1
|
Zorova LD, Abramicheva PA, Andrianova NV, Babenko VA, Zorov SD, Pevzner IB, Popkov VA, Semenovich DS, Yakupova EI, Silachev DN, Plotnikov EY, Sukhikh GT, Zorov DB. Targeting Mitochondria for Cancer Treatment. Pharmaceutics 2024; 16:444. [PMID: 38675106 PMCID: PMC11054825 DOI: 10.3390/pharmaceutics16040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
There is an increasing accumulation of data on the exceptional importance of mitochondria in the occurrence and treatment of cancer, and in all lines of evidence for such participation, there are both energetic and non-bioenergetic functional features of mitochondria. This analytical review examines three specific features of adaptive mitochondrial changes in several malignant tumors. The first feature is characteristic of solid tumors, whose cells are forced to rebuild their energetics due to the absence of oxygen, namely, to activate the fumarate reductase pathway instead of the traditional succinate oxidase pathway that exists in aerobic conditions. For such a restructuring, the presence of a low-potential quinone is necessary, which cannot ensure the conventional conversion of succinate into fumarate but rather enables the reverse reaction, that is, the conversion of fumarate into succinate. In this scenario, complex I becomes the only generator of energy in mitochondria. The second feature is the increased proliferation in aggressive tumors of the so-called mitochondrial (peripheral) benzodiazepine receptor, also called translocator protein (TSPO) residing in the outer mitochondrial membrane, the function of which in oncogenic transformation stays mysterious. The third feature of tumor cells is the enhanced retention of certain molecules, in particular mitochondrially directed cations similar to rhodamine 123, which allows for the selective accumulation of anticancer drugs in mitochondria. These three features of mitochondria can be targets for the development of an anti-cancer strategy.
Collapse
Affiliation(s)
- Ljubava D. Zorova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Polina A. Abramicheva
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Nadezda V. Andrianova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Valentina A. Babenko
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Savva D. Zorov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Dmitry S. Semenovich
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Elmira I. Yakupova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Denis N. Silachev
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Egor Y. Plotnikov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Gennady T. Sukhikh
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
2
|
Ammer LM, Vollmann-Zwerenz A, Ruf V, Wetzel CH, Riemenschneider MJ, Albert NL, Beckhove P, Hau P. The Role of Translocator Protein TSPO in Hallmarks of Glioblastoma. Cancers (Basel) 2020; 12:cancers12102973. [PMID: 33066460 PMCID: PMC7602186 DOI: 10.3390/cancers12102973] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The translocator protein (TSPO) has been under extensive investigation as a specific marker in positron emission tomography (PET) to visualize brain lesions following injury or disease. In recent years, TSPO is increasingly appreciated as a potential novel therapeutic target in cancer. In Glioblastoma (GBM), the most malignant primary brain tumor, TSPO expression levels are strongly elevated and scientific evidence accumulates, hinting at a pivotal role of TSPO in tumorigenesis and glioma progression. The aim of this review is to summarize the current literature on TSPO with respect to its role both in diagnostics and especially with regard to the critical hallmarks of cancer postulated by Hanahan and Weinberg. Overall, our review contributes to a better understanding of the functional significance of TSPO in Glioblastoma and draws attention to TSPO as a potential modulator of treatment response and thus an important factor that may influence the clinical outcome of GBM. Abstract Glioblastoma (GBM) is the most fatal primary brain cancer in adults. Despite extensive treatment, tumors inevitably recur, leading to an average survival time shorter than 1.5 years. The 18 kDa translocator protein (TSPO) is abundantly expressed throughout the body including the central nervous system. The expression of TSPO increases in states of inflammation and brain injury due to microglia activation. Not least due to its location in the outer mitochondrial membrane, TSPO has been implicated with a broad spectrum of functions. These include the regulation of proliferation, apoptosis, migration, as well as mitochondrial functions such as mitochondrial respiration and oxidative stress regulation. TSPO is frequently overexpressed in GBM. Its expression level has been positively correlated to WHO grade, glioma cell proliferation, and poor prognosis of patients. Several lines of evidence indicate that TSPO plays a functional part in glioma hallmark features such as resistance to apoptosis, invasiveness, and proliferation. This review provides a critical overview of how TSPO could regulate several aspects of tumorigenesis in GBM, particularly in the context of the hallmarks of cancer proposed by Hanahan and Weinberg in 2011.
Collapse
Affiliation(s)
- Laura-Marie Ammer
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Arabel Vollmann-Zwerenz
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig Maximilians University of Munich, 81377 Munich, Germany;
| | - Christian H. Wetzel
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany;
| | | | - Nathalie L. Albert
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, 81377 Munich, Germany;
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI) and Department Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
- Correspondence:
| |
Collapse
|
3
|
Baburina Y, Odinokova I, Krestinina O. The Effects of PK11195 and Protoporphyrin IX Can Modulate Chronic Alcohol Intoxication in Rat Liver Mitochondria under the Opening of the Mitochondrial Permeability Transition Pore. Cells 2020; 9:cells9081774. [PMID: 32722345 PMCID: PMC7463720 DOI: 10.3390/cells9081774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Decades of active research have shown that mitochondrial dysfunction, the associated oxidative stress, impaired anti-stress defense mechanisms, and the activation of the proapoptotic signaling pathways underlie pathological changes in organs and tissues. Pathologies caused by alcohol primarily affect the liver. Alcohol abuse is the cause of many liver diseases, such as steatosis, alcoholic steatohepatitis, fibrosis, cirrhosis, and, potentially, hepatocellular cancer. In this study, the effect of chronic alcohol exposure on rat liver mitochondria was investigated. We observed an ethanol-induced increase in sensitivity to calcium, changes in the level of protein kinase Akt and GSK-3β phosphorylation, an induction of the mitochondrial permeability transition pore (mPTP), and strong alterations in the expression of mPTP regulators. Moreover, we also showed an enhanced effect of PK11195 and PPIX, on the parameters of the mPTP opening in rat liver mitochondria (RLM) isolated from ethanol-treated rats compared to the RLM from control rats. We suggest that the results of this study could help elucidate the mechanisms of chronic ethanol action on the mitochondria and contribute to the development of new therapeutic strategies for treating the effects of ethanol-related diseases.
Collapse
|
4
|
Xia Y, Ledwitch K, Kuenze G, Duran A, Li J, Sanders CR, Manning C, Meiler J. A unified structural model of the mammalian translocator protein (TSPO). JOURNAL OF BIOMOLECULAR NMR 2019; 73:347-364. [PMID: 31243635 PMCID: PMC8006375 DOI: 10.1007/s10858-019-00257-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/10/2019] [Indexed: 05/10/2023]
Abstract
The translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is a membrane protein located on the outer mitochondrial membrane. Experimentally-derived structures of mouse TSPO (mTSPO) and its homologs from bacterial species have been determined by NMR spectroscopy and X-ray crystallography, respectively. These structures and ligand interactions within the TSPO binding pocket display distinct differences. Here, we leverage experimental and computational studies to derive a unified structural model of mTSPO in the presence and absence of the TSPO ligand, PK11195, and study the effects of DPC detergent micelles on the TSPO structure and ligand binding. From this work, we conclude that that the lipid-mimetic system used to solubilize mTSPO for NMR studies thermodynamically destabilizes the protein, introduces structural perturbations, and alters the characteristics of ligand binding. Furthermore, we used Rosetta to construct a unified mTSPO model that reconciles deviating features of the mammalian and bacterial TSPO. These deviating features are likely a consequence of the detergent system used for structure determination of mTSPO by NMR. The unified mTSPO model agrees with available experimental NMR data, appears to be physically realistic (i.e. thermodynamically not frustrated as judged by the Rosetta energy function), and simultaneously shares the structural features observed in sequence-conserved regions of the bacterial proteins. Finally, we identified the binding site for an imaging ligand VUIIS8310 that is currently positioned for clinical translation using NMR spectroscopy and propose a computational model of the VUIIS8310-mTSPO complex.
Collapse
Affiliation(s)
- Yan Xia
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Kaitlyn Ledwitch
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Amanda Duran
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jun Li
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37240, USA
| | - Charles Manning
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, MRBIII 5144B, Nashville, TN, 37232, USA.
| |
Collapse
|
5
|
Shehadeh M, Palzur E, Apel L, Soustiel JF. Reduction of Traumatic Brain Damage by Tspo Ligand Etifoxine. Int J Mol Sci 2019; 20:ijms20112639. [PMID: 31146356 PMCID: PMC6600152 DOI: 10.3390/ijms20112639] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/25/2019] [Accepted: 05/26/2019] [Indexed: 01/30/2023] Open
Abstract
Experimental studies have shown that ligands of the 18 kDa translocator protein can reduce neuronal damage induced by traumatic brain injury by protecting mitochondria and preventing metabolic crisis. Etifoxine, an anxiolytic drug and 18 kDa translocator protein ligand, has shown beneficial effects in the models of peripheral nerve neuropathy. The present study investigates the potential effect of etifoxine as a neuroprotective agent in traumatic brain injury (TBI). For this purpose, the effect of etifoxine on lesion volume and modified neurological severity score at 4 weeks was tested in Sprague-Dawley adult male rats submitted to cortical impact contusion. Effects of etifoxine treatment on neuronal survival and apoptosis were also assessed by immune stains in the perilesional area. Etifoxine induced a significant reduction in the lesion volume compared to nontreated animals in a dose-dependent fashion with a similar effect on neurological outcome at four weeks that correlated with enhanced neuron survival and reduced apoptotic activity. These results are consistent with the neuroprotective effect of etifoxine in TBI that may justify further translational research.
Collapse
Affiliation(s)
- Mona Shehadeh
- Eliachar Research Laboratory, Galilee Medical Center, P.O. Box 21, Nahariya 2210001, Israel.
| | - Eilam Palzur
- Eliachar Research Laboratory, Galilee Medical Center, P.O. Box 21, Nahariya 2210001, Israel.
| | - Liat Apel
- Institute of Pathology, Galilee Medical Center, P.O. Box 21, Nahariya 2210001, Israel.
- The Azrieli Faculty of Medicine in the Galilee, Bar Ilan University, Safed 13100, Israel.
| | - Jean Francois Soustiel
- Eliachar Research Laboratory, Galilee Medical Center, P.O. Box 21, Nahariya 2210001, Israel.
- The Azrieli Faculty of Medicine in the Galilee, Bar Ilan University, Safed 13100, Israel.
- Department of Neurosurgery, Galilee Medical Center, P.O. Box 21, Nahariya 2210001, Israel.
| |
Collapse
|
6
|
Gong Z, Han Y, Wu L, Xia T, Ren H, Yang D, Gu D, Wang H, Hu C, He D, Zhou L, Zeng C. Translocator protein 18 kDa ligand alleviates neointimal hyperplasia in the diabetic rat artery injury model via activating PKG. Life Sci 2019; 221:72-82. [PMID: 30738868 DOI: 10.1016/j.lfs.2019.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 01/01/2023]
Abstract
AIMS The proliferation of VSMCs is the pathologic basis for intimal hyperplasia after angioplasty in diabetic patients. Translocator protein (TSPO), located in the outer mitochondrial membrane, has been found to regulate redox intermediate components in cell dysfunction. We hypothesized that TSPO may regulate VSMC proliferation and migration, and be involved in the intimal hyperplasia after angioplasty in diabetes. MATERIALS AND METHODS Cell proliferation was measured by cell counting and MTT assays. Cell migration was measured by Transwell® and scratch-wound assays. TSPO expression in arteries of rats and high glucose-treated A10 cells were detected by immunoblotting and immunofluorescence staining. Neointimal formation of carotid artery was induced by balloon injury in type 2 diabetic rat. KEY FINDINGS TSPO expression was increased in the arterial samples from diabetic rats and A10 cells treated with high glucose. Down-regulation of TSPO expression by siRNA decreased the high-glucose-induced VSMC proliferation and migration in A10 cells. This phenomenon could be simulated by using TSPO ligands, PK 11195 and Ro5-4864. cGMP/PKG signals were involved in the TSPO ligand action, since in the presence of cGMP or PKG inhibitor ODQ or KT5823 respectively, the effect of PK 11195 on VSMC proliferation was blocked. Furthermore, PK 11195 significantly inhibited neointimal formation by the inhibition of VSMC proliferation. SIGNIFICANCE This study suggests that TSPO inhibition suppresses the proliferation and migration of VSMCs induced by hyperglycemia, consequently, preventing atherosclerosis and restenosis after angioplasty in diabetic conditions. TSPO may be a potential therapeutic target to reduce arterial remodeling induced by angioplasty in diabetes.
Collapse
Affiliation(s)
- Zhengfan Gong
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Yu Han
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Lianpan Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Tianyang Xia
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Donghai Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Daqian Gu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - He Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China; Department of Cardiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, PR China
| | - Cuimei Hu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Duofen He
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China.
| |
Collapse
|
7
|
Azrad M, Zeineh N, Weizman A, Veenman L, Gavish M. The TSPO Ligands 2-Cl-MGV-1, MGV-1, and PK11195 Differentially Suppress the Inflammatory Response of BV-2 Microglial Cell to LPS. Int J Mol Sci 2019; 20:ijms20030594. [PMID: 30704062 PMCID: PMC6387401 DOI: 10.3390/ijms20030594] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
The 18 kDa Translocator Protein (TSPO) is a marker for microglial activation as its expression is enhanced in activated microglia during neuroinflammation. TSPO ligands can attenuate neuroinflammation and neurotoxicity. In the present study, we examined the efficacy of new TSPO ligands designed by our laboratory, MGV-1 and 2-Cl-MGV-1, in mitigating an in vitro neuroinflammatory process compared to the classic TSPO ligand, PK 11195. We exposed BV-2 microglial cells to lipopolysaccharide (LPS) for 24 h to induce inflammatory response and added the three TSPO ligands: (1) one hour before LPS treatment (pretreatment), (2) simultaneously with LPS (cotreatment), and (3) one hour after LPS exposure (post-treatment). We evaluated the capability of TSPO ligands to reduce the levels of three glial inflammatory markers: cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nitric oxide (NO). We compared the effects of the two novel ligands to PK 11195. Both 2-Cl-MGV-1 and MGV-1 reduced the levels of glial COX-2, iNOS, and NO in LPS-treated BV-2 cells more efficiently than PK 11195. Notably, even when added after exposure to LPS, all ligands were able to suppress the inflammatory response. Due to their pronounced anti-inflammatory activity, 2-Cl-MGV-1 and MGV-1 may serve as potential therapeutics in neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Maya Azrad
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel.
| | - Nidal Zeineh
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel.
| | - Abraham Weizman
- Research Unit at Geha Mental Health Center and the Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Petah Tikva 4910002, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Leo Veenman
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel.
| | - Moshe Gavish
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
8
|
Vuokila N, Lukasiuk K, Bot AM, van Vliet EA, Aronica E, Pitkänen A, Puhakka N. miR-124-3p is a chronic regulator of gene expression after brain injury. Cell Mol Life Sci 2018; 75:4557-4581. [PMID: 30155647 PMCID: PMC11105702 DOI: 10.1007/s00018-018-2911-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/02/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) initiates molecular and cellular pathologies that underlie post-injury morbidities, including hippocampus-related memory decline and epileptogenesis. Non-coding small RNAs are master regulators of gene expression with the potential to affect multiple molecular pathways. To evaluate whether hippocampal gene expression networks are chronically regulated by microRNAs after TBI, we sampled the dentate gyrus of rats with severe TBI induced by lateral fluid-percussion injury 3 months earlier. Ingenuity pathway analysis revealed 30 upregulated miR-124-3p targets, suggesting that miR-124-3p is downregulated post-TBI (z-score = - 5.146, p < 0.05). Droplet digital polymerase chain reaction (ddPCR) and in situ hybridization confirmed the chronic downregulation of miR-124-3p (p < 0.05). Quantitative PCR analysis of two targets, Plp2 and Stat3, indicated that their upregulation correlated with the miR-124-3p downregulation (r = - 0.647, p < 0.05; r = - 0.629, p < 0.05, respectively). Immunohistochemical staining of STAT3 confirmed the increased protein expression. STRING analysis showed that 9 of the 30 miR-124-3p targets belonged to a STAT3 network. Reactome analysis and data mining connected the targets especially to inflammation and signal transduction. L1000CDS2 software revealed drugs (e.g., importazole, trichostatin A, and IKK-16) that could reverse the observed molecular changes. The translational value of our data was emphasized by in situ hybridization showing chronic post-traumatic downregulation of miR-124-3p in the dentate gyrus of TBI patients. Analysis of another brain injury model, status epilepticus, highlighted the fact that chronic downregulation of miR-124 is a common phenomenon after brain injury. Together, our findings indicate that miR-124-3p is a chronic modulator of molecular networks relevant to post-injury hippocampal pathologies in experimental models and in humans.
Collapse
Affiliation(s)
- Niina Vuokila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland
| | - Katarzyna Lukasiuk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str, 02-093, Warsaw, Poland
| | - Anna Maria Bot
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str, 02-093, Warsaw, Poland
| | - Erwin A van Vliet
- Department of (Neuro)pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Amsterdam, The Netherlands
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| | - Noora Puhakka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
9
|
Narlawar R, Austin CJD, Kahlert J, Selleri S, Da Pozzo E, Martini C, Werry EL, Rendina LM, Kassiou M. Remarkable Enhancement in Boron Uptake Within Glioblastoma Cells With Carboranyl–Indole Carboxamides. Chem Asian J 2018; 13:3321-3327. [DOI: 10.1002/asia.201801175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/21/2018] [Indexed: 01/19/2023]
Affiliation(s)
| | | | - Jan Kahlert
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Silvia Selleri
- Department of Pharmaceutical Sciences The University of Florence Via U. Schiff 650019 Polo Scientifico Sesto Fiorentino Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy The University of Pisa Via Bonanno 6 56127 Pisa Italy
| | - Claudia Martini
- Department of Pharmacy The University of Pisa Via Bonanno 6 56127 Pisa Italy
| | - Eryn L. Werry
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Louis M. Rendina
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Michael Kassiou
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
10
|
Bhoola NH, Mbita Z, Hull R, Dlamini Z. Translocator Protein (TSPO) as a Potential Biomarker in Human Cancers. Int J Mol Sci 2018; 19:ijms19082176. [PMID: 30044440 PMCID: PMC6121633 DOI: 10.3390/ijms19082176] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/21/2018] [Accepted: 06/24/2018] [Indexed: 11/17/2022] Open
Abstract
TSPO is a receptor involved in the regulation of cellular proliferation, apoptosis and mitochondrial functions. Previous studies showed that the expression of TSPO protein correlated positively with tumour malignancy and negatively with patient survival. The aim of this study was to determine the transcription of Tspo mRNA in various types of normal and cancer tissues. In situ hybridization was performed to localise the Tspo mRNA in various human normal and cancer tissues. The relative level of Tspo mRNA was quantified using fluorescent intensity and visual estimation of colorimetric staining. RT-PCR was used to confirm these mRNA levels in normal lung, lung cancer, liver cancer, and cervical cancer cell lines. There was a significant increase in the level of transcription in liver, prostate, kidney, and brain cancers while a significant decrease was observed in cancers of the colon and lung. Quantitative RT-PCR confirmed that the mRNA levels of Tspo are higher in a normal lung cell line than in a lung cancer cell line. An increase in the expression levels of Tspo mRNA is not necessarily a good diagnostic biomarker in most cancers with changes not being large enough to be significantly different when detected by in situ hybridisation.
Collapse
Affiliation(s)
- Nimisha H Bhoola
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa.
| | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa.
| | - Rodney Hull
- Research, Innovation & Engagements Portfolio, Mangosuthu University of Technology, Durban 4031, South Africa.
| | - Zodwa Dlamini
- Research, Innovation & Engagements Portfolio, Mangosuthu University of Technology, Durban 4031, South Africa.
| |
Collapse
|
11
|
Tang D, Li J, Buck JR, Tantawy MN, Xia Y, Harp JM, Nickels ML, Meiler J, Manning HC. Evaluation of TSPO PET Ligands [ 18F]VUIIS1009A and [ 18F]VUIIS1009B: Tracers for Cancer Imaging. Mol Imaging Biol 2018; 19:578-588. [PMID: 27853987 DOI: 10.1007/s11307-016-1027-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Positron emission tomography (PET) ligands targeting translocator protein (TSPO) are potential imaging diagnostics of cancer. In this study, we report two novel, high-affinity TSPO PET ligands that are 5,7 regioisomers, [18F]VUIIS1009A ([18F]3A) and [18F]VUIIS1009B ([18F]3B), and their initial in vitro and in vivo evaluation in healthy mice and glioma-bearing rats. PROCEDURES VUIIS1009A/B was synthesized and confirmed by X-ray crystallography. Interactions between TSPO binding pocket and novel ligands were evaluated and compared with contemporary TSPO ligands using 2D 1H-15N heteronuclear single quantum coherence (HSQC) spectroscopy. In vivo biodistribution of [18F]VUIIS1009A and [18F]VUIIS1009B was carried out in healthy mice with and without radioligand displacement. Dynamic PET imaging data were acquired simultaneously with [18F]VUIIS1009A/B injections in glioma-bearing rats, with binding reversibility and specificity evaluated by radioligand displacement. In vivo radiometabolite analysis was performed using radio-TLC, and quantitative analysis of PET data was performed using metabolite-corrected arterial input functions. Imaging was validated with histology and immunohistochemistry. RESULTS Both VUIIS1009A (3A) and VUIIS1009B (3B) were found to exhibit exceptional binding affinity to TSPO, with observed IC50 values against PK11195 approximately 500-fold lower than DPA-714. However, HSQC NMR suggested that VUIIS1009A and VUIIS1009B share a common binding pocket within mammalian TSPO (mTSPO) as DPA-714 and to a lesser extent, PK11195. [18F]VUIIS1009A ([18F]3A) and [18F]VUIIS1009B ([18F]3B) exhibited similar biodistribution in healthy mice. In rats bearing C6 gliomas, both [18F]VUIIS1009A and [18F]VUIIS1009B exhibited greater binding potential (k 3/k 4)in tumor tissue compared to [18F]DPA-714. Interestingly, [18F]VUIIS1009B exhibited significantly greater tumor uptake (V T) than [18F]VUIIS1009A, which was attributed primarily to greater plasma-to-tumor extraction efficiency. CONCLUSIONS The novel PET ligand [18F]VUIIS1009B exhibits promising characteristics for imaging glioma; its superiority over [18F]VUIIS1009A, a regioisomer, appears to be primarily due to improved plasma extraction efficiency. Continued evaluation of [18F]VUIIS1009B as a high-affinity TSPO PET ligand for precision medicine appears warranted.
Collapse
Affiliation(s)
- Dewei Tang
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jun Li
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Interdisciplinary Materials Science Program, Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37240, USA
| | - Jason R Buck
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mohamed Noor Tantawy
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Yan Xia
- Center for Structural Biology (CSB), Vanderbilt University, Nashville, TN, 37205, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Joel M Harp
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Michael L Nickels
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jens Meiler
- Center for Structural Biology (CSB), Vanderbilt University, Nashville, TN, 37205, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute of Chemical Biology (VICB), Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - H Charles Manning
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA. .,Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA. .,Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
12
|
Chen YC, Wu KC, Huang BM, So EC, Wang YK. Midazolam inhibits chondrogenesis via peripheral benzodiazepine receptor in human mesenchymal stem cells. J Cell Mol Med 2018. [PMID: 29516686 PMCID: PMC5908119 DOI: 10.1111/jcmm.13584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Midazolam, a benzodiazepine derivative, is widely used for sedation and surgery. However, previous studies have demonstrated that Midazolam is associated with increased risks of congenital malformations, such as dwarfism, when used during early pregnancy. Recent studies have also demonstrated that Midazolam suppresses osteogenesis of mesenchymal stem cells (MSCs). Given that hypertrophic chondrocytes can differentiate into osteoblast and osteocytes and contribute to endochondral bone formation, the effect of Midazolam on chondrogenesis remains unclear. In this study, we applied a human MSC line, the KP cell, to serve as an in vitro model to study the effect of Midazolam on chondrogenesis. We first successfully established an in vitro chondrogenic model in a micromass culture or a 2D high‐density culture performed with TGF‐β‐driven chondrogenic induction medium. Treatment of the Midazolam dose‐dependently inhibited chondrogenesis, examined using Alcian blue‐stained glycosaminoglycans and the expression of chondrogenic markers, such as SOX9 and type II collagen. Inhibition of Midazolam by peripheral benzodiazepine receptor (PBR) antagonist PK11195 or small interfering RNA rescued the inhibitory effects of Midazolam on chondrogenesis. In addition, Midazolam suppressed transforming growth factor‐β‐induced Smad3 phosphorylation, and this inhibitory effect could be rescued using PBR antagonist PK11195. This study provides a possible explanation for Midazolam‐induced congenital malformations of the musculoskeletal system through PBR.
Collapse
Affiliation(s)
- Yung-Ching Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - King-Chuen Wu
- Department of Nursing, Chang Gung University of Science and Technology, Chia-Yi County, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi County, Taiwan
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Edmund Cheung So
- Department of Anesthesiology, An-Nan Hospital, China Medical University, Tainan, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
13
|
Regulation of Mitochondrial, Cellular, and Organismal Functions by TSPO. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 82:103-136. [PMID: 29413517 DOI: 10.1016/bs.apha.2017.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In 1999, the enigma of the 18kDa mitochondrial translocator protein (TSPO), also known as the peripheral-type benzodiazepine receptor, was the seeming disparity of the many functions attributed to TSPO, ranging from the potential of TSPO acting as a housekeeping gene at molecular biological levels to adaptations to stress, and even involvement in higher emotional and cognitive functioning, such as anxiety and depression. In the years since then, knowledge regarding the many functions modulated by TSPO has expanded, and understanding has deepened. In addition, new functions could be firmly associated with TSPO, such as regulation of programmed cell death and modulation of gene expression. Interestingly, control by the mitochondrial TSPO over both of these life and death functions appears to include Ca++ homeostasis, generation of reactive oxygen species (ROS), and ATP production. Other mitochondrial functions under TSPO control are considered to be steroidogenesis and tetrapyrrole metabolism. As TSPO effects on gene expression and on programmed cell death can be related to the wide range of functions that can be associated with TSPO, several of these five elements of Ca++, ROS, ATP, steroids, and tetrapyrroles may indeed form the basis of TSPO's capability to operate as a multifunctional housekeeping gene to maintain homeostasis of the cell and of the whole multicellular organism.
Collapse
|
14
|
Chen YF, Xie JD, Jiang YC, Chen DT, Pan JH, Chen YH, Yuan YF, Wen ZS, Zeng WA. The Prognostic Value of Peripheral Benzodiazepine Receptor in Patients with Esophageal Squamous Cell Carcinoma. J Cancer 2017; 8:3343-3355. [PMID: 29158807 PMCID: PMC5665051 DOI: 10.7150/jca.20739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/06/2017] [Indexed: 01/06/2023] Open
Abstract
Background: The peripheral benzodiazepine receptor (PBR) has previously been reported as an oncogene in prostate, breast and colorectal cancers, but its prognostic value, biological behavior and function in esophageal squamous cell carcinoma (ESCC) has not been investigated. Methods: qRT-PCR, western blotting and immunohistochemistry (IHC) were used to detect PBR expression in ESCC and matched non-cancerous tissues. Based on all of the significantly independent factors, a nomogram was established to predict the prognosis of ESCC patients. In addition, we performed comprehensive in vitro experiments to study the functions of PBR in cell growth, colony formation, and migration ability, as well as its relationship with epithelial-mesenchymal transition (EMT) related proteins in ESCC cells. Results: The mRNA and protein expression levels of PBR in ESCC were higher than those in adjacent non-tumor esophageal epithelial tissues. The IHC results demonstrated that PBR expression was an independent prognostic factor in ESCC survival, patients with higher PBR expression had a poorer survival than those with low expression, and PBR expression was significantly associated with lymphoid nodal status. Furthermore, a nomogram was established to reliably predict the probability of death in ESCC patients, with a Harrell's c-index of 0.696. In the vitro experiments, knocking down the expression of PBR inhibited proliferation, colony formation and migration of ESCC cells, and regulated EMT-associated proteins (up-regulation of E-cadherin, ZO-1 and β-catenin and concomitant with down-regulation of Fibronectin and N-cadherin). Conclusions: PBR is an independent prognostic factor in ESCC, and it promotes ESCC progression and metastasis. Basing on PBR expression level, a nomogram is established and performs a well in predicting survival of ESCC patients.
Collapse
Affiliation(s)
- You-Fang Chen
- Department of Anesthesiology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Guangzhou510060, Guangdong, China
| | - Jing-Dun Xie
- Department of Anesthesiology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Guangzhou510060, Guangdong, China
| | - Yu-Chuan Jiang
- Department of Thoracic Oncology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Guangzhou510060, Guangdong, China
| | - Dong-Tai Chen
- Department of Anesthesiology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Guangzhou510060, Guangdong, China
| | - Jia-Hao Pan
- Department of Anesthesiology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Guangzhou510060, Guangdong, China
| | - Yong-Hua Chen
- Department of Anesthesiology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Guangzhou510060, Guangdong, China
| | - Yun-Fei Yuan
- Department of Hepatobiliary Oncology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Guangzhou510060, Guangdong, China
| | - Zhe-Sheng Wen
- Department of Thoracic Oncology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Guangzhou510060, Guangdong, China
| | - Wei-An Zeng
- Department of Anesthesiology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Guangzhou510060, Guangdong, China
| |
Collapse
|
15
|
Iacobazzi RM, Lopalco A, Cutrignelli A, Laquintana V, Lopedota A, Franco M, Denora N. Bridging Pharmaceutical Chemistry with Drug and Nanoparticle Targeting to Investigate the Role of the 18-kDa Translocator Protein TSPO. ChemMedChem 2017; 12:1261-1274. [PMID: 28771957 DOI: 10.1002/cmdc.201700322] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/06/2017] [Indexed: 11/10/2022]
Abstract
An interesting mitochondrial biomarker is the 18-kDa mitochondrial translocator protein (TSPO). Decades of study have shown that this protein plays an important role in a wide range of cellular functions, including opening of the mitochondrial permeability transition pore as well as programmed cell death and proliferation. Variations in TSPO expression have been correlated to different diseases, from tumors to endocrine and neurological disorders. TSPO has therefore become an appealing target for both early diagnosis and selective mitochondrial drug delivery. The number of structurally different TSPO ligands examined has increased over time, highlighting the scientific community's growing understanding of the roles of TSPO in normal and pathological conditions. However, only few TSPO ligands are characterized by the presence of groups that are potentially derivatizable; therefore only few such ligands are well suited for the preparation of targeted prodrugs or nanocarriers able to deliver therapeutics and/or diagnostic agents to mitochondria. This review provides an overview of the very few examples of drug delivery systems characterized by moieties that target TSPO.
Collapse
Affiliation(s)
| | - Antonio Lopalco
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Annalisa Cutrignelli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Valentino Laquintana
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Angela Lopedota
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Massimo Franco
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Nunzio Denora
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
16
|
|
17
|
Two populations of TSPO binding sites in oral cancer SCC-15 cells. Exp Cell Res 2017; 350:279-283. [DOI: 10.1016/j.yexcr.2016.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 12/25/2022]
|
18
|
Nagler R, Cohen S, Gavish M. The Effect of Cigarette Smoke on the Translocator Protein (TSPO) in Cultured Lung Cancer Cells. J Cell Biochem 2015; 116:2786-92. [PMID: 25968977 DOI: 10.1002/jcb.25221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/06/2015] [Indexed: 12/16/2023]
Abstract
Lung cancer is prevalent in cigarette smokers. The mitochondrial membrane translocator protein (TSPO), is thought to protect cells from free radical damage. We examined the effect of cigarette smoke (CS) (containing free radicals) alone and in the presence of saliva (containing redox active free iron), on survival of H1299 lung cancer cells and on their mitochondrial characteristics, and whether TSPO binding was influenced by CS and by saliva. We exposed H1299 cells to CS in the presence/absence of saliva and also characterized TSPO binding in the cells using [3H]PK 11195 as a radioligand. CS induced a significant drop in mitochondrial potential (ΔΨm), while addition of saliva did not lead to further loss of ΔΨm (42.5% vs. 39.85%). Scatchard analysis of the saturation curve of [3H]PK 11195 binding (0.2-6 nM final concentration) yielded a straight-line plot (R = 0.9). Average Bmax value was 3274 ± 787 fmol/mg of protein, and average Kd value was 9.2 ± 1.3 nM. Benzodiazepine diazepam partially prevented decrease in cell survival following exposure to CS and redox active iron containing media (saliva) while benzodiazepine clonazepam did not, indicating that this effect is TSPO-specific. Exposure of cells to CS resulted in alternation of biomolecules expressed by CLs peroxidation, reduction of TSPO binding, and depletion of the mitochondrial potential. This irreversible damage was enhanced in the presence of saliva. All these modulations may result in cellular death increase following CS exposure, enhanced in the presence of saliva.
Collapse
Affiliation(s)
- Rafael Nagler
- Department of Neuroscience, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 31096, Haifa, Israel
| | - Shiri Cohen
- Department of Neuroscience, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 31096, Haifa, Israel
| | - Moshe Gavish
- Department of Neuroscience, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 31096, Haifa, Israel
| |
Collapse
|
19
|
The translocator protein as a potential molecular target for improved treatment efficacy in photodynamic therapy. Future Med Chem 2015; 6:775-92. [PMID: 24941872 DOI: 10.4155/fmc.14.37] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since its serendipitous discovery over 30 years ago, the translocator protein (18 kDa) has been demonstrated to play an important role in a multitude of critical biological processes. Although implemented as a novel therapeutic and diagnostic tool for a variety of disease states, its most promising role is as a molecular target for anticancer treatments such as photodynamic therapy (PDT). This review gives an overview of the attempts made by researchers to design porphyrin-based photosensitizers for use as anticancer therapeutics in PDT as well as improved imaging agents for diagnostic purposes. With a better understanding of the structure and function of the translocator protein, the synthesis of porphyrins for use in PDT with optimum binding affinities will become ever more possible.
Collapse
|
20
|
Tang D, Nickels ML, Tantawy MN, Buck JR, Manning HC. Preclinical imaging evaluation of novel TSPO-PET ligand 2-(5,7-Diethyl-2-(4-(2-[(18)F]fluoroethoxy)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide ([ (18)F]VUIIS1008) in glioma. Mol Imaging Biol 2014; 16:813-20. [PMID: 24845529 PMCID: PMC4372299 DOI: 10.1007/s11307-014-0743-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Translocator protein (TSPO) concentrations are elevated in glioma, suggesting a role for TSPO positron emission tomography (PET) imaging in this setting. In preclinical PET studies, we evaluated a novel, high-affinity TSPO PET ligand, [(18)F]VUIIS1008, in healthy mice and glioma-bearing rats. PROCEDURES Dynamic PET data were acquired simultaneously with [(18)F]VUIIS1008 injection, with binding reversibility and specificity evaluated in vivo by non-radioactive ligand displacement or blocking. Compartmental analysis of PET data was performed using metabolite-corrected arterial input functions. Imaging was validated with histology and immunohistochemistry. RESULTS [(18)F]VUIIS1008 exhibited rapid uptake in TSPO-rich organs. PET ligand uptake was displaceable with non-radioactive VUIIS1008 or PBR06 in mice. Tumor accumulation of [(18)F]VUIIS1008 was blocked by pretreatment with VUIIS1008 in rats. [(18)F]VUIIS1008 exhibited improved tumor-to-background ratio and higher binding potential in tumors compared to a structurally similar pyrazolopyrimidine TSPO ligand, [(18)F]DPA-714. CONCLUSIONS The PET ligand [(18)F]VUIIS1008 exhibits promising characteristics as a tracer for imaging glioma. Further translational studies appear warranted.
Collapse
Affiliation(s)
- Dewei Tang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Michael L. Nickels
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - M. Noor Tantawy
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Jason R. Buck
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - H. Charles Manning
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
21
|
Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function. J Bioenerg Biomembr 2014; 48:137-51. [PMID: 25425472 DOI: 10.1007/s10863-014-9592-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/14/2014] [Indexed: 12/23/2022]
Abstract
Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology.
Collapse
|
22
|
Morohaku K, Phuong NS, Selvaraj V. Developmental expression of translocator protein/peripheral benzodiazepine receptor in reproductive tissues. PLoS One 2013; 8:e74509. [PMID: 24040265 PMCID: PMC3764105 DOI: 10.1371/journal.pone.0074509] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022] Open
Abstract
Translocator protein (TSPO) present in the outer mitochondrial membrane has been suggested to be critical for cholesterol import, a rate-limiting step for steroid hormone biosynthesis. Despite the importance of steroidogenesis in regulating reproductive functions, the developmental profile of TSPO expression in the gonads and accessory sex organs has not been completely characterized. As a first step towards understanding the function of TSPO, we studied its expression in male and female murine reproductive organs. We examined testes and ovaries at embryonic days 14.5 and 18.5, and postnatal days 0, 7, 14, 21 and 56 of development. In the adult testis, TSPO was expressed in both Leydig cells and Sertoli cells. In the developing testes TSPO expression was seen in immature Sertoli cells, fetal Leydig cells and gonocytes. In the ovary, TSPO was expressed in the ovarian surface epithelium, interstitial cells granulosa cells and luteal cells. Corpora lutea of ovaries from pregnant mice showed strong expression of TSPO. In the developing ovary, TSPO expression was seen in the squamous pregranulosa cells associated with germ line cysts, together with progressively increasing expression in interstitial cells and the ovarian surface epithelium. In adult mice, the epithelia of other reproductive tissues like the epididymis, prostate, seminal vesicle, oviduct and uterus also showed distinct patterns of TSPO expression. In summary, TSPO expression in both male and female reproductive tissues was not only restricted to steroidogenic cells. Expression in Sertoli cells, ovarian surface epithelium, efferent ductal epithelium, prostatic epithelium, seminal vesiclular epithelium, uterine epithelium and oviductal epithelium suggest either previously unknown sites for de novo steroidogenesis or functions for TSPO distinct from its well-studied role in steroid hormone production.
Collapse
Affiliation(s)
- Kanako Morohaku
- Department of Animal Science, Cornell University, Ithaca, New York, United States of America
| | - Newton S. Phuong
- Department of Animal Science, Cornell University, Ithaca, New York, United States of America
| | - Vimal Selvaraj
- Department of Animal Science, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
The 18-kDa translocator protein (TSPO) disrupts mammary epithelial morphogenesis and promotes breast cancer cell migration. PLoS One 2013; 8:e71258. [PMID: 23967175 PMCID: PMC3743866 DOI: 10.1371/journal.pone.0071258] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/27/2013] [Indexed: 12/04/2022] Open
Abstract
Mitochondria play important roles in cancer progression and have emerged as viable targets for cancer therapy. Increasing levels of the outer mitochondrial membrane protein, 18-kDa translocator protein (TSPO), are associated with advancing breast cancer stage. In particular, higher TSPO levels are found in estrogen receptor (ER)-negative breast tumors, compared with ER-positive tumors. In this study, we sought to define the roles of TSPO in the acquisition of breast cancer malignancy. Using a three-dimensional Matrigel culture system, we determined the impact of elevated TSPO levels on mammary epithelial morphogenesis. Our studies demonstrate that stable overexpression of TSPO in mammary epithelial MCF10A acini drives proliferation and provides partial resistance to luminal apoptosis, resulting in enlarged acinar structures with partially filled lumen that resemble early stage breast lesions leading to breast cancer. In breast cancer cell lines, TSPO silencing or TSPO overexpression significantly altered the migratory activity. In addition, we found that combination treatment with the TSPO ligands (PK 11195 or Ro5-4864) and lonidamine, a clinical phase II drug targeting mitochondria, decreased viability of ER-negative breast cancer cell lines. Taken together, these data demonstrate that increases in TSPO levels at different stages of breast cancer progression results in the acquisition of distinct properties associated with malignancy. Furthermore, targeting TSPO, particularly in combination with other mitochondria-targeting agents, may prove useful for the treatment of ER-negative breast cancer.
Collapse
|
24
|
Tang D, Hight MR, McKinley ET, Fu A, Buck JR, Smith RA, Tantawy MN, Peterson TE, Colvin DC, Ansari MS, Nickels M, Manning HC. Quantitative preclinical imaging of TSPO expression in glioma using N,N-diethyl-2-(2-(4-(2-18F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide. J Nucl Med 2012; 53:287-94. [PMID: 22251555 DOI: 10.2967/jnumed.111.095653] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED There is a critical need to develop and rigorously validate molecular imaging biomarkers to aid diagnosis and characterization of primary brain tumors. Elevated expression of translocator protein (TSPO) has been shown to predict disease progression and aggressive, invasive behavior in a variety of solid tumors. Thus, noninvasive molecular imaging of TSPO expression could form the basis of a novel, predictive cancer imaging biomarker. In quantitative preclinical PET studies, we evaluated a high-affinity pyrazolopyrimidinyl-based TSPO imaging ligand, N,N-diethyl-2-(2-(4-(2-(18)F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide ((18)F-DPA-714), as a translational probe for quantification of TSPO levels in glioma. METHODS Glioma-bearing rats were imaged with (18)F-DPA-714 in a small-animal PET system. Dynamic images were acquired simultaneously on injection of (18)F-DPA-714 (130-200 MBq/0.2 mL). Blood was collected to derive the arterial input function (AIF), with high-performance liquid chromatography radiometabolite analysis performed on selected samples for AIF correction. Compartmental modeling was performed using the corrected AIF. Specific tumor cell binding of DPA-714 was evaluated by radioligand displacement of (3)H-PK 11195 with DPA-714 in vitro and displacement of (18)F-DPA-714 with an excess of DPA-714 in vivo. Immediately after imaging, tumor and healthy brain tissues were harvested for validation by Western blotting and immunohistochemistry. RESULTS (18)F-DPA-714 was found to preferentially accumulate in tumors, with modest uptake in the contralateral brain. Infusion with DPA-714 (10 mg/kg) displaced (18)F-DPA-714 binding by greater than 60% on average. Tumor uptake of (18)F-DPA-714 was similar to another high-affinity TSPO imaging ligand, (18)F-N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline, and agreed with ex vivo assay of TSPO levels in tumor and healthy brain. CONCLUSION These studies illustrate the feasibility of using (18)F-DPA-714 for visualization of TSPO-expressing brain tumors. Importantly, (18)F-DPA-714 appears suitable for quantitative assay of tumor TSPO levels in vivo. Given the relationship between elevated TSPO levels and poor outcome in oncology, these studies suggest the potential of (18)F-DPA-714 PET to serve as a novel predictive cancer imaging modality.
Collapse
Affiliation(s)
- Dewei Tang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Crossley EL, Issa F, Scarf AM, Kassiou M, Rendina LM. Synthesis and cellular uptake of boron-rich pyrazolopyrimidines: exploitation of the translocator protein for the efficient delivery of boron into human glioma cells. Chem Commun (Camb) 2011; 47:12179-81. [PMID: 21993200 DOI: 10.1039/c1cc14587h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New 1,2-closo- and 7,8-nido-carboranylpyrazolopyrimidines bind to the translocator protein (TSPO) with high affinity, providing the first evidence of a unique two-site binding profile for the closo-carborane derivative. The boron-rich compounds can also deliver boron to human glioma cells far more effectively than clinical agents used in boron neutron capture therapy (BNCT).
Collapse
Affiliation(s)
- Ellen L Crossley
- School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | | | | | | | | |
Collapse
|
26
|
Zheng J, Boisgard R, Siquier-Pernet K, Decaudin D, Dollé F, Tavitian B. Differential Expression of the 18 kDa Translocator Protein (TSPO) by Neoplastic and Inflammatory Cells in Mouse Tumors of Breast Cancer. Mol Pharm 2011; 8:823-32. [DOI: 10.1021/mp100433c] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jinzi Zheng
- Laboratoire d'Imagerie Moléculaire Expérimentale, Université Paris Sud, INSERM Unit 1023, 4 Place du Général Leclerc, F-91400 Orsay, France
| | - Raphaël Boisgard
- Laboratoire d'Imagerie Moléculaire Expérimentale, Université Paris Sud, INSERM Unit 1023, 4 Place du Général Leclerc, F-91400 Orsay, France
| | - Karine Siquier-Pernet
- Laboratoire d'Imagerie Moléculaire Expérimentale, Université Paris Sud, INSERM Unit 1023, 4 Place du Général Leclerc, F-91400 Orsay, France
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Institut Curie, 26 rue d'Ulm, F-75248 Paris, France
| | - Frédéric Dollé
- Institut d'Imagerie BioMédicale, Service Hospitalier Frédéric Joliot, Commissariat a l'Énergie Atomique, 4 Place du Général Leclerc, F-91400, France
| | - Bertrand Tavitian
- Laboratoire d'Imagerie Moléculaire Expérimentale, Université Paris Sud, INSERM Unit 1023, 4 Place du Général Leclerc, F-91400 Orsay, France
| |
Collapse
|
27
|
Mukhopadhyay S, Guillory B, Mukherjee S, Das SK. Antiproliferative effect of peripheral benzodiazepine receptor antagonist PK11195 in rat mammary tumor cells. Mol Cell Biochem 2010; 340:203-13. [PMID: 20204676 DOI: 10.1007/s11010-010-0419-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/10/2010] [Indexed: 01/26/2023]
Abstract
This study aims to establish the antiproliferative effects of PK11195, a peripheral benzodiazepine receptor antagonist (PBR) in rat mammary tumor cells. Breast tumors were induced by administration of a carcinogen, dimethylbenz[a]anthracene to 50-day-old female rats maintained on a standard AIN-76A diet with casein as the protein source. The tumors were developed approximately after 120 days. The tumors were of grade I (20%), grade II (60%), and grade III (20%). The tumors were isolated and cultured in DMEM/F12 media with supplements. We characterized the properties of the isolated cells and study the effect of PK11195 on those cells. We were successful in growing breast tumor cells up to 30 passages for cellular characterization. These cells had high reactivity with Ki-67 and PCNA antibodies suggesting high proliferation rate. These cells were highly invasive as evident by matrigel invading ability. Furthermore, these cells acquired a positive response for CD-31 and VEGF antibodies suggesting angiogenic potential, and also possessed migrating ability/motility as evident by the wound healing properties. These cells expressed elevated levels of PBR, a cancer promoting gene. The proliferation, invasion and migration appear to decrease when treated with PK11195, a PBR antagonist. Furthermore, PK11195 treatment caused an increase in apoptosis as evident by increase in the levels of annexin V. However, the inhibition of cell proliferation by PK11195 was counteracted by Ro5-4864, a PBR agonist. Thus, PBR antagonist may be a potential therapeutic agent for the control of aggressiveness of breast cancer.
Collapse
Affiliation(s)
- Sutapa Mukhopadhyay
- Department of Cancer Biology, Meharry Medical College, 1005 D.B.Todd Blvd., Nashville, TN 37208, USA
| | | | | | | |
Collapse
|
28
|
Fafalios A, Akhavan A, Parwani AV, Bies RR, McHugh KJ, Pflug BR. Translocator protein blockade reduces prostate tumor growth. Clin Cancer Res 2009; 15:6177-84. [PMID: 19789311 DOI: 10.1158/1078-0432.ccr-09-0844] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The transmembrane molecule, translocator protein (TSPO), has been implicated in the progression of epithelial tumors. TSPO gene expression is high in tissues involved in steroid biosynthesis, neurodegenerative disease, and in cancer, and overexpression has been shown to contribute to pathologic conditions including cancer progression in several different models. The goal of our study was to examine the expression and biological relevance of TSPO in prostate cancer and show that the commonly prescribed benzodiazepine lorazepam, a ligand for TSPO, exhibits anticancer properties. EXPERIMENTAL DESIGN Immunohistochemical analysis using tissue microarrays was used to determine the expression profile of TSPO in human prostate cancer tissues. To show the effect of TSPO ligands (lorazepam and PK11195) in prostate cancer, we used cell proliferation assays, apoptosis ELISA, prostate cancer xenograft study, and immunohistochemistry. RESULTS TSPO expression is increased in prostatic intraepithelial neoplasia, primary prostate cancer, and metastases compared with normal prostate tissue and benign prostatic hyperplasia. Furthermore, TSPO expression correlates with disease progression, as TSPO levels increased with increasing Gleason sum and stage with prostate cancer metastases demonstrating the highest level of expression among all tissues examined. Functionally, we have shown that lorazepam has antiproliferative and proapoptotic properties in vitro and in vivo. Additionally, we have shown that TSPO overexpression in nontumorigenic cells conferred susceptibility to lorazepam-induced growth inhibition. CONCLUSION These data suggest that blocking TSPO function in tumor cells induces cell death and denotes a survival role for TSPO in prostate cancer and provides the first evidence for the use of benzodiazepines in prostate cancer therapeutics.
Collapse
Affiliation(s)
- Arlee Fafalios
- Department of Urology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
29
|
Mazurika C, Veenman L, Weizman R, Bidder M, Leschiner S, Golani I, Spanier I, Weisinger G, Gavish M. Estradiol modulates uterine 18 kDa translocator protein gene expression in uterus and kidney of rats. Mol Cell Endocrinol 2009; 307:43-9. [PMID: 19524125 DOI: 10.1016/j.mce.2009.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 03/30/2009] [Accepted: 04/02/2009] [Indexed: 11/19/2022]
Abstract
We examined the effect of ovariectomy, with and without estradiol treatment, on 18 kDa translocator protein (TSPO) gene expression and its binding density in the uterus and kidney of rats. Ovariectomy causes a significant decrease in uterine, but not renal TSPO binding density, while estradiol treatment of ovariectomized rats restored TSPO binding density in the uterus. These TSPO density levels did not correlate with steady state or new RNA transcription. Our in vivo study suggests that estradiol is responsible for the maintenance of uterine TSPO density via transcriptional mechanisms. Our in vivo study also suggests that in the kidney estradiol appears to operate via post-transcriptional mechanisms to maintain TSPO density.
Collapse
Affiliation(s)
- Caroline Mazurika
- Department of Molecular Pharmacology, the Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Distribution, pharmacological characterization and function of the 18 kDa translocator protein in rat small intestine. Biol Cell 2009; 101:573-86. [PMID: 19392661 DOI: 10.1042/bc20080231] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION The TSPO (18 kDa translocator protein) is a mitochondrial transmembrane protein involved in cholesterol transport in organs that synthesize steroids and bile salts. Different natural and synthetic high-affinity TSPO ligands have been characterized through their ability to stimulate cholesterol transport, but also to stimulate other physiological functions including cell proliferation, apoptosis and calcium-dependent transepithelial ion secretion. Here, we investigate the localization and functions of TSPO in the small intestine. RESULTS TSPO was present in enterocyte mitochondria but not in rat intestinal goblet cells. Enterocyte cytoplasm also contained the endogenous TSPO ligand, polypeptide DBI (diazepam-binding inhibitor). Whereas intestinal TSPO had high affinity for the synthetic ligand PK 11195, the pharmacological profile of TSPO in the duodenum was distinct from the jejunum and ileum. Specifically, benzodiazepine Ro5-4864 and protoporphyrin IX showed 5-13-fold lower affinity for duodenal TSPO. The mRNA and protein ratios of TSPO to other mitochondrial membrane proteins VDAC (voltage-dependent anion channel) and ANT (adenine nucleotide transporter) were significantly different. PK 11195 stimulated calcium-dependent chloride secretion in the duodenum and calcium-dependent chloride absorption in the ileum, but did not affect jejunum ion transport. CONCLUSIONS The functional differences in subpopulations of TSPO in different regions of the intestine could be related to structural organization of mitochondrial protein complexes that mediate the ability of TSPO to modulate either chloride secretion or absorption in the duodenum and ileum respectively.
Collapse
|
31
|
Soustiel JF, Zaaroor M, Vlodavsky E, Veenman L, Weizman A, Gavish M. Neuroprotective effect of Ro5-4864 following brain injury. Exp Neurol 2008; 214:201-8. [PMID: 18789929 DOI: 10.1016/j.expneurol.2008.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 06/21/2008] [Accepted: 08/09/2008] [Indexed: 10/21/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a protein complex located at the outer mitochondrial membrane and interacting with the mitochondrial permeability transition pore (mPTP), indicating its involvement in the control of mPTP opening. We intended to explore the effect of TSPO ligands, PK 11195 and Ro5-4864 on apoptosis in a rat model of cortical injury. Sprague-Dawley rats received a daily intraperitoneal injection of dimethylsulfoxide (vehicle), PK 11195, or Ro5-4864, starting 2 days prior the injury and a third injection after the injury. At 6 weeks, immunohistochemistry analysis showed that Ro5-4864 resulted in a significant increase in the number of surviving neurons and in the density of the neurofilament network in the perilesional cortex in comparison with animals of the vehicle and PK 11195 groups. In tissue samples dissected from the injured area, Ro5-4864 caused a significant reduction in activation of caspases 3 and 9 but not of caspase 8 in comparison with the vehicle and PK 11195 groups. In addition, measurements of transmembrane mitochondrial potential of mitochondria (Deltapsi(M)) isolated from normal rat brain showed that loss of Deltapsi(M) induced by recombinant Bax could be significantly reduced by Ro5-4864 in a concentration-dependent manner. Our findings indicate that the neuroprotective effect shown by Ro5-4864 in the present model of brain injury involves the mitochondrial pathway of apoptosis modulation of mPTP.
Collapse
Affiliation(s)
- Jean F Soustiel
- Acute Brain Injury Research Laboratory, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | |
Collapse
|
32
|
Mukhopadhyay S, Rajaratnam V, Mukherjee S, Das SK. Control of peripheral benzodiazepine receptor-mediated breast cancer in rats by soy protein. Mol Carcinog 2008; 47:310-9. [PMID: 17932947 DOI: 10.1002/mc.20387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Soy protein is known to have breast tumor suppressing activity. The expression of peripheral benzodiazepine receptors (PBRs), currently renamed as translocator protein (TSPO) and their associated functions, such as nuclear cholesterol uptake and content also have been shown to be increased in breast cancer. Here we investigated whether the breast tumor suppressing effects of soy protein is mediated by down-regulation of PBR expression and function. Breast tumors were induced by gavage administration of a single dose (80 mg/kg) of dimethylbenz[a]anthracene (DMBA) into 50-d old female Sprague Dawley rats, maintained on a standard AIN-76A diet containing either casein or soy protein. Approximately 120 d following DMBA administration, the animals were sacrificed. All tumors were detected by palpation and at autopsy biopsy specimens were taken for histological grading. The ligand binding capacity, expression, and protein levels of PBRs, their nuclear localization and function, such as nuclear cholesterol uptake and content, were significantly increased in the tumors. However, replacement of casein by soy protein in the diet caused a significant decrease in all of these parameters. These data suggest that soy protein inhibits breast tumor development by decreasing the expression of the tumor-promoting gene, which encodes PBRs.
Collapse
Affiliation(s)
- Sutapa Mukhopadhyay
- Department of Biomedical Science, Meharry Medical College, Nashville, Tennessee 37208, USA
| | | | | | | |
Collapse
|
33
|
Chen MK, Guilarte TR. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 2008; 118:1-17. [PMID: 18374421 DOI: 10.1016/j.pharmthera.2007.12.004] [Citation(s) in RCA: 408] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 12/21/2007] [Indexed: 11/25/2022]
Abstract
For over 15 years, the peripheral benzodiazepine receptor (PBR), recently named translocator protein 18 kDa (TSPO) has been studied as a biomarker of reactive gliosis and inflammation associated with a variety of neuropathological conditions. Early studies documented that in the brain parenchyma, TSPO is exclusively localized in glial cells. Under normal physiological conditions, TSPO levels are low in the brain neuropil but they markedly increase at sites of brain injury and inflammation making it uniquely suited for assessing active gliosis. This research has generated significant efforts from multiple research groups throughout the world to apply TSPO as a marker of "active" brain pathology using in vivo imaging modalities such as Positron Emission Tomography (PET) in experimental animals and humans. Further, in the last few years, there has been an increased interest in understanding the molecular and cellular function(s) of TSPO in glial cells. The latest evidence suggests that TSPO may not only serve as a biomarker of active brain disease but also the use of TSPO-specific ligands may have therapeutic implications in brain injury and repair. This review presents an overview of the history and function of TSPO focusing on studies related to its use as a sensor of active brain disease in experimental animals and in human studies.
Collapse
Affiliation(s)
- Ming-Kai Chen
- Neurotoxicology & Molecular Imaging Laboratory, Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
34
|
Zorov DB, Isaev NK, Plotnikov EY, Zorova LD, Stelmashook EV, Vasileva AK, Arkhangelskaya AA, Khrjapenkova TG. The mitochondrion as janus bifrons. BIOCHEMISTRY (MOSCOW) 2008; 72:1115-26. [PMID: 18021069 DOI: 10.1134/s0006297907100094] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The signaling function of mitochondria is considered with a special emphasis on their role in the regulation of redox status of the cell, possibly determining a number of pathologies including cancer and aging. The review summarizes the transport role of mitochondria in energy supply to all cellular compartments (mitochondria as an electric cable in the cell), the role of mitochondria in plastic metabolism of the cell including synthesis of heme, steroids, iron-sulfur clusters, and reactive oxygen and nitrogen species. Mitochondria also play an important role in the Ca(2+)-signaling and the regulation of apoptotic cell death. Knowledge of mechanisms responsible for apoptotic cell death is important for the strategy for prevention of unwanted degradation of postmitotic cells such as cardiomyocytes and neurons.
Collapse
Affiliation(s)
- D B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Danovich L, Veenman L, Leschiner S, Lahav M, Shuster V, Weizman A, Gavish M. The influence of clozapine treatment and other antipsychotics on the 18 kDa translocator protein, formerly named the peripheral-type benzodiazepine receptor, and steroid production. Eur Neuropsychopharmacol 2008; 18:24-33. [PMID: 17561380 DOI: 10.1016/j.euroneuro.2007.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 03/01/2007] [Accepted: 04/24/2007] [Indexed: 11/19/2022]
Abstract
It has been shown that the atypical antipsychotic drug clozapine increases the levels of the neurosteroid allopregnanolone in the rat brain. The 18 kDa translocator protein (TSPO), formerly known as the peripheral-type benzodiazepine receptor, has been demonstrated to be involved in the process of steroid biosynthesis, in peripheral steroidogenic tissues as well as in glia cells in the brain. In the current study, we investigated the influence of chronic treatment with clozapine and other antipsychotics (thioridazine,sulpiride and risperidone) on TSPO binding in cell cultures and rat tissues. Clozapine significantly increased TSPO binding density in C6 rat glioma cells and in MA-10 mouse Leydig tumor cells, while the antipsychotic sulpiride had no effect on TSPO binding density in both cell lines. In addition, clozapine, but not sulpiride, significantly increased progesterone synthesis by MA-10 Leydig tumor cells. In an animal experiment, male Sprague-Dawley rats were treated with clozapine (20 mg/kg), risperidone (0.5 mg/kg), thioridazine (20 mg/kg), or sulpiride (20 mg/kg) for 21 days, followed by 7 days of withdrawal. Clozapine induced significant increases in TSPO binding in brain and peripheral steroidogenic tissues, whereas the other antipsychotics did not show such pronounced effects on TSPO binding. Our results suggest that TSPO may be involved in the modulation of steroidogenesis by clozapine.
Collapse
Affiliation(s)
- Lena Danovich
- Department of Pharmacology, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
36
|
Soustiel JF, Palzur E, Vlodavsky E, Veenman L, Gavish M. The effect of oxygenation level on cerebral post-traumatic apoptotsis is modulated by the 18-kDa translocator protein (also known as peripheral-type benzodiazepine receptor) in a rat model of cortical contusion. Neuropathol Appl Neurobiol 2007; 34:412-23. [PMID: 17973904 DOI: 10.1111/j.1365-2990.2007.00906.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIMS Hyperbaric hyperoxia has been shown to reduce apoptosis in brain injury. As the 18-kDa translocator protein (TSPO), also known as peripheral-type benzodiazepine receptor, is closely associated with the mitochondrial transition pore and because of its role in mitochondrial respiration and apoptosis, we hypothesized that reduction of apoptosis by hyperoxia may involve the TSPO. METHODS TSPO and transferase-mediated dUTP nick end labelling (TUNEL) immunopositivity was first assessed in cortical contusion, created by dynamic cortical deformation, by immunohistochemistry in rats exposed to normoxia [(dynamic cortical deformation (DCD)], normobaric hyperoxia or hyperbaric hyperoxia [hyperbaric oxygen therapy (HBO)]. In a second step, transmembrane mitochondrial potential (Deltapsi(M)) and caspase 9 activity were assessed in the injured area in comparison with the noninjured hemisphere. Measurements were performed in DCD and HBO groups. A third group receiving both HBO and the TSPO ligand PK11195 was investigated as well. RESULTS TSPO correlated quantitatively and regionally with TUNEL immunopositivity in the perilesional area. Hyperoxia reduced both the number of TSPO expressing and TUNEL positive cells in the perilesional area, and this effect proved to be pressure dependent. After contusion, we demonstrated a dissipation of Deltapsi(M) in isolated mitochondria and an elevation of caspase 9 activity in tissue homogenates from the contused area, both of which could be substantially reversed by hyperbaric hyperoxia. This protective effect of hyperoxia was reversed by PK11195. CONCLUSIONS The present findings suggest that the protective effect of hyperoxia may be due to a negative regulation of the proapoptotic function of mitochondrial TSPO, including conservation of the mitochondrial membrane potential.
Collapse
Affiliation(s)
- J F Soustiel
- Acute Brain Injury Research Laboratory, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | |
Collapse
|
37
|
Königsrainer I, Vogel UF, Beckert S, Sotlar K, Coerper S, Braun A, Lembert N, Steurer W, Königsrainer A, Kupka S. Increased Translocator Protein (TSPO) mRNA Levels in Colon but Not in Rectum Carcinoma. Eur Surg Res 2007; 39:359-63. [PMID: 17652962 DOI: 10.1159/000106380] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 05/25/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND The peripheral-type benzodiazepine receptor or translocator protein (TSPO) is an 18-kDa protein involved in cell proliferation and apoptosis. TSPO was shown to be overexpressed in malignant tumors and cancer cell lines, correlating with enhanced malignant behavior. The present study analyzed the role of TSPO in patients with colorectal carcinomas. METHODS Tumor tissues and corresponding normal mucosa from 55 patients who underwent resection for colorectal carcinomas were analyzed for TSPO expression in correlation to GAPDH expression(glyceraldehyde-3-phosphate dehydrogenase) using a multiplex RT-PCR assay. RESULTS TSPO was overexpressed in 67% of the tumors in comparison to corresponding normal mucosa, and positivity as well as expression levels in colon carcinomas were significantly higher than in the rectum carcinomas. In contrast, TSPO expression was not different in intermediate versus high-grade tumors or in lymph node-positive versus -negative patients. CONCLUSION The differences in TSPO expression between colon and rectum carcinoma may imply that these tumors are of different biological behavior.
Collapse
Affiliation(s)
- I Königsrainer
- Department of General, Visceral and Transplant Surgery, Tübingen University Hospital, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gourdeau H, McAlpine JB, Ranger M, Simard B, Berger F, Beaudry F, Farnet CM, Falardeau P. Identification, characterization and potent antitumor activity of ECO-4601, a novel peripheral benzodiazepine receptor ligand. Cancer Chemother Pharmacol 2007; 61:911-21. [PMID: 17622531 DOI: 10.1007/s00280-007-0544-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE ECO-4601 is a structurally novel farnesylated dibenzodiazepinone discovered through DECIPHER technology, Thallion's proprietary drug discovery platform. The compound was shown to have a broad cytotoxic activity in the low micromolar range when tested in the NCI 60 cell line panel. In the work presented here, ECO-4601 was further evaluated against brain tumor cell lines. Preliminary mechanistic studies as well as in vivo antitumor evaluation were performed. METHODS Since ECO-4601 has a benzodiazepinone moiety, we first investigated if it binds the central and/or peripheral benzodiazepine receptors. ECO-4601 was tested in radioligand binding assays on benzodiazepine receptors obtained from rat hearts. The ability of ECO-4601 to inhibit the growth of CNS cancers was evaluated on a panel of mouse, rat and human glioma cell lines using a standard MTT assay. Antitumor efficacy studies were performed on gliomas (rat and human), human breast and human prostate mouse tumor xenografts. Antitumor activity and pharmacokinetic analysis of ECO-4601 was evaluated following intravenous (i.v.), subcutaneous (s.c.), and intraperitoneal (i.p.) bolus administrations. RESULTS ECO-4601 was shown to bind the peripheral but not the central benzodiazepine receptor and inhibited the growth of CNS tumor cell lines. Bolus s.c. and i.p. administration gave rise to low but sustained drug exposure, and resulted in moderate to significant antitumor activity at doses that were well tolerated. In a rat glioma (C6) xenograft model, ECO-4601 produced up to 70% tumor growth inhibition (TGI) while in a human glioma (U-87MG) xenograft, TGI was 34%. Antitumor activity was highly significant in both human hormone-independent breast (MDA-MB-231) and prostate (PC-3) xenografts, resulting in TGI of 72 and 100%, respectively. On the other hand, i.v. dosing was followed by rapid elimination of the drug and was ineffective. CONCLUSIONS Antitumor efficacy of ECO-4601 appears to be associated with the exposure parameter AUC and/or sustained drug levels rather than C (max). These in vivo data constitute a rationale for clinical studies testing prolonged continuous administration of ECO-4601.
Collapse
Affiliation(s)
- Henriette Gourdeau
- Thallion Pharmaceuticals Inc., 7150 Alexander-Fleming, St Laurent, QC, Canada H4S 2C8.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Morris RL, Varnes ME, Kenney ME, Li YS, Azizuddin K, McEnery MW, Oleinick NL. The Peripheral Benzodiazepine Receptor in Photodynamic Therapy with the Phthalocyanine Photosensitizer Pc 4¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0750652tpbrip2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Dourlat J, Liu WQ, Gresh N, Garbay C. Novel 1,4-benzodiazepine derivatives with antiproliferative properties on tumor cell lines. Bioorg Med Chem Lett 2007; 17:2527-30. [PMID: 17317183 DOI: 10.1016/j.bmcl.2007.02.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/02/2007] [Accepted: 02/07/2007] [Indexed: 11/15/2022]
Abstract
Novel 1,4-benzodiazepine compounds were synthesized and evaluated for their ability to inhibit the proliferation of tumor cells. Some compounds revealed activities in the micromolar range and were more efficient than reference compound Ro 5-4864. Preliminary SAR helped to identify critical motifs for antiproliferative activity and led to the discovery of a compound selective for a melanoma cell line, known for its resistance to chemotherapy.
Collapse
Affiliation(s)
- Jennifer Dourlat
- Université Paris Descartes, UFR Biomédicale, Laboratoire de Pharmacochimie Moléculaire et Cellulaire, Paris F-75006, France
| | | | | | | |
Collapse
|
41
|
Azarashvili T, Grachev D, Krestinina O, Evtodienko Y, Yurkov I, Papadopoulos V, Reiser G. The peripheral-type benzodiazepine receptor is involved in control of Ca2+-induced permeability transition pore opening in rat brain mitochondria. Cell Calcium 2006; 42:27-39. [PMID: 17174393 DOI: 10.1016/j.ceca.2006.11.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 11/04/2006] [Accepted: 11/09/2006] [Indexed: 01/01/2023]
Abstract
The peripheral-type benzodiazepine receptor (PBR) is an 18 kDa mitochondrial membrane protein with still elusive function in cell death. Here, we studied whether PBR is involved in Ca2+-induced permeability transition pore (PTP) opening in isolated rat brain mitochondria (RBM). PTP opening is important in mitochondrial events leading to programmed cell death. Immunoblots revealed a single 18 kDa anti-PBR antibody-immunoreactive band in purified RBM. Adenine nucleotide transporter, a key PTP component, was found in the PBR-immunoprecipitate. In isolated intact RBM, addition of a specific anti-PBR antibody [H. Li, Z. Yao, B. Degenhardt, G. Teper, V. Papadopoulos, Cholesterol binding at the cholesterol recognition/interaction amino acid consensus (CRAC) of the peripheral-type benzodiazepine receptor and inhibition of steroidogenesis by an HIV TAT-CRAC peptide, Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 1267-1272] delayed Ca2+-induced dissipation of membrane potential (psi(m)) and diminished cyclosporine A-sensitive Ca2+ efflux, which are both indicative for the suppression of PTP opening. Moreover, anti-PBR antibody caused partial retention of Ca2+ in the mitochondrial matrix in spite of psi(m) dissipation, and reduced activation of respiratory rate at Ca2+-induced PTP opening. A release of pro-apoptotic factors, AIF and cytochrome c, from RBM was shown at threshold Ca2+ load. Anti-PBR antibody blocked the release of AIF but did not affect the cytochrome c release. Addition of ATP was able to initiate PTP closing, associated with psi(m) restoration and Ca2+ re-accumulation. At the same time mitochondrial protein phosphorylation (incorporation of 32P from [gamma-32P]ATP) occurred and anti-PBR antibody was able to inhibit phosphorylation of these proteins. The endogenous PBR ligand, protoporphyrin IX, facilitated PTP opening and phosphorylation of the mitochondrial proteins, thus, inducing effects opposite to anti-PBR antibody. This study provides evidence for PBR involvement in PTP opening, controlling the Ca2+-induced Ca2+ efflux, and AIF release from mitochondria, important stages of initiation of programmed cell death.
Collapse
Affiliation(s)
- Tamara Azarashvili
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Amitani M, Zhang MR, Noguchi J, Kumata K, Ito T, Takai N, Suzuki K, Hosoi R, Inoue O. Blood flow dependence of the intratumoral distribution of peripheral benzodiazepine receptor binding in intact mouse fibrosarcoma. Nucl Med Biol 2006; 33:971-5. [DOI: 10.1016/j.nucmedbio.2006.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 08/04/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
|
43
|
Sakai M, Fonseca ESM, Oloris SCS, Matsuzaki P, Otake AH, Leite KRM, Massoco CO, Dagli MLZ, Palermo-Neto J. Effects of peripheral-type benzodiazepine receptor ligands on Ehrlich tumor cell proliferation. Eur J Pharmacol 2006; 550:8-14. [PMID: 17027961 DOI: 10.1016/j.ejphar.2006.07.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 07/11/2006] [Accepted: 07/26/2006] [Indexed: 11/18/2022]
Abstract
Peripheral-type benzodiazepine receptors have been found throughout the body, and particularly, in high numbers, in neoplastic tissues such as the ovary, liver, colon, breast, prostate and brain cancer. Peripheral-type benzodiazepine receptor expression has been associated with tumor malignity, and its subcellular localization is important to define its function in tumor cells. We investigated the presence of peripheral-type benzodiazepine receptors in Ehrlich tumor cells, and the in vitro effects of peripheral-type benzodiazepine receptors ligands on tumor cell proliferation. Our results demonstrate the presence of peripheral-type benzodiazepine receptor in the nucleus of Ehrlich tumor cells (85.53+/-12.60%). They also show that diazepam and Ro5-4864 (peripheral-type benzodiazepine receptor agonists) but not clonazepam (a molecule with low affinity for the peripheral-type benzodiazepine receptor) decreased the percentage of tumor cells in G0-G1 phases and increased that of cells in S-G2-M phases. The effects of those agonists were prevented by PK11195 (a peripheral-type benzodiazepine receptor antagonist) that did not produce effects by itself. Altogether, these data suggest that the presence of peripheral-type benzodiazepine receptor within the nucleus of Ehrlich tumor cells is associated with tumor malignity and proliferation capacity.
Collapse
Affiliation(s)
- Mônica Sakai
- Laboratory of Applied Pharmacology and Toxicology, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Li W, Hardwick MJ, Rosenthal D, Culty M, Papadopoulos V. Peripheral-type benzodiazepine receptor overexpression and knockdown in human breast cancer cells indicate its prominent role in tumor cell proliferation. Biochem Pharmacol 2006; 73:491-503. [PMID: 17126818 DOI: 10.1016/j.bcp.2006.10.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 10/20/2006] [Accepted: 10/24/2006] [Indexed: 10/23/2022]
Abstract
The peripheral-type benzodiazepine receptor (PBR), an 18-kDa high affinity drug and cholesterol binding protein, is expressed at high levels in various cancers. Its expression is positively correlated with aggressive metastatic behavior in human breast cancer cells. To determine the role of PBR in tumor progression, two human mammary carcinoma cell lines were utilized: the non-aggressive MCF-7 cell line, which expresses extremely low PBR levels, and the highly aggressive MDA-MB-231 cell line, which has much higher PBR levels. We have generated stably transfected lines of the tetracycline-repressible MCF-7 cell line (MCF-7 Tet-Off) with inducible human PBR cDNA. Induction of PBR expression in MCF-7 Tet-Off cells increased PBR ligand binding and cell proliferation. Transfection of MDA-MB-231 cells with multiple siRNAs complementary to PBR (PBR-siRNAs) led to different levels of PBR mRNA knockdown. Lentiviral-mediated PBR RNA interference in MDA-MB-231 cells decreased PBR levels by 50%. Decreased PBR expression was associated with cell cycle arrest at G2 phase, decreased cell proliferation, and significant increases in the protein levels of the cyclin-dependent kinase inhibitor p21(WAF/CIP1). These changes were accompanied by p53 activation seen as increased p53 phosphorylation (Ser15). In parallel, increased proteolytic activation of caspase-3 was also observed. Taken together these results suggest that PBR protein expression is directly involved in regulating cell survival and proliferation in human breast cancer cells by influencing signaling mechanisms involved in cell cycle control and apoptosis.
Collapse
MESH Headings
- Apoptosis/drug effects
- Apoptosis/physiology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Caspase 3/metabolism
- Cell Line
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival/drug effects
- Cell Survival/physiology
- Cyclin A/metabolism
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Dose-Response Relationship, Drug
- Doxycycline/pharmacology
- G1 Phase/drug effects
- Humans
- Immunohistochemistry
- Models, Biological
- Proliferating Cell Nuclear Antigen/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Radioligand Assay
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Receptors, GABA-A/physiology
- Retinoblastoma Protein/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transfection
- Vimentin/biosynthesis
Collapse
Affiliation(s)
- Wenping Li
- Department of Biochemistry & Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
45
|
Cellai C, Laurenzana A, Vannucchi AM, Caporale R, Paglierani M, Di Lollo S, Pancrazzi A, Paoletti F. Growth inhibition and differentiation of human breast cancer cells by the PAFR antagonist WEB-2086. Br J Cancer 2006; 94:1637-42. [PMID: 16721373 PMCID: PMC2361325 DOI: 10.1038/sj.bjc.6603156] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
WEB-2086 – an antagonist of platelet-activating factor receptor (PAFR) with known anti-inflammatory, antiangiogenic and antileukaemic properties – also proved to inhibit the proliferation in human solid tumour cell lines of different histology, and with much higher efficacy than in normal fibroblasts. A detailed analysis of WEB-2086 anticancer activity was then performed focusing on breast adenocarcinoma MCF-7 and MDA-MB-231 cells. WEB-2086-treated cells, either expressing (MCF-7) or unexpressing (MDA-MB-231) the oestrogen receptor (ER)α, underwent a dose-dependent growth arrest (IC50=0.65±0.09 and 0.41±0.07 mM, respectively) and accumulation in G0–G1 phase. WEB-2086 also induced morphological and functional changes typical of mature mammary phenotype including (i) cell enlargement and massive neutral lipid deposition (best accomplished in MCF-7 cells); (ii) decrease in motility and active cathepsin D levels (mainly observed in highly invasive MDA-MB-231 cells). The expression of ERα was neither increased nor reactivated in treated MCF-7 or MDA-MB-231 cells, respectively. WEB-2086-induced differentiation in breast cancer cells involved the upregulation of PTEN, a key tumour suppressor protein opposing tumorigenesis, and was apparently independent of p53, PAFR, peripheral benzodiazepine receptor and ERα status. Overall, WEB-2086 can be proposed as an effective antiproliferative and differentiative agent with interesting translational opportunities to treat breast cancers in support to conventional chemotherapy.
Collapse
Affiliation(s)
- C Cellai
- Department of Experimental Pathology and Oncology, School of Medicine, University of Florence, Viale G. B. Morgagni 50, 50134 Florence, Italy
| | - A Laurenzana
- Department of Experimental Pathology and Oncology, School of Medicine, University of Florence, Viale G. B. Morgagni 50, 50134 Florence, Italy
| | - A M Vannucchi
- Department of Haematology, University of Florence, Viale Pieraccini 17, 50139 Florence, Italy
| | - R Caporale
- Department of Haematology, University of Florence, Viale Pieraccini 17, 50139 Florence, Italy
| | - M Paglierani
- Department of Human Pathology and Oncology, School of Medicine, University of Florence, Viale Pieraccini 17, 50139 Florence, Italy
| | - S Di Lollo
- Department of Human Pathology and Oncology, School of Medicine, University of Florence, Viale Pieraccini 17, 50139 Florence, Italy
| | - A Pancrazzi
- Department of Haematology, University of Florence, Viale Pieraccini 17, 50139 Florence, Italy
| | - F Paoletti
- Department of Experimental Pathology and Oncology, School of Medicine, University of Florence, Viale G. B. Morgagni 50, 50134 Florence, Italy
- E-mail:
| |
Collapse
|
46
|
Veenman L, Gavish M. The peripheral-type benzodiazepine receptor and the cardiovascular system. Implications for drug development. Pharmacol Ther 2006; 110:503-24. [PMID: 16337685 DOI: 10.1016/j.pharmthera.2005.09.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 09/27/2005] [Indexed: 11/16/2022]
Abstract
Peripheral-type benzodiazepine receptors (PBRs) are abundant in the cardiovascular system. In the cardiovascular lumen, PBRs are present in platelets, erythrocytes, lymphocytes, and mononuclear cells. In the walls of the cardiovascular system, PBR can be found in the endothelium, the striated cardiac muscle, the vascular smooth muscles, and the mast cells. The subcellular location of PBR is primarily in mitochondria. The PBR complex includes the isoquinoline binding protein (IBP), voltage-dependent anion channel (VDAC), and adenine nucleotide transporter (ANT). Putative endogenous ligands for PBR include protoporphyrin IX, diazepam binding inhibitor (DBI), triakontatetraneuropeptide (TTN), and phospholipase A2 (PLA2). Classical synthetic ligands for PBR are the isoquinoline 1-(2-chlorophenyl)-N-methyl-N-(1-methyl-propyl)-3-isoquinolinecarboxamide (PK 11195) and the benzodiazepine 7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4-benzodiazepin-2-one (Ro5 4864). Novel PBR ligands include N,N-di-n-hexyl 2-(4-fluorophenyl)indole-3-acetamide (FGIN-1-27) and 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (SSR180575), both possessing steroidogenic properties, but while FGIN-1-27 is pro-apoptotic, SSR180575 is anti-apoptotic. Putative PBR functions include regulation of steroidogenesis, apoptosis, cell proliferation, the mitochondrial membrane potential, the mitochondrial respiratory chain, voltage-dependent calcium channels, responses to stress, and microglial activation. PBRs in blood vessel walls appear to take part in responses to trauma such as ischemia. The irreversible PBR antagonist, SSR180575, was found to reduce damage correlated with ischemia. Stress, anxiety disorders, and neurological disorders, as well as their treatment, can affect PBR levels in blood cells. PBRs in blood cells appear to play roles in several aspects of the immune response, such as phagocytosis and the secretion of interleukin-2, interleukin-3, and immunoglobulin A (IgA). Thus, alterations in PBR density in blood cells may have immunological consequences in the affected person. In conclusion, PBR in the cardiovascular system may represent a new target for drug development.
Collapse
Affiliation(s)
- Leo Veenman
- Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Department of Pharmacology, Ephron Street, P.O. Box 9649, Bat-Galim, Haifa 31096, Israel
| | | |
Collapse
|
47
|
Mukhopadhyay S, Mukherjee S, Das SK. Increased expression of peripheral benzodiazepine receptor (PBR) in dimethylbenz[a]anthracene-induced mammary tumors in rats. Glycoconj J 2006; 23:199-207. [PMID: 16691503 DOI: 10.1007/s10719-006-7925-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Expression of peripheral benzodiazepine receptors (PBR) has been found in every tissue examined; however, it is most abundant in steroid-producing tissues. Although the primary function of PBR is the regulation of steroidogenesis, its existence in nonsteroidogenic tissues as well as in other cellular compartments including the nucleus suggests that there may be other roles for PBR. Our laboratory reported earlier a significant increase of PBR density in the nucleus of DMBA-induced malignant submandibular glands of rats, suggesting a role of PBR in nuclear events of peripheral tissues. Since then numerous studies have demonstrated the abundance of PBR in tumors. Numerous studies implicate a role for cholesterol in the mechanisms underlying cell proliferation and cancer progression. Based on studies with a battery of human breast cancer cell lines and several human tissue biopsies, Hardwick et al. suggested that PBR expression, nuclear localization, and PBR-mediated cholesterol transport into the nucleus are involved in human breast cancer cell proliferation and aggressive phenotype expression. The purpose of the present study is to confirm this hypothesis by developing an animal breast cancer model and correlating the above events with the breast cancer. Weanling rats were maintained on a diet containing animal protein (casein) for 30 days and then a single dose of DMBA in sesame oil (80 mg/kg) was administered by gavage to the animals. Control animals received the vehicle only. After 122 days of DMBA administration, the animals were sacrificed. All tumors were detected by palpation. B(max) of PBRs was 52.6% and 128.4% higher in the non-aggressive and aggressive cancer tissues, respectively, than that in normal tissues. Cholesterol uptake into isolated nuclei was found to be higher in both non-aggressive and aggressive tumor breast tissue than that in control tissue. There was also corresponding increase in B(max) of PBRs in the nucleus of cancer tissues. Furthermore, the nuclear nucleoside triphosphatase (NTPase) activity was found to be higher in aggressive tumor tissues than that in non-aggressive tumor tissues. In conclusion, these data suggest that PBR ligand binding, and PBR-mediated cholesterol transport into the nucleus may be involved in the development of mammary gland adenocarcinoma, thus participating in the advancement of the disease.
Collapse
Affiliation(s)
- Sutapa Mukhopadhyay
- Division of Cancer Biology, Department of Biomedical Sciences, Meharry Medical College, Nashville, TN, USA
| | | | | |
Collapse
|
48
|
Bar-Ami S, Bendel N, Leschiner S, Levin E, Veenman L, Gavish M. The effects of prostaglandin F2alpha treatment on peripheral-type benzodiazepine receptors in the ovary and uterus during pseudopregnancy of rats. Biochem Pharmacol 2006; 71:472-8. [PMID: 16376309 DOI: 10.1016/j.bcp.2005.10.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 10/28/2005] [Accepted: 10/31/2005] [Indexed: 11/15/2022]
Abstract
A previous study by us indicated that peripheral-type benzodiazepine receptor (PBR) density may be increased in the ovaries and uterus of pregnant rats (Weizman R, Dagan E, Snyder SH, Gavish M. Impact of pregnancy and lactation on GABAA receptor and central-type and peripheral-type benzodiazepine receptors. Brain Res 1997;752:7-14). In the present study, the effects of prostaglandin F2alpha (PGF2alpha) on PBR density in the ovary and uterus of pseudopregnant rats were assayed. Pseudopregnancy was induced on day 29 post-partum (PP) by s.c. injection of 50IU pregnant mare serum gonadotropin (PMSG) and 3 days later by s.c. injection of 20IU human chorionic gonadotropin (hCG). PBR ligand binding density was assayed with the specific PBR ligand [3H]PK 11195. A two-fold increase in ovarian PBR density was observed 2 days after hCG administration compared with vehicle control rats and this effect was maintained for 3 weeks. In the uterus, a three-fold increase in PBR density was observed and this increase was maintained for 1 week after hCG administration. Pseudopregnancy did not appear to affect renal PBR density or affinity. Treatment with PGF2alpha, which causes luteolysis, resulted in an approximately 50% reduction of PBR density in the ovaries of pseudopregnant rats at day 53 PP compared to pseudopregnant control rats. Treatment with indomethacin, which prevents the formation of PGF2alpha, caused the PBR density in the uterus of pseudopregnant rats at day 53 PP to be twice as high as in pseudopregnant control rats. All the above treatments did not affect the affinity of [3H]PK 11195 to ovarian and uterine PBR. These data suggest that PBR density in corpora lutea and uterus during pseudopregnancy is regulated by PGF2alpha.
Collapse
Affiliation(s)
- Shalom Bar-Ami
- Institute of evolution, Faculty of Science and Science Education, Haifa University, Mount Carmel, Haifa 31905, Israel
| | | | | | | | | | | |
Collapse
|
49
|
Costa B, Salvetti A, Rossi L, Spinetti F, Lena A, Chelli B, Rechichi M, Da Pozzo E, Gremigni V, Martini C. Peripheral benzodiazepine receptor: characterization in human T-lymphoma Jurkat cells. Mol Pharmacol 2006; 69:37-44. [PMID: 16189298 DOI: 10.1124/mol.105.015289] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peripheral benzodiazepine receptor (PBR) has been considered a promising drug target for cancer therapy, and several ligands have been developed for this purpose. Human T-lymphoma Jurkat cells have been considered as lacking PBR and are often used as negative control to prove the specificity of PBR ligands effects. It is surprising that we evidenced PBR protein expression in this cell line by means of Western blotting and immunocytochemistry assays using specific anti-PBR antibodies. PBR intracellular localization was evidenced in mitochondria and nuclei, as demonstrated by confocal and electron microscopy. The binding of the [(3)H]4'-chloro derivative of diazepam [(3)H]7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4-benzodiazepin-2-one (Ro5-4864) and the isoquinoline carboxamide derivative [(3)H]1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3 isoquinolinecarboxamide (PK11195) evidenced a single class of binding sites with an unusual affinity constant (K(d)) of 1.77 +/- 0.30 and 2.20 +/- 0.20 microM, respectively. The pharmacological profile of the classic ligands showed that PK11195 was the most potent inhibitor in the radioligand binding assays followed by Ro5-4864 and diazepam, whereas clonazepam, a specific ligand for the central-type receptor, showed a K(i) >1.0 x 10(-4) M. By a combined strategy of reverse transcriptase-polymerase chain reaction and Southern blot experiments, we succeeded in isolating and cloning the full-length Jurkat PBR cDNA, called JuPBR. The JuPBR gene showed two single-nucleotide polymorphisms resulting in the two substitutions, Ala147 --> threonine and His162 --> arginine, of PBR amino acidic sequence. In conclusion, for the first time, we demonstrated PBR expression in Jurkat cells: the protein bound classic PBR ligands with micromolar affinity constants and presented a modified amino acidic sequence consequent to the detection of two gene polymorphisms.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Benzodiazepinones/pharmacology
- Blotting, Western
- Cloning, Molecular
- DNA Primers
- DNA, Complementary
- Humans
- Immunohistochemistry
- Isoquinolines/pharmacology
- Jurkat Cells
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Microscopy, Electron
- Point Mutation
- Radioligand Assay
- Rats
- Receptors, GABA-A/chemistry
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Barbara Costa
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, University of Pisa, via Bonanno, 6-56126 Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chelli B, Rossi L, Da Pozzo E, Costa B, Spinetti F, Rechichi M, Salvetti A, Lena A, Simorini F, Vanacore R, Scatena F, Da Settimo F, Gremigni V, Martini C. PIGA (N,N-Di-n-butyl-5-chloro-2-(4-chlorophenyl)indol-3-ylglyoxylamide), a new mitochondrial benzodiazepine-receptor ligand, induces apoptosis in C6 glioma cells. Chembiochem 2005; 6:1082-8. [PMID: 15883977 DOI: 10.1002/cbic.200400350] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mitochondrial benzodiazepine-receptor (mBzR) ligands constitute a heterogeneous class of compounds that show a pleiotropic spectrum of effects within the cells, including the modulation of apoptosis. In this paper, a novel synthetic 2-phenylindol-3-ylglyoxylamide derivative, N,N-di-n-butyl-5-chloro-2-(4-chlorophenyl)indol-3-ylglyoxylamide (PIGA), which shows high affinity and selectivity for the mBzR, is demonstrated to induce apoptosis in rat C6 glioma cells. PIGA was able to dissipate mitochondrial transmembrane potential (DeltaPsim) and to cause a significant cytosolic accumulation of cytochrome c. Moreover, typical features of apoptotic cell death, such as caspase-3 activation and DNA fragmentation, were also detected in PIGA-treated cells. Our data expand the knowledge on mBzR ligand-mediated apoptosis and suggest PIGA as a novel proapoptotic compound with therapeutic potential against glial tumours, in which apoptosis resistance has been reported to be involved in carcinogenesis.
Collapse
Affiliation(s)
- Beatrice Chelli
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|