascular vessels depends on the stage of angiogenesis.
Collapse
Affiliation(s)
- Yuki Hattori
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| | | | - Hidetsugu Mori
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| | - Shinpei Oba
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| | - Kaito Yokota
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| | - Masatoshi Omi
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| | - Yuichi Yamamoto
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| | - Keiko Toyama
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| | - Masayuki Ohnaka
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| | - Kanji Takahashi
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| | - Hisanori Imai
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
2
|
Cao Y, Langer R, Ferrara N. Targeting angiogenesis in oncology, ophthalmology and beyond. Nat Rev Drug Discov 2023; 22:476-495. [PMID: 37041221 DOI: 10.1038/s41573-023-00671-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 04/13/2023]
Abstract
Angiogenesis is an essential process in normal development and in adult physiology, but can be disrupted in numerous diseases. The concept of targeting angiogenesis for treating diseases was proposed more than 50 years ago, and the first two drugs targeting vascular endothelial growth factor (VEGF), bevacizumab and pegaptanib, were approved in 2004 for the treatment of cancer and neovascular ophthalmic diseases, respectively. Since then, nearly 20 years of clinical experience with anti-angiogenic drugs (AADs) have demonstrated the importance of this therapeutic modality for these disorders. However, there is a need to improve clinical outcomes by enhancing therapeutic efficacy, overcoming drug resistance, defining surrogate markers, combining with other drugs and developing the next generation of therapeutics. In this Review, we examine emerging new targets, the development of new drugs and challenging issues such as the mode of action of AADs and elucidating mechanisms underlying clinical benefits; we also discuss possible future directions of the field.
Collapse
Affiliation(s)
- Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Napoleone Ferrara
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Fevereiro-Martins M, Marques-Neves C, Guimarães H, Bicho M. Retinopathy of prematurity: A review of pathophysiology and signaling pathways. Surv Ophthalmol 2023; 68:175-210. [PMID: 36427559 DOI: 10.1016/j.survophthal.2022.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Retinopathy of prematurity (ROP) is a vasoproliferative disorder of the retina and a leading cause of visual impairment and childhood blindness worldwide. The disease is characterized by an early stage of retinal microvascular degeneration, followed by neovascularization that can lead to subsequent retinal detachment and permanent visual loss. Several factors play a key role during the different pathological stages of the disease. Oxidative and nitrosative stress and inflammatory processes are important contributors to the early stage of ROP. Nitric oxide synthase and arginase play important roles in ischemia/reperfusion-induced neurovascular degeneration. Destructive neovascularization is driven by mediators of the hypoxia-inducible factor pathway, such as vascular endothelial growth factor and metabolic factors (succinate). The extracellular matrix is involved in hypoxia-induced retinal neovascularization. Vasorepulsive molecules (semaphorin 3A) intervene preventing the revascularization of the avascular zone. This review focuses on current concepts about signaling pathways and their mediators, involved in the pathogenesis of ROP, highlighting new potentially preventive and therapeutic modalities. A better understanding of the intricate molecular mechanisms underlying the pathogenesis of ROP should allow the development of more effective and targeted therapeutic agents to reduce aberrant vasoproliferation and facilitate physiological retinal vascular development.
Collapse
Affiliation(s)
- Mariza Fevereiro-Martins
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal; Departamento de Oftalmologia, Hospital Cuf Descobertas, Lisboa, Portugal.
| | - Carlos Marques-Neves
- Centro de Estudos das Ci.¼ncias da Visão, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Hercília Guimarães
- Departamento de Ginecologia-Obstetrícia e Pediatria, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| | - Manuel Bicho
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal.
| |
Collapse
|
4
|
Complement-mediated release of fibroblast growth factor 2 from human RPE cells. Exp Eye Res 2021; 204:108471. [PMID: 33516764 DOI: 10.1016/j.exer.2021.108471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/09/2021] [Accepted: 01/21/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Complement activation is associated with choroidal neovascularization (CNV) in age-related macular degeneration (AMD). Fibroblast growth factor 2 (FGF2) and membrane attack complex (MAC) are present in eyes of patients with CNV. Herein, we investigated the effect of complement activation on FGF2 release in human retinal pigment epithelial (RPE) cells. METHODS Cultured human RPE cells were primed with an anti-RPE antibody and then treated with C1q-depleted human serum in the presence or absence of Tec kinases inhibitor (LFM-A13). 38 cytokines/chemokines levels were measured by Luminex technology. Secretion of FGF2 and interleukin (IL)-6 was assessed by ELISA. Tec protein was measured by Western blot. mRNA expression of FGF2, chemokine (C-X-C motif) ligand 1 (CXCL-1), and family members of Tec kinases was evaluated by qPCR. Cell viability and MAC deposition were determined by WST-1 assay and flow cytometry, respectively. RESULTS Complement activation caused increased FGF2 and IL-6 release. FGF2 was released when C6-depleted human serum was reconstituted with C6. Anti-C5 antibody significantly attenuated complement-mediated FGF2 release, but not IL-6. FGF2 mRNA levels were not affected, while CXCL-1 mRNA levels were increased by complement activation. FGF2-containing extracellular vesicles were detected in response to complement challenge. Tec mRNA and protein were expressed in RPE cells. In the presence of LFM-A13, secretion of FGF2, but not IL-6, and MAC deposition were significantly decreased and cell viability was significantly increased in complement-treated cells when compared to controls. CONCLUSIONS Complement plays an important role to release FGF2 from RPE cells. Tec kinase is involved in MAC formation and complement-mediated FGF2 release. This information suggests a role for complement activation to mediate neovascularization in conditions such as AMD, and may elucidate potential therapeutic targets.
Collapse
|
5
|
Haydinger CD, Kittipassorn T, Peet DJ. Power to see-Drivers of aerobic glycolysis in the mammalian retina: A review. Clin Exp Ophthalmol 2020; 48:1057-1071. [PMID: 32710505 DOI: 10.1111/ceo.13833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
The mammalian retina converts most glucose to lactate rather than catabolizing it completely to carbon dioxide via oxidative phosphorylation, despite the availability of oxygen. This unusual metabolism is known as aerobic glycolysis or the Warburg effect. Molecules and pathways that drive aerobic glycolysis have been identified and thoroughly studied in the context of cancer but remain relatively poorly understood in the retina. Here, we review recent research on the molecular mechanisms that underly aerobic glycolysis in the retina, focusing on key glycolytic enzymes including hexokinase 2 (HK2), pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). We also discuss the potential involvement of cell signalling and transcriptional pathways including phosphoinositide 3-kinase (PI3K) signalling, fibroblast growth factor receptor (FGFR) signalling, and hypoxia-inducible factor 1 (HIF-1), which have been implicated in driving aerobic glycolysis in the context of cancer.
Collapse
Affiliation(s)
- Cameron D Haydinger
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Thaksaon Kittipassorn
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Mahidol, Thailand
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Adeyemo A, Johnson C, Stiene A, LaSance K, Qi Z, Lemen L, Schultz JEJ. Limb functional recovery is impaired in fibroblast growth factor-2 (FGF2) deficient mice despite chronic ischaemia-induced vascular growth. Growth Factors 2020; 38:75-93. [PMID: 32496882 PMCID: PMC8601595 DOI: 10.1080/08977194.2020.1767612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023]
Abstract
FGF2 is a potent stimulator of vascular growth; however, even with a deficiency of FGF2 (Fgf2-/-), developmental vessel growth or ischaemia-induced revascularization still transpires. It remains to be elucidated as to what function, if any, FGF2 has during ischaemic injury. Wildtype (WT) or Fgf2-/- mice were subjected to hindlimb ischaemia for up to 42 days. Limb function, vascular growth, inflammatory- and angiogenesis-related proteins, and inflammatory cell infiltration were assessed in sham and ischaemic limbs at various timepoints. Recovery of ischaemic limb function was delayed in Fgf2-/- mice. Yet, vascular growth response to ischaemia was similar between WT and Fgf2-/- hindlimbs. Several angiogenesis- and inflammatory-related proteins (MCP-1, CXCL16, MMPs and PAI-1) were increased in Fgf2-/- ischaemic muscle. Neutrophil or monocyte recruitment/infiltration was elevated in Fgf2-/- ischaemic muscle. In summary, our study indicates that loss of FGF2 induces a pro-inflammatory microenvironment in skeletal muscle which exacerbates ischaemic injury and delays functional limb use.
Collapse
Affiliation(s)
- Adeola Adeyemo
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Christopher Johnson
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Andrew Stiene
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Kathleen LaSance
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Preclinical Imaging Core, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Zhihua Qi
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Preclinical Imaging Core, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Lisa Lemen
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Preclinical Imaging Core, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Jo El J. Schultz
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| |
Collapse
|
7
|
Lyu J, Zhang Q, Jin H, Xu Y, Chen C, Ji X, Zhang X, Rao Y, Zhao P. Aqueous cytokine levels associated with severity of type 1 retinopathy of prematurity and treatment response to ranibizumab. Graefes Arch Clin Exp Ophthalmol 2018; 256:1469-1477. [PMID: 29948178 DOI: 10.1007/s00417-018-4034-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/05/2018] [Accepted: 06/02/2018] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To determine the aqueous humor levels of cytokines in eyes with type 1 retinopathy of prematurity (ROP) before primary intravitreal injection of ranibizumab (IVR). METHODS Forty-nine infants with type 1 ROP (56 eyes of 28 infants in the threshold ROP group and 42 eyes of 21 infants in the type 1 pre-threshold ROP group) received primary IVR and 49 aqueous humor samples were obtained preoperatively. Aqueous humor samples from 15 infants (15 eyes) undergoing congenital cataract surgery were used as controls. The concentrations of 27 cytokines were measured by a multiplex bead assay. Infants with persistent, recurrent, or progressive ROP after IVR were retreated. RESULTS The preoperative aqueous levels of 16 cytokines were significantly different among type 1 pre-threshold, threshold ROP, and control groups (P < 0.05). The concentrations of vascular endothelial growth factor (VEGF) (P < 0.001), interferon-γ (P < 0.001), interleukin (IL)-10 (P < 0.001), and IL-12 (P < 0.001) were the highest in the threshold ROP group, less in the type 1 pre-threshold ROP group, and the lowest in the control group. Retreatment was given to 55% of infants with ROP within a 48-week follow-up period after primary IVR. Higher VEGF (hazard ratio [HR] = 1.001, P = 0.001) and macrophage inflammatory protein-1β (HR = 1.085, P = 0.022) levels were independently correlated with ROP retreatment. CONCLUSIONS Higher aqueous levels of VEGF and inflammatory cytokines were associated with more severe type 1 ROP and ROP retreatment after primary IVR.
Collapse
Affiliation(s)
- Jiao Lyu
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Qi Zhang
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Haiying Jin
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Yu Xu
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Chunli Chen
- Department of Ophthalmology, Shengli Oilfield Central Hospital, Dongying, Shan Dong Province, China
| | - Xunda Ji
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai, 200092, China.
| |
Collapse
|
8
|
Retinopathy of prematurity: inflammation, choroidal degeneration, and novel promising therapeutic strategies. J Neuroinflammation 2017; 14:165. [PMID: 28830469 PMCID: PMC5567917 DOI: 10.1186/s12974-017-0943-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/14/2017] [Indexed: 01/08/2023] Open
Abstract
Retinopathy of prematurity (ROP) is an important cause of childhood blindness globally, and the incidence is rising. The disease is characterized by initial arrested retinal vascularization followed by neovascularization and ensuing retinal detachment causing permanent visual loss. Although neovascularization can be effectively treated via retinal laser ablation, it is unknown which children are at risk of entering this vision-threatening phase of the disease. Laser ablation may itself induce visual field deficits, and there is therefore a need to identify targets for novel and less destructive treatments of ROP. Inflammation is considered a key contributor to the pathogenesis of ROP. A large proportion of preterm infants with ROP will have residual visual loss linked to loss of photoreceptor (PR) and the integrity of the retinal pigment epithelium (RPE) in the macular region. Recent studies using animal models of ROP suggest that choroidal degeneration may be associated with a loss of integrity of the outer retina, a phenomenon so far largely undescribed in ROP pathogenesis. In this review, we highlight inflammatory and neuron-derived factors related to ROP progression, as well, potential targets for new treatment strategies. We also introduce choroidal degeneration as a significant cause of residual visual loss following ROP. We propose that ROP should no longer be considered an inner retinal vasculopathy only, but also a disease of choroidal degeneration affecting both retinal pigment epithelium and photoreceptor integrity.
Collapse
|
9
|
Whiteford JR, De Rossi G, Woodfin A. Mutually Supportive Mechanisms of Inflammation and Vascular Remodeling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:201-78. [PMID: 27572130 DOI: 10.1016/bs.ircmb.2016.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is often accompanied by angiogenesis, the development of new blood vessels from existing ones. This vascular response is a response to chronic hypoxia and/or ischemia, but is also contributory to the progression of disorders including atherosclerosis, arthritis, and tumor growth. Proinflammatory and proangiogenic mediators and signaling pathways form a complex and interrelated network in these conditions, and many factors exert multiple effects. Inflammation drives angiogenesis by direct and indirect mechanisms, promoting endothelial proliferation, migration, and vessel sprouting, but also by mediating extracellular matrix remodeling and release of sequestered growth factors, and recruitment of proangiogenic leukocyte subsets. The role of inflammation in promoting angiogenesis is well documented, but by facilitating greater infiltration of leukocytes and plasma proteins into inflamed tissues, angiogenesis can also propagate chronic inflammation. This review examines the mutually supportive relationship between angiogenesis and inflammation, and considers how these interactions might be exploited to promote resolution of chronic inflammatory or angiogenic disorders.
Collapse
Affiliation(s)
- J R Whiteford
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - G De Rossi
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - A Woodfin
- Cardiovascular Division, King's College, University of London, London, United Kingdom.
| |
Collapse
|
10
|
Agca C, Boldt K, Gubler A, Meneau I, Corpet A, Samardzija M, Stucki M, Ueffing M, Grimm C. Expression of leukemia inhibitory factor in Müller glia cells is regulated by a redox-dependent mRNA stability mechanism. BMC Biol 2015; 13:30. [PMID: 25907681 PMCID: PMC4462110 DOI: 10.1186/s12915-015-0137-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022] Open
Abstract
Background Photoreceptor degeneration is a main hallmark of many blinding diseases making protection of photoreceptors crucial to prevent vision loss. Thus, regulation of endogenous neuroprotective factors may be key for cell survival and attenuation of disease progression. Important neuroprotective factors in the retina include H2O2 generated by injured photoreceptors, and leukemia inhibitory factor (LIF) expressed in Müller glia cells in response to photoreceptor damage. Results We present evidence that H2O2 connects to the LIF response by inducing stabilization of Lif transcripts in Müller cells. This process was independent of active gene transcription and p38 MAPK, but relied on AU-rich elements (AREs), which we identified within the highly conserved Lif 3′UTR. Affinity purification combined with quantitative mass spectrometry identified several proteins that bound to these AREs. Among those, interleukin enhancer binding factor 3 (ILF3) was confirmed to participate in the redox-dependent Lif mRNA stabilization. Additionally we show that KH-type splicing regulatory protein (KHSRP) was crucial for maintaining basal Lif expression levels in non-stressed Müller cells. Conclusions Our results suggest that H2O2-induced redox signaling increases Lif transcript levels through ILF3 mediated mRNA stabilization. Generation of H2O2 by injured photoreceptors may thus enhance stability of Lif mRNA and therefore augment neuroprotective LIF signaling during degenerative conditions in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0137-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cavit Agca
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland. .,Present address: Department of Biomedicine, University Hospital Basel, Basel, 4031, Switzerland.
| | - Karsten Boldt
- Division of Experimental Ophthalmology and Medical Proteome Center, Centre for Ophthalmology, University of Tübingen, 72076, Tübingen, Germany.
| | - Andrea Gubler
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland.
| | - Isabelle Meneau
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland.
| | - Armelle Corpet
- Department of Gynecology, University of Zurich, Zurich, 8091, Switzerland. .,Present address: Center for Molecular and Cellular Physiology and Genetics, University Lyon I, Villeurbanne, France.
| | - Marijana Samardzija
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland.
| | - Manuel Stucki
- Department of Gynecology, University of Zurich, Zurich, 8091, Switzerland.
| | - Marius Ueffing
- Division of Experimental Ophthalmology and Medical Proteome Center, Centre for Ophthalmology, University of Tübingen, 72076, Tübingen, Germany.
| | - Christian Grimm
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland. .,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, 8091, Switzerland. .,Neuroscience Center (ZNZ), University of Zurich, Zurich, 8091, Switzerland.
| |
Collapse
|
11
|
Perlecan Heparan Sulfate Proteoglycan Is a Critical Determinant of Angiogenesis in Response to Mouse Hind-Limb Ischemia. Can J Cardiol 2014; 30:1444-51. [DOI: 10.1016/j.cjca.2014.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 05/30/2014] [Accepted: 06/04/2014] [Indexed: 11/21/2022] Open
|
12
|
Maan ZN, Rodrigues M, Rennert RC, Whitmore A, Duscher D, Januszyk M, Hu M, Whittam AJ, Davis CR, Gurtner GC. Understanding regulatory pathways of neovascularization in diabetes. Expert Rev Endocrinol Metab 2014; 9:487-501. [PMID: 30736211 DOI: 10.1586/17446651.2014.938054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diabetes mellitus and its associated comorbidities represent a significant health burden worldwide. Vascular dysfunction is the major contributory factor in the development of these comorbidities, which include impaired wound healing, cardiovascular disease and proliferative diabetic retinopathy. While the etiology of abnormal neovascularization in diabetes is complex and paradoxical, the dysregulation of the varied processes contributing to the vascular response are due in large part to the effects of hyperglycemia. In this review, we explore the mechanisms by which hyperglycemia disrupts chemokine expression and function, including the critical hypoxia inducible factor-1 axis. We place particular emphasis on the therapeutic potential of strategies addressing these pathways; as such targeted approaches may one day help alleviate the healthcare burden of diabetic sequelae.
Collapse
Affiliation(s)
- Zeshaan N Maan
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Melanie Rodrigues
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Robert C Rennert
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Arnetha Whitmore
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Dominik Duscher
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Michael Januszyk
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Michael Hu
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Alexander J Whittam
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Christopher R Davis
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | | |
Collapse
|
13
|
Wohlfart P, Lin J, Dietrich N, Kannt A, Elvert R, Herling AW, Hammes HP. Expression patterning reveals retinal inflammation as a minor factor in experimental retinopathy of ZDF rats. Acta Diabetol 2014; 51:553-8. [PMID: 24477469 PMCID: PMC4127441 DOI: 10.1007/s00592-013-0550-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/19/2013] [Indexed: 12/25/2022]
Abstract
Obese Zucker diabetic fatty (ZDF) rats are used as a type-2 diabetes model for microvascular complications. In order to study retinopathy in this model, changes in retinal vasculature were analyzed by quantitative morphometry and related to retinal expression of 46 selected genes that were analyzed by microfluidic card PCR technology. At 3 months of age, obese animals had developed stable hyperglycemia (20.7 ± 1.3 mmol/L plasma glucose vs. 6.5 ± 0.1 mmol/L in lean). Hyperinsulinemia initially presented in obese rats at 2 months (10.5 ± 0.7 μg/L plasma insulin vs. 0.2 ± 0.04 μg/L in lean) and decreased at 3 months (3.9 ± 0.6 vs. 0.5 ± 0.09 μg/ml in lean). At 8 months of age, animals had developed microvascular complications. An increased number of acellular capillaries in obese (24 ± 5/mm(2)) versus lean (15 ± 4/mm(2)) and a decreased number of retinal pericytes in obese (2,270 ± 250/mm(2)) versus lean animals (1,620 ± 243/mm(2)) could be observed. VEGFa, MIF, and HIF-1α were the most abundantly expressed and inflammatory genes such as TNFα and IL-6 are the least abundantly expressed genes. None of these genes were differentially regulated. Surprisingly, specific growth factors such as bFGF (FGF2) and placental growth factor, and adhesion molecules such as ICAM-1 were abundantly expressed and up-regulated in diabetic versus non-diabetic ZDF rats. In summary, we observed in type-2 diabetic ZDF rats retinopathy with retinal vasoregression along with a simultaneous up-regulation of specific growth factors such as bFGF and adhesion molecules, but only minor changes in key inflammatory genes.
Collapse
Affiliation(s)
- Paulus Wohlfart
- R&D Diabetes Division, Research and Translational Medicine, Sanofi, Industriepark Höchst, 65926, Frankfurt, Germany,
| | | | | | | | | | | | | |
Collapse
|
14
|
Gagne P, Akalu A, Brooks PC. Challenges facing antiangiogenic therapy for cancer: impact of the tumor extracellular environment. Expert Rev Anticancer Ther 2014; 4:129-40. [PMID: 14748663 DOI: 10.1586/14737140.4.1.129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is well known that angiogenesis plays an important role in malignant tumor progression. Thus, a great deal of effort has been focused on the development and evaluation of novel angiogenesis inhibitors for the treatment of human malignancies. In this review, the role of angiogenesis in tumor growth will be examined, as well as efforts to develop and use antiangiogenic therapies to treat malignant tumors. In particular, focus will be on the extracellular environment and the challenges of using antiangiogenic therapy in the clinical setting, in terms of toxicities, potential mechanisms of tumor resistance and optimization of clinical trial design. Attention will be focused upon a mechanistic understanding of the variability and dynamic nature of individual tumor microenvironments, and the potential impact this has on antiangiogenic therapies.
Collapse
Affiliation(s)
- Paul Gagne
- New York University School of Medicine, Department of Surgery, New York, NY 10016, USA
| | | | | |
Collapse
|
15
|
Goetz JJ, Farris C, Chowdhury R, Trimarchi JM. Making of a retinal cell: insights into retinal cell-fate determination. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:273-321. [PMID: 24411174 DOI: 10.1016/b978-0-12-800097-7.00007-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Understanding the process by which an uncommitted dividing cell produces particular specialized cells within a tissue remains a fundamental question in developmental biology. Many tissues are well suited for cell-fate studies, but perhaps none more so than the developing retina. Traditionally, experiments using the retina have been designed to elucidate the influence that individual environmental signals or transcription factors can have on cell-fate decisions. Despite a substantial amount of information gained through these studies, there is still much that we do not yet understand about how cell fate is controlled on a systems level. In addition, new factors such as noncoding RNAs and regulators of chromatin have been shown to play roles in cell-fate determination and with the advent of "omics" technology more factors will most likely be identified. In this chapter we summarize both the traditional view of retinal cell-fate determination and introduce some new ideas that are providing a challenge to the older way of thinking about the acquisition of cell fates.
Collapse
Affiliation(s)
- Jillian J Goetz
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Caitlin Farris
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Rebecca Chowdhury
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey M Trimarchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA.
| |
Collapse
|
16
|
Microvascular complications and diabetic retinopathy: recent advances and future implications. Future Med Chem 2013; 5:301-14. [PMID: 23464520 DOI: 10.4155/fmc.12.206] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Retinal microvascular alterations have been observed during diabetic retinopathy (DR) due to the retinal susceptibility towards subtle pathological alterations. Therefore, retinal microvascular pathology is essential to understand the nature of retinal degenerations during DR. In this review, the role of retinal microvasculature complications during progression of DR, along with recent efforts to normalize such alterations for better therapeutic outcome, will be underlined. In addition, current therapeutics and future directions for advancement of standard treatment for DR patients will be discussed.
Collapse
|
17
|
Romo P, Madigan MC, Provis JM, Cullen KM. Differential effects of TGF-β and FGF-2 on in vitro proliferation and migration of primate retinal endothelial and Müller cells. Acta Ophthalmol 2011; 89:e263-8. [PMID: 20670342 DOI: 10.1111/j.1755-3768.2010.01968.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE During retinal development, the pattern of blood vessel formation depends upon the combined effects of proliferation and migration of endothelial cells, astrocytes and Müller cells. In this study, we investigated the potential for transforming growth factor-β (TGF-β) and fibroblast growth factor (FGF-2) to influence this process by regulating proliferation and migration of retinal endothelial and macroglial cells. METHODS We assessed the effects of exogenous TGF-β and FGF-2 on the proliferation and migration of cultured endothelial (RF/6A) and Müller cell (MIO-M1) lines. Cell proliferation was measured using a MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric assay over 72 hr. Cell migration was measured using a scratch-wound assay over 72 hr. RESULTS Transforming growth factor-β inhibited the proliferation of endothelial and Müller cells and inhibited the migration of Müller cells, but not endothelial cells, compared to untreated controls. Conversely, FGF-2 increased endothelial cell proliferation but inhibited endothelial cell migration. Fibroblast growth factor-2 increased migration of Müller cells but had little effect on proliferation except at higher concentrations (20 ng/ml). CONCLUSION Taken together, these observations indicate that TGF-β and FGF could work in concert to inhibit endothelial cell proliferation and migration, respectively; this may have implications for establishing and maintaining the avascular zone of primate fovea.
Collapse
Affiliation(s)
- Phillip Romo
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
18
|
Li J, Stuhlmann H. In vitro imaging of angiogenesis using embryonic stem cell-derived endothelial cells. Stem Cells Dev 2011; 21:331-42. [PMID: 21385073 DOI: 10.1089/scd.2010.0587] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Angiogenesis is an important event during developmental processes, and it plays a key role in neovascularization. The development of an in vitro model that can be used for live imaging of vessel growth will facilitate the study of molecular and cellular mechanisms for the growth of blood vessels. Embryonic stem cells (ESCs) are considered to be a novel renewable source for the derivation of genetically manipulable endothelial cells (ECs). To derive green fluorescence protein (GFP)-expressing ECs, we used a transgenic ESC line in which a GFP reporter was driven by the endothelial-specific promoter fetal liver kinase 1. ESC-ECs were isolated from 11-day embryoid bodies by fluorescence-activated cell sorting. Embedding the aggregated ESC-ECs in a 3-dimensional collagen gel matrix resulted in ESC-EC migration out of the aggregates and coalescence into a capillary network. Time-lapse microscopy revealed EC migration, proliferation, lumen formation, and anastomosis to other capillary vessels during this process, which were reminiscent of angiogenic processes. Vascular endothelial growth factor plays major roles in the induction of ESC-EC angiogenesis in vitro. Blockage of the β1 integrin subunit severely impaired ESC-EC survival and migration. We demonstrate that our in vitro ESC-EC angiogenesis model represents a high-resolution dynamic video-image system for observing the cellular events underlying angiogenic cascades. We also consider this model as an image screening tool for the identification of pro-angiogenic and anti-angiogenic molecules.
Collapse
Affiliation(s)
- Jia Li
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, USA.
| | | |
Collapse
|
19
|
Huang H, Vasilakis P, Zhong X, Shen JK, Geronatsiou K, Papadaki H, Maragoudakis ME, Gartaganis SP, Vinores SA, Tsopanoglou NE. Parstatin suppresses ocular neovascularization and inflammation. Invest Ophthalmol Vis Sci 2010; 51:5825-32. [PMID: 20538980 PMCID: PMC3061514 DOI: 10.1167/iovs.10-5576] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/12/2010] [Accepted: 05/14/2010] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Parstatin is a 41-mer peptide formed by proteolytic cleavage on activation of the PAR1 receptor. The authors recently showed that parstatin is a potent inhibitor of angiogenesis. The purpose of the present study was to evaluate the therapeutic effect of parstatin on ocular neovascularization. METHODS Choroidal neovascularization was generated in mice using laser-induced rupture of Bruch's membrane and was assessed after 14 days after perfusion of FITC-dextran. Oxygen-induced retinal neovascularization was established in neonatal mice by exposing them to 75% O(2) at postnatal day (P)7 for 5 days and then placing them in room air for 5 days. Evaluation was performed on P17 after staining with anti-mouse PECAM-1. The effect of parstatin was tested after intravitreal administration. The effects of subconjunctival-injected parstatin on corneal neovascularization and inflammation in rats were assessed 7 days after chemical burn-induced corneal neovascularization. Retinal leukostasis in mice was assessed after perfusion with FITC-conjugated concanavalin A. RESULTS Parstatin potently inhibited choroidal neovascularization with an IC(50) of approximately 3 μg and a maximum inhibition of 59% at 10 μg. Parstatin suppressed retinal neovascularization with maximum inhibition of 60% at 3 μg. Ten-microgram and 30-μg doses appeared to be toxic to the neonatal retina. Subconjunctival parstatin inhibited corneal neovascularization, with 200 μg the most effective dose (59% inhibition). In addition, parstatin significantly inhibited corneal inflammation and VEGF-induced retinal leukostasis. In all models tested, scrambled parstatin was without any significant effect. CONCLUSIONS Parstatin is a potent antiangiogenic agent of ocular neovascularization and may have clinical potential in the treatment of angiogenesis-related ocular disorders.
Collapse
Affiliation(s)
- Hu Huang
- From the Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | | | - Xiufeng Zhong
- From the Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Ji-Kui Shen
- From the Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | | | | | | | | | - Stanley A. Vinores
- From the Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | | |
Collapse
|
20
|
Deryugina EI, Quigley JP. Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:103-20. [PMID: 19800930 DOI: 10.1016/j.bbamcr.2009.09.017] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 09/23/2009] [Accepted: 09/24/2009] [Indexed: 02/04/2023]
Abstract
A number of extensive reviews are available discussing the roles of MMPs in various aspects of cancer progression from benign tumor formation to overt cancer present with deadly metastases. This review will focus specifically on the evidence functionally linking the MMPs and tumor-induced angiogenesis in various in vivo models. Emphasis has been placed on the cellular origin of the MMPs in tumor tissue, the requirement of proMMP activation and the resulting proteolytic activity for the induction and progression of tumor angiogenesis, and the pleiotropic roles for some of the MMPs. The functional mechanisms of the angiogenic MMPs are discussed as well as their catalytic detection in complex biological systems. In addition, the contribution of active MMPs to metastatic spread and establishment of secondary metastasis will be discussed in view of the findings indicating that MMPs are involved in the preparation of pre-metastatic niches. Finally, the most recent evidence, indicating the pro-metastatic consequences of anti-angiogenic therapies employing MMP inhibitors will be presented as examples highlighting possible outcomes of interfering with the pleiotropic nature of the MMP functionality.
Collapse
|
21
|
Ribatti D, Nico B, Crivellato E. Morphological and molecular aspects of physiological vascular morphogenesis. Angiogenesis 2009; 12:101-11. [PMID: 19130273 DOI: 10.1007/s10456-008-9125-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 11/20/2008] [Indexed: 12/24/2022]
Abstract
The cardiovascular system plays a crucial role in vertebrate development and homeostasis. Several genetic and epigenetic mechanisms are involved in the early development of the vascular system. During embryonal life, blood vessels first appear as the result of vasculogenesis, whereas remodeling of the primary vascular plexus occurs by angiogenesis. Many tissue-derived factors are involved in blood vessel formation and evidence is emerging that endothelial cells themselves represent a source of instructive signals to non-vascular tissue cells during organ development. This review article summarizes our knowledge concerning the principal factors involved in the regulation of vascular morphogenesis.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Piazza G. Cesare, 11, Policlinico 70124, Bari, Italy.
| | | | | |
Collapse
|
22
|
Eichler W, Reiche A, Yafai Y, Lange J, Wiedemann P. Growth-related effects of oxidant-induced stress on cultured RPE and choroidal endothelial cells. Exp Eye Res 2008; 87:342-8. [PMID: 18640112 DOI: 10.1016/j.exer.2008.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 06/20/2008] [Accepted: 06/24/2008] [Indexed: 01/11/2023]
Abstract
Mounting evidence suggests that oxidative stress caused by reactive oxygen intermediates is a significant mechanism in the pathogenesis of age-related macular degeneration (AMD). Although vascular endothelial growth factor (VEGF) and other cytokines are involved in choroidal neovascularization (CNV) it is largely unknown whether oxidative stress may predispose the eye to increased levels of proangiogenic factors. In an in vitro study we have determined viability and proliferation of both human retinal pigment epithelial (RPE) cells and bovine choroidal endothelial cells (CECs) and assessed the release of basic fibroblast growth factor (bFGF) and VEGF from RPE cells after exposing them to oxidative stress. Permanent presence of tert-butyl-hydroperoxide (tBH), a pro-oxidative stressor, in the cell cultures resulted in decreasing viability and proliferation of RPE cells and CECs. Loss of RPE cell viability was associated with activation of apoptosis by tBH in a dose-dependent manner. The antioxidant, N-acetyl-L-cysteine (NAC), and secreted soluble mediators of RPE cells were appropriate to attenuate the effects of tBH-mediated oxidative stress. RPE cells exposed to tBH were found to release increasing amounts of bFGF but not VEGF after 24h of culture, thereby supporting proliferation of CECs. These findings suggest that oxidative stress compromises the viability of RPE cells and CECs. However, increased bFGF levels concomitantly released from RPE cells may attenuate the CEC-directed effect, protect CECs from oxidative insults, and are likely to promote CNV.
Collapse
Affiliation(s)
- Wolfram Eichler
- University of Leipzig, Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
23
|
Doukas J, Mahesh S, Umeda N, Kachi S, Akiyama H, Yokoi K, Cao J, Chen Z, Dellamary L, Tam B, Racanelli-Layton A, Hood J, Martin M, Noronha G, Soll R, Campochiaro PA. Topical administration of a multi-targeted kinase inhibitor suppresses choroidal neovascularization and retinal edema. J Cell Physiol 2008; 216:29-37. [PMID: 18330892 DOI: 10.1002/jcp.21426] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Age-related macular degeneration, diabetic retinopathy, and retinal vein occlusions are complicated by neovascularization and macular edema. Multi-targeted kinase inhibitors that inhibit select growth factor receptor tyrosine kinases and/or components of their down-stream signaling cascades (such as Src kinases) are rationale treatment strategies for these disease processes. We describe the discovery and characterization of two such agents. TG100572, which inhibits Src kinases and selected receptor tyrosine kinases, induced apoptosis of proliferating endothelial cells in vitro. Systemic delivery of TG100572 in a murine model of laser-induced choroidal neovascularization (CNV) caused significant suppression of CNV, but with an associated weight loss suggestive of systemic toxicity. To minimize systemic exposure, topical delivery of TG100572 to the cornea was explored, and while substantial levels of TG100572 were achieved in the retina and choroid, superior exposure levels were achieved using TG100801, an inactive prodrug that generates TG100572 by de-esterification. Neither TG100801 nor TG100572 were detectable in plasma following topical delivery of TG100801, and adverse safety signals (such as weight loss) were not observed even with prolonged dosing schedules. Topical TG100801 significantly suppressed laser-induced CNV in mice, and reduced fluorescein leakage from the vasculature and retinal thickening measured by optical coherence tomography in a rat model of retinal vein occlusion. These data suggest that TG100801 may provide a new topically applied treatment approach for ocular neovascularization and retinal edema.
Collapse
|
24
|
Presta M, Mitola S, Dell'Era P, Leali D, Nicoli S, Moroni E, Rusnati M. Fibroblast Growth Factor-2 in Angiogenesis. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Ribatti D. Transgenic mouse models of angiogenesis and lymphangiogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 266:1-35. [PMID: 18544491 DOI: 10.1016/s1937-6448(07)66001-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of transgenic technologies in mice has allowed the study of the consequences of genetic alterations on angiogenesis and lymphangiogenesis. This review summarizes the murine models currently available for studies involving the manipulation of angiogenesis and lymphangiogenesis. Abnormal embryonic vascular development, resulting from defects in the formation of a primitive vascular plexus, has been observed in mice lacking vascular endothelial growth factor, vascular endothelial growth factor receptor-1 and -2, transforming growth factor-beta, fibronectin, or vascular endothelial cadherin. Defects in the expansion and remodeling of the embryonic vasculature occur in mice deficient in Tie-1, Tie-2, or angiopoietin-1, and in mice overexpressing neuropilin or angiopoietin-2. Impaired recruitment and investment of mural cells have been observed in mice with disruption of the genes encoding platelet-derived growth factor-B, platelet-derived growth factor-B receptor, and tissue factor. Gene-targeting experiments in mice have identified the EphB/ephrinB system as a critical and rate-limiting determinant of arteriovenous differentiation during embryonic vascular development. Vascular endothelial growth factor-C is necessary for the initial sprouting and migration of lymphatic endothelial cells from embryonic veins, and mice lacking vascular endothelial growth factor-C die prenatally, whereas vascular endothelial growth factor-D is dispensable for embryonic lymphatic development.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
26
|
|
27
|
Lange C, Ehlken C, Martin G, Konzok K, Moscoso Del Prado J, Hansen LL, Agostini HT. Intravitreal injection of the heparin analog 5-amino-2-naphthalenesulfonate reduces retinal neovascularization in mice. Exp Eye Res 2007; 85:323-7. [PMID: 17662276 DOI: 10.1016/j.exer.2007.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 05/29/2007] [Accepted: 05/30/2007] [Indexed: 11/16/2022]
Abstract
The effect of the heparin analog 5-amino-2-naphthalenesulfonate (5-amino-2-NMS) on retinal neovascularization was investigated in the mouse model for oxygen-induced retinopathy (OIR). From postnatal day 7 (P7) until P12, mice were kept in a 75% oxygen environment. On P12, they received an intravitreal injection of 10mM 5-amino-2-NMS in one eye and PBS as control substance in the fellow eye. The animals were intracardially perfused with fluorescein-dextran solution on P17. Retinal whole mounts were prepared and ischemic retinopathy was evaluated in 30 animals using a standardized retinopathy score. A single intravitreal injection of 5-amino-2-NMS reduces significantly angioproliferative changes (blood vessel tufts, extra-retinal neovascularization, and blood vessel tortuosity) compared to the contralateral control eye (p=0.025). The median retinopathy score (maximal 13) for the 5-amino-2-NMS treated eyes was 6 versus 8 for the control eyes. 5-Amino-2-NMS binds to the heparin-binding site of FGF1 and FGF2 and thus may be a promising substance for the local treatment of retinal neovascularization.
Collapse
Affiliation(s)
- Clemens Lange
- Augenklinik, Universitätsklinikum Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The development of solid tumors depends upon an adequate supply of blood. This can be achieved by way of co-option of preexisting blood vessels and by the induction of angiogenesis. During the past 30 years, tumor angiogenesis had been found to play a crucial role in the progression of solid tumors. Tumor angiogenesis was found to be induced by a variety of pro-angiogenic cytokines of which the best characterized is vascular endothelial growth factor (VEGF). Indeed, the first FDA approved anti-angiogenic drug for the treatment of cancer is Avastin, a neutralizing antibody directed against VEGF. This review focuses on cytokines which have been reported to induce tumor angiogenesis.
Collapse
Affiliation(s)
- Gera Neufeld
- Cancer and Vascular Biology Research Center, Rappaport Research Institute in the Medical Sciences, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, 1 Efron St., P. O. Box 9679, Haifa 31096, Israel.
| | | |
Collapse
|
29
|
Abstract
Retinal photocoagulation and vitrectomy both reduce diabetic macular edema and neovascularization in diabetic retinopathy. We suggest that this clinical effect is based on the effect these treatment modalities have on retinal oxygenation, and we present a theory to explain why retinal photocoagulation and vitrectomy influence edema and neovascularization in diabetic and other ischemic retinopathies.
Collapse
Affiliation(s)
- Einar Stefánsson
- University of Iceland, Department of Ophthalmology, Landspitalinn, Reykjavik
| |
Collapse
|
30
|
Umeda N, Kachi S, Akiyama H, Zahn G, Vossmeyer D, Stragies R, Campochiaro PA. Suppression and regression of choroidal neovascularization by systemic administration of an alpha5beta1 integrin antagonist. Mol Pharmacol 2006; 69:1820-8. [PMID: 16527907 DOI: 10.1124/mol.105.020941] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Integrin alpha(5)beta(1) plays an important role in developmental angiogenesis, but its role in various types of pathologic neovascularization has not been completely defined. In this study, we found strong up-regulation of alpha(5)beta(1) in choroidal neovascularization. Implantation of an osmotic pump delivering 1.5 or 10 microg/h ( approximately 1.8 or 12 mg/kg/day) of 3-(2-{1-alkyl-5-[(pyridin-2-ylamino)-methyl]-pyrrolidin-3-yloxy}-acetylamino)-2-(alkylamino)-propionic acid (JSM6427), a selective alpha(5)beta(1) antagonist, caused significant suppression of choroidal neovascularization; the area of neovascularization was reduced by 33 to 40%. When an osmotic pump delivering 10 microg/h of JSM6427 was implanted 7 days after rupture of Bruch's membrane, there was terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining in vascular cells within the neovascularization and significant regression of the neovascularization over the next week. JSM6427 also induced apoptosis of cultured vascular endothelial cells. Fibronectin stimulates phosphorylation of extracellular signal-regulated kinase (ERK) in alpha(5)beta(1)-expressing cells that is blocked by JSM6427. These data suggest that alpha(5)beta(1) plays a role in the development and maintenance of choroidal neovascularization and provides a target for therapeutic intervention.
Collapse
Affiliation(s)
- Naoyasu Umeda
- The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287-9277, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Qiu G, Stewart JM, Sadda S, Freda R, Lee S, Guven D, de Juan E, Varner SE. A new model of experimental subretinal neovascularization in the rabbit. Exp Eye Res 2006; 83:141-52. [PMID: 16579984 DOI: 10.1016/j.exer.2005.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 11/01/2005] [Accepted: 11/04/2005] [Indexed: 11/16/2022]
Abstract
Existing animal models of choroidal neovascularization (CNV) present several problems: they are hard to reproduce, they are inefficient, and the CNV created is not sustainable. The purpose of this study is to develop a highly efficient, reliable, sustainable rabbit model of CNV to facilitate the study of anti-angiogenic and anti-proliferative therapies for ocular diseases. Twenty-two pigmented rabbits were used in this study. Eleven rabbits received subretinal injections of either 10 microl of Matrigel with 500 ng of vascular endothelial growth factor (VEGF) or 20 microl of Matrigel with 750 ng of VEGF; eight rabbits received subretinal injections of either 10 or 20 microl of Matrigel only; three rabbits used as controls received subretinal injections of 20 microl phosphate-buffered saline (PBS) alone. Fundus photography, fluorescein angiography, optical coherence tomography, and histologic examinations were performed 1, 2, 4, and 9 weeks after injection. All experimental eyes showed angiographic leakage within this localized area 1 week after injection. The amount of leakage usually increased at weeks 2 and 4 and, in most cases, persisted at week 9. Control eyes demonstrated no leakage at any time point. Optical coherence tomography of treated eyes showed subretinal fluid and the presence of a lesion, possibly vascular or fibrotic, at the site of the leakage. Histologic analysis confirmed the presence of new subretinal blood vessels in the areas of Matrigel deposit. In conclusion, this novel method provides a highly reproducible, reliable, and sustainable rabbit model of experimental choroidal neovascularization. Such a model may prove useful for screening new anti-angiogenic therapies in a larger animal eye.
Collapse
Affiliation(s)
- Guanting Qiu
- Doheny Retina Institute, Keck School of Medicine, University of Southern California, 1450 San Pablo Street DEI 3622, Los Angeles, CA 90033-3699, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Marneros AG, Fan J, Yokoyama Y, Gerber HP, Ferrara N, Crouch RK, Olsen BR. Vascular endothelial growth factor expression in the retinal pigment epithelium is essential for choriocapillaris development and visual function. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 167:1451-9. [PMID: 16251428 PMCID: PMC1603772 DOI: 10.1016/s0002-9440(10)61231-x] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The choroid in the eye provides vascular support for the retinal pigment epithelium (RPE) and the photoreceptors. Vascular endothelial growth factor (VEGF) derived from the RPE has been implicated in the physiological regulation of the choroidal vasculature, and overexpression of VEGF in this epithelium has been considered an important factor in the pathogenesis of choroidal neovascularization in age-related macular degeneration. Here, we demonstrate that RPE-derived VEGF is essential for choriocapillaris development. Conditional inactivation of VEGF expression in the RPE (in VEGFrpe-/- mice) results in the absence of choriocapillaris, occurrence of microphthalmia, and the loss of visual function. Severe abnormalities of RPE cells are already observed when VEGF expression in the RPE is only reduced (in VEGFrpe+/- mice), despite the formation of choroidal vessels at these VEGF levels. Finally, using Hif1arpe-/- mice we demonstrate that these roles of VEGF are not dependent on hypoxia-inducible factor-1alpha-mediated transcriptional regulation of VEGF expression in the RPE. Thus, hypoxia-inducible factor-1alpha-independent expression of VEGF is essential for choroid development.
Collapse
Affiliation(s)
- Alexander G Marneros
- Department of Cell Biology, Harvard Medical School, 188 Longwood Ave., Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
The Pathogenesis of Proliferative Vitreoretinopathy. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
34
|
Khan ZA, Chan BM, Uniyal S, Barbin YP, Farhangkhoee H, Chen S, Chakrabarti S. EDB fibronectin and angiogenesis -- a novel mechanistic pathway. Angiogenesis 2005; 8:183-96. [PMID: 16308732 DOI: 10.1007/s10456-005-9017-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 05/02/2005] [Indexed: 11/29/2022]
Abstract
Extra domain-B containing fibronectin (EDB(+) FN), a recently proposed marker of angiogenesis, has been shown to be expressed in a number of human cancers and in ocular neovascularization in patients with proliferative diabetic retinopathy. To gain molecular understanding of the functional significance of EDB(+) FN, we have investigated possible regulatory mechanisms of induction and its role in endothelial cell proliferation and angiogenesis. Human vascular endothelial cells were cultured in high levels of glucose, and fibrogenic growth factors, transforming growth factor-beta1 (TGF-beta1) and endothelin-1 (ET-1). Our results show that high glucose levels, TGF-beta1, and ET-1 upregulated EDB(+) FN expression. Treatment of cells exposed to high glucose with TGF-beta1 neutralizing antibody and ET receptor antagonist prevented high glucose-induced EDB(+) FN expression. In order to elucidate the functional significance of EDB(+) FN upregulation, cells were subjected to in vitro proliferation and angiogenesis assays following EDB peptide treatment and specific EDB(+) FN gene silencing. Our results show that exposure of cells to EDB peptide increased vascular endothelial growth factor (VEGF) expression, endothelial proliferation, and tube formation. Furthermore, specific EDB(+) FN gene silencing prevented both basal and high glucose-induced VEGF expression and reduced the proliferative capacity of endothelial cells. In conclusion, these results indicate that EDB(+) FN is involved in endothelial cell proliferation and vascular morphogenesis, findings which may provide novel avenues for the development of anti-angiogenic therapies.
Collapse
Affiliation(s)
- Zia A Khan
- Department of Pathology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Curatola AM, Moscatelli D, Norris A, Hendricks-Munoz K. Retinal blood vessels develop in response to local VEGF-A signals in the absence of blood flow. Exp Eye Res 2005; 81:147-58. [PMID: 16011835 DOI: 10.1016/j.exer.2005.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The role of hemodynamic forces and other signals from circulating blood in guiding the development of the retinal vasculature was examined by following the growth of these vessels in organ cultures. Retinal vascular development in organ cultures was monitored by immunofluorescent staining of retinal whole-mounts using antibodies against ICAM-2, a specific marker for endothelial cells and by vascular adenosine disphosphatase activity. Under culture conditions, the retinal vasculature from mice at postnatal day 3 (P3) grew from the optic nerve area to the edge of the retina in a manner similar to that observed in vivo. Both inner and outer vascular plexuses formed in retinal explants. Within the first few days of organ culture, the initial uniform meshwork of blood vessels was reorganized into arterioles, venules, and capillaries. As in animals, the initial retinal vascular plexus contained abundant vessels, and afterward some vessels regressed leading to the formation of a mature vascular bed. Changes in vascular density due to blood vessel growth and remodeling were confirmed by RT-PCR and Western blot analyses of ICAM-2 mRNA and protein levels, respectively. In addition, during in vitro retinal vascularization, arterioles acquired mural cell coverage, as shown by positive staining for alpha-smooth muscle actin. Thus, blood flow and blood-derived signals were not required for the development and maturation of retinal vessels. In contrast, stability of blood vessels in retinal explants was tightly regulated by endogenous levels of vascular endothelial growth factor-A (VEGF-A). VEGF-A was expressed in the explants throughout the culture period, and addition of neutralizing antibodies against VEGF-A to the organ culture caused a severe regression of blood vessels from the vascular front toward the optic nerve. In contrast, addition of anti-FGF-2 antibodies had no effect on the developing vasculature. Thus, retinal vascular development is dependent on local VEGF-A signals rather than systemic signals.
Collapse
Affiliation(s)
- Anna Maria Curatola
- Department of Pediatrics, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | | | | | |
Collapse
|
36
|
Oshima Y, Oshima S, Nambu H, Kachi S, Takahashi K, Umeda N, Shen J, Dong A, Apte RS, Duh E, Hackett SF, Okoye G, Ishibashi K, Handa J, Melia M, Wiegand S, Yancopoulos G, Zack DJ, Campochiaro PA. Different effects of angiopoietin-2 in different vascular beds: new vessels are most sensitive. FASEB J 2005; 19:963-5. [PMID: 15802489 DOI: 10.1096/fj.04-2209fje] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we used double transgenic mice with inducible expression of angiopoietin-2 (Ang2) to investigate the role of Ang2 in the retinal and choroidal circulations and in three models of ocular neovascularization (NV). Mice with induced expression of Ang2 ubiquitously, or specifically in the retina, survived and appeared grossly normal. They also had normal-appearing retinal and choroidal circulations, demonstrating that high levels of Ang2 did not induce regression of mature retinal or choroidal vessels. When Ang2 expression was induced soon after birth, there was increased density of the deep capillary bed on postnatal day (P) 11 that returned to normal by P18, the time that retinal vascular development is usually completed. In mice with ischemic retinopathy, induction of Ang2 during the ischemic period resulted in a significant increase in retinal NV, but induction of Ang2 at a later time point when ischemia (and vascular endothelial growth factor [VEGF]) was less, hastened regression of NV. In triple transgenic mice that coexpressed VEGF and Ang2, the increased expression of Ang2 inhibited VEGF-induced NV in the retina. Increased expression of Ang2 also resulted in regression of choroidal neovascularization. These data suggest that ocular neovascularization, but not mature retinal or choroidal vessels, is sensitive to Ang2; a high Ang2/VEGF ratio promotes regression, while high Ang2 in the setting of hypoxia and/or concomitantly high Ang2 and VEGF stimulate neovascularization.
Collapse
Affiliation(s)
- Yuji Oshima
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-9277, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005; 16:159-78. [PMID: 15863032 DOI: 10.1016/j.cytogfr.2005.01.004] [Citation(s) in RCA: 955] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fibroblast growth factors (FGFs) are a family of heparin-binding growth factors. FGFs exert their pro-angiogenic activity by interacting with various endothelial cell surface receptors, including tyrosine kinase receptors, heparan-sulfate proteoglycans, and integrins. Their activity is modulated by a variety of free and extracellular matrix-associated molecules. Also, the cross-talk among FGFs, vascular endothelial growth factors (VEGFs), and inflammatory cytokines/chemokines may play a role in the modulation of blood vessel growth in different pathological conditions, including cancer. Indeed, several experimental evidences point to a role for FGFs in tumor growth and angiogenesis. This review will focus on the relevance of the FGF/FGF receptor system in adult angiogenesis and its contribution to tumor vascularization.
Collapse
Affiliation(s)
- Marco Presta
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Oshima Y, Oshima S, Nambu H, Kachi S, Hackett SF, Melia M, Kaleko M, Connelly S, Esumi N, Zack DJ, Campochiaro PA. Increased expression of VEGF in retinal pigmented epithelial cells is not sufficient to cause choroidal neovascularization. J Cell Physiol 2004; 201:393-400. [PMID: 15389527 DOI: 10.1002/jcp.20110] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Increased expression of vascular endothelial cell growth factor (VEGF) in the retina is sufficient to stimulate sprouting of neovascularization from the deep capillary bed of the retina, but not the superficial retinal capillaries or the choriocapillaris. Coexpression of VEGF and angiopoietin 2 (Ang2) results in sprouting of neovascularization from superficial and deep retinal capillaries, but not the choriocapillaris. However, retina-derived VEGF and Ang2 may not reach the choriocapillaris, because of tight junctions between retinal pigmented epithelial (RPE) cells. To eliminate this possible confounding factor, we used the human vitelliform macular dystrophy 2 (VMD2) promoter, an RPE-specific promoter, combined with the tetracycline-inducible promoter system, to generate double transgenic mice with inducible expression of VEGF in RPE cells. Adult mice with increased expression of VEGF in RPE cells had normal retinas and choroids with no choroidal neovascularization (CNV), but when increased expression of VEGF in RPE cells was combined with subretinal injection of a gutless adenoviral vector containing an expression construct for Ang2 (AGVAng2), CNV consistently occurred. In contrast, triple transgenic mice with induced expression of Ang2 and VEGF in RPE cells, did not develop CNV. These data suggest that increased expression of VEGF and/or Ang2 in RPE cells is not sufficient to cause CNV unless it is combined with a subretinal injection of a gutless adenoviral vector, which is likely to perturb RPE cells. These data also suggest that the effects of angiogenic proteins may vary among vascular beds, even those that are closely related, and, therefore, generalizations should be avoided.
Collapse
Affiliation(s)
- Yuji Oshima
- The Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-9277, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Malavaud B, Pedron S, Sordello S, Mazerolles C, Billottet C, Thiery JP, Jouanneau J, Plouët J. Direct FGF receptor 1 activation through an anti-idiotypic strategy mimicks the biological activity of FGF-2 and inhibits the progression of the bladder carcinoma derived from NBT-II cells. Oncogene 2004; 23:6769-78. [PMID: 15273729 DOI: 10.1038/sj.onc.1207135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hypothesis that tumor growth is angiogenesis-dependent has been documented by a considerable body of direct and indirect experimental data. Since the discovery of the vascular endothelial growth factor (VEGF), most attention has been focused on the VEGF system. Although fibroblast growth factors 1 and 2 (FGF-1 and FGF-2) can exert a strong angiogenic activity when they are supplied as a single pharmacological agent, their role in pathological angiogenesis in preclinical models remains controversial. To decipher the contribution of FGF receptors in various models of angiogenesis, we took advantage of the anti-idiotypic strategy to obtain circulating agonists specific for FGFR-1 and FGFR-2 (AIdF-1 and AIdF-2). They mimicked FGF-1 and FGF-2 for receptor binding, signal transduction, proliferation of endothelial cells and differentiation of the bladder carcinoma cell NBT-II which expresses FGFR-2b but not FGFR-1. The constitutive expression of FGFR-1 allowed binding of FGF-2 and AIdF-2 and inhibition of the proliferation of NBT-II cells. AIdF-1 and AIdF-2 induced angiogenesis in the corneal pocket assay. Although FGFR-1 dimerization achieved by AIdF-2 injection led to highly differentiated and smaller NBT-II tumors, no sign of reduction of tumor angiogenesis was observed, thus suggesting that endothelial cells are resistant to FGF.
Collapse
MESH Headings
- Adrenal Cortex/blood supply
- Animals
- Antibodies, Anti-Idiotypic/immunology
- Capillaries
- Cell Division
- Cell Line, Tumor
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Fibroblast Growth Factor 2/physiology
- Humans
- Mice
- Mice, Nude
- Phosphorylation
- Receptor Protein-Tyrosine Kinases/physiology
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 2
- Receptors, Fibroblast Growth Factor/physiology
- Signal Transduction/physiology
- Transplantation, Heterologous
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/immunology
- Urinary Bladder Neoplasms/pathology
- Vascular Endothelial Growth Factor A/pharmacology
- Vascular Endothelial Growth Factor A/physiology
Collapse
Affiliation(s)
- Bernard Malavaud
- Institut de Pharmacologie et Biologie Structurale, UMR CNRS 5089, 205 Route de Narbonne, Toulouse 31077, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Nambu H, Nambu R, Oshima Y, Hackett SF, Okoye G, Wiegand S, Yancopoulos G, Zack DJ, Campochiaro PA. Angiopoietin 1 inhibits ocular neovascularization and breakdown of the blood-retinal barrier. Gene Ther 2004; 11:865-73. [PMID: 15042118 DOI: 10.1038/sj.gt.3302230] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several retinal and choroidal diseases are potentially treatable by intraocular delivery of genes whose products may counter or neutralize abnormal gene expression that occurs as part of the diseases. However, prior to considering a transgene, it is necessary to thoroughly investigate the effects of its expression in normal and diseased eyes. An efficient way to do this is to combine tissue-specific promoters with inducible promoter systems in transgenic mice. In this study, we used this approach to evaluate the effects of ectopic expression of angiopoietin-1 (Ang1) in normal eyes and those with ocular neovascularization. Adult mice with induced expression of Ang1 ubiquitously, or specifically in the retina, appeared normal and had no identifiable changes in retinal or choroidal blood vessels or in retinal function as assessed by electroretinography. Increased expression of Ang1 in eyes with severe retinal ischemia or in eyes with rupture of Bruch's membrane significantly suppressed the development of retinal or choroidal neovascularization, respectively. This inhibition of ocular neovascularization is particularly interesting and noteworthy, because overexpression of Ang1 in skin stimulates neovascularization. Ang1 also significantly reduced VEGF-induced retinal vascular permeability. These data suggest that intraocular delivery of ang1 has potential for treatment of ocular neovascularization and macular edema.
Collapse
Affiliation(s)
- H Nambu
- The Department of Ophthalmology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Maumenee 719, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Aiello LP, Cahill MT, Cavallerano JD. Growth factors and protein kinase C inhibitors as novel therapies for the medical management diabetic retinopathy. Eye (Lond) 2004; 18:117-25. [PMID: 14762400 DOI: 10.1038/sj.eye.6700585] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Diabetic retinopathy is a leading cause of acquired visual loss. Current treatment modalities are not effective in all cases and may have side effects. Investigation of the biochemical basis of diabetic retinopathy suggests that future treatments may reverse or halt the progression of diabetic retinopathy, or actually prevent the development of diabetic retinopathy. Pharmacological manipulation of protein kinase C and various growth factors may form the basis of future treatments for diabetic retinopathy.
Collapse
Affiliation(s)
- L P Aiello
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA 02215, USA.
| | | | | |
Collapse
|
42
|
Abstract
Retinal angiogenesis and choroidal angiogenesis are major causes of vision loss, and the pathogenesis of this angiogenesis process is still uncertain. However, several key steps of the angiogenic cascade have been elucidated. In retinal angiogenesis, hypoxia is the initial stimulus that causes up regulation of growth factors, integrins and proteinases, which result in endothelial cell proliferation and migration that are critical steps in this process. Once the endothelial tube is formed from the existing blood vessels, maturation starts with recruitment of mural cell precursors and formation of the basement membrane. Normally, there is a tight balance between angiogenic factors and endogenous angiogenesis inhibitors that help to keep the angiogenic process under control. Although the steps of choroidal angiogenesis seem to be similar to those of retinal angiogenesis, there are some major differences between these two processes. Several anti-angiogenic approaches are being developed in animal models to prevent ocular angiogenesis by blocking the key steps of the angiogenic cascade. Based on these pre-clinical studies, several anti-angiogenic clinical trials are ongoing in patients with diabetic retinopathy and age-related macular degeneration. This review discusses the pathogenesis of retinal and choroidal angiogenesis, and alternative pharmacological approaches to inhibit angiogenesis in ocular diseases.
Collapse
Affiliation(s)
- Arup Das
- School of Medicine, University of New Mexico, Albuquerque, USA.
| | | |
Collapse
|
43
|
Abstract
There is no unique formula for angiogenesis. Instead there is a large group of potential participating proteins that interact in complex ways. Depending upon the surrounding cell types and the relative expression levels of angiogenesis-related proteins, the 'angiogenesis cascade' can vary. Therefore, it is valuable to study and compare the role of proteins in several well-characterized vascular beds. The eye provides a useful model system, because it contains several vascular beds sandwiched between avascular tissue. This allows for unequivocal identification and quantitation of new vessels. Retina-specific promoters combined with inducible promoter systems provide a means to regulate the expression of proteins of interest. As a relatively isolated compartment, the eye also provides advantages for gene transfer. By gaining insight regarding the molecular signals involved in various types of ocular angiogenesis, general concepts can emerge that may apply to other settings, including tumor angiogenesis. One concept that has emerged is that despite participation of multiple stimulatory factors for ocular neovascularization, VEGF plays an essential role and interruption of VEGF signaling is an important therapeutic strategy. Another concept is that while most studies have focused on prevention of ocular neovascularization, regression of new vessels is desirable and is achievable with at least three agents, combretastatin A-4 phosphate, pigment epithelium-derived factor, and angiopoietin-2. Finally, endostatin and angiostatin, which have been sources of controversy because of inconsistent results in tumor models, have been shown to have good efficacy when delivered by gene transfer in models of ocular neovascularization. These results provide leads for new ocular treatments and perspective for evaluation of studies of neovascularization in extraocular tissues.
Collapse
Affiliation(s)
- Peter Anthony Campochiaro
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Maumenee 719, 600 N. Wolfe Street, Baltimore, MD 21287-9277, USA.
| | | |
Collapse
|
44
|
Patel N, Sun L, Moshinsky D, Chen H, Leahy KM, Le P, Moss KG, Wang X, Rice A, Tam D, Laird AD, Yu X, Zhang Q, Tang C, McMahon G, Howlett A. A selective and oral small molecule inhibitor of vascular epithelial growth factor receptor (VEGFR)-2 and VEGFR-1 inhibits neovascularization and vascular permeability. J Pharmacol Exp Ther 2003; 306:838-45. [PMID: 12766257 DOI: 10.1124/jpet.103.052167] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a key driver of the neovascularization and vascular permeability that leads to the loss of visual acuity in diabetic retinopathy and neovascular age-related macular degeneration. Our aim was to identify an orally active, selective small molecule kinase inhibitor of vascular endothelial growth factor receptor (VEGFR)-2 with activity against both VEGF-induced angiogenesis and vascular permeability. We used a biochemical assay to identify 3-[5-methyl-2- (2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrol-3-yl]-proprionic acid (SU10944), a pyrrole indolinone, which is a potent ATP-competitive inhibitor of VEGFR-2 (Ki of 21 +/- 5 nM). In cellular assays, SU10944 inhibited VEGF-induced receptor autophosphorylation (IC50 of 227 +/- 80 nM) as well as downstream signaling (IC50 of 102 +/- 27 nM). In biochemical assays, SU10944 exhibits potent inhibitory activity against VEGFR-1; weak activity against other related subgroup members, including stem cell factor receptor (SCFR), platelet-derived growth factor receptor beta (PDGFRbeta), and fibroblast growth factor receptor-1 (FGFR-1); and no detectable activity against other protein tyrosine kinases such as epidermal growth factor receptor (EGFR), Src, and hepatocyte growth factor receptor. In cellular assays, the selectivity for SU10944 to inhibit VEGFR is maintained compared with other tyrosine kinases (IC50 for SCFR of 1.6 +/- 0.3 microM, for PDGFRbeta of 30.6 +/- 13.3 microM, for FGFR-1 of >50 microM, and for EGFR of >50 microM). Upon oral administration, SU10944 gave a clear dose response in the corneal micropocket model with an ED50 value for inhibition of neovascularization of approximately 30 mg/kg and a maximum inhibition of 95% at 300 mg/kg. Similarly, upon oral administration in the Miles assay, SU10944 potently inhibited VEGF-induced vascular permeability. Our data indicate that small molecule inhibitors of VEGFR signaling have the potential to ameliorate VEGF-induced neovascularization as well as vascular permeability.
Collapse
Affiliation(s)
- Neela Patel
- Sugen, Inc, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sennlaub F, Valamanesh F, Vazquez-Tello A, El-Asrar AM, Checchin D, Brault S, Gobeil F, Beauchamp MH, Mwaikambo B, Courtois Y, Geboes K, Varma DR, Lachapelle P, Ong H, Behar-Cohen F, Chemtob S. Cyclooxygenase-2 in human and experimental ischemic proliferative retinopathy. Circulation 2003; 108:198-204. [PMID: 12821538 DOI: 10.1161/01.cir.0000080735.93327.00] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Intravitreal neovascular diseases, as in ischemic retinopathies, are a major cause of blindness. Because inflammatory mechanisms influence vitreal neovascularization and cyclooxygenase (COX)-2 promotes tumor angiogenesis, we investigated the role of COX-2 in ischemic proliferative retinopathy. METHODS AND RESULTS We describe here that COX-2 is induced in retinal astrocytes in human diabetic retinopathy, in the murine and rat model of ischemic proliferative retinopathy in vivo, and in hypoxic astrocytes in vitro. Specific COX-2 but not COX-1 inhibitors prevented intravitreal neovascularization, whereas prostaglandin E2, mainly via its prostaglandin E receptor 3 (EP3), exacerbated neovascularization. COX-2 inhibition induced an upregulation of thrombospondin-1 and its CD36 receptor, consistent with the observed antiangiogenic effects of COX-2 inhibition; EP3 stimulation reversed effects of COX-2 inhibitors on thrombospondin-1 and CD36. CONCLUSIONS These findings point to an important role for COX-2 in ischemic proliferative retinopathy, as in diabetes.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Astrocytes/drug effects
- Astrocytes/enzymology
- Astrocytes/pathology
- CD36 Antigens/metabolism
- Cell Division/drug effects
- Cells, Cultured
- Cyclooxygenase 2
- Diabetic Retinopathy/complications
- Diabetic Retinopathy/drug therapy
- Diabetic Retinopathy/enzymology
- Diabetic Retinopathy/pathology
- Dinoprostone/metabolism
- Disease Models, Animal
- Endothelial Growth Factors/metabolism
- Enzyme Inhibitors/pharmacology
- Female
- Humans
- Intercellular Signaling Peptides and Proteins/metabolism
- Ischemia/complications
- Ischemia/enzymology
- Ischemia/pathology
- Isoenzymes/antagonists & inhibitors
- Isoenzymes/metabolism
- Lymphokines/metabolism
- Male
- Membrane Proteins
- Mice
- Mice, Inbred C57BL
- Middle Aged
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Prostaglandin-Endoperoxide Synthases/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Immunologic
- Receptors, Lipoprotein/metabolism
- Receptors, Prostaglandin E/drug effects
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP3 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
- Receptors, Scavenger
- Retina/drug effects
- Retina/enzymology
- Retina/pathology
- Retinal Vessels/drug effects
- Retinal Vessels/pathology
- Thrombospondin 1/metabolism
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factor Receptor-2/metabolism
- Vascular Endothelial Growth Factors
- Vitreoretinopathy, Proliferative/complications
- Vitreoretinopathy, Proliferative/drug therapy
- Vitreoretinopathy, Proliferative/enzymology
- Vitreoretinopathy, Proliferative/pathology
Collapse
Affiliation(s)
- F Sennlaub
- Department of Pediatrics, Centre de Recherche, Hôpital Sainte-Justine, 3175, chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada H3T 1C5.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sullivan CJ, Doetschman T, Hoying JB. Targeted disruption of the Fgf2 gene does not affect vascular growth in the mouse ischemic hindlimb. J Appl Physiol (1985) 2002; 93:2009-17. [PMID: 12391121 PMCID: PMC3872060 DOI: 10.1152/japplphysiol.00451.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemic revascularization involves extensive structural adaptation of the vasculature, including both angiogenesis and arteriogenesis. Previous studies suggest that fibroblast growth factor (FGF)-2 participates in both angiogenesis and arteriogenesis. Despite this, the specific role of endogenous FGF-2 in vascular adaptation during ischemic revascularization is unknown. Therefore, we used femoral artery ligation in Fgf2(+/+) and Fgf2(-/-) mice to test the hypothesis that endogenous FGF-2 is an important regulator of angiogenesis and arteriogenesis in the setting of hindlimb ischemia. Femoral ligation increased capillary and arteriole density in the ischemic calf in both Fgf2(+/+) and Fgf2(-/-) mice. The level of angiographically visible arteries in the thigh was increased in the ischemic hindlimb in all mice, and no significant differences were observed between Fgf2(+/+) and Fgf2(-/-) mice. Additionally, limb perfusion progressively improved to peak values at day 35 postsurgery in both genotypes. Given the equivalent responses observed in Fgf2(+/+) and Fgf2(-/-) mice, we demonstrate that endogenous FGF-2 is not required for revascularization in the setting of peripheral ischemia. Vascular adaptation, including both angiogenesis and arteriogenesis, was not affected by the absence of FGF-2 in this model.
Collapse
Affiliation(s)
- Chris J Sullivan
- Physiological Sciences, University of Arizona, Tucson, Arizona 85724, USA
| | | | | |
Collapse
|
47
|
Hangai M, Kitaya N, Xu J, Chan CK, Kim JJ, Werb Z, Ryan SJ, Brooks PC. Matrix metalloproteinase-9-dependent exposure of a cryptic migratory control site in collagen is required before retinal angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1429-37. [PMID: 12368215 PMCID: PMC1867273 DOI: 10.1016/s0002-9440(10)64418-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Retinal neovascularization is a leading cause of human blindness. However, little is known concerning the molecular mechanisms controlling retinal neovascularization in vivo. Here we provide evidence that exposure of a collagen type IV cryptic epitope detected by monoclonal antibody (mAb) HUIV26, delineates sites of vascular bud formation and represents one of the earliest structural remodeling events required before vessel out-growth. Exposure of these cryptic sites was inhibited in matrix metalloproteinase (MMP)-9-deficient but not MMP-2-deficient mice implicating MMP-9 in their exposure. Retinal endothelial cell interactions with the HUIV26 epitopes induced endothelial cell migration, which was blocked by mAb HUIV26. Importantly, subcutaneous administration of mAb HUIV26 potently inhibited retinal angiogenesis in vivo. Taken together, these findings suggest a novel mechanism in which MMP-9 facilitates exposure of HUIV26 cryptic sites, thereby promoting retinal endothelial cell migration and neovascularization in vivo.
Collapse
Affiliation(s)
- Masanori Hangai
- Department of Ophthalmology, Kobe City General Hospital, Kobe, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hackett SF, Wiegand S, Yancopoulos G, Campochiaro PA. Angiopoietin-2 plays an important role in retinal angiogenesis. J Cell Physiol 2002; 192:182-7. [PMID: 12115724 DOI: 10.1002/jcp.10128] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Angiopoietin 2 (Ang2) expression in the retina is increased during physiologic and pathologic neovascularization suggesting that it may be involved. In this study, we used Ang2-deficient mice to test that hypothesis. Mice deficient in Ang2 showed delayed and incomplete development of the superficial vascular bed of the retina, which develops primarily by vasculogenesis, and complete absence of the intermediate and deep vascular beds which develop by angiogenesis. In addition to incomplete retinal vascular development, Ang2-deficient mice showed lack of regression of the hyaloid vasculature, resulting in a phenotype that mimics infants with persistent fetal vasculature (PFV), a relatively common congenital abnormality. Exposure to high levels of oxygen resulted in partial regression of the retinal vessels, indicating that oxygen-induced regression of retinal vessels does not require Ang2. When these oxygen-exposed mice with few retinal vessels were moved to room air, there was no ischemia-induced retinal neovascularization. These data support the hypothesis that Ang2 plays a critical role in physiologic and pathologic angiogenesis, and physiologic, but not oxygen-induced vascular regression. The data also suggest that infants with PFV should be examined for genetic modifications that would be expected to cause perturbations in Tie2 signaling.
Collapse
Affiliation(s)
- Sean F Hackett
- The Department of Ophthalmology, The Johns Hopkins University School of Medicine, Maumenee, Baltimore, Maryland 21287-9277, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Hyperglycaemia appears to be a critical factor in the aetiology of diabetic retinopathy and initiates downstream events including: basement membrane thickening, pericyte drop out and retinal capillary non-perfusion. More recently, focus has been directed to the molecular basis of the disease process in diabetic retinopathy. Of particular importance in the development and progression of diabetic retinopathy is the role of growth factors (eg vascular endothelial growth factor, placenta growth factor and pigment epithelium-derived factor) together with specific receptors and obligate components of the signal transduction pathway needed to support them. Despite these advances there are still a number of important questions that remain to be answered before we can confidently target pathological signals. How does hyperglycaemia regulate retinal vessels? Which growth factors are most important and at what stage of retinopathy do they operate? What is the preferred point in the growth factor signalling cascade for therapeutic intervention? Answers to these questions will provide the basis for new therapeutic interventions in a debilitating ocular condition.
Collapse
Affiliation(s)
- J Cai
- Department of Optometry and Vision Sciences, Cardiff University, UK
| | | |
Collapse
|
50
|
Foletti A, Ackermann J, Schmidt A, Hummler E, Beermann F. Absence of fibroblast growth factor 2 does not prevent tumor formation originating from the RPE. Oncogene 2002; 21:1841-7. [PMID: 11896616 DOI: 10.1038/sj.onc.1205030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2000] [Revised: 10/02/2001] [Accepted: 10/09/2001] [Indexed: 11/09/2022]
Abstract
We have analysed the importance of fibroblast growth factor 2 (FGF2) in tumor development. In a transgenic mouse model (Tyrp1-Tag) tumors form in the retinal pigment epithelium (RPE), invade surrounding tissues, and metastasize to lymph node and spleen. To address whether RPE tumor formation is dependent on FGF2, we generated FGF2-deficient mice. Such mice appeared healthy and exhibited no impairment of growth or development. Tyrp1-Tag transgenic mice, which are lacking FGF2 (FGF2-/-) developed RPE tumors that metastasize to spleen and lymph nodes. Tumor growth and survival rate are identical to Tyrp1-Tag transgenic littermates expressing FGF2. Cell lines were isolated from RPE tumors of wild-type and FGF2-deficient mice. They grow in culture, are pigmented and form vascularized tumors, when injected subcutaneously into nude mice of either FGF2-/- or FGF2+/+ genetic background. Kinetics of tumor growth was identical and independent of presence of FGF2. Together, these results demonstrate that FGF2 is not essential for tumor formation of the RPE thus suggesting that tumor growth in general may not be dependent on FGF2.
Collapse
Affiliation(s)
- Alessandro Foletti
- ISREC (Swiss Institute for Experimental Cancer Research), Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | | | | | | | | |
Collapse
|