1
|
Hokello J, Tyagi K, Owor RO, Sharma AL, Bhushan A, Daniel R, Tyagi M. New Insights into HIV Life Cycle, Th1/Th2 Shift during HIV Infection and Preferential Virus Infection of Th2 Cells: Implications of Early HIV Treatment Initiation and Care. Life (Basel) 2024; 14:104. [PMID: 38255719 PMCID: PMC10817636 DOI: 10.3390/life14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
The theory of immune regulation involves a homeostatic balance between T-helper 1 (Th1) and T-helper 2 (Th2) responses. The Th1 and Th2 theories were introduced in 1986 as a result of studies in mice, whereby T-helper cell subsets were found to direct different immune response pathways. Subsequently, this hypothesis was extended to human immunity, with Th1 cells mediating cellular immunity to fight intracellular pathogens, while Th2 cells mediated humoral immunity to fight extracellular pathogens. Several disease conditions were later found to tilt the balance between Th1 and Th2 immune response pathways, including HIV infection, but the exact mechanism for the shift from Th1 to Th2 cells was poorly understood. This review provides new insights into the molecular biology of HIV, wherein the HIV life cycle is discussed in detail. Insights into the possible mechanism for the Th1 to Th2 shift during HIV infection and the preferential infection of Th2 cells during the late symptomatic stage of HIV disease are also discussed.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo P.O. Box 236, Uganda
| | - Kratika Tyagi
- Department of Biotechnology, Banasthali Vidyapith, Jaipur 304022, India
| | - Richard Oriko Owor
- Department of Chemistry, Faculty of Science and Education, Busitema University, Tororo P.O. Box 236, Uganda
| | | | - Alok Bhushan
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Rene Daniel
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Advantages and shortcomings of cell-based electrical impedance measurements as a GPCR drug discovery tool. Biosens Bioelectron 2019; 137:33-44. [PMID: 31077988 DOI: 10.1016/j.bios.2019.04.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/05/2019] [Accepted: 04/20/2019] [Indexed: 12/13/2022]
Abstract
G Protein-Coupled Receptors (GPCRs) transduce extracellular signals and activate intracellular pathways, usually through activating associated G proteins. Due to their involvement in many human diseases, they are recognized worldwide as valuable drug targets. Many experimental approaches help identify small molecules that target GPCRs, including in vitro cell-based reporter assays and binding studies. Most cell-based assays use one signaling pathway or reporter as an assay readout. Moreover, they often require cell labeling or the integration of reporter systems. Over the last decades, cell-based electrical impedance biosensors have been explored for drug discovery. This label-free method holds many advantages over other cellular assays in GPCR research. The technology requires no cell manipulation and offers real-time kinetic measurements of receptor-mediated cellular changes. Instead of measuring the activity of a single reporter, the impedance readout includes information on multiple signaling events. This is beneficial when screening for ligands targeting orphan GPCRs since the signaling cascade(s) of the majority of these receptors are unknown. Due to its sensitivity, the method also applies to cellular models more relevant to disease, including patient-derived cell cultures. Despite its advantages, remaining issues regarding data comparability and interpretability has limited implementation of cell-based electrical impedance (CEI) in drug discovery. Future optimization must include both full exploitation of CEI response data using various ways of analysis as well as further exploration of its potential to detect biased activities early on in drug discovery. Here, we review the contribution of CEI technology to GPCR research, discuss its comparative benefits, and provide recommendations.
Collapse
|
3
|
Kapurniotu A, Gokce O, Bernhagen J. The Multitasking Potential of Alarmins and Atypical Chemokines. Front Med (Lausanne) 2019; 6:3. [PMID: 30729111 PMCID: PMC6351468 DOI: 10.3389/fmed.2019.00003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/04/2019] [Indexed: 12/19/2022] Open
Abstract
When the human genome was sequenced, it came as a surprise that it contains “only” 21,306 protein-coding genes. However, complexity and diversity are multiplied by alternative splicing, non-protein-coding transcripts, or post-translational modifications (PTMs) on proteome level. Here, we discuss how the multi-tasking potential of proteins can substantially enhance the complexity of the proteome further, while at the same time offering mechanisms for the fine-regulation of cell responses. Discoveries over the past two decades have led to the identification of “surprising” and previously unrecognized functionalities of long known cytokines, inflammatory mediators, and intracellular proteins that have established novel molecular networks in physiology, inflammation, and cardiovascular disease. In this mini-review, we focus on alarmins and atypical chemokines such as high-mobility group box protein-1 (HMGB-1) and macrophage migration-inhibitory factor (MIF)-type proteins that are prototypical examples of these classes, featuring a remarkable multitasking potential that allows for an elaborate fine-tuning of molecular networks in the extra- and intracellular space that may eventually give rise to novel “task”-based precision medicine intervention strategies.
Collapse
Affiliation(s)
- Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München, Freising, Germany
| | - Ozgun Gokce
- System Neuroscience Laboratory, Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany.,Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
4
|
Chen K, Bao Z, Tang P, Gong W, Yoshimura T, Wang JM. Chemokines in homeostasis and diseases. Cell Mol Immunol 2018; 15:324-334. [PMID: 29375126 PMCID: PMC6052829 DOI: 10.1038/cmi.2017.134] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022] Open
Abstract
For the past twenty years, chemokines have emerged as a family of critical mediators of cell migration during immune surveillance, development, inflammation and cancer progression. Chemokines bind to seven transmembrane G protein-coupled receptors (GPCRs) that are expressed by a wide variety of cell types and cause conformational changes in trimeric G proteins that trigger the intracellular signaling pathways necessary for cell movement and activation. Although chemokines have evolved to benefit the host, inappropriate regulation or utilization of these small proteins may contribute to or even cause diseases. Therefore, understanding the role of chemokines and their GPCRs in the complex physiological and diseased microenvironment is important for the identification of novel therapeutic targets. This review introduces the functional array and signals of multiple chemokine GPCRs in guiding leukocyte trafficking as well as their roles in homeostasis, inflammation, immune responses and cancer.
Collapse
Affiliation(s)
- Keqiang Chen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA
| | - Zhiyao Bao
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA
- Department of Pulmonary & Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, P. R. China
| | - Peng Tang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University, 400038, Chongqing, China
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., 21702, Frederick, MD, USA
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 700-8558, Okayama, Japan
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA.
| |
Collapse
|
5
|
Abdalla EA, Peñagaricano F, Byrem TM, Weigel KA, Rosa GJM. Genome-wide association mapping and pathway analysis of leukosis incidence in a US Holstein cattle population. Anim Genet 2016; 47:395-407. [PMID: 27090879 DOI: 10.1111/age.12438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2016] [Indexed: 01/24/2023]
Abstract
Bovine leukosis virus is an oncogenic virus that infects B cells, causing bovine leukosis disease. This disease is known to have a negative impact on dairy cattle production and, because no treatment or vaccine is available, finding a possible genetic solution is important. Our objective was to perform a comprehensive genetic analysis of leukosis incidence in dairy cattle. Data on leukosis occurrence, pedigree and molecular information were combined into multitrait GBLUP models with milk yield (MY) and somatic cell score (SCS) to estimate genetic parameters and to perform whole-genome scans and pathway analysis. Leukosis data were available for 11 554 Holsteins daughters of 3002 sires from 112 herds in 16 US states. Genotypes from a 60K SNP panel were available for 961 of those bulls as well as for 2039 additional bulls. Heritability for leukosis incidence was estimated at about 8%, and the genetic correlations of leukosis disease incidence with MY and SCS were moderate at 0.18 and 0.20 respectively. The genome-wide scan indicated that leukosis is a complex trait, possibly modulated by many genes. The gene set analysis identified many functional terms that showed significant enrichment of genes associated with leukosis. Many of these terms, such as G-Protein Coupled Receptor Signaling Pathway, Regulation of Nucleotide Metabolic Process and different calcium-related processes, are known to be related to retrovirus infection. Overall, our findings contribute to a better understanding of the genetic architecture of this complex disease. The functional categories associated with leukosis may be useful in future studies on fine mapping of genes and development of dairy cattle breeding strategies.
Collapse
Affiliation(s)
- E A Abdalla
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Department of Animal Science, University of Benghazi, Benghazi, 21861, Libya
| | - F Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - T M Byrem
- Antel BioSystems, Inc., Lansing, MI, 48910, USA
| | - K A Weigel
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - G J M Rosa
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
6
|
P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions. J Virol 2015; 89:9368-82. [PMID: 26136569 DOI: 10.1128/jvi.01178-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/23/2015] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. IMPORTANCE Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1 receptor antagonist, NF279, is due to the blocking of virus interactions with both the CXCR4 and CCR5 coreceptors. The ability of NF279 to abrogate cellular calcium signaling induced by the respective chemokines showed that this compound acts as a dual-coreceptor antagonist. P2X1 receptor antagonists could thus represent a new class of dual-coreceptor inhibitors with a structure and a mechanism of action that are distinct from those of known HIV-1 coreceptor antagonists.
Collapse
|
7
|
Sechet M, Roussel C, Schmit JL, Saroufim C, Ghomari K, Merrien D, Cordier F, Pik JJ, Landgraf N, Douadi Y, Liné D, Duverlie G, Castelain S. X4 Tropic Virus Prediction Is Associated with a Nadir CD4 T-Cell Count below 100 Cells/mm. Intervirology 2015; 58:155-9. [PMID: 25997386 DOI: 10.1159/000398798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 04/09/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate tropism prediction performances of three algorithms [geno2pheno false-positive rate 10% (G2P10), position-specific scoring matrix (PSSM) and a combination of the 11/25 and net charge rules] and to investigate the viral and host factors potentially involved in the X4 or R5 prediction in human immunodeficiency virus-1 (HIV-1) patients. METHODS Viral tropism was determined in 179 HIV-1-infected patients eligible for CCR5 antagonist therapy. HIV-1 RNA or DNA was extracted and amplified for env gp120 sequencing. In parallel, demographic, viral, immunological and clinical determinants were analyzed. RESULTS According to the G2P10 algorithm, 48 patients harbored X4 or X4R5 virus. The tropism prediction was concordant for 87.7 and 88.2% of samples when comparing G2P10 with PSSM or with a combination of the 11/25 and net charge rules, respectively. X4 prediction was significantly associated with more than 35 amino acids in the V3 domain (p < 0.0001) and loss of an N-linked glycosylation site (p < 0.0001). Of the factors studied, only the nadir CD4 T-cell count was significantly associated with X4 tropism (p = 0.01). CONCLUSION We determined that the X4 virus detection is closely linked to the nadir CD4 T-cell count below 100 cells/mm(3) that must be taken into account when considering a CCR5 antagonist therapy switch.
Collapse
Affiliation(s)
- Matthieu Sechet
- EA4294 Unité de Virologie Clinique et Fondamentale, UPJV et Centre Hospitalo-Universitaire, Amiens, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The human immunodeficiency virus (HIV) enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.
Collapse
Affiliation(s)
- Christopher J De Feo
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
9
|
Hybrid approach for predicting coreceptor used by HIV-1 from its V3 loop amino acid sequence. PLoS One 2013; 8:e61437. [PMID: 23596523 PMCID: PMC3626595 DOI: 10.1371/journal.pone.0061437] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 03/13/2013] [Indexed: 12/18/2022] Open
Abstract
Background HIV-1 infects the host cell by interacting with the primary receptor CD4 and a coreceptor CCR5 or CXCR4. Maraviroc, a CCR5 antagonist binds to CCR5 receptor. Thus, it is important to identify the coreceptor used by the HIV strains dominating in the patient. In past, a number of experimental assays and in-silico techniques have been developed for predicting the coreceptor tropism. The prediction accuracy of these methods is excellent when predicting CCR5(R5) tropic sequences but is relatively poor for CXCR4(X4) tropic sequences. Therefore, any new method for accurate determination of coreceptor usage would be of paramount importance to the successful management of HIV-infected individuals. Results The dataset used in this study comprised 1799 R5-tropic and 598 X4-tropic third variable (V3) sequences of HIV-1. We compared the amino acid composition of both types of V3 sequences and observed that certain types of residues, e.g., Asparagine and Isoleucine, were preferred in R5-tropic sequences whereas residues like Lysine, Arginine, and Tryptophan were preferred in X4-tropic sequences. Initially, Support Vector Machine-based models were developed using amino acid composition, dipeptide composition, and split amino acid composition, which achieved accuracy up to 90%. We used BLAST to discriminate R5- and X4-tropic sequences and correctly predicted 93.16% of R5- and 75.75% of X4-tropic sequences. In order to improve the prediction accuracy, a Hybrid model was developed that achieved 91.66% sensitivity, 81.77% specificity, 89.19% accuracy and 0.72 Matthews Correlation Coefficient. The performance of our models was also evaluated on an independent dataset (256 R5- and 81 X4-tropic sequences) and achieved maximum accuracy of 84.87% with Matthews Correlation Coefficient 0.63. Conclusion This study describes a highly efficient method for predicting HIV-1 coreceptor usage from V3 sequences. In order to provide a service to the scientific community, a webserver HIVcoPred was developed (http://www.imtech.res.in/raghava/hivcopred/) for predicting the coreceptor usage.
Collapse
|
10
|
Drummer HE, Hill MK, Maerz AL, Wood S, Ramsland PA, Mak J, Poumbourios P. Allosteric modulation of the HIV-1 gp120-gp41 association site by adjacent gp120 variable region 1 (V1) N-glycans linked to neutralization sensitivity. PLoS Pathog 2013; 9:e1003218. [PMID: 23592978 PMCID: PMC3616969 DOI: 10.1371/journal.ppat.1003218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 01/15/2013] [Indexed: 12/28/2022] Open
Abstract
The HIV-1 gp120-gp41 complex, which mediates viral fusion and cellular entry, undergoes rapid evolution within its external glycan shield to enable escape from neutralizing antibody (NAb). Understanding how conserved protein determinants retain functionality in the context of such evolution is important for their evaluation and exploitation as potential drug and/or vaccine targets. In this study, we examined how the conserved gp120-gp41 association site, formed by the N- and C-terminal segments of gp120 and the disulfide-bonded region (DSR) of gp41, adapts to glycan changes that are linked to neutralization sensitivity. To this end, a DSR mutant virus (K601D) with defective gp120-association was sequentially passaged in peripheral blood mononuclear cells to select suppressor mutations. We reasoned that the locations of suppressors point to structural elements that are functionally linked to the gp120-gp41 association site. In culture 1, gp120 association and viral replication was restored by loss of the conserved glycan at Asn136 in V1 (T138N mutation) in conjunction with the L494I substitution in C5 within the association site. In culture 2, replication was restored with deletion of the N139INN sequence, which ablates the overlapping Asn141-Asn142-Ser-Ser potential N-linked glycosylation sequons in V1, in conjunction with D601N in the DSR. The 136 and 142 glycan mutations appeared to exert their suppressive effects by altering the dependence of gp120-gp41 interactions on the DSR residues, Leu593, Trp596 and Lys601. The 136 and/or 142 glycan mutations increased the sensitivity of HIV-1 pseudovirions to the glycan-dependent NAbs 2G12 and PG16, and also pooled IgG obtained from HIV-1-infected individuals. Thus adjacent V1 glycans allosterically modulate the distal gp120-gp41 association site. We propose that this represents a mechanism for functional adaptation of the gp120-gp41 association site to an evolving glycan shield in a setting of NAb selection. The envelope glycoprotein gp120-gp41 complex of HIV-1 mediates receptor attachment and virus-cell membrane fusion, leading to cellular entry. A shield of asparagine-linked oligosaccharides occludes the gp120-gp41 protein surface and evolution of this glycan shield provides a means for evading circulating neutralizing antibody. Here we examined how conserved structural elements of the glycoprotein complex, in particular the gp120-gp41 association site, retain functionality in the context of glycan shield evolution. This information is important for the evaluation and exploitation of such conserved functional determinants as potential drug and/or vaccine targets. Our data indicate that the loss of either of 2 adjacent glycans in variable region 1 of gp120 leads to changes in local and remote glycan-dependent epitopes and that this is linked to a remodelling of gp120-gp41 interactions in order to maintain a functional gp120-gp41 complex. We propose that this represents a mechanism for the functional adaptation of the gp120-gp41 association site to an evolving glycan shield in a setting of neutralizing antibody selection.
Collapse
Affiliation(s)
- Heidi E. Drummer
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa K. Hill
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Anne L. Maerz
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Stephanie Wood
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Paul A. Ramsland
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Johnson Mak
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Deakin University School of Medicine, Geelong, Victoria, Australia
| | - Pantelis Poumbourios
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
11
|
Baranova EO, Shastina NS, Shvets VI. Polyanionic inhibitors of HIV adsorption. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:592-608. [DOI: 10.1134/s1068162011050037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
Coxsackievirus A24 variant uses sialic acid-containing O-linked glycoconjugates as cellular receptors on human ocular cells. J Virol 2011; 85:11283-90. [PMID: 21880775 DOI: 10.1128/jvi.05597-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coxsackievirus A24 variant (CVA24v) is a main causative agent of acute hemorrhagic conjunctivitis (AHC), which is a highly contagious eye infection. Previously it has been suggested that CVA24v uses sialic acid-containing glycoconjugates as attachment receptors on corneal cells, but the nature of these receptors is poorly described. Here, we set out to characterize and identify the cellular components serving as receptors for CVA24v. Binding and infection experiments using corneal cells treated with deglycosylating enzymes or metabolic inhibitors of de novo glycosylation suggested that the receptor(s) used by CVA24v are constituted by sialylated O-linked glycans that are linked to one or more cell surface proteins but not to lipids. CVA24v bound better to mouse L929 cells overexpressing human P-selectin glycoprotein ligand-1 (PSGL-1) than to mock-transfected cells, suggesting that PSGL-1 is a candidate receptor for CVA24v. Finally, binding competition experiments using a library of mono- and oligosaccharides mimicking known PSGL-1 glycans suggested that CVA24v binds to Neu5Acα2,3Gal disaccharides (Neu5Ac is N-acetylneuraminic acid). These results provide further insights into the early steps of the CVA24v life cycle.
Collapse
|
13
|
Mulampaka SN, Dixit NM. Estimating the threshold surface density of Gp120-CCR5 complexes necessary for HIV-1 envelope-mediated cell-cell fusion. PLoS One 2011; 6:e19941. [PMID: 21647388 PMCID: PMC3103592 DOI: 10.1371/journal.pone.0019941] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/06/2011] [Indexed: 11/19/2022] Open
Abstract
Reduced expression of CCR5 on target CD4(+) cells lowers their susceptibility to infection by R5-tropic HIV-1, potentially preventing transmission of infection and delaying disease progression. Binding of the HIV-1 envelope (Env) protein gp120 with CCR5 is essential for the entry of R5 viruses into target cells. The threshold surface density of gp120-CCR5 complexes that enables HIV-1 entry remains poorly estimated. We constructed a mathematical model that mimics Env-mediated cell-cell fusion assays, where target CD4(+)CCR5(+) cells are exposed to effector cells expressing Env in the presence of a coreceptor antagonist and the fraction of target cells fused with effector cells is measured. Our model employs a reaction network-based approach to describe protein interactions that precede viral entry coupled with the ternary complex model to quantify the allosteric interactions of the coreceptor antagonist and predicts the fraction of target cells fused. By fitting model predictions to published data of cell-cell fusion in the presence of the CCR5 antagonist vicriviroc, we estimated the threshold surface density of gp120-CCR5 complexes for cell-cell fusion as ∼20 µm(-2). Model predictions with this threshold captured data from independent cell-cell fusion assays in the presence of vicriviroc and rapamycin, a drug that modulates CCR5 expression, as well as assays in the presence of maraviroc, another CCR5 antagonist, using sixteen different Env clones derived from transmitted or early founder viruses. Our estimate of the threshold surface density of gp120-CCR5 complexes necessary for HIV-1 entry thus appears robust and may have implications for optimizing treatment with coreceptor antagonists, understanding the non-pathogenic infection of non-human primates, and designing vaccines that suppress the availability of target CD4(+)CCR5(+) cells.
Collapse
Affiliation(s)
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian
Institute of Science, Bangalore, India
- Bioinformatics Centre, Indian Institute of
Science, Bangalore, India
| |
Collapse
|
14
|
European guidelines on the clinical management of HIV-1 tropism testing. THE LANCET. INFECTIOUS DISEASES 2011; 11:394-407. [PMID: 21429803 DOI: 10.1016/s1473-3099(10)70319-4] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Tagliamonte M, Tornesello ML, Buonaguro FM, Buonaguro L. Conformational HIV-1 envelope on particulate structures: a tool for chemokine coreceptor binding studies. J Transl Med 2011; 9 Suppl 1:S1. [PMID: 21284899 PMCID: PMC3105500 DOI: 10.1186/1479-5876-9-s1-s1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein gp120 presents conserved binding sites for binding to the primary virus receptor CD4 as well as the major HIV chemokine coreceptors, CCR5 and CXCR4. Concerted efforts are underway to understand the specific interactions between gp120 and coreceptors as well as their contribution to the subsequent membrane fusion process. The present review summarizes the current knowledge on this biological aspect, which represents one of the key and essential points of the HIV-host cell interplay and HIV life cycle. The relevance of conformational HIV-1 Envelope proteins presented on Virus-like Particles for appropriate assessment of this molecular interaction, is also discussed.
Collapse
Affiliation(s)
- Maria Tagliamonte
- Lab. of Molecular Biology and Viral Oncogenesis & AIDS Reference Center, Istituto Nazionale Tumori “Fond. G. Pascale”, Naples, Italy
| | - Maria Lina Tornesello
- Lab. of Molecular Biology and Viral Oncogenesis & AIDS Reference Center, Istituto Nazionale Tumori “Fond. G. Pascale”, Naples, Italy
| | - Franco M Buonaguro
- Lab. of Molecular Biology and Viral Oncogenesis & AIDS Reference Center, Istituto Nazionale Tumori “Fond. G. Pascale”, Naples, Italy
| | - Luigi Buonaguro
- Lab. of Molecular Biology and Viral Oncogenesis & AIDS Reference Center, Istituto Nazionale Tumori “Fond. G. Pascale”, Naples, Italy
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Nazari-Shafti TZ, Freisinger E, Roy U, Bulot CT, Senst C, Dupin CL, Chaffin AE, Srivastava SK, Mondal D, Alt EU, Izadpanah R. Mesenchymal stem cell derived hematopoietic cells are permissive to HIV-1 infection. Retrovirology 2011; 8:3. [PMID: 21226936 PMCID: PMC3025950 DOI: 10.1186/1742-4690-8-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 01/12/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tissue resident mesenchymal stem cells (MSCs) are multipotent, self-renewing cells known for their differentiation potential into cells of mesenchymal lineage. The ability of single cell clones isolated from adipose tissue resident MSCs (ASCs) to differentiate into cells of hematopoietic lineage has been previously demonstrated. In the present study, we investigated if the hematopoietic differentiated (HD) cells derived from ASCs could productively be infected with HIV-1. RESULTS HD cells were generated by differentiating clonally expanded cultures of adherent subsets of ASCs (CD90+, CD105+, CD45-, and CD34-). Transcriptome analysis revealed that HD cells acquire a number of elements that increase their susceptibility for HIV-1 infection, including HIV-1 receptor/co-receptor and other key cellular cofactors. HIV-1 infected HD cells (HD-HIV) showed elevated p24 protein and gag and tat gene expression, implying a high and productive infection. HD-HIV cells showed decreased CD4, but significant increase in the expression of CCR5, CXCR4, Nef-associated factor HCK, and Vpu-associated factor BTRC. HIV-1 restricting factors like APOBEC3F and TRIM5 also showed up regulation. HIV-1 infection increased apoptosis and cell cycle regulatory genes in HD cells. Although undifferentiated ASCs failed to show productive infection, HIV-1 exposure increased the expression of several hematopoietic lineage associated genes such as c-Kit, MMD2, and IL-10. CONCLUSIONS Considering the presence of profuse amounts of ASCs in different tissues, these findings suggest the possible role that could be played by HD cells derived from ASCs in HIV-1 infection. The undifferentiated ASCs were non-permissive to HIV-1 infection; however, HIV-1 exposure increased the expression of some hematopoietic lineage related genes. The findings relate the importance of ASCs in HIV-1 research and facilitate the understanding of the disease process and management strategies.
Collapse
Affiliation(s)
- Timo Z Nazari-Shafti
- Applied Stem Cell Laboratory, Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, New Orleans, Louisiana, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hager-Braun C, Hochleitner EO, Gorny MK, Zolla-Pazner S, Bienstock RJ, Tomer KB. Characterization of a discontinuous epitope of the HIV envelope protein gp120 recognized by a human monoclonal antibody using chemical modification and mass spectrometric analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1687-1698. [PMID: 20434359 PMCID: PMC3008351 DOI: 10.1016/j.jasms.2010.03.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/25/2010] [Accepted: 03/01/2010] [Indexed: 05/29/2023]
Abstract
A subset of the neutralizing anti-HIV antibodies recognize epitopes on the envelope protein gp120 of the human immunodeficiency virus. These epitopes are exposed during conformational changes when gp120 binds to its primary receptor CD4. Based on chemical modification of lysine and arginine residues followed by mass spectrometric analysis, we determined the epitope on gp120 recognized by the human monoclonal antibody 559/64-D, which was previously found to be specific for the CD4 binding domain. Twenty-four lysine and arginine residues in recombinant full-length glycosylated gp120 were characterized; the relative reactivities of two lysine residues and five arginine residues were affected by the binding of 559/64-D. The data show that the epitope is discontinuous and is located in the proximity of the CD4-binding site. Additionally, the reactivities of a residue that is located in the secondary receptor binding region and several residues distant from the CD4 binding site were also altered by Ab binding. These data suggest that binding of 559/64-D induced conformational changes which result in altered surface exposure of specific amino acids distant from the CD4-binding site. Consequently, binding of 559/64-D to gp120 affects not only the CD4-binding site, which is recognized as the epitope, but appears to have a global effect on surface exposed residues of the full-length glycosylated gp120.
Collapse
Affiliation(s)
- Christine Hager-Braun
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Sciences, 111 TW. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Elisabeth O. Hochleitner
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Sciences, 111 TW. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Miroslaw K. Gorny
- New York University School of Medicine and VA Medical Center, 423 East 23rd Street, New York, NY10010, USA
| | - Susan Zolla-Pazner
- New York University School of Medicine and VA Medical Center, 423 East 23rd Street, New York, NY10010, USA
| | - Rachelle J. Bienstock
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Sciences, 111 TW. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Kenneth B. Tomer
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Sciences, 111 TW. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
18
|
South African mutations of the CCR5 coreceptor for HIV modify interaction with chemokines and HIV Envelope protein. J Acquir Immune Defic Syndr 2010; 54:352-9. [PMID: 20442662 DOI: 10.1097/qai.0b013e3181e0c7b2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The CCR5 chemokine receptor is the major coreceptor for HIV-1 and the receptor for CC-chemokines, MIP-1alpha, MIP-1beta, and regulated upon activation normal T-cell-expressed and secreted. Individuals, who are homozygous for the nonfunctional CCR5Delta32 allele, are largely resistant to HIV-1 infection. Four unique mutations that affect the amino acid sequence of CCR5 have been identified in South Africa. We have assessed the effect of these mutations on CCR5 interactions with chemokines and HIV Envelope protein. The LeuPhe mutation did not affect CCR5 expression, chemokine binding, intracellular signaling, or interaction with Envelope. The ArgGln mutant was similar to wild-type CCR5, but ligand-independent intracellular signaling suggests that it is partially constitutively active. The AspVal mutation decreased chemokine-binding affinity, chemokine-stimulated intracellular signaling, and receptor expression. It also decreased HIV Envelope-mediated cell fusion. The ArgStop mutant showed no measurable chemokine binding or signaling and no measurable expression of CCR5 at the cell surface or within the cell. Consistent with lack of cell surface expression, it did not support envelope-mediated cell fusion. These results show that South African CCR5 variants have a range of phenotypes in vitro that may reflect altered chemokine responses and susceptibility to HIV infection in individuals who carry these alleles.
Collapse
|
19
|
Sloan RD, Donahue DA, Kuhl BD, Bar-Magen T, Wainberg MA. Expression of Nef from unintegrated HIV-1 DNA downregulates cell surface CXCR4 and CCR5 on T-lymphocytes. Retrovirology 2010; 7:44. [PMID: 20465832 PMCID: PMC2881062 DOI: 10.1186/1742-4690-7-44] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 05/13/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Transcription of HIV-1 cDNA prior to, or in the absence of, integration leads to synthesis of all classes of viral RNA transcripts. Yet only a limited range of viral proteins, including Nef, are translated in this context. Nef expression from unintegrated HIV-1 DNA has been shown to reduce cell surface CD4 levels in T-cells. We wished to determine whether Nef expressed from unintegrated DNA was also able to downregulate the chemokine coreceptors CXCR4 and CCR5.Viral integration was blocked through use of an inactive integrase or by using the integrase inhibitor raltegravir. Infected cells bearing unintegrated DNA were assayed by flow cytometry in the GFP reporter cell line, Rev-CEM, for cell surface levels of CD4, CXCR4 and CCR5. RESULTS In cells bearing only unintegrated HIV-1 DNA, we found that surface levels of CXCR4 were significantly reduced, while levels of CCR5 were also diminished, but not to the extent of CXCR4. We also confirmed the downregulation of CD4. Similar patterns of results were obtained with both integrase-deficient virus or with wild-type infections of cells treated with raltegravir. The Alu-HIV qPCR assay that we used for detection of proviral DNA did not detect any integrated viral DNA. CONCLUSIONS Our results demonstrate that Nef can be expressed from unintegrated DNA at functionally relevant levels and suggest a role for Nef in downregulation of CXCR4 and CCR5. These findings may help to explain how downregulation of CXCR4, CCR5 and CD4 might restrict superinfection and/or prevent signal transduction involving HIV-1 infected cells.
Collapse
Affiliation(s)
- Richard D Sloan
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montréal, QC, Canada
| | | | | | | | | |
Collapse
|
20
|
Jones KL, Roche M, Gantier MP, Begum NA, Honjo T, Caradonna S, Williams BRG, Mak J. X4 and R5 HIV-1 have distinct post-entry requirements for uracil DNA glycosylase during infection of primary cells. J Biol Chem 2010; 285:18603-14. [PMID: 20371602 DOI: 10.1074/jbc.m109.090126] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been assumed that R5 and X4 HIV utilize similar strategies to support viral cDNA synthesis post viral entry. In this study, we provide evidence to show that R5 and X4 HIV have distinct requirements for host cell uracil DNA glycosylase (UNG2) during the early stage of infection. UNG2 has been previously implicated in HIV infection, but its precise role remains controversial. In this study we show that, although UNG2 is highly expressed in different cell lines, UNG2 levels are low in the natural host cells of HIV. Short interfering RNA knockdown of endogenous UNG2 in primary cells showed that UNG2 is required for R5 but not X4 HIV infection and that this requirement is bypassed when HIV enters the target cell via vesicular stomatitis virus envelope-glycoprotein-mediated endocytosis. We also show that short interfering RNA knockdown of UNG2 in virus-producing primary cells leads to defective R5 HIV virions that are unable to complete viral cDNA synthesis. Quantitative PCR analysis revealed that endogenous UNG2 levels are transiently up-regulated post HIV infection, and this increase in UNG2 mRNA is approximately 10-20 times higher in R5 versus X4 HIV-infected cells. Our data show that both virion-associated UNG2 and HIV infection-induced UNG2 expression are critical for reverse transcription during R5 but not X4 HIV infection. More importantly, we have made the novel observation that R5 and X4 HIV have distinct host cell factor requirements and differential capacities to induce gene expression during the early stages of infection. These differences may result from activation of distinct signaling cascades and/or infection of divergent T-lymphocyte subpopulations.
Collapse
Affiliation(s)
- Kate L Jones
- Centre for Virology, Burnet Institute, Melbourne, Victoria 3004, Australia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
He X, Fang L, Wang J, Yi Y, Zhang S, Xie X. Bryostatin-5 blocks stromal cell-derived factor-1 induced chemotaxis via desensitization and down-regulation of cell surface CXCR4 receptors. Cancer Res 2008; 68:8678-86. [PMID: 18974109 DOI: 10.1158/0008-5472.can-08-0294] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The chemokine receptor CXCR4 and its ligand, stromal cell-derived factor-1 (SDF-1), play important roles in hematopoiesis regulation, lymphocyte activation, and trafficking, as well as in developmental processes, including organogenesis, vascularization, and embryogenesis. The receptor is also involved in HIV infection and tumor growth and metastasis. Antagonists of CXCR4 have been widely evaluated for drugs against HIV and tumors. In an effort to identify novel CXCR4 antagonists, we screened a small library of compounds derived from marine organisms and found bryostatin-5, which potently inhibits chemotaxis induced by SDF-1 in Jurkat cells. Bryostatin-5 is a member of the macrolactones, and its analogue bryostatin-1 is currently being evaluated in clinical trials for its chemotherapeutic potential. The involvement of bryostatins in the SDF-1/CXCR4 signaling process has never been reported. In this study, we found that bryostatin-5 potently inhibits SDF-1-induced chemotaxis but does not affect serum-induced chemotaxis. Further studies indicate that this inhibitory effect is not due to receptor antagonism but rather to bryostatin-5-induced receptor desensitization and down-regulation of cell surface CXCR4. We also show that these effects are mediated by the activation of conventional protein kinase C.
Collapse
Affiliation(s)
- Xing He
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate University of the Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
23
|
Lapidot A, Berchanski A, Borkow G. Insight into the mechanisms of aminoglycoside derivatives interaction with HIV-1 entry steps and viral gene transcription. FEBS J 2008; 275:5236-57. [PMID: 18803669 DOI: 10.1111/j.1742-4658.2008.06657.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In recent years, based on peptide models of HIV-1 RNA binding, NMR structures of Tat-responsive element-ligand complexes and aminoglycoside-RNA interactions, and HIV-1 Tat structure, we have designed and synthesized aminoglycoside-arginine conjugates (AACs) and aminoglycoside poly-arginine conjugates (APACs), to serve as Tat mimetics. These novel molecules inhibit HIV-1 infectivity with 50% effective concentration values in the low micromolar range, the most potent compounds being the hexa-arginine-neomycin B and nona-D-arginine-neomycin conjugates. Importantly, these compounds, in addition to acting as Tat antagonists, inhibit HIV-1 infectivity by blocking several steps in HIV-1 cell entry. The AACs and APACs inhibit HIV-1 cell entry by interacting with gp120 at the CD4-binding site, by interacting with CXCR4 at the binding site of the CXCR4 mAb 12G5, and apparently by interacting with transient structures of the ectodomain of gp41. In the current review, we discuss the mechanisms of anti-HIV-1 activities of these AACs, APACs and other aminoglycoside derivatives in detail. Targeting several key processes in the viral life cycle by the same compound not only may increase its antiviral efficacy, but more importantly, may reduce the capacity of the virus to develop resistance to the compound. AACs and APACs may thus serve as leading compounds for the development of multitargeting novel HIV-1 inhibitors.
Collapse
Affiliation(s)
- Aviva Lapidot
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | |
Collapse
|
24
|
Novel antiviral agents targeting HIV entry and transmission. Virol Sin 2008. [DOI: 10.1007/s12250-007-0046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Structure-function relationship of novel X4 HIV-1 entry inhibitors - L- and D-arginine peptide-aminoglycoside conjugates. FEBS J 2007; 274:6523-36. [DOI: 10.1111/j.1742-4658.2007.06169.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Ding Y, Zhang L, Goodwin JS, Wang Z, Liu B, Zhang J, Fan GH. Plectin regulates the signaling and trafficking of the HIV-1 co-receptor CXCR4 and plays a role in HIV-1 infection. Exp Cell Res 2007; 314:590-602. [PMID: 18155192 DOI: 10.1016/j.yexcr.2007.10.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 10/31/2007] [Accepted: 10/31/2007] [Indexed: 11/24/2022]
Abstract
The CXC chemokine CXCL12 and its cognate receptor CXCR4 play an important role in inflammation, human immunodeficiency virus (HIV) infection and cancer metastasis. The signal transduction and intracellular trafficking of CXCR4 are involved in these functions, but the underlying mechanisms remain incompletely understood. In the present study, we demonstrated that the CXCR4 formed a complex with the cytolinker protein plectin in a ligand-dependent manner in HEK293 cells stably expressing CXCR4. The glutathione-S-transferase (GST)-CXCR4 C-terminal fusion proteins co-precipitated with the full-length and the N-terminal fragments of plectin isoform 1 but not with the N-terminal deletion mutants of plectin isoform 1, thereby suggesting an interaction between the N-terminus of plectin and the C-terminus of CXCR4. This interaction was confirmed by confocal microscopic reconstructions showing co-distribution of these two proteins in the internal vesicles after ligand-induced internalization of CXCR4 in HEK293 cells stably expressing CXCR4. Knockdown of plectin with RNA interference (RNAi) significantly inhibited ligand-dependent CXCR4 internalization and attenuated CXCR4-mediated intracellular calcium mobilization and activation of extracellular signal regulated kinase 1/2 (ERK1/2). CXCL12-induced chemotaxis of HEK293 cells stably expressing CXCR4 and of Jurkat T cells was inhibited by the plectin RNAi. Moreover, CXCR4 tropic HIV-1 infection in MAGI (HeLa-CD4-LTR-Gal) cells was inhibited by the RNAi of plectin. Thus, plectin appears to interact with CXCR4 and plays an important role in CXCR4 signaling and trafficking and HIV-1 infection.
Collapse
Affiliation(s)
- Yun Ding
- Department of Veterans Affairs, Nashville, TN 37212, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
BACKGROUND HIV can reside in the brain for many years. While astrocytes are known to tolerate long-term HIV infection, the potential of other neural cell types to harbour HIV is unclear. OBJECTIVE To investigate whether HIV can persist in neural progenitor cell populations. DESIGN A multipotent human neural stem cell line (HNSC.100) was used to compare HIV infection in neural progenitor and astrocyte cell populations. METHODS Expression of cellular genes/proteins was analysed by real-time reverse transcriptase PCR, Western blot, immunocytochemistry and flow cytometry. Morphological properties of cells were measured by quantitative fluorescent image analysis. Virus release by cells exposed to HIV-1IIIB was monitored by enzyme-linked immunosorbent assay for Gag. Proviral copy numbers were determined by real-time PCR and early HIV transcripts by reverse transcriptase PCR. Rev activity was determined with a fluorescent-based reporter assay. RESULTS Progenitor populations differed from astrocyte populations by showing much lower glial fibrillary acidic protein (GFAP) production, higher cell-surface expression of the CXCR4 chemokine receptor, higher Rev activity and distinct cell morphologies. HIV-exposed progenitor cultures released moderate amounts of virus for over 2 months and continued to display cell-associated HIV markers (proviral DNA, early HIV transcripts) during the entire observation period (115 days). Differentiation of HIV-infected progenitor cells to astrocytes was associated with transient activation of virus production. Long-term HIV infection of progenitor populations led to upregulation of GFAP and changes in cell morphology. CONCLUSION These studies suggest that neural progenitor populations can contribute to the reservoir for HIV in the brain and undergo changes as a consequence of HIV persistence.
Collapse
|
28
|
Hamza A, Zhan CG. How can (-)-epigallocatechin gallate from green tea prevent HIV-1 infection? Mechanistic insights from computational modeling and the implication for rational design of anti-HIV-1 entry inhibitors. J Phys Chem B 2007; 110:2910-7. [PMID: 16471901 DOI: 10.1021/jp0550762] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Possible inhibitors preventing human immunodeficiency virus type 1 (HIV-1) entry into the cells are recognized as hopeful next-generation anti-HIV-1 drugs. It is highly desirable to develop a potent inhibitor blocking binding of glycoprotein CD4 of the cell with glycoprotein gp120 of HIV-1, because the gp120-CD4 binding is the initial step of HIV-1 entry into the cells. It has been recently reported that (-)-epigallocatechin gallate (EGCG) from green tea is an inhibitor blocking gp120-CD4 binding. But the inhibitory mechanism remains unknown. For understanding the inhibitory mechanism, extensive molecular docking, molecular dynamics simulations, and binding free-energy calculations have been performed in this study to predict the most favorable structures of CD4-EGCG, gp120-CD4, and gp120-CD4-EGCG binding complexes in water. The results reveal that EGCG binds with CD4 in such a way that the calculated binding affinity of gp120 with the CD4-EGCG complex is negligible. So, the favorable binding of EGCG with CD4 can effectively block gp120-CD4 binding. The calculated CD4-EGCG binding affinity (DeltaG(bind) = -5.5 kcal/mol, K(d) = 94 microM) is in excellent agreement with available experimental data suggesting IC(50) approximately 100 microM for EGCG-blocking CD4-gp120 binding. These results and insights provide a rational basis for future design of novel, more potent inhibitors to block gp120-CD4 binding.
Collapse
Affiliation(s)
- Adel Hamza
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
29
|
Abstract
Chemokines are critical mediators of cell migration during routine immune surveillance, inflammation, and development. Chemokines bind to G protein-coupled receptors and cause conformational changes that trigger intracellular signaling pathways involved in cell movement and activation. Although chemokines evolved to benefit the host, inappropriate regulation or utilization of these proteins can contribute to or cause many diseases. Specific chemokine receptors provide the portals for HIV to get into cells, and others contribute to inflammatory diseases and cancer. Thus, there is significant interest in developing receptor antagonists. To this end, the structures of ligands coupled with mutagenesis studies have revealed mechanisms for antagonism based on modified proteins. Although little direct structural information is available on the receptors, binding of small molecules to mutant receptors has allowed the identification of key residues involved in the receptor-binding pockets. In this review, we discuss the current knowledge of chemokine:receptor structure and function, and its contribution to drug discovery.
Collapse
Affiliation(s)
- Samantha J Allen
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
30
|
McReynolds KD, Gervay-Hague J. Chemotherapeutic Interventions Targeting HIV Interactions with Host-Associated Carbohydrates. Chem Rev 2007; 107:1533-52. [PMID: 17439183 DOI: 10.1021/cr0502652] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katherine D McReynolds
- Department of Chemistry, California State University, Sacramento, Sacramento, California 95819, USA.
| | | |
Collapse
|
31
|
Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN. Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res 2007; 6:1917-32. [PMID: 17391016 PMCID: PMC2588348 DOI: 10.1021/pr060394e] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Currently, the understanding of the relationships between function, amino acid sequence, and protein structure continues to represent one of the major challenges of the modern protein science. As many as 50% of eukaryotic proteins are likely to contain functionally important long disordered regions. Many proteins are wholly disordered but still possess numerous biologically important functions. However, the number of experimentally confirmed disordered proteins with known biological functions is substantially smaller than their actual number in nature. Therefore, there is a crucial need for novel bionformatics approaches that allow projection of the current knowledge from a few experimentally verified examples to much larger groups of known and potential proteins. The elaboration of a bioinformatics tool for the analysis of functional diversity of intrinsically disordered proteins and application of this data mining tool to >200 000 proteins from the Swiss-Prot database, each annotated with at least one of the 875 functional keywords, was described in the first paper of this series (Xie, H.; Vucetic, S.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V.N. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 2007, 5, 1882-1898). Using this tool, we have found that out of the 710 Swiss-Prot functional keywords associated with at least 20 proteins, 262 were strongly positively correlated with long intrinsically disordered regions, and 302 were strongly negatively correlated. Illustrative examples of functional disorder or order were found for the vast majority of keywords showing strongest positive or negative correlation with intrinsic disorder, respectively. Some 80 Swiss-Prot keywords associated with disorder- and order-driven biological processes and protein functions were described in the first paper (see above). The second paper of the series was devoted to the presentation of 87 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes, and coding sequence diversities possessing strong positive and negative correlation with long disordered regions (Vucetic, S.; Xie, H.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V. N. Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J. Proteome Res. 2007, 5, 1899-1916). Protein structure and functionality can be modulated by various post-translational modifications or/and as a result of binding of specific ligands. Numerous human diseases are associated with protein misfolding/misassembly/misfunctioning. This work concludes the series of papers dedicated to the functional anthology of intrinsic disorder and describes approximately 80 Swiss-Prot functional keywords that are related to ligands, post-translational modifications, and diseases possessing strong positive or negative correlation with the predicted long disordered regions in proteins.
Collapse
Affiliation(s)
- Hongbo Xie
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122
| | - Slobodan Vucetic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122
| | - Lilia M. Iakoucheva
- Laboratory of Statistical Genetics, The Rockefeller University, New York, NY 10021
| | - Christopher J. Oldfield
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202
| | - Zoran Obradovic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122
| | - Vladimir N. Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Correspondence should be addressed to: Vladimir N. Uversky, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS#4021, Indianapolis, IN 46202, USA; Phone: 317-278-9194; Fax: 317-274-4686; E-mail:
| |
Collapse
|
32
|
Singh S, Malik BK, Sharma DK. Targeting HIV-1 Through Molecular Modeling and Docking Studies of CXCR4: Leads for Therapeutic Development. Chem Biol Drug Des 2007; 69:191-203. [PMID: 17441905 DOI: 10.1111/j.1747-0285.2007.00478.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The chemokine receptor CXCR4 is the receptor for several chemokines and major co-receptor for X4 human immunodeficiency virus type-1 strains entry into cell. A three-dimensional model of human CXCR4 was developed by homology modeling using the high-resolution bovine rhodopsin structure as template. Interactions between CXCR4 and flavonoids were investigated using in silico docking studies. The results underscore the potential of these compounds that they may become important new antiviral drugs to combat AIDS. It is worth mentioning also that apart from these existing flavonoids, there are many new compounds that may also be useful as topical agents to inactivate virus, or may act as adjuvants with other antiviral drugs.
Collapse
Affiliation(s)
- Shailza Singh
- Center for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | | | | |
Collapse
|
33
|
Kalinkovich A, Tavor S, Avigdor A, Kahn J, Brill A, Petit I, Goichberg P, Tesio M, Netzer N, Naparstek E, Hardan I, Nagler A, Resnick I, Tsimanis A, Lapidot T. Functional CXCR4-Expressing Microparticles and SDF-1 Correlate with Circulating Acute Myelogenous Leukemia Cells. Cancer Res 2006; 66:11013-20. [PMID: 17108140 DOI: 10.1158/0008-5472.can-06-2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stromal cell-derived factor-1 (SDF-1/CXCL12) and its receptor CXCR4 are implicated in the pathogenesis and prognosis of acute myelogenous leukemia (AML). Cellular microparticles, submicron vesicles shed from the plasma membrane of various cells, are also associated with human pathology. In the present study, we investigated the putative relationships between the SDF-1/CXCR4 axis and microparticles in AML. We detected CXCR4-expressing microparticles (CXCR4(+) microparticles) in the peripheral blood and bone marrow plasma samples of normal donors and newly diagnosed adult AML patients. In samples from AML patients, levels of CXCR4(+) microparticles and total SDF-1 were elevated compared with normal individuals. The majority of CXCR4(+) microparticles in AML patients were CD45(+), whereas in normal individuals, they were mostly CD41(+). Importantly, we found a strong correlation between the levels of CXCR4(+) microparticle and WBC count in the peripheral blood and bone marrow plasma obtained from the AML patients. Of interest, levels of functional, noncleaved SDF-1 were reduced in these patients compared with normal individuals and also strongly correlated with the WBC count. Furthermore, our data indicate NH(2)-terminal truncation of the CXCR4 molecule in the microparticles of AML patients. However, such microparticles were capable of transferring the CXCR4 molecule to AML-derived HL-60 cells, enhancing their migration to SDF-1 in vitro and increasing their homing to the bone marrow of irradiated NOD/SCID/beta2m(null) mice. The CXCR4 antagonist AMD3100 reduced these effects. Our findings suggest that functional CXCR4(+) microparticles and SDF-1 are involved in the progression of AML. We propose that their levels are potentially valuable as an additional diagnostic AML variable.
Collapse
|
34
|
Heo TH, Lee SM, Bartosch B, Cosset FL, Kang CY. Hepatitis C virus E2 links soluble human CD81 and SR-B1 protein. Virus Res 2006; 121:58-64. [PMID: 16725222 DOI: 10.1016/j.virusres.2006.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 04/11/2006] [Accepted: 04/18/2006] [Indexed: 11/22/2022]
Abstract
Limited information is available regarding hepatitis C virus (HCV) entry events. Viral attachment and infection studies have been performed using HCV envelope glycoprotein (E2) and HCV pseudo-particle (HCVpp) models to obtain general information about the early entry events. However, the details involved in each step of viral entry into human cells are still obscure. This study provides molecular clue for the formation of a heteromultimeric complex as a possible post-attachment step. Among several putative receptors, human CD81 and scavenger receptor class B type 1 (SR-B1) have been demonstrated as considerable determinants in infectious outcome as well as attachment. In this study, we provide molecular evidence demonstrating that HCV E2 links soluble CD81 and SR-B1 protein together. This physical neighboring might explain why both CD81 and SR-B1 are indispensable factors for HCVpp infection. These data further elucidate our understanding of HCV entry and provide new insight into directing future studies identifying novel liver-specific fusion receptor(s).
Collapse
Affiliation(s)
- Tae-Hwe Heo
- Laboratory of Immunology and the Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Shillim-Dong, Kwanak-Gu, 151-742, Korea
| | | | | | | | | |
Collapse
|
35
|
Abstract
BACKGROUND Research efforts to prevent viral entry by developing small molecule inhibitors against HIV-1 chemokine coreceptors have yielded promising clinical results. However, resistance to some chemokine receptor inhibitors has been recently documented, and therefore, alternative methods of HIV-1 coreceptor disruption are needed. CONCLUSION We will describe current HIV-1 vector-delivered genetic disruption mechanisms that target HIV-1 chemokine coreceptors, such as RNA interference, ribozymes, zinc fingers, intrakines, and intrabodies, and frame the use of these gene delivery chemokine receptor disruption mechanisms in the context of current small molecule blocker/antagonists of CCR5 and CXCR4. In addition, we will discuss the importance of evaluating HIV-1 vector-delivered viral entry prevention mechanisms in the rhesus macaque SIV non-human primate model in regard to pathogenesis and therapeutic efficacy.
Collapse
Affiliation(s)
- C H Swan
- Department of Molecular, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
36
|
Venzke S, Michel N, Allespach I, Fackler OT, Keppler OT. Expression of Nef downregulates CXCR4, the major coreceptor of human immunodeficiency virus, from the surfaces of target cells and thereby enhances resistance to superinfection. J Virol 2006; 80:11141-52. [PMID: 16928758 PMCID: PMC1642143 DOI: 10.1128/jvi.01556-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lentiviral Nef proteins are key factors for pathogenesis and are known to downregulate functionally important molecules, including CD4 and major histocompatibility complex class I (MHC-I), from the surfaces of infected cells. Recently, we demonstrated that Nef reduces cell surface levels of the human immunodeficiency virus type 1 (HIV-1) entry coreceptor CCR5 (N. Michel, I. Allespach, S. Venzke, O. T. Fackler, and O. T. Keppler, Curr. Biol. 15:714-723, 2005). Here, we report that Nef downregulates the second major HIV-1 coreceptor, CXCR4, from the surfaces of HIV-infected primary CD4 T lymphocytes with efficiencies comparable to those of the natural CXCR4 ligand, stromal cell-derived factor-1 alpha. Analysis of a panel of mutants of HIV-1(SF2) Nef revealed that the viral protein utilized the same signature motifs for downmodulation of CXCR4 and MHC-I, including the proline-rich motif P(73)P(76)P(79)P(82) and the acidic cluster motif E(66)E(67)E(68)E(69.) Expression of wild-type Nef, but not of specific Nef mutants, resulted in a perinuclear accumulation of the coreceptor. Remarkably, the carboxy terminus of CXCR4, which harbors the classical motifs critical for basal and ligand-induced receptor endocytosis, was dispensable for the Nef-mediated reduction of surface exposure. Functionally, the ability of Nef to simultaneously downmodulate CXCR4 and CD4 correlated with maximum-level protection of Nef-expressing target cells from fusion with cells exposing X4 HIV-1 envelopes. Furthermore, the Nef-mediated downregulation of CXCR4 alone on target T lymphocytes was sufficient to diminish cells' susceptibility to X4 HIV-1 virions at the entry step. The downregulation of chemokine coreceptors is a conserved activity of Nef to modulate infected cells, an important functional consequence of which is an enhanced resistance to HIV superinfection.
Collapse
Affiliation(s)
- Stephanie Venzke
- Department of Virology, University of Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
37
|
Basmaciogullari S, Pacheco B, Bour S, Sodroski J. Specific interaction of CXCR4 with CD4 and CD8alpha: functional analysis of the CD4/CXCR4 interaction in the context of HIV-1 envelope glycoprotein-mediated membrane fusion. Virology 2006; 353:52-67. [PMID: 16808956 DOI: 10.1016/j.virol.2006.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 03/23/2006] [Accepted: 05/24/2006] [Indexed: 11/18/2022]
Abstract
We investigated possible interactions between HIV-1 receptor (CD4) and the main coreceptors CXCR4 and CCR5. We found that CD4 and CXCR4 coexpressed in 293T cells form a complex that can be immunoprecipitated with antibodies directed against the extracellular domain of either protein. Mutagenesis revealed that the CD4/CXCR4 interaction maps to two previously uncharacterized basic motifs in the cytoplasmic domain of CD4. HIV-1 envelope glycoprotein-mediated membrane fusion was found to be independent of the ability of CD4 and CXCR4 to interact, whether fusion was studied in a virus-cell or a cell-cell model. However, this interaction might explain the adaptation of HIV-1 to CXCR4 as an alternative to CCR5. We found that CXCR4 also interacts with the cytoplasmic domain of CD8alpha in a way that is similar to the CD4/CXCR4 interaction. The CD4/CXCR4 and CD8alpha/CXCR4 interactions may thus be involved in cellular signaling pathways shared by the CD4 and CD8alpha molecules.
Collapse
|
38
|
Ghafouri M, Amini S, Khalili K, Sawaya BE. HIV-1 associated dementia: symptoms and causes. Retrovirology 2006; 3:28. [PMID: 16712719 PMCID: PMC1513597 DOI: 10.1186/1742-4690-3-28] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Accepted: 05/19/2006] [Indexed: 11/18/2022] Open
Abstract
Despite the use of highly active antiretroviral therapy (HAART), neuronal cell death remains a problem that is frequently found in the brains of HIV-1-infected patients. HAART has successfully prevented many of the former end-stage complications of AIDS, however, with increased survival times, the prevalence of minor HIV-1 associated cognitive impairment appears to be rising among AIDS patients. Further, HIV-1 associated dementia (HAD) is still prevalent in treated patients as well as attenuated forms of HAD and CNS opportunistic disorders. HIV-associated cognitive impairment correlates with the increased presence in the CNS of activated, though not necessarily HIV-1-infected, microglia and CNS macrophages. This suggests that indirect mechanisms of neuronal injury and loss/death occur in HIV/AIDS as a basis for dementia since neurons are not themselves productively infected by HIV-1. In this review, we discussed the symptoms and causes leading to HAD. Outcome from this review will provide new information regarding mechanisms of neuronal loss in AIDS patients.
Collapse
Affiliation(s)
- Mohammad Ghafouri
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Pennsylvania 19122, USA
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Pennsylvania 19122, USA
| | - Bassel E Sawaya
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Pennsylvania 19122, USA
| |
Collapse
|
39
|
Biswas P, Nozza S, Scarlatti G, Lazzarin A, Tambussi G. Oral CCR5 inhibitors: will they make it through? Expert Opin Investig Drugs 2006; 15:451-64. [PMID: 16634684 DOI: 10.1517/13543784.15.5.451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The therapeutic armamentarium against HIV has recently gained a drug belonging to a novel class of antiretrovirals, the entry inhibitors. The last decade has driven an in-depth knowledge of the HIV entry process, unravelling the multiple engagements of the HIV envelope proteins with the cellular receptorial complex that is composed of a primary receptor (CD4) and a co-receptor (CCR5 or CXCR4). The vast majority of HIV-infected subjects exhibit biological viral variants that use CCR5 as a co-receptor. Individuals with a mutated CCR5 gene, both homo- and heterozygotes, appear to be healthy. For these and other reasons, CCR5 represents an appealing target for treatment intervention, although certain challenges can not be ignored. Promising small-molecule, orally bioavailable CCR5 antagonists are under development for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Priscilla Biswas
- San Raffaele Scientific Institute, Laboratory of Clinical Immunology, Clinic of Infectious Diseases, Via Stamira d'Ancona 20, 20127 Milan, Italy.
| | | | | | | | | |
Collapse
|
40
|
Qureshi A, Zheng R, Parlett T, Shi X, Balaraman P, Cheloufi S, Murphy B, Guntermann C, Eagles P. Gene silencing of HIV chemokine receptors using ribozymes and single-stranded antisense RNA. Biochem J 2006; 394:511-8. [PMID: 16293105 PMCID: PMC1408682 DOI: 10.1042/bj20051268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The chemokine receptors CXCR4 and CCR5 are required for HIV-1 to enter cells, and the progression of HIV-1 infection to AIDS involves a switch in the co-receptor usage of the virus from CCR5 to CXCR4. These receptors therefore make attractive candidates for therapeutic intervention, and we have investigated the silencing of their genes by using ribozymes and single-stranded antisense RNAs. In the present study, we demonstrate using ribozymes that a depletion of CXCR4 and CCR5 mRNAs can be achieved simultaneously in human PBMCs (peripheral blood mononuclear cells), cells commonly used by the virus for infection and replication. Ribozyme activity leads to an inhibition of the cell-surface expression of both CCR5 and CXCR4, resulting in a significant inhibition of HIV-1 replication when PBMCs are challenged with the virus. In addition, we show that small single-stranded antisense RNAs can also be used to silence CCR5 and CXCR4 genes when delivered to PBMCs. This silencing is caused by selective degradation of receptor mRNAs.
Collapse
MESH Headings
- Cells, Cultured
- DNA-Directed RNA Polymerases/metabolism
- Flow Cytometry
- Gene Expression
- Gene Silencing
- HIV-1/physiology
- Humans
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/virology
- RNA, Antisense/biosynthesis
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Catalytic/biosynthesis
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, CCR5/analysis
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Receptors, CXCR4/analysis
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Amer Qureshi
- *Randall Division of Cell and Molecular Biophysics, King's College London, University of London, Guy's Campus, London Bridge, London SE1 1UL, U.K
- †Department of Immunology, St Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary College, University of London, London EC1A 7BE, U.K
| | - Richard Zheng
- †Department of Immunology, St Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary College, University of London, London EC1A 7BE, U.K
| | - Terry Parlett
- *Randall Division of Cell and Molecular Biophysics, King's College London, University of London, Guy's Campus, London Bridge, London SE1 1UL, U.K
| | - Xiaoju Shi
- *Randall Division of Cell and Molecular Biophysics, King's College London, University of London, Guy's Campus, London Bridge, London SE1 1UL, U.K
- †Department of Immunology, St Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary College, University of London, London EC1A 7BE, U.K
| | - Priyadhashini Balaraman
- *Randall Division of Cell and Molecular Biophysics, King's College London, University of London, Guy's Campus, London Bridge, London SE1 1UL, U.K
- †Department of Immunology, St Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary College, University of London, London EC1A 7BE, U.K
| | - Sihem Cheloufi
- *Randall Division of Cell and Molecular Biophysics, King's College London, University of London, Guy's Campus, London Bridge, London SE1 1UL, U.K
| | - Brendan Murphy
- †Department of Immunology, St Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary College, University of London, London EC1A 7BE, U.K
| | - Christine Guntermann
- †Department of Immunology, St Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary College, University of London, London EC1A 7BE, U.K
| | - Peter Eagles
- *Randall Division of Cell and Molecular Biophysics, King's College London, University of London, Guy's Campus, London Bridge, London SE1 1UL, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
41
|
|
42
|
Wood A, Armour D. The discovery of the CCR5 receptor antagonist, UK-427,857, a new agent for the treatment of HIV infection and AIDS. PROGRESS IN MEDICINAL CHEMISTRY 2005; 43:239-71. [PMID: 15850827 DOI: 10.1016/s0079-6468(05)43007-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Anthony Wood
- Department of Chemistry, Pfizer Global Research and Development, Sandwich Laboratories, Sandwich, Kent, UK
| | | |
Collapse
|
43
|
Wu X, Jin LP, Yuan MM, Zhu Y, Wang MY, Li DJ. Human first-trimester trophoblast cells recruit CD56brightCD16- NK cells into decidua by way of expressing and secreting of CXCL12/stromal cell-derived factor 1. THE JOURNAL OF IMMUNOLOGY 2005; 175:61-8. [PMID: 15972632 DOI: 10.4049/jimmunol.175.1.61] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
More than 70% of decidual lymphocytes are NK cells characterized by CD56(bright)CD16(-) phenotype, but the mechanisms by which these NK cells are recruited in the decidua are still almost unrevealed. In this study, we first analyzed the transcription of 18 chemokine receptors in the first-trimester decidual CD56(bright)CD16(-) NK cells. Among these receptors, CXCR4 and CXCR3 were found highly transcribed, and the expression of CXCR4 was verified in most of the decidual CD56(bright)CD16(-) NK cells by flow cytometry. The first-trimester human trophoblasts were found expressing CXCL12/stromal cell-derived factor 1, the specific ligand of CXCR4, by way of in situ hybridization and immunohistochemistry. The primary cultured trophoblast cells were also found to secrete stromal cell-derived factor 1alpha spontaneously, and its concentration was 384.6 +/- 90.7 pg/ml after the trophoblast cells had been cultured for 60 h. All of the ligands for CXCR3 were below the minimal detectable concentration when trophoblast cells were cultured for up to 48 h. Both recombinant human SDF-1alpha and supernatants of the cultured trophoblast cells exhibited chemotactic activity on decidual CD56(bright)CD16(-) NK cells. Our findings suggest that human first-trimester trophoblast cells produce CXCL12, which in turn chemoattracts decidual CD56(bright)CD16(-) NK cells. This activity could contribute to the recruitment mechanism of decidual lymphocytes, especially CD56(bright)CD16(-) NK cells, in decidua, and may be used at a local level to modulate the immune milieu at the materno-fetal interface.
Collapse
MESH Headings
- Base Sequence
- CD56 Antigen/metabolism
- Cell Movement
- Cells, Cultured
- Chemokine CXCL12
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/genetics
- Chemokines, CXC/pharmacology
- Chemotaxis/drug effects
- Decidua/cytology
- Decidua/immunology
- Female
- Humans
- Immunohistochemistry
- In Situ Hybridization
- In Vitro Techniques
- Killer Cells, Natural/immunology
- Pregnancy
- Pregnancy Trimester, First
- Protein Biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, CXCR4/genetics
- Receptors, Chemokine/genetics
- Receptors, IgG/metabolism
- Recombinant Proteins/pharmacology
- Transcription, Genetic
- Trophoblasts/cytology
- Trophoblasts/immunology
Collapse
Affiliation(s)
- Xia Wu
- Laboratory of Reproductive Immunology, Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
44
|
Kramer-Hämmerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R. Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 2005; 111:194-213. [PMID: 15885841 DOI: 10.1016/j.virusres.2005.04.009] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The availability of highly active antiretroviral therapies (HAART) has not eliminated HIV-1 infection of the central nervous system (CNS) or the occurrence of HIV-associated neurological problems. Thus, the neurobiology of HIV-1 is still an important issue. Here, we review key features of HIV-1-cell interactions in the CNS and their contributions to persistence and pathogenicity of HIV-1 in the CNS. HIV-1 invades the brain very soon after systemic infection. Various mechanisms have been proposed for HIV-1 entry into the CNS. The most favored hypothesis is the migration of infected cells across the blood-brain barrier ("Trojan horse" hypothesis). Virus production in the CNS is not apparent before the onset of AIDS, indicating that HIV-1 replication in the CNS is successfully controlled in pre-AIDS. Brain macrophages and microglia cells are the chief producers of HIV-1 in brains of individuals with AIDS. HIV-1 enters these cells by the CD4 receptor and mainly the CCR5 coreceptor. Various in vivo and cell culture studies indicate that cells of neuroectodermal origin, particularly astrocytes, may also be infected by HIV-1. These cells restrict virus production and serve as reservoirs for HIV-1. A limited number of studies suggest restricted infection of oligodendrocytes and neurons, although infection of these cells is still controversial. Entry of HIV-1 into neuroectodermal cells is independent of the CD4 receptor, and a number of different cell-surface molecules have been implicated as alternate receptors of HIV-1. HIV-1-associated injury of the CNS is believed to be caused by numerous soluble factors released by glial cells as a consequence of HIV-1 infection. These include both viral and cellular factors. Some of these factors can directly induce neuronal injury and death by interacting with receptors on neuronal membranes (neurotoxic factors). Others can activate uninfected cells to produce inflammatory and neurotoxic factors and/or promote infiltration of monocytes and T-lymphocytes, thus amplifying the deleterious effects of HIV-1 infection. CNS responses to HIV-1 infection also include mechanisms that enhance neuronal survival and strengthen crucial neuronal support functions. Future challenges will be to develop strategies to prevent HIV-1 spread in the brain, bolster intrinsic defense mechanisms of the brain and to elucidate the impact of long-term persistence of HIV-1 on CNS functions in individuals without AIDS.
Collapse
Affiliation(s)
- Susanne Kramer-Hämmerle
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | | | | | | | | |
Collapse
|
45
|
Michel N, Allespach I, Venzke S, Fackler OT, Keppler OT. The Nef protein of human immunodeficiency virus establishes superinfection immunity by a dual strategy to downregulate cell-surface CCR5 and CD4. Curr Biol 2005; 15:714-23. [PMID: 15854903 DOI: 10.1016/j.cub.2005.02.058] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 02/21/2005] [Accepted: 02/21/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Viruses frequently render cells refractory to subsequent infection with the same virus. This state of superinfection immunity counteracts potentially detrimental consequences for the infected cell and facilitates high-level replication and viral spread in the host. RESULTS Here, we show that human immunodeficiency virus (HIV) employs its early gene product Nef to efficiently interfere with superinfection at the viral-entry step. In this context, we identify the downregulation of cell-surface CCR5, the major HIV coreceptor, as a novel and highly conserved activity of Nef. Nef targets the CCR5 coreceptor and the HIV binding receptor CD4 via distinct cellular machineries to enhance the endocytosis rate of both HIV receptor components and to accelerate their degradation. Functionally, these genetically separable actions by Nef synergized to efficiently protect cells from HIV superinfection at the level of fusion of the viral envelope with the plasma membrane. CONCLUSIONS HIV has evolved two independent activities for Nef to downregulate the receptor complex and to facilitate its efficient replication and spread. This evasion strategy likely represents a mechanism by which the pathogenicity factor Nef elevates viral replication in vivo and thus promotes AIDS pathogenesis.
Collapse
Affiliation(s)
- Nico Michel
- Department of Virology, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
46
|
Golding H, Khurana S, Yarovinsky F, King LR, Abdoulaeva G, Antonsson L, Owman C, Platt EJ, Kabat D, Andersen JF, Sher A. CCR5 N-terminal Region Plays a Critical Role in HIV-1 Inhibition by Toxoplasma gondii-derived Cyclophilin-18. J Biol Chem 2005; 280:29570-7. [PMID: 15975927 DOI: 10.1074/jbc.m500236200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular mimicry of chemokine ligands has been described for several pathogens. Toxoplasma gondii produces a protein, cyclophilin-18 (C-18), which binds to the human immunodeficiency virus (HIV) co-receptor CCR5 and inhibits fusion and infection of T cells and macrophages by R5 viruses but not by X4 viruses. We recently identified structural determinants of C-18 required for anti-HIV activity (Yarovinsky, F., Andersen, J. F., King, L. R., Caspar, P., Aliberti, J., Golding, H., and Sher, A. (2004) J. Biol. Chem. 279, 53635-53642). Here we have elucidated the fine specificity of CCR5 residues involved in binding and HIV inhibitory potential of C-18. To delineate the regions of CCR5 involved in C-18 binding, we analyzed C-18 inhibition of cells expressing CXCR4/CCR5 chimeric receptors and CCR5 with a truncated N terminus (Delta2-19). These experiments identified a critical role for the N terminus of CCR5 in C-18 binding and anti-HIV activity. Studies with a large panel of CCR5 N-terminal peptides, including Tyr-sulfated analogues, truncated peptides, and alanine-scanning mutants, suggested that each of the 12-17 amino acids in the N terminus of CCR5 are essential for C-18 binding and inhibitory activity. Tyr sulfation did not improve C-18 reactivity. This finding is of interest because the same CCR5 N-terminal region was shown previously to play a key role in binding of HIV-1 envelope glycoproteins. The elucidation of the functional C-18-binding mechanism may help in the rational design of novel antiviral agents against HIV.
Collapse
Affiliation(s)
- Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Neel NF, Schutyser E, Sai J, Fan GH, Richmond A. Chemokine receptor internalization and intracellular trafficking. Cytokine Growth Factor Rev 2005; 16:637-58. [PMID: 15998596 PMCID: PMC2668263 DOI: 10.1016/j.cytogfr.2005.05.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 05/03/2005] [Indexed: 01/25/2023]
Abstract
The internalization and intracellular trafficking of chemokine receptors have important implications for the cellular responses elicited by chemokine receptors. The major pathway by which chemokine receptors internalize is the clathrin-mediated pathway, but some receptors may utilize lipid rafts/caveolae-dependent internalization routes. This review discusses the current knowledge and controversies regarding these two different routes of endocytosis. The functional consequences of internalization and the regulation of chemokine receptor recycling will also be addressed. Modifications of chemokine receptors, such as palmitoylation, ubiquitination, glycosylation, and sulfation, may also impact trafficking, chemotaxis and signaling. Finally, this review will cover the internalization and trafficking of viral and decoy chemokine receptors.
Collapse
Affiliation(s)
- Nicole F Neel
- Department of Veterans Affairs Medical Center, Vanderbilt University School of Medicine, 432 PRB, 23rd Avenue South at Pierce, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
48
|
Khurana S, Kennedy M, King LR, Golding H. Identification of a linear peptide recognized by monoclonal antibody 2D7 capable of generating CCR5-specific antibodies with human immunodeficiency virus-neutralizing activity. J Virol 2005; 79:6791-800. [PMID: 15890918 PMCID: PMC1112162 DOI: 10.1128/jvi.79.11.6791-6800.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CCR5 is the major coreceptor for human immunodeficiency virus (HIV) infection. The murine monoclonal antibody (MAb) 2D7, which recognizes a conformation-dependent epitope in the second extracellular loop of CCR5, is one of the most potent inhibitors of R5 virus cell entry. However, attempts to humanize 2D7 for in vivo human use have been unsuccessful so far. A filamentous phage library expressing random peptides was used to identify a peptide mimitope that is recognized by MAb 2D7. A synthetic peptide containing this sequence (2D7-2SK) bound to MAb 2D7 with high affinity and reversed its HIV type 1 (HIV-1) fusion inhibitory activity. The peptide contains sequence homologies to two distal regions of the second extracellular loop of human CCR5, both of which are required for MAb 2D7 binding. Rabbit anti-2D7-mimitope antibodies competed with MAb 2D7 for binding to the 2D7-2SK peptide in Biacore biosensor testing. Importantly, the rabbit anti-2D7-2SK antibodies bound to CCR5 on cells and specifically inhibited R5 (but not X4) envelope-mediated syncytium formation. These antibodies also neutralized infection of human peripheral blood mononuclear cells with R5 HIV isolates comparably to MAb 2D7. In summary, we have identified a novel peptide that closely mimics the MAb 2D7 epitope on CCR5. This peptide could be included as a potential vaccine candidate or to isolate 2D7-like human antibodies as entry inhibitors for R5 viruses.
Collapse
Affiliation(s)
- Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
49
|
Oppermann M. Chemokine receptor CCR5: insights into structure, function, and regulation. Cell Signal 2005; 16:1201-10. [PMID: 15337520 DOI: 10.1016/j.cellsig.2004.04.007] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 04/27/2004] [Indexed: 12/13/2022]
Abstract
CC chemokine receptor 5 (CCR5) is a seven-transmembrane, G protein-coupled receptor (GPCR) which regulates trafficking and effector functions of memory/effector T-lymphocytes, macrophages, and immature dendritic cells. It also serves as the main coreceptor for the entry of R5 strains of human immunodeficiency virus (HIV-1, HIV-2). Chemokine binding to CCR5 leads to cellular activation through pertussis toxin-sensitive heterotrimeric G proteins as well as G protein-independent signalling pathways. Like many other GPCR, CCR5 is regulated by agonist-dependent processes which involve G protein coupled receptor kinase (GRK)-dependent phosphorylation, beta-arrestin-mediated desensitization and internalization. This review discusses recent advances in the elucidation of the structure and function of CCR5, as well as the complex mechanisms that regulate CCR5 signalling and cell surface expression.
Collapse
Affiliation(s)
- Martin Oppermann
- Department of Immunology, Georg-August-University Göttingen, Kreuzbergring 57, 37075, Germany.
| |
Collapse
|
50
|
|