1
|
Stith BJ. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development. Dev Biol 2015; 401:188-205. [PMID: 25748412 DOI: 10.1016/j.ydbio.2015.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 11/28/2022]
Abstract
This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG.
Collapse
Affiliation(s)
- Bradley J Stith
- University of Colorado Denver, Department of Integrative Biology, Campus Box 171, PO Box 173364, Denver, CO 80217-3364, United States.
| |
Collapse
|
2
|
Bates RC, Fees CP, Holland WL, Winger CC, Batbayar K, Ancar R, Bergren T, Petcoff D, Stith BJ. Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization. Dev Biol 2013; 386:165-80. [PMID: 24269904 DOI: 10.1016/j.ydbio.2013.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/24/2013] [Accepted: 11/08/2013] [Indexed: 01/03/2023]
Abstract
We report a new step in the fertilization in Xenopus laevis which has been found to involve activation of Src tyrosine kinase to stimulate phospholipase C-γ (PLC-γ) which increases inositol 1,4,5-trisphosphate (IP3) to release intracellular calcium ([Ca](i)). Molecular species analysis and mass measurements suggested that sperm activate phospholipase D (PLD) to elevate phosphatidic acid (PA). We now report that PA mass increased 2.7 fold by 1 min after insemination and inhibition of PA production by two methods inhibited activation of Src and PLCγ, increased [Ca](i) and other fertilization events. As compared to 14 other lipids, PA specifically bound Xenopus Src but not PLCγ. Addition of synthetic PA activated egg Src (an action requiring intact lipid rafts) and PLCγ as well as doubling the amount of PLCγ in rafts. In the absence of elevated [Ca](i), PA addition elevated IP3 mass to levels equivalent to that induced by sperm (but twice that achieved by calcium ionophore). Finally, PA induced [Ca](i) release that was blocked by an IP3 receptor inhibitor. As only PLD1b message was detected, and Western blotting did not detect PLD2, we suggest that sperm activate PLD1b to elevate PA which then binds to and activates Src leading to PLCγ stimulation, IP3 elevation and [Ca](i) release. Due to these and other studies, PA may also play a role in membrane fusion events such as sperm-egg fusion, cortical granule exocytosis, the elevation of phosphatidylinositol 4,5-bisphosphate and the large, late increase in sn 1,2-diacylglycerol in fertilization.
Collapse
Key Words
- 1,2-dicapryloyl-sn-glycero-3-phosphate
- 1,2-dioctanoyl-sn-glycero-3-[phospho-l-serine]
- 5-fluoro-2-indolyl des-chlorohalopemide
- DAG
- ELSD
- Exocytosis
- FIPI
- IP3
- LPA
- LPC
- Membrane fusion
- Membrane rafts
- PA
- PC
- PE
- PI
- PI3
- PI345P3
- PI34P2
- PI35P2
- PI4
- PI45P2
- PI5
- PKC
- PLC
- PLCγ
- PLD
- PS
- Phospholipase Cγ
- Phospholipase D
- RT-PCR
- S1P
- [Ca](i)
- dPA
- dPS
- evaporative light scattering detector
- inositol 1,4,5-trisphosphate
- intracellular calcium
- lysophosphatidic acid
- lysophosphatidylcholine
- phosphatidic acid
- phosphatidylcholine
- phosphatidylethanolamine
- phosphatidylinositol
- phosphatidylinositol 3,4,5-trisphosphate
- phosphatidylinositol 3,4-bisphosphate
- phosphatidylinositol 3,5-bisphosphate
- phosphatidylinositol 3-phosphate
- phosphatidylinositol 4,5-bisphosphate
- phosphatidylinositol 4-phosphate
- phosphatidylinositol 5-phosphate
- phosphatidylserine
- phospholipase C
- phospholipase C-γ
- phospholipase D
- protein kinase C
- reverse transcriptase polymerase chain reaction
- sn 1,2-diacylglycerol
- sphingosine-1-phosphate
Collapse
Affiliation(s)
- Ryan C Bates
- University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Colby P Fees
- University of Colorado Denver, Denver, CO 80217-3364, USA
| | | | | | | | - Rachel Ancar
- University of Colorado Denver, Denver, CO 80217-3364, USA
| | | | | | | |
Collapse
|
3
|
Holden NJ, Savage COS, Young SP, Wakelam MJ, Harper L, Williams JM. A dual role for diacylglycerol kinase generated phosphatidic acid in autoantibody-induced neutrophil exocytosis. Mol Med 2011; 17:1242-52. [PMID: 21833457 DOI: 10.2119/molmed.2011.00028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 08/05/2011] [Indexed: 01/12/2023] Open
Abstract
Dysregulated release of neutrophil azurophilic granules causes increased tissue damage and amplified inflammation during autoimmune disease. Antineutrophil cytoplasmic antibodies (ANCAs) are implicated in the pathogenesis of small vessel vasculitis and promote adhesion and exocytosis in neutrophils. ANCAs activate specific signal transduction pathways in neutrophils that have the potential to be modulated therapeutically to prevent neutrophil activation by ANCAs. We have investigated a role for diacylglycerol kinase (DGK) and its downstream product phosphatidic acid (PA) in ANCA-induced neutrophil exocytosis. Neutrophils incubated with the DGK inhibitor R59022, before treatment with ANCAs, exhibited a reduced capacity to release their azurophilic granules, demonstrated by a component release assay and flow cytometry. PA restored azurophilic granule release in DGK-inhibited neutrophils. Confocal microscopy revealed that R59022 did not inhibit translocation of granules, indicating a role for DGK during the process of granule fusion at the plasma membrane. In investigating possible mechanisms by which PA promotes neutrophil exocytosis, we demonstrated that exocytosis can only be restored in R59022-treated cells through simultaneous modulation of membrane fusion and increasing cytosolic calcium. PA and its associated pathways may represent viable drug targets to reduce tissue injury associated with ANCA-associated vasculitic diseases and other neutrophilic inflammatory disorders.
Collapse
Affiliation(s)
- Neil J Holden
- Renal Immunobiology, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | |
Collapse
|
4
|
Gomez-Cambronero J. New concepts in phospholipase D signaling in inflammation and cancer. ScientificWorldJournal 2010; 10:1356-69. [PMID: 20623096 PMCID: PMC3070604 DOI: 10.1100/tsw.2010.116] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to generate the lipid second messenger phosphatidic acid (PA) and choline. PLD regulation in cells falls into two major signaling categories. One is via growth factors/mitogens, such as EGF, PDGF, insulin, and serum, and implicates tyrosine kinases; the other is via the small GTPase proteins Arf and Rho. We summarize here our lab's and other groups' contributions to those pathways and introduce several novel concepts. For the mitogen-induced signaling, new data indicate that an increase in cell transformation in PLD2-overexpressing cells is due to an increase of de novo DNA synthesis induced by PLD2, with the specific tyrosine residues involved in those functions being Y and Y. Recent research has also implicated Grb2 in tyrosine phosphorylation of PLD2 that also involves Sos and the ERK pathway. The targets of phosphorylation within the PLD2 molecule that are key to its regulation have recently been precisely mapped. They are Y, Y, and Y and the responsible kinases are, respectively, EGFR, JAK3, and Src. Y is an inhibitory site and its phosphorylation explains the low PLD2 activity that exists in low-invasive MCF-7 breast cancer cells. Advances along the small GTPase front have implicated cell migration, as PLD1 and PLD2 cause an increase in chemotaxis of leukocytes and inflammation. PA is necessary for full chemotaxis. PA enriches the localization of the atypical guanine exchange factor (GEF), DOCK2, at the leading edge of polarized neutrophils. Further, extracellular PA serves as a neutrophil chemoattractant; PA enters the cell and activates the mTOR/S6K pathway (specifically, S6K). A clear connection between PLD with the mTOR/S6K pathway has been established, in that PA binds to mTOR and also binds to S6K independently of mTOR. Lastly, there is evidence in the upstream direction of cell signaling that mTOR and S6K keep PLD2 gene expression function down-regulated in basal conditions. In summary, the involvement of PLD2 in cell signaling continues to expand geometrically. It involves gene transcription, mitogenic and cell migration effects as seen in normal growth, tumor development, and inflammation.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School Medicine, Dayton, OH, USA.
| |
Collapse
|
5
|
Frondorf K, Henkels KM, Frohman MA, Gomez-Cambronero J. Phosphatidic acid is a leukocyte chemoattractant that acts through S6 kinase signaling. J Biol Chem 2010; 285:15837-47. [PMID: 20304930 DOI: 10.1074/jbc.m109.070524] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phosphatidic acid (PA) is a pleiotropic lipid second messenger in mammalian cells. We report here that extracellular PA acts as a leukocyte chemoattractant, as membrane-soluble dioleoyl-PA (DOPA) elicits actin polymerization and chemotaxis of human neutrophils and differentiated proleukemic HL-60 cells. We show that the mechanism for this involves the S6 kinase (S6K) signaling enzyme. Chemotaxis was inhibited >90% by the S6K inhibitors rapamycin and bisindolylmaleimide and by S6K1 silencing using double-stranded RNA. However, it was only moderately ( approximately 30%) inhibited by mTOR siRNA, indicating the presence of an mTOR-independent mechanism for S6K. Exogenous PA led to robust time- and dose-dependent increases in S6K enzymatic activity and Thr(421)/Ser(424) phosphorylation, further supporting a PA/S6K connection. We also investigated whether intracellular PA production affects cell migration. Overexpression of phospholipase D2 (PLD2) and, to a lesser extent, PLD1, resulted in elevation of both S6K activity and chemokinesis, whereas PLD silencing was inhibitory. Because the lipase-inactive PLD2 mutants K444R and K758R neither activated S6K nor induced chemotaxis, intracellular PA is needed for this form of cell migration. Lastly, we demonstrated a connection between extracellular and intracellular PA. Using an enhanced green fluorescent protein-derived PA sensor (pEGFP-Spo20PABD), we showed that exogenous PA or PA generated in situ by bacterial (Streptomyces chromofuscus) PLD enters the cell and accumulates in vesicle-like cytoplasmic structures. In summary, we report the discovery of PA as a leukocyte chemoattractant via cell entry and activation of S6K to mediate the cytoskeletal actin polymerization and leukocyte chemotaxis required for the immune function of these cells.
Collapse
Affiliation(s)
- Kathleen Frondorf
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435, USA
| | | | | | | |
Collapse
|
6
|
Tomashov-Matar R, Levi M, Shalgi R. The involvement of Src family kinases (SFKs) in the events leading to resumption of meiosis. Mol Cell Endocrinol 2008; 282:56-62. [PMID: 18166263 DOI: 10.1016/j.mce.2007.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ovulated mammalian eggs remain arrested at the second meiotic metaphase (MII) until fertilization. The fertilizing spermatozoon initiates a sequence of biochemical events, collectively referred to as 'egg activation', which overcome this arrest. The initial observable change within the activated egg is a transient rise in intracellular Ca2+ concentration ([Ca2+]i) followed by cortical granule exocytosis (CGE) and resumption of the second meiotic division (RMII). To date, the mechanism by which the fertilizing spermatozoon activates the signaling pathways upstream to the Ca2+ release and the manner by which the signals downstream to Ca2+ release evoke RMII are not well documented. Protein tyrosine kinases (PTKs) were suggested as possible inducers of some aspects of egg activation. Src family kinases (SFKs) constitute a large family of evolutionarily conserved PTKs that mediate crucial biological functions. At present, the theory that one or more SFKs are necessary and sufficient for Ca2+ regulation at fertilization is documented in eggs of marine invertebrates. The mechanism leading to Ca2+ release during fertilization is less established in mammalian eggs. A controversy still exists as to whether SFKs within the mammalian egg are sufficient and/or necessary for Ca2+ release, or whether they play a role during egg activation via other signaling pathways. This article summarizes the possible signaling pathways involved upstream to Ca2+ release but focuses mainly on the involvement of SFKs downstream to Ca2+ release toward RMII, in invertebrate and vertebrate eggs.
Collapse
Affiliation(s)
- R Tomashov-Matar
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | | | | |
Collapse
|
7
|
Martinez Agosto JA, McCabe ER. Conserved family of glycerol kinase loci in Drosophila melanogaster. Mol Genet Metab 2006; 88:334-45. [PMID: 16545593 PMCID: PMC2807631 DOI: 10.1016/j.ymgme.2006.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Accepted: 01/10/2006] [Indexed: 10/24/2022]
Abstract
Glycerol kinase (GK) is an enzyme that catalyzes the formation of glycerol 3-phosphate from ATP and glycerol, the rate-limiting step in glycerol utilization. We analyzed the genome of the model organism Drosophila melanogaster and identified five GK orthologs, including two loci with sequence homology to the mammalian Xp21 GK protein. Using a combination of sequence analysis and evolutionary comparisons of orthologs between species, we characterized functional domains in the protein required for GK activity. Our findings include additional conserved domains that suggest novel nuclear and mitochondrial functions for glycerol kinase in apoptosis and transcriptional regulation. Investigation of GK function in Drosophila will inform us about the role of this enzyme in development and will provide us with a tool to examine genetic modifiers of human metabolic disorders.
Collapse
Affiliation(s)
- Julian A. Martinez Agosto
- Department of Pediatrics, David Geffen School of Medicine at UCLA; and Mattel Children’s Hospital at UCLA, USA
| | - Edward R.B. McCabe
- Department of Pediatrics, David Geffen School of Medicine at UCLA; and Mattel Children’s Hospital at UCLA, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA; UCLA Molecular Biology Institute; and UCLA Biomedical Engineering Interdepartmental Training Program, USA
- Corresponding author. Fax: +1 310 267 2045. (E.R.B. McCabe)
| |
Collapse
|
8
|
Sato KI, Fukami Y, Stith BJ. Signal transduction pathways leading to Ca2+ release in a vertebrate model system: Lessons from Xenopus eggs. Semin Cell Dev Biol 2006; 17:285-92. [PMID: 16584903 DOI: 10.1016/j.semcdb.2006.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
At fertilization, eggs unite with sperm to initiate developmental programs that give rise to development of the embryo. Defining the molecular mechanism of this fundamental process at the beginning of life has been a key question in cell and developmental biology. In this review, we examine sperm-induced signal transduction events that lead to release of intracellular Ca(2+), a pivotal trigger of developmental activation, during fertilization in Xenopus laevis. Recent data demonstrate that metabolism of inositol 1,4,5-trisphosphate (IP(3)), a second messenger for Ca(2+) release, is carefully regulated and involves phospholipase C (PLC) and the tyrosine kinase Src. Roles of other potential regulators in this pathway, such as phosphatidylinositol 3-kinase, heterotrimeric GTP-binding protein, phospholipase D (PLD) and phosphatidic acid (PA) are also discussed. Finally, we address roles of egg lipid/membrane microdomains or 'rafts' as a platform for the sperm-egg membrane interaction and subsequent signaling events of egg activation.
Collapse
Affiliation(s)
- Ken-ichi Sato
- Laboratory of Molecular Biology, The Research Center for Environmental Genomics, Kobe University, Kobe 657-8501, Japan.
| | | | | |
Collapse
|
9
|
Huang S, Gao L, Blanchoin L, Staiger CJ. Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol Biol Cell 2006; 17:1946-58. [PMID: 16436516 PMCID: PMC1415281 DOI: 10.1091/mbc.e05-09-0840] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 12/13/2005] [Accepted: 01/17/2006] [Indexed: 11/11/2022] Open
Abstract
The cytoskeleton is a key regulator of morphogenesis, sexual reproduction, and cellular responses to extracellular stimuli. Changes in the cellular architecture are often assumed to require actin-binding proteins as stimulus-response modulators, because many of these proteins are regulated directly by binding to intracellular second messengers or signaling phospholipids. Phosphatidic acid (PA) is gaining widespread acceptance as a major, abundant phospholipid in plants that is required for pollen tube tip growth and mediates responses to osmotic stress, wounding, and phytohormones; however, the number of identified effectors of PA is rather limited. Here we demonstrate that exogenous PA application leads to significant increases in filamentous actin levels in Arabidopsis suspension cells and poppy pollen grains. To investigate further these lipid-induced changes in polymer levels, we analyzed the properties of a key regulator of actin filament polymerization, the heterodimeric capping protein from Arabidopsis thaliana (AtCP). AtCP binds to PA with a K(d) value of 17 muM and stoichiometry of approximately 1:2. It also binds well to PtdIns(4,5)P(2), but not to several other phosphoinositide or acidic phospholipids. The interaction with PA inhibited the actin-binding activity of CP. In the presence of PA, CP is unable to block the barbed or rapidly growing and shrinking end of actin filaments. Precapped filament barbed ends can also be uncapped by addition of PA, allowing rapid filament assembly from an actin monomer pool that is buffered with profilin. The findings support a model in which the inhibition of CP activity in cells by elevated PA results in the stimulation of actin polymerization from a large pool of profilin-actin. Such regulation may be important for the response of plant cells to extracellular stimuli as well as for the normal process of pollen tube tip growth.
Collapse
Affiliation(s)
- Shanjin Huang
- Department of Biological Sciences and The Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907-2064, USA
| | | | | | | |
Collapse
|
10
|
Tou JS, Gill JS. Lysophosphatidic acid increases phosphatidic acid formation, phospholipase D activity and degranulation by human neutrophils. Cell Signal 2005; 17:77-82. [PMID: 15451027 DOI: 10.1016/j.cellsig.2004.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 06/08/2004] [Indexed: 02/07/2023]
Abstract
I-oleoyl-sn-glycero-3-phosphate, a lysophosphatidic acid (LPA), in serum is a biologically active lipid and has multiple functions depending on the cell types. Several studies have shown that LPA stimulates phospholipase D (PLD) activity in fibroblasts and prostate cancer cells in culture. PLD plays a central role in regulating neutrophil functions. One of the functions of the lipid product, phosphatidic acid (PA), of PLD action in neutrophils is to promote degranulation. In the present study, we examined the effect of LPA on PLD activity and degranulation by human neutrophils. The results show that exogenous LPA increased PA formation, PLD activity and degranulation by human neutrophils in a time and concentration dependent manner. These findings suggest that LPA released from activated platelets during blood clotting may participate in bacterial killing and wound healing process. On the other hand, augmented LPA production might be involved in inflammation, causing damage of the host tissues.
Collapse
Affiliation(s)
- Jen-Sie Tou
- Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | |
Collapse
|
11
|
Bhugra P, Xu YJ, Rathi S, Dhalla NS. Modification of intracellular free calcium in cultured A10 vascular smooth muscle cells by exogenous phosphatidic acid. Biochem Pharmacol 2003; 65:2091-8. [PMID: 12787890 DOI: 10.1016/s0006-2952(03)00201-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Exogenous phosphatidic acid (PA) was observed to produce a concentration-dependent increase in [Ca(2+)](i) in cultured A10 vascular smooth muscle cells. Preincubation of cells with sarcoplasmic reticulum Ca(2+)-ATPase inhibitors (cyclopiazonic acid and thapsigargin), a phospholipase C inhibitor (2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate), inositol 1,4,5-trisphosphate receptor antagonists (2-aminoethoxydiphenyl borate and xestospongin), and an activator of protein kinase C (PKC) (phorbol 12-myristate 13-acetate) depressed the PA-evoked increase in [Ca(2+)](i). Although EGTA, an extracellular Ca(2+) chelator, decreased the PA-induced increase in [Ca(2+)](i), sarcolemmal Ca(2+)-channel blockers (verapamil or diltiazem) did not alter the action of PA. On the other hand, inhibitors of PKC (bisindolylmaleimide I) and G(i)-protein (pertussis toxin) potentiated the increase in [Ca(2+)](i) evoked by PA significantly. These results suggest that the PA-induced increase in [Ca(2+)](i) in vascular smooth muscle cells may occur upon the activation of phospholipase C and the subsequent release of Ca(2+) from the inositol 1,4,5-trisphosphate-sensitive Ca(2+) pool in the sarcoplasmic reticulum. This action of PA may be mediated through the involvement of PKC.
Collapse
Affiliation(s)
- Praveen Bhugra
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Avenue, Winnipeg, Man., Canada R2H 2A6
| | | | | | | |
Collapse
|
12
|
Ahn BH, Kim SY, Kim EH, Choi KS, Kwon TK, Lee YH, Chang JS, Kim MS, Jo YH, Min DS. Transmodulation between phospholipase D and c-Src enhances cell proliferation. Mol Cell Biol 2003; 23:3103-15. [PMID: 12697812 PMCID: PMC153190 DOI: 10.1128/mcb.23.9.3103-3115.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phospholipase D (PLD) has been implicated in the signal transduction pathways initiated by several mitogenic protein tyrosine kinases. We demonstrate for the first time that most notably PLD2 and to a lesser extent the PLD1 isoform are tyrosine phosphorylated by c-Src tyrosine kinase via direct association. Moreover, epidermal growth factor induced tyrosine phosphorylation of PLD2 and its interaction with c-Src in A431 cells. Interaction between these proteins is via the pleckstrin homology domain of PLD2 and the catalytic domain of c-Src. Coexpression of PLD1 or PLD2 with c-Src synergistically enhances cellular proliferation compared with expression of either molecule. While PLD activity as a lipid-hydrolyzing enzyme is not affected by c-Src, wild-type PLDs but not catalytically inactive PLD mutants significantly increase c-Src kinase activity, up-regulating c-Src-mediated paxillin phosphorylation and extracellular signal-regulated kinase activity. These results demonstrate the critical role of PLD catalytic activity in the stimulation of Src signaling. In conclusion, we provide the first evidence that c-Src acts as a kinase of PLD and PLD acts as an activator of c-Src. This transmodulation between c-Src and PLD may contribute to the promotion of cellular proliferation via amplification of mitogenic signaling pathways.
Collapse
Affiliation(s)
- Bong-Hyun Ahn
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Renault AD, Starz-Gaiano M, Lehmann R. Metabolism of sphingosine 1-phosphate and lysophosphatidic acid: a genome wide analysis of gene expression in Drosophila. Mech Dev 2002; 119 Suppl 1:S293-301. [PMID: 14516700 DOI: 10.1016/s0925-4773(03)00131-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lipids, in addition to being structural components of cell membranes, can act as signaling molecules. Bioactive lipids, such as sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA), may act intracellularly as second messengers or be secreted and act as intercellular signaling molecules. Such molecules can affect a variety of cellular processes including apoptosis, proliferation, differentiation and motility. To investigate possible sources of bioactive lipids during development we have searched the Drosophila genome for homologs of genes involved in mammalian S1P and LPA metabolism. Here we report the developmental expression of 31 such genes by in situ hybridization to Drosophila embryos. Most show expression in specific tissues, with expression in the gut and nervous system being recurring patterns.
Collapse
Affiliation(s)
- Andrew D Renault
- Skirball Institute, Developmental Genetics Program, New York University Medical Center, 540 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
14
|
Tou JS. Differential regulation of neutrophil phospholipase d activity and degranulation. Biochem Biophys Res Commun 2002; 292:951-6. [PMID: 11944907 DOI: 10.1006/bbrc.2002.6765] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the proposed functions of phosphatidic acid (PA) formation from phospholipase D (PLD) activation in neutrophils is to promote degranulation induced by receptor agonists. The present study shows that the time course and dose response of PA formation and degranulation induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP) differed. PLD activation and degranulation also exhibited different dose response to genistein and epigallocatechin gallate (EGCG), inhibitors of protein tyrosine kinases. Genistein inhibited PLD activity with an IC(50) value of 12.2 microM in fMLP- and 107 microM in phorbol myristate acetate (PMA)-stimulated cells. It required higher concentrations of genistein to inhibit degranulation than to inhibit PLD activity induced by fMLP. EGCG in the range of 40-400 microM had no effect on PLD activity but it inhibited the release of beta-glucuronidase and elastase by fMLP-stimulated cells. These results demonstrate differential regulation of PLD activity and degranulation of primary granules by genistein and EGCG in fMLP-stimulated neutrophils.
Collapse
Affiliation(s)
- Jen Sie Tou
- Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA.
| |
Collapse
|
15
|
Banno Y, Takuwa Y, Akao Y, Okamoto H, Osawa Y, Naganawa T, Nakashima S, Suh PG, Nozawa Y. Involvement of phospholipase D in sphingosine 1-phosphate-induced activation of phosphatidylinositol 3-kinase and Akt in Chinese hamster ovary cells overexpressing EDG3. J Biol Chem 2001; 276:35622-8. [PMID: 11468290 DOI: 10.1074/jbc.m105673200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase D (PLD), phosphatidylinositol 3-kinase (PI3K), and Akt are known to be involved in cellular signaling related to proliferation and cell survival. In this report, we provide evidence that PLD links sphingosine 1-phosphate (S1P)-induced activation of the G protein-coupled EDG3 receptor to stimulation of PI3K and its downstream effector Akt in Chinese hamster ovary (CHO) cells. S1P stimulation of EDG3-overexpressing CHO cells but not vector-transfected cells induced activation of PLD, PI3K, and Akt in a time- and dose-dependent manner. Akt phosphorylation was prevented by the PI3K inhibitors wortmannin and LY294002 (2-(4-monrpholinyl)-8-phenyl-4H-1-benzopyran-4-one), indicating that Akt activation was dependent on PI3K. S1P-induced activation of PI3K and Akt was abrogated by 1-butanol, which inhibited S1P-induced accumulation of phosphatidic acid by serving as a phosphatidyl group acceptor in the transphosphatidylation reaction catalyzed by PLD, whereas both PI3K and Akt activation were not inhibited by 2-butanol without such reaction. Co-expression of wild-type PLD2 with myc-Akt resulted in increased Akt activation in response to S1P. In contrast, co-expression of a catalytically inactive mutant of PLD2 eliminated the S1P-induced Akt activation. The treatment of EDG3-expressing CHO cells with exogenous Streptomyces chromofuscus PLD, which caused an accumulation of phosphatidic acid, resulted in increases in PI3K activity and the phosphorylation of Akt, the latter of which was completely abolished by LY294002. Furthermore, S1P-induced membrane ruffling, which was dependent on PI3K and Rac, was inhibited by 1-butanol, but not by 2-butanol. These results demonstrate that PLD participates in the activation of PI3K and Akt stimulation of EDG3 receptor.
Collapse
Affiliation(s)
- Y Banno
- Departments of Biochemistry and Internal Medicine, Gifu University School of Medicine, Gifu 500-8705, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wanten G, van Emst-de Vries S, Naber T, Willems P. Nutritional lipid emulsions modulate cellular signaling and activation of human neutrophils. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31667-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
17
|
Sergeant S, Waite KA, Heravi J, McPhail LC. Phosphatidic acid regulates tyrosine phosphorylating activity in human neutrophils: enhancement of Fgr activity. J Biol Chem 2001; 276:4737-46. [PMID: 11078731 DOI: 10.1074/jbc.m006571200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In human neutrophils, the activation of phospholipase D and the Tyr phosphorylation of proteins are early signaling events upon cell stimulation. We found that the pretreatment of neutrophils with ethanol (0.8%) or 1-butanol (0.3%), which results in the accumulation of phosphatidylalcohol at the expense of phosphatidic acid (PA), decreased the phorbol myristate acetate-stimulated Tyr phosphorylation of endogenous proteins (42, 115 kDa). When neutrophil cytosol was incubated in the presence or absence of PA, these and other endogenous proteins became Tyr-phosphorylated in a PA-dependent manner. In contrast, phosphatidylalcohols exhibited only 25% (phosphatidylethanol) or 5% (phosphatidylbutanol) of the ability of PA to stimulate Tyr phosphorylation in the cell-free assay. Similarly, other phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine, phosphatidylinositol, polyphosphoinositides, and sphingosine 1-phosphate) showed little ability to stimulate Tyr phosphorylation. These data suggest that PA can function as an intracellular regulator of Tyr phosphorylating activity. Gel filtration chromatography of leukocyte cytosol revealed a peak of PA-dependent Tyr phosphorylating activity distinct from a previously described PA-dependent phosphorylating activity (Waite, K. A., Wallin, R., Qualliotine-Mann, D., and McPhail, L. C. (1997) J. Biol. Chem. 272, 15569-15578). Among the protein Tyr kinases expressed in neutrophils, only Fgr eluted exclusively in the peak of PA-dependent Tyr phosphorylating activity. Importantly, Fgr isolated from unstimulated neutrophil lysates showed increased activity in the presence of PA but not phosphatidylbutanol. Moreover, the pretreatment of neutrophils with 1-butanol decreased Fgr activity in cells stimulated with formyl-methionyl-leucyl phenylalanine plus dihydrocytochalasin B. Together, these results suggest a new second messenger role for PA in the regulation of Tyr phosphorylation.
Collapse
Affiliation(s)
- S Sergeant
- Departments of Biochemistry and Medicine, Division of Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
18
|
Petkovic M, Schiller J, Müller M, Benard S, Reichl S, Arnold K, Arnhold J. Detection of individual phospholipids in lipid mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: phosphatidylcholine prevents the detection of further species. Anal Biochem 2001; 289:202-16. [PMID: 11161314 DOI: 10.1006/abio.2000.4926] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry is an established tool for the analysis of proteins, whereas it gained by far less interest in the field of lipid analysis. This method works well with phospholipids as well as organic cell extracts and provides high sensitivity and reproducibility. The aim of the present paper is to extend our previous studies to the analysis of lysophospholipids and phospholipid mixtures. To study the suitability of MALDI-TOF mass spectrometry for the analysis of lysophospholipids, different phospholipids like phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidic acid, and phosphatidylinositol as well as their mixtures were digested with phospholipase A(2). Positive and negative ion mass spectra of all phospholipids before and after digestion were recorded. In all these cases, the molecular ions of the expected digestion products could be detected and only a very small extent of further fragmentation was observed. On the other hand, spectra of phospholipid mixtures containing phosphatidylcholine were strongly dominated by phosphatidylcholine and lysophosphatidylcholine signals, which prevented the detection of further phospholipids even if those lipids were present in comparable amounts. This is of paramount interest for the analysis of tissue and cell extracts.
Collapse
Affiliation(s)
- M Petkovic
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Liebigstrasse 27, D-04103 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Siddiqui RA, Jenski LJ, Neff K, Harvey K, Kovacs RJ, Stillwell W. Docosahexaenoic acid induces apoptosis in Jurkat cells by a protein phosphatase-mediated process. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1499:265-75. [PMID: 11341974 DOI: 10.1016/s0167-4889(00)00128-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Docosahexaenoic acid (DHA) is an omega-3 fatty acid under intense investigation for its ability to modulate cancer cell growth and survival. This research was performed to study the cellular and molecular effects of DHA. Our experiments indicated that the treatment of Jurkat cells with DHA inhibited their survival, whereas similar concentrations (60 and 90 microM) of arachidonic acid and oleic acid had little effect. To explore the mechanism of inhibition, we used several measures of apoptosis to determine whether this process was involved in DHA-induced cell death in Jurkat cells. Caspase-3, an important cytosolic downstream regulator of apoptosis, is activated by death signals through proteolytic cleavage. Incubation of Jurkat cells with 60 and 90 microM DHA caused proteolysis of caspase-3 within 48 and 24 h, respectively. DHA treatment also caused the degradation of poly-ADP-ribose polymerase and DNA fragmentation as assayed by flow cytometric TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) assay. These results indicate that DHA induces apoptosis in Jurkat leukemic cells. DHA-induced apoptosis was effectively inhibited by tautomycin and cypermethrin at concentrations that affect protein phosphatase 1 (PP1) and protein phosphatase 2B (PP2B) activities, respectively, implying a role for these phosphatases in the apoptotic pathway. Okadaic acid, an inhibitor of protein phosphatase 2A, had no effect on DHA-induced apoptosis. These results suggest that one mechanism through which DHA may control cancer cell growth is through apoptosis involving PP1/PP2B protein phosphatase activities.
Collapse
Affiliation(s)
- R A Siddiqui
- Cellular Biochemistry Laboratory, Methodist Research Institute at Clarian Health, Indianapolis, IN 46202, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Cheeseman SL, Brannan M, McGown A, Khan P, Gardner C, Gumbrell L, Dickens D, Ranson M. Phase I and pharmacologic study of CT-2584 HMS, a modulator of phosphatidic acid, in adult patients with solid tumours. Br J Cancer 2000; 83:1599-606. [PMID: 11104552 PMCID: PMC2363467 DOI: 10.1054/bjoc.2000.1503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CT-2584 HMS, 1-(11-dodecylamino-10-hydroxyundecyl)-3, 7-dimethylxanthine-hydrogen methanesulphonate, is a modulator of intracellular phosphatidic acid. We treated 30 patients as part of a Phase I and pharmacokinetic study to determine the maximum-tolerated dose of CT-2584 HMS, toxicity profiles, pharmacokinetic profile and antitumour effects at escalating dose levels. CT-2584 HMS was given as a continuous infusion for 6 hours for 5 consecutive days every 3 weeks. Plasma samples for pharmacokinetic studies were analysed using a validated high-performance liquid chromatographic assay. Mean C(max)and AUC values for each dose group were similar on days 1 and 5 and increases in plasma concentration (C(max)and AUC) appeared proportional to the dose. CT-2584 HMS had a mean elimination half-life of 7.3 hours. Values of V(d)and clearance were independent of dose and duration of treatment. Dose escalation was halted at 585 mg/m(2)because of malaise and lethargy, which was sometimes accompanied by nausea and headache. 26 patients were evaluable for response, one patient with pleural mesothelioma achieved a partial response to treatment confirmed by CT scanning. A dose level of 520 mg/m(2)daily x 5 days would be suitable for Phase II testing. Alternative schedules of CT-2584 HMS to overcome the limiting toxicity of malaise would be worthy of examination.
Collapse
Affiliation(s)
- S L Cheeseman
- CRC Department of Medical Oncology, Christie Hospital NHS Trust, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Preobrazhensky AA, Dragan S, Kawano T, Gavrilin MA, Gulina IV, Chakravarty L, Kolattukudy PE. Monocyte chemotactic protein-1 receptor CCR2B is a glycoprotein that has tyrosine sulfation in a conserved extracellular N-terminal region. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5295-303. [PMID: 11046064 DOI: 10.4049/jimmunol.165.9.5295] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monocyte chemotactic protein-1 (MCP-1) binding to its receptor, CCR2B, plays an important role in a variety of diseases involving infection, inflammation, and/or injury. In our effort to understand the molecular basis of this interaction and its biological consequences, we recognized a conserved hexad of amino acids at the N-terminal extracellular domain of several chemokine receptors, including CCR2B. Human embryonic kidney 293 cells expressing Flag-tagged CCR2B containing site-directed mutations in this region, 21-26, including a consensus tyrosine sulfation site were used to determine MCP-1 binding and its biological consequences. The results showed that several of these amino acids are important for MCP-1 binding and consequent lamellipodium formation, chemotaxis, and signal transduction involving adenylate cyclase inhibition and Ca(2+) influx into cytoplasm. Mutations that prevented adenylate cyclase inhibition and Ca(2+) influx did not significantly inhibit lamellipodium formation and chemotaxis, suggesting that these signaling events are not involved in chemotaxis. CCR2B was found to be sulfated at Tyr(26); this sulfation was abolished by the substitution of Tyr with Ala and severely reduced by substitution of Asp(25), a part of the consensus sulfation site. The expressed CCR2B was found to be N:-glycosylated, as N:-glycosidase F treatment of the receptor or growth of the cells in tunicamycin reduced the receptor size to the same level, from 50 to 45 kDa. Thus, CCR2B is the first member of the CC chemokine receptor family shown to be a glycoprotein that is sulfated at the N-terminal Tyr. These post-translational modifications probably have significant biological functions.
Collapse
Affiliation(s)
- A A Preobrazhensky
- Neurobiotechnology Center and Departments of Biochemistry and Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
English D, Welch Z, Kovala AT, Harvey K, Volpert OV, Brindley DN, Garcia JG. Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB J 2000; 14:2255-65. [PMID: 11053247 DOI: 10.1096/fj.00-0134com] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies have identified factors responsible for angiogenesis within developing tumors, but mediators of vessel formation at sites of trauma, injury, and wound healing are not clearly established. Here we show that sphingosine 1-phosphate (S1P) released by platelets during blood clotting is a potent, specific, and selective endothelial cell chemoattractant that accounts for most of the strong endothelial cell chemotactic activity of blood serum, an activity that is markedly diminished in plasma. Preincubation of endothelial cells with pertussis toxin inhibited this effect of S1P, demonstrating the involvement of a Galphai-coupled receptor. After S1P-induced migration, endothelial cells proliferated avidly and differentiated forming multicellular structures suggestive of early blood vessel formation. S1P was strikingly effective in enhancing the ability of fibroblast growth factor to induce angiogenesis in the avascular mouse cornea. Our results show that blood coagulation initiates endothelial cell angiogenic responses through the release of S1P, a potent endothelial cell chemoattractant that exerts its effects by activating a receptor-dependent process.
Collapse
Affiliation(s)
- D English
- Experimental Cell Research Program, Methodist Research Institute, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Siddiqui RA, Burtschi DJ, Kovacs R. Phosphatidic acid induces calcium influx in neutrophils via verapamil-sensitive calcium channels. J Cell Biochem 2000; 78:297-304. [PMID: 10842323 DOI: 10.1002/(sici)1097-4644(20000801)78:2<297::aid-jcb11>3.0.co;2-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Phosphatidic acid (PA) induces a biphasic Ca(2+) mobilization response in human neutrophils. The initial increase is due to the mobilization of Ca(2+) from intracellular stores, whereas the secondary increase is due to the influx of Ca(2+) from extracellular sources. The present investigation characterizes PA-induced Ca(2+) influx in neutrophils. Depolarization of neutrophils by 50 mM KCl enhanced PA-induced Ca(2+) influx, whereas verapamil, a Ca(2+) channel blocker, attenuated this response in a dose-dependent manner. These observations suggest that PA-induced Ca(2+) influx is mediated via verapamil-sensitive Ca(2+) channels. Stimulation of neutrophils with exogenous PA results in accumulation of endogenously generated PA with a time course similar to the effects of exogenous PA on Ca(2+) influx. Ethanol inhibited the accumulation of endogenous PA and calcium mobilization, indicating that activation of membrane phospholipase D plays a role in PA-mediated Ca(2+) influx. The results of this study suggest that exogenously added PA stimulates the generation of intracellular PA, which then mediates Ca(2+) influx through verapamil-sensitive Ca(2+) channels.
Collapse
Affiliation(s)
- R A Siddiqui
- Cellular Biochemistry Laboratory, Methodist Research Institute, Indianapolis, Indiana.
| | | | | |
Collapse
|
24
|
Kondo A, Hashimoto S, Yano H, Nagayama K, Mazaki Y, Sabe H. A new paxillin-binding protein, PAG3/Papalpha/KIAA0400, bearing an ADP-ribosylation factor GTPase-activating protein activity, is involved in paxillin recruitment to focal adhesions and cell migration. Mol Biol Cell 2000; 11:1315-27. [PMID: 10749932 PMCID: PMC14849 DOI: 10.1091/mbc.11.4.1315] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Paxillin acts as an adaptor molecule in integrin signaling. Paxillin is localized to focal contacts but seems to also exist in a relatively large cytoplasmic pool. Here, we report the identification of a new paxillin-binding protein, PAG3 (paxillin-associated protein with ADP-ribosylation factor [ARF] GTPase-activating protein [GAP] activity, number 3), which is involved in regulation of the subcellular localization of paxillin. PAG3 bound to all paxillin isoforms and was induced during monocyte maturation, at which time paxillin expression is also increased and integrins are activated. PAG3 was diffusely distributed in the cytoplasm in premature monocytes but became localized at cell periphery in mature monocytes, a fraction of which then colocalized with paxillin. PAG3, on the other hand, did not accumulate at focal adhesion plaques, suggesting that PAG3 is not an integrin assembly protein. PAG3 was identical to KIAA0400/Papalpha, which was previously identified as a Pyk2-binding protein bearing a GAP activity toward several ARFs in vitro. Mammalian ARFs fall into three classes, and we showed that all classes could affect subcellular localization of paxillin. We also examined possible interaction of PAG3 with ARFs and showed evidence that at least one of them, ARF6, seems to be an intracellular substrate for GAP activity of PAG3. Moreover, overexpression of PAG3, but not its GAP-inactive mutant, inhibited paxillin recruitment to focal contacts and hampered cell migratory activities, whereas cell adhesion activities were almost unaffected. Therefore, our results demonstrate that paxillin recruitment to focal adhesions is not mediated by simple cytoplasmic diffusion; rather, PAG3 appears to be involved in this process, possibly through its GAP activity toward ARF proteins. Our result thus delineates a new aspect of regulation of cell migratory activities.
Collapse
Affiliation(s)
- A Kondo
- Department of Molecular Biology, Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Sliva D, Mason R, Xiao H, English D. Enhancement of the migration of metastatic human breast cancer cells by phosphatidic acid. Biochem Biophys Res Commun 2000; 268:471-9. [PMID: 10679229 DOI: 10.1006/bbrc.2000.2111] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphatidic acid (PA), lysophosphatidic acid (LPA), and sphingosine 1-phosphate (SPP) are naturally occurring phospholipids which induce a variety of effects as extracellular messengers. In this study, we compared the effects of these phospholipid signaling molecules on the migration of invasive and noninvasive breast cancer cell lines, an index of the metastatic potential of these cells. As previously demonstrated, invasive MDA-MB-231 breast cancer cells exhibited increased constitutive (nonstimulated) migration in comparison to poorly invasive MCF-7 cells. Phosphatidic acid employed at nanomolar concentrations markedly potentiated migration of the invasive cells but had no effect on migration of either the noninvasive MCF-7 cells or nonneoplastic human epithelial cells. Lysophosphatidic acid and sphingosine 1-phosphate inhibited both the directed (chemotactic) and random (chemokinetic) migration of MDA-MB-231 cells. Experiments were undertaken to characterize the signaling pathway involved in constitutive and PA-stimulated migration of MDA-MB-231 cells. The tyrosine kinase inhibitors staurosporine and genistein inhibited constitutive and PA-induced migration in a dose-dependent manner, consistent with a role for tyrosine phosphorylation in the migratory response. In addition, the phosphatidylinositol (PI) 3' kinase inhibitors wortmannin and LY294002 strongly inhibited both the constitutive and PA-stimulated migration of the invasive breast cancer cells, indicating that PI-3' kinase plays an important role in the metastatic migration of breast cancer cells. Finally, PA-induced migration of MDA-MB-231 was markedly attenuated by pretreatment of cells with Clostridium difficile Toxin B, pertussis toxin and suramin, implying a role for a Gi receptor-dependent process involving activation of the small GTP-binding protein Rho. Since an enhanced ability to migrate heightens the metastatic potential of cells within solid tumors, our results suggest that the metastatic capabilities of breast cancer cells may be enhanced by a receptor-driven cellular process initiated by phosphatidic acid or related lipid phosphate messengers.
Collapse
Affiliation(s)
- D Sliva
- Experimental Cell Research Program, Methodist Research Institute, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
26
|
Siddiqui RA, English D. Phosphatidylinositol 3'-kinase-mediated calcium mobilization regulates chemotaxis in phosphatidic acid-stimulated human neutrophils. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1483:161-73. [PMID: 10601705 DOI: 10.1016/s1388-1981(99)00172-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phosphatidylinositol 3'-kinase (PI 3'-kinase) plays an important role in the migration of hepatocytes, endothelial cells and neoplastic cells to agonists which activate cellular tyrosine kinases. We examined the PI 3'-kinase-dependent chemotactic responses of neutrophilic leukocytes induced by phosphatidic acid (PA) in order to clarify mechanisms by which the enzyme potentially influences cellular migration. Western analysis of immunoprecipitates indicated that PA induced the tyrosine phosphorylation of three distinct proteins involved in functional activation which co-immunoprecipitated in PA-stimulated cells. These proteins were identified as lyn, syk and the 85 kDa regulatory subunit of PI 3'-kinase. Chemotactic responses to PA but not to several other neutrophil agonists were inhibited by the PI 3'-kinase inhibitors wortmannin and LY294002. Chemotactic inhibition resulted from upstream inhibition of calcium mobilization. Chelation of extracellular calcium by ethylene glycol-bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA) did not affect the PA-induced chemotaxis, whereas chelation of intracellular calcium by 1, 2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA) attenuated this response. Thus, changes in intracellular Ca(2+) levels that can be effected by Ca(2+) mobilized from intracellular stores in the absence of Ca(2+) influx regulate PA-induced chemotaxis. Furthermore, PI 3'-kinase inhibition blunted the agonist-dependent generation of inositol 1,4,5-trisphosphate (IP(3)), suggesting that PI 3'-kinase exerted its effects on calcium mobilization from intracellular sources by mediating activation of phospholipase C (PLC) in PA-stimulated cells. Moreover, the PI 3'-kinase inhibitor LY294002 also inhibited phosphorylation of syk in PA-stimulated cells. We, therefore, propose that products of PI 3'-kinase confined to the inner leaflet of the plasma membrane play a role in activation of syk, calcium mobilization and induction of chemotactic migration.
Collapse
Affiliation(s)
- R A Siddiqui
- Experimental Cell Research Program, The Methodist Research Institute, MPC 1417, 1701 N. Senate Ave., Indianapolis, IN 46202, USA.
| | | |
Collapse
|
27
|
English D, Kovala AT, Welch Z, Harvey KA, Siddiqui RA, Brindley DN, Garcia JG. Induction of endothelial cell chemotaxis by sphingosine 1-phosphate and stabilization of endothelial monolayer barrier function by lysophosphatidic acid, potential mediators of hematopoietic angiogenesis. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 1999; 8:627-34. [PMID: 10645770 DOI: 10.1089/152581699319795] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Angiogenesis, the formation of new blood vessels, is an important component of restoration of hematopoiesis after BMT, but the mediators involved in hematopoietic angiogenesis have not been identified. We examined the influence of the lipid growth factors, phosphatidic acid (PA), lysophosphatidic acid (LPA), and sphingosine 1-phosphate (S1P), on several angiogenic properties of endothelial cells, including migration and stabilization of vascular barrier integrity. In a previous study, PA was found to disrupt the permeability of established endothelial monolayers, an early event in the angiogenic response that liberates cells for subsequent mobilization. In the present study, both PA and LPA weakly induced the chemotactic migration of endothelial cells from an established monolayer. The chemotactic response induced by PA and LPA was similar in intensity to that observed with optimal levels of the known protein endothelial cell chemoattractants, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). A markedly greater chemotactic response was effected by nanomolar concentrations of S1P, indicating that this platelet-derived factor plays an important role in a key aspect of angiogenesis, chemotactic migration of endothelial cells. The chemotactic response to S1P was completely inhibited by preincubation of endothelial cells with antisense oligonucleotides to the high-affinity S1P receptor, Edg-1. In addition, chemotaxis of endothelial cells to S1P was inhibited by preincubation of cells with specific inhibitors of tyrosine kinases, but inhibitors of phosphatidylinositol 3' kinase had little effect. Finally, LPA effectively stabilized endothelial monolayer barrier function, a late event in angiogenesis. Thus, the phospholipid growth factors, PA, S1P, and LPA, display divergent and potent effects on angiogenic properties of endothelial cells and angiogenic differentiation of endothelial cells potentially act in tandem to effectively induce neovascularization. These mediators may thus exert important roles in restoration of hematopoiesis, as they facilitate blood vessel formation at sites of transplanted stem cells, allowing the progeny of engrafted progenitors to move from marrow sinusoids to the peripheral vasculature.
Collapse
Affiliation(s)
- D English
- Experimental Cell Research Program, The Methodist Research Institute, Clarian Health Partners, Inc., Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
English D, Cui Y, Siddiqui R, Patterson C, Natarajan V, Brindley DN, Garcia JG. Induction of endothelial monolayer permeability by phosphatidate. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19991001)75:1<105::aid-jcb11>3.0.co;2-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Abstract
Recent genetic studies in Drosophila have identified signals that direct cell movement, mechanisms that transduce such signals within migrating cells and some of the molecular machinery underlying cell motility. Activation of the fibroblast growth factor receptor signaling pathway is required for migration of the cells of the developing respiratory system and mesoderm. A signal dependent on 3-hydroxy-3-methylglutanyl Coenzyme A reductase attracts migrating primordial germ cells to the somatic gonad, whereas the phosphohydrolase, phosphatidic acid phosphatase type 2, repels germ cells. In the female germline, the migratory path of border cells is directed by the homophilic adhesion molecule E cadherin.
Collapse
Affiliation(s)
- A Forbes
- Developmental Genetics Program, Skirball Institute and Howard Hughes Medical Institute, Department of Cell Biology, New York University Medical School, 540 First Ave, New York, New York 10016, USA.
| | | |
Collapse
|
30
|
Houle MG, Bourgoin S. Regulation of phospholipase D by phosphorylation-dependent mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1439:135-49. [PMID: 10425391 DOI: 10.1016/s1388-1981(99)00090-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The rapid production of phosphatidic acid following receptor stimulation has been demonstrated in a wide range of mammalian cells. Virtually every cell uses phosphatidylcholine as substrate to produce phosphatidic acid in a controlled reaction catalyzed by specific PLD isoforms. Considerable effort has been directed at studying the regulation of PLD activities and subsequent work has characterized a family of proteins including PLD1 and PLD2. Whereas both PLD enzymes are dependent on phosphatidylinositol 4, 5-bisphosphate for activity only the PLD1 isoform was strongly stimulated by the small GTPases ARF and RhoA and by protein kinase Calpha as well. A role for tyrosine kinase activities in the membrane recruitment of small GTPases, in the synthesis of phosphatidylinositol 4,5-bisphosphate and tyrosine phosphorylation of PLD1 and PLD2 has been uncovered. However, it still not clear exactly how tyrosine phosphorylation of proteins contributes to PLD activation in cells. Here we review the data linking tyrosine phosphorylation of proteins to the activation of PLD and describe recent finding on the sites and possible mechanisms of action of tyrosine kinases in receptor-mediated PLD activation. Finally, a model illustrating the potential complex interplay linking these signaling events with the activation of PLD is presented.
Collapse
Affiliation(s)
- M G Houle
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Pavillon CHUL, Faculty of Medicine, Université Laval, Ste-Foy, Quebec, Canada
| | | |
Collapse
|
31
|
Waggoner DW, Xu J, Singh I, Jasinska R, Zhang QX, Brindley DN. Structural organization of mammalian lipid phosphate phosphatases: implications for signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1439:299-316. [PMID: 10425403 DOI: 10.1016/s1388-1981(99)00102-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This article describes the regulation of cell signaling by lipid phosphate phosphatases (LPPs) that control the conversion of bioactive lipid phosphates to their dephosphorylated counterparts. A structural model of the LPPs, that were previously called Type 2 phosphatidate phosphatases, is described. LPPs are characterized by having no Mg(2+) requirement and their insensitivity to inhibition by N-ethylmaleimide. The LPPs have six putative transmembrane domains and three highly conserved domains that define a phosphatase superfamily. The conserved domains are juxtaposed to the proposed membrane spanning domains such that they probably form the active sites of the phosphatases. It is predicted that the active sites of the LPPs are exposed at the cell surface or on the luminal surface of intracellular organelles, such as Golgi or the endoplasmic reticulum, depending where various LPPs are expressed. LPPs could attenuate cell activation by dephosphorylating bioactive lipid phosphate esters such as phosphatidate, lysophosphatidate, sphingosine 1-phosphate and ceramide 1-phosphate. In so doing, the LPPs could generate alternative signals from diacylglycerol, sphingosine and ceramide. The LPPs might help to modulate cell signaling by the phospholipase D pathway. For example, phosphatidate generated within the cell by phospholipase D could be converted by an LPP to diacylglycerol. This should change the relative balance of signaling by these two lipids. Another possible function of the LPPs relates to the secretion of lysophosphatidate and sphingosine 1-phosphate by activated platelets and other cells. These exogenous lipids activate phospholipid growth factor receptors on the surface of cells. LPP activities could attenuate cell activation by lysophosphatidate and sphingosine 1-phosphate through their respective receptors.
Collapse
Affiliation(s)
- D W Waggoner
- Department of Biochemistry (Signal Transduction Laboratories), Lipid and Lipoprotein Research Group, University of Alberta, 357 Heritage Medical Research Centre, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | | | | | |
Collapse
|
32
|
McPhail LC, Waite KA, Regier DS, Nixon JB, Qualliotine-Mann D, Zhang WX, Wallin R, Sergeant S. A novel protein kinase target for the lipid second messenger phosphatidic acid. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1439:277-90. [PMID: 10425401 DOI: 10.1016/s1388-1981(99)00100-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Activation of phospholipase D occurs in response to a wide variety of hormones, growth factors, and other extracellular signals. The initial product of phospholipase D, phosphatidic acid (PA), is thought to serve a signaling function, but the intracellular targets for this lipid second messenger are not clearly identified. The production of PA in human neutrophils is closely correlated with the activation of NADPH oxidase, the enzyme responsible for the respiratory burst. We have developed a cell-free system, in which the activation of NADPH oxidase is induced by the addition of PA. Characterization of this system revealed that a multi-functional cytosolic protein kinase was a target for PA, and that two NADPH oxidase components were substrates for the enzyme. Partial purification of the PA-activated protein kinase separated the enzyme from known protein kinase targets of PA. The partially purified enzyme was selectively activated by PA, compared to other phospholipids, and phosphorylated the oxidase component p47-phox on both serine and tyrosine residues. PA-activated protein kinase activity was present in a variety of hematopoietic cells and cell lines and in rat brain, suggesting it has widespread distribution. We conclude that this protein kinase may be a novel target for the second messenger function of PA.
Collapse
Affiliation(s)
- L C McPhail
- Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC, 27157-1019, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Pettit EJ, Fay FS. Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis. Physiol Rev 1998; 78:949-67. [PMID: 9790567 DOI: 10.1152/physrev.1998.78.4.949] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In response to a chemotactic gradient, leukocytes extravasate and chemotax toward the site of pathogen invasion. Although fundamental in the control of many leukocyte functions, the role of cytosolic free Ca2+ in chemotaxis is unclear and has been the subject of debate. Before becoming motile, the cell assumes a polarized morphology, as a result of modulation of the cytoskeleton by G protein and kinase activation. This morphology may be reinforced during chemotaxis by the intracellular redistribution of Ca2+ stores, cytoskeletal constituents, and chemoattractant receptors. Restricted subcellular distributions of signaling molecules, such as Ca2+, Ca2+/calmodulin, diacylglycerol, and protein kinase C, may also play a role in some types of leukocyte. Chemotaxis is an essential function of most cells at some stage during their development, and a deeper understanding of the molecular signaling and structural components involved will enable rational design of therapeutic strategies in a wide variety of diseases.
Collapse
Affiliation(s)
- E J Pettit
- Biomedical Imaging Group, University of Massachusetts Medical Center, Worcester, USA
| | | |
Collapse
|